A Semantic Framework for the Analysis of Concurrent Constraint Programming

Rene Moreno
Dipartimento di Informatica, Università di Pisa
Corso Italia 40, 56125 Pisa, Italy.
Phone: +39 (+50) 887279
E-mail: moreno@di.unipi.it

Abstract

Compositional semantics allow to reason about programs in an incremental way, providing the basis for the development of modular data-flow analysis. The major drawback of these semantics is their complexity. This observation applies in particular for concurrent constraint programming (ccp). In this work we consider an operational semantics of ccp by using sequences of pairs of finite constraints to represent ccp computations which is equivalent to a denotational semantics, providing the basis for the development of an abstract interpretation framework for the analysis of ccp.

1 Introduction

Concurrent constraint programming (ccp) [9, 10, 11] is a programming paradigm which elegantly combines logical concepts and concurrency mechanisms. The computational model of ccp is based on the notion of constraint system, which consists of a set of constraints and an entailment relation. Processes interact through a common store. Communication is achieved by telling (adding) a given constraint to the store, and by asking (checking whether the store entails) a given constraint.

Like for most of concurrent languages, the presence of guarded nondeterminism causes the denotational semantics of ccp to be rather complicated (see [2] and [11]), and therefore programs are difficult to analyze and to reason about.

Compositionality is one of the most desirable properties of a formal semantics, since it provides a foundation of program verification and modular design. It depends upon the operators of the language, the behavior we want to describe (observables) and the degree of abstraction we want to reach.

Our goal is the definition of an operational semantics which is equivalent to a denotational one, providing the basis for the development of a semantic framework to reason about properties of ccp computations and their abstractions, following the ideas in [8].

This compositional characterization of the operational semantics of ccp is defined by using sequences of pairs of finite constraints, called reactive sequences ([1]) and is equivalent to a denotational semantics. Our model is correct w.r.t. the standard operational semantics in the sense that the input/output observables can be obtained in a simple way from the sequences representing computations.

The idea of defining a compositional operational semantics for ccp was investigated in [2]. In that work the compositional semantics is defined by using sequences of constraints labelled by assume/tell modes and the observation criteria adopted are the final results, together with termination modes. Our operational model associates to an agent a set of sequences that intuitively represents computations steps performed by an agent and there are not termination modes.

The paper is organized as follows. In the next section we give the syntax of the language, the standard operational model and the notion of input/output observables. In section 3 we define an operational semantics that is correct w.r.t. the input/output observables and compositional. In section 4 we present the denotational model and show that the two semantics are equivalent. Finally in section 5 we use these results to define a semantic framework for the analysis of ccp.

2 Concurrent constraint programming

In this section we recall the definition of concurrent constraint programming, its operational semantics and observational behavior. We refer to [11] for more details.
2.1 Cylindric constraint systems
Concurrent constraint programming is based on the notion of constraint system. Here we consider an abstract definition of such systems as lattices, following [11].

Definition 2.1 A cylindric constraint system is a structure

\[C = (C, \leq, \cup, true, false, Var, \exists, d) \]

such that

1. \((C, \leq, \cup, true, false)\) is a lattice, where \(\cup\) is the lub operation (representing the logical and), and
 \(true, false\) are the least and the greatest elements of \(C\), respectively\(^1\). The elements of \(C\) are called constraints.

2. \(Var\) is a denumerable set of variables, and for each \(x \in Var\) the function \(\exists x : C \rightarrow C\) is a cylindrification operator [7], i.e. it satisfies the following properties:

 \[(a) \exists_x c \leq c, \]
 \[(b) \text{ if } c \leq d \text{ then } \exists_x c \leq \exists_x d, \]
 \[(c) \exists_x (c \cup \exists_x d) = \exists_x c \cup \exists_x d, \]
 \[(d) \exists_x \exists_x c \equiv \exists_x \exists_x c. \]

3. For each \(x, y \in Var\), \(d_{xy} \in C\) is a diagonal element [7], i.e. it satisfies the following properties:

 \[(a) d_{xx} = true, \]
 \[(b) \text{ if } x \text{ is different from } y \text{ then } d_{xy} = \exists_x (d_{xz} \cup d_{zy}), \]
 \[(c) \text{ if } x \text{ is different from } y \text{ then } c \leq d_{xy} \lor \exists_x (c \cup d_{xy}). \]

The cylindrification operators model a sort of existential quantification and are used for defining a hiding operator in the language. The diagonal elements are useful to model parameter passing. If \(C\) contains an equality theory, then the elements \(d_{xy}\) can be thought of as the formulas \(x = y\).

2.2 The language
The syntax and semantics of \(ccp\) is parametric with respect to an underlying cylindric constraint system. Agents (Process) \(A\), declarations \(D\) and programs \(P\) are described by the following syntax, where \(c, c_i\) represent constraints.

\[
A ::= \text{Stop} \mid \text{tell}(c) \rightarrow A \mid \sum_{i=1}^n \text{ask}(c_i) \rightarrow A_i \mid A_1 \parallel A_2 \mid \exists_x A' \mid p(x)
\]

\[
D ::= p(x); A
\]

\[
P ::= c \mid D, P
\]

We will denote by \(Agents\) the set of all \(ccp\) agents.

The agent \(\text{Stop}\) represents successful termination. The \(\text{ask}(c)\) and \(\text{tell}(c)\) operations work on a common store which ranges over \(C\). If \(d\) is the current store, then the execution of \(\text{tell}(c)\) adds \(c\) to the store, that is, it sets the store to be \(c \cup d\). The \(\text{ask}(c)\) operation is a guard and its execution does not modify the store: it just tests the current store. We say that \(\text{ask}(c)\) is enabled in \(d\) if \(c \leq d\). The guarded choice agent \(\sum_{i=1}^n \text{ask}(c_i) \rightarrow A_i\) selects nondeterministically one \(\text{ask}(c_i)\) which is enabled in the current store, and then behaves like \(A_i\). If no guards are enabled, then it suspends, waiting for other (parallel) agents to add information (constraints) to the store. Parallel composition of agents is represented by \(\parallel\). We use \(\exists_x\) also to indicate an hiding operator on agents. The intended meaning of \(\exists_x A\) is that of an agent which behaves like \(A\), but where \(x\) is considered local or private in \(A\). Finally, the agent \(p(x)\) is a procedure call, where \(p\) is the name of the procedure and \(x\) is the actual parameter. The meaning of \(p(x)\) is given by a procedure declaration of the form \(p(y); A\), where \(y\) is the formal parameter. In the following, we assume that for every procedure name there exists one and only one declaration in \(D\).

\(^1\)The entailment relation \(\vdash\), which is commonly used in the literature, is the reverse of \(\leq\). Formally: for \(c, d \in C\), \(c \vdash d\) iff \(d \leq c\).
2.3 The operational model

The operational model of ccp, informally introduced above, is described in terms of a transition system $T_P = (\text{Conf}, \rightarrow)$ which is specified with respect to a given program P. The configurations in Conf are pairs consisting of an agent, and a constraint representing the store. Table 1 describes the rules of T_P.

Rule $R1$ describes the behavior of an agent of the form $\text{tell}(c) \rightarrow A$: it adds c to the store and then behaves like A. Rule $R2$ describes the fact that a choice agent selects one of the branches whose guard is enabled. This choice operator models global non-determinism: it depends on the current store whether or not a guard is enabled, and the current store is subject to modifications by the external environment. Rule $R3$ describes parallelism as an interleaving of the steps performed by single agents. Rule $R4$ describes locality, where $\exists z A$, represents an agent A where z is local and d is the information that has been produced locally on x. The local store is assumed to be initially empty, which amounts to regarding $\exists z A$ as equivalent to $\exists z \text{loc} A$. The execution of a procedure call is modeled by Rule $R5$. The symbol $\Delta_j A$ stands for $\exists z A = \exists z \text{loc} A$, where z is assumed to occur neither in the declaration nor in the agent, and is used to establish the link between the formal and actual parameter.

Given an agent A and an initial store c, a computation from (A, c) is a sequence of transitions which starts from (A, c) and leads to a final configuration (B, d), final in the sense that no transitions can take place from (B, d). The standard notion of observables considers the input/output relation associated to an agent and can be defined as follows.

Definition 2.2 The (input/output) observables of an agent A w.r.t. a program P are:

$$O_{\text{io}}[A]_P = \{ (c, d) \mid \text{there exists } B \text{ s.t. } (A, c) \rightarrow^* (B, d) \}$$

where \rightarrow^* is the reflexive and transitive closure of \rightarrow.

3 A compositional semantics

The operational semantics which associates to an agent A its observables $O_{\text{io}}[A]_P$ is not compositional. A compositional characterization can be obtained by using sequences of pairs of finite constraints, called reactive sequences [1], to represent ccp computations.

A reactive sequence has the form $(c_1, d_1) \ldots (c_n, d_n)$ and represents a computation of a ccp agent. Intuitively, a pair (c_i, d_i) represents a computation step performed by the agent A which transforms the global store from c_i to d_i. The last pair indicates that the agent has reached a resting point, i.e. in store d the agent does not produce any further information. It is natural to assume that reactive sequences are monotonically increasing, since in ccp computations the store evolves monotonically. In the following we will assume that each reactive sequence $(c_1, d_1) \ldots (c_{n-1}, d_{n-1}) (c_n, d_n)$ satisfies: For $i \in [1, n-1]$ and $j \in [2, n]$, $d_i = c_j$ and $c_j = d_{j-1}$.

For $s = (c_1, d_1) \ldots (c_n, d_n)$, we define $\text{Store}(s) = d_n$, representing the global store after the computation steps of s.

We will denote by S the set of all reactive sequences with typical elements s, s_1, \ldots. Given two sequences s_1 and $s_2 \in S$ we denote by $s_1, s_2 \in S$ the sequence obtained from the concatenation of s_1.

Table 1: The transition system T_P

<table>
<thead>
<tr>
<th>Rule</th>
<th>Transition</th>
</tr>
</thead>
<tbody>
<tr>
<td>$R1$</td>
<td>$(\text{tell}(c) \rightarrow A, d) \rightarrow (A, c \cup d)$</td>
</tr>
<tr>
<td>$R2$</td>
<td>$(\sum_{i=1}^n \text{ask}(c_i) \rightarrow A, d) \rightarrow (A_j, d)$</td>
</tr>
<tr>
<td></td>
<td>$j \in [1, n]$ and $c_j \leq d$</td>
</tr>
<tr>
<td>$R3$</td>
<td>$(A, c) \rightarrow (A', c')$</td>
</tr>
<tr>
<td></td>
<td>$(A</td>
</tr>
<tr>
<td></td>
<td>$(B</td>
</tr>
<tr>
<td>$R4$</td>
<td>$(A, d \cup \exists_z c) \rightarrow (B, d' \cup \exists_z c)$</td>
</tr>
<tr>
<td></td>
<td>$(\exists z^2 A, c) \rightarrow (\exists z^2 B, c \cup \exists z d')$</td>
</tr>
<tr>
<td>$R5$</td>
<td>$(p(y), c) \rightarrow (\Delta_j A, c)$</td>
</tr>
<tr>
<td></td>
<td>$p(y): \forall A \in P$</td>
</tr>
</tbody>
</table>
Table 2: The transition system T'_p

<table>
<thead>
<tr>
<th>Rule</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>$R1'$</td>
<td>$(\text{tell}(c) \rightarrow A, s) \rightarrow \langle A, s, (d, d \cup c) \rangle$ $s \leq d$</td>
</tr>
<tr>
<td>$R2'$</td>
<td>$(\sum_{j=1}^{n} \text{ask}(c_j) \rightarrow A, s) \rightarrow \langle A', s, (d, d) \rangle$ $j \in [1, n], c_j \leq s$ and $s \leq d$</td>
</tr>
</tbody>
</table>
| $R3'$ | $(A, s) \rightarrow \langle A', s' \rangle$ $s \leq d$
| $R4'$ | $(B | A, s) \rightarrow \langle B | A', s' \rangle$
| $R5'$ | $(p(y), s) \rightarrow \langle \Delta^x A, s, (d, d) \rangle$
| $R6'$ | $(A, s) \rightarrow \langle A, s, (d, d) \rangle$ $s \leq d$

and s_2. This operation can be extended in the natural way to sets of sequences. We denote by \mathcal{S} the complete lattice $(\mathcal{P}(\mathcal{S}), \subseteq)$.

To define the compositional semantics we use a transition system $T'_p = (\text{Conf}', \rightarrow)$ specified with respect to a given program P. The configurations in Conf' are pairs consisting of an agent, and a reactive sequence representing computations steps and the store. Table 2 describes the rules of T'_p.

The difference with the transition system T_p consists mainly in rule $R6'$, which models the interaction with the environment. The computation of an agent A is not immediately affected by actions made by the environment, only its future behavior will depend on them. An arbitrary constraint d can be then produced by the environment (adding the pair (d, d) to the actual sequence), without changing the state of A. This arbitrary steps are called stuttering steps [1].

The other rules correspond to the rules of T_p. Note that in rules $R2'$, $R5'$ the addition of a pair to the sequence s corresponds to the assumption that a computation step is performed. In the modified rules the operation \exists_{x} applied to a sequence s denotes the sequence obtained from s by applying \exists_{x} pointwise to the pairs of constraints of s. Furthermore, if $s = (c_1, d_1) \cdots (c_n, d_n)$ and d a constraint, then $s \leq d$ means $d_n \leq d$.

The correspondence between T_p and T'_p is expressed by the following lemma, similar to the one stated in [2], but by using another kind of sequences.

Lemma 3.1 Rules $R1'$–$R5'$ of T'_p are correct w.r.t. Rules $R1$–$R5$ of T_p, in the sense that if

$$\langle A, s \rangle \rightarrow \langle A', s' \rangle$$

is an Ri' transition step in T'_p, then

$$\langle A, \text{Store}(s) \rangle \rightarrow \langle A', \text{Store}(s') \rangle$$

is an Ri transition step in T_p.

We obtain now a compositional semantics \mathcal{O} by collecting, for each agent, the sets of reactive sequences generated by T'_p. We need to consider all completed sequences and to represent the finite approximations of infinite computations.

Definition 3.1 The semantics \mathcal{O} for an agent A w.r.t. a program P in an initial store c is defined as:

$$\mathcal{O}[A]_P = \{s' \mid \langle A, (c, c) \rangle \rightarrow^* (\text{Stop}, s') \}$$

and from $\langle A', s' \rangle$ the only applicable rule of T'_p is $R6'$.

The correctness of the semantics \mathcal{O} is expressed by the following.
Theorem 3.1 (Correctness) For any agent A we have

$$O_{\omega}[A]_F = \{(c, d) \mid \text{there exists } (c, d_1)(c_2, d_2) \ldots (c_n, d)(d, d) \in O[A]_F \text{ such that } c_i = d_{i-1} \text{ for each } i \in [2, n]\}.$$

A sequence of the form $(c, d_1)(d_1, d_2) \ldots (d_{n-1}, d)(d, d)$ represents a computation for an agent where c is the input constraint and the contributions of the environment have been already produced by the agent itself, i.e., the agent itself produces all needed constraints for its execution. The last pair (d, d) ensures that the computation has reached a resting point.

3.1 Compositionality of O

The semantics O is compositional with respect to all the operators of the language \to, Σ, \parallel and \exists_x. The semantics counterparts of these operators are \to, Σ, \parallel and \exists_x and are defined below.

[tell] : Prefixing the action $\text{tell}(c)$ to an agent A corresponds to concatenate the pair $(d, d \cup c)$ with sequences representing computations of A. For $S \subseteq S$ and a constraint c we define

$$c \to_t S = \{(d, d \cup c) \cdot s \mid s \in S\}$$

[ask] : The computation of $\text{ask}(c) \to A$ corresponds to take all sequences $s' = (d_1, d_1) \ldots (d_m, d_m)$ for which $d_j \not\to c$ for each $j \in [1, m]$, representing a “waiting period” for a constraint stronger than c. During this period only the environment is active by producing the constraints d_j by adding pairs of the form (d_j, d_j). When the store is strong enough to entail c we concatenate s' with the sequences s representing computations of A.

We define for a constraint c

$$S_{ss} = \{s' \in S \mid s' = (d_1, d_1) \ldots (d_m, d_m) \text{ and } d_j \not\to c \text{ for each } j \in [1, m-1], d_m \to c\}$$

and

$$S_{sd} = \{s' \in S \mid s' = (d_1, d_1) \ldots (d_m, d_m) \text{ and } d_j \not\to c \text{ for each } j \in [1, m]\}$$

Then for $S \subseteq S$ we define

$$c \to_s S = \{S_{ss} \cdot s \cup S_{sd} \mid s \in S, S_{ss}, s \in S\}$$

[Choice] : Apart from the case of deadlock, an alternative choice can always be selected, therefore the successful computations of the choice operator is given by set union. On the other side, sequences representing deadlock are present in the result if and only if they are present in all sets. Formally,

$$\bigcap_{i=1}^{n} c_i \to S_i = \bigcup_{i=1}^{n} S_{ss} \cdot S_i \cup \bigcap_{i=1}^{n} S_{sd} \text{ where } S_{ss}, S_{sd}, S_i \in S$$

[Parallel composition] : The partial operator \parallel presented in [1] allows to combine reactive sequences that agree at each point with respect to the contribution of the environment and that have the same length. In all other cases it is assumed to be undefined. We have

$$(c_1, d_1) \ldots (c_n, d_n) \parallel (c_1, e_1) \ldots (c_n, e_n) = (c_1, d_1 \cup e_1) \ldots (c_n, d_n \cup e_n).$$

The extension of this operator to sets of sequences is made in the obvious way.

[Hiding] : The hiding operator applied to a set S of reactive sequences, denoting the computation of an agent, should first take the sequences $s' \in S$ that are x-connected [1], i.e. those in which no information on x is present in the input constraints which has not been already accumulated by the computation of the agent. Given a sequence $s' = (c_1, d_1) \ldots (c_n, d_n)$ we say that s' is x-connected if

- $\exists_x c_1 = c_1$
- $\exists_x c_i \cup d_{i-1} = c_i$ for each $i \in [2, n]$
The resulting sequences \(s \) are then constructed by assuming that its computation steps do not provide more information on \(x \), i.e., by assuming that they are \(x \)-invariant [1]. Given a sequence \(s \) we say that \(s \) is \(x \)-invariant if for all computation steps \(\langle c, d \rangle \) of \(s \), we have \(d = \exists_x d \cup c \).

Finally we have to consider the contribution of the environment up to the information on \(x \) and for this purpose we require that \(\exists_x s = \exists_x s' \).

We define then
\[
\exists_x(S) = \{ s \in S | \text{there exists } s' \in S \text{ such that } \exists_x s = \exists_x s', s' \text{ is } x\text{-connected and } s \text{ is } x\text{-invariant} \}
\]

By a standard case analysis of the transition system \(T_P \), we have the following theorem:

Theorem 3.2 (Compositionality of \(\mathcal{O} \)) For any agents \(A, A_i \) and \(B \) we have

- \(\mathcal{O}[\text{tell}(c) \rightarrow A]_P = c \sim_x \mathcal{O}[A]_P \)
- \(\mathcal{O}[\text{ask}(c) \rightarrow A]_P = c \sim_x \mathcal{O}[A]_P \)
- \(\mathcal{O}[\sum_{i=1}^n \text{ask}(c_i) \rightarrow A_i]_P = \sum_{i=1}^n c_i \sim_x \mathcal{O}[A_i]_P \)
- \(\mathcal{O}[A \parallel B]_P = \mathcal{O}[A]_P \parallel \mathcal{O}[B]_P \)
- \(\mathcal{O}[\exists_x A]_P = \exists_x \mathcal{O}[A]_P \)
- \(\mathcal{O}[p(y)]_P = \Delta_x^y \mathcal{O}[A]_P \), where \(p(x) \cdot A \in P \) and \(\Delta_x^y = \exists_x^y \exists_x^y \)

We define then the operational semantics of a program \(P \) as
\[
\mathcal{O}[P] = \lambda A. \mathcal{O}[A]_P \text{ for } A \in \text{Agents}
\]

4 The denotational semantics

We use now the operators defined in the previous section to define a denotational semantics, similar to the semantics presented in [1].

Definition 4.1 \(\mathcal{F}_P : \text{Agents} \rightarrow \text{S} \) is the least function, with respect to the ordering induced by \(\subseteq \), which satisfies the equations in Table 3.

Note that the agent \(\text{Stop} \) cannot perform any computation step, so the result of a computation for \(\text{Stop} \) with input constraint \(c \) is always \(c \). Therefore, the denotation of \(\text{Stop} \) consists of all finite sequences of stuttering steps which contain only the information provided by the input constraints.

In order to prove that the least function satisfying the equations in Table 3 actually exists we use fixed point theory. An interpretation \(I \) is a function \(I : \text{Agents} \rightarrow \text{S} \). Let us denote by \(\subseteq \) the set of all these interpretations and by \(\subseteq \) the ordering induced on \(I \) by set inclusion, i.e. \(I \subseteq I' \) if and only if \(\forall A \in \text{Agents} . I(A) \subseteq I'(A) \). This partial order formalizes the evolution of the computation process.

We consider a monotonic mapping \(T_P \) on interpretations, associated to the program \(P \), and defined in such a way that its fixed points are the solutions of Equations F1–F6.

Definition 4.2 The mapping \(T_P : I \rightarrow I \) is defined as follows:

1. \(T_P(I)(\text{Stop}) = \{ \langle c_1, c_1 \rangle, \ldots, \langle c_n, c_n \rangle | n \geq 1 \} \)
2. \(T_P(I)(\text{tell}(c) \rightarrow A) = c \sim_x T_P(I)(A) \)
3. \(T_P(I)(\sum_{i=1}^n \text{ask}(c_i) \rightarrow A_i) = \sum_{i=1}^n c_i \sim_x T_P(I)(A_i) \)
4. \(T_P(I)(A \parallel B) = T_P(I)(A) \parallel T_P(I)(B) \)
5. \(T_P(I)(\exists_x A) = \exists_x T_P(I)(A) \)
6. \(T_P(I)(p(y)) = \Delta_x^y I(A) \) where \(p(x) \cdot A \in P \).
The following proposition shows that the solutions of Equations F1–F6 are the fixed points of T_P.

Proposition 4.1 An interpretation I is a solution of the Equations F1–F6 if and only if $T_P(I) = I$.

The powers of the operator T_P are defined as

1. $T_P \uparrow 0 = I_\perp$,
2. $T_P \uparrow (n + 1) = T_P(T_P \uparrow n)$,
3. $T_P \uparrow \omega = \bigcup_n T_P \uparrow n$

where I_\perp is the least interpretation, namely the interpretation which maps each agent into the empty set.

Then we have the following

Proposition 4.2 $(1, \leq)$ is a complete lattice and T_P is continuous.

Thus, from standard results, we have that the least fixed point of T_P exists and it coincides with $T_P \uparrow \omega$. From Proposition 4.1 we then obtain that \mathcal{F} is well-defined, and that:

Corollary 4.1 For each agent A we have $\mathcal{F}[A] = T_P \uparrow \omega(A) = \text{lfp}(T_P)$.

We define then the denotation of a program P as

$$\mathcal{F}[P] = \lambda A. \mathcal{F}[A] \quad \text{for} \quad A \in \text{Agents}$$

Finally we have the following

Theorem 4.1 (Equivalence of O and F) For all agents A and program P

$$O[A]_P = \mathcal{F}[A] \quad \text{and} \quad O[P] = \mathcal{F}[P]$$

Proof. Straightforward from Definition 3.1, Theorem 3.2 and Definition 4.1.

\[\square \]

5 Compositional Analysis

The semantics presented in the previous sections can be used as the basis for a compositional analysis of CCP programs. The idea is to get an abstract denotational semantics from the concrete one, following the techniques of abstract interpretation [3], [4]. An analysis is then a computation in which the program is evaluated using a non-standard interpretation of data and operators in the program. According to this, the semantics we have presented are mimicked by the abstract semantic equations. Constraints are replaced by descriptions of constraints and the operators are replaced by operators which approximates the concrete ones.
5.1 The abstract semantics

We now show how the semantics presented in the previous sections can be used for program analysis. We present first some definitions from [5] and [6], and define then an abstract semantics.

Definition 5.1 A description \((A, \alpha, C)\) consists of an abstract domain \(A = (A, \leq^A)\), a concrete domain \(C = (C, \leq^C)\), and a monotonic abstraction function \(\alpha: C \rightarrow A\).

Given \(a \in A, c \in C\), we say that \(a\) approximates \(c\), written \(a \preceq c\), if \(a \leq^A \alpha(c)\). The approximation relation is lifted to functions, relations and sets as follows:

- Let \((A_1, \alpha_1, C_1)\) and \((A_2, \alpha_2, C_2)\) be descriptions, \(F: A_1 \rightarrow A_2\) and \(G: C_1 \rightarrow C_2\) be functions. Then \(F \preceq G\) iff for each \(d \in A_1\) and for each \(e \in C_1\), \(d \preceq^A \alpha_1(e)\) implies \(F(d) \preceq^A \alpha_2(G(e))\).

- Let \((A_1, \alpha_1, C_1)\) and \((A_2, \alpha_2, C_2)\) be descriptions, \(R \subseteq A_1 \times A_2\) and \(R' \subseteq C_1 \times C_2\) be relations. Then \(R \preceq R'\) iff \(\forall a \in A_1. \forall c \in C_1. a \preceq^A \alpha_1(c)\) and \((a, c') \in R\) implies that there exists \((a, a') \in R'\) and \(a' \preceq^A \alpha_2 c'\).

- Let \((A, \alpha, C)\) be a description and let \(X \subseteq P(A)\) and \(Y \subseteq P(C)\). Then \(X \preceq Y\) iff for each \(e \in Y\) there exists \(d \in X\) such that \(d \preceq^A e\).

For cc languages, we are interested in descriptions of constraint systems. We use the following definition which allows us to develop a compositional analysis based on \(\mathcal{F}\).

Definition 5.2 Consider the cylindric constraint systems \(C\) and \(A\) with \(C = (C, \leq, \mathit{true}, \mathit{false}, \mathit{Var}, \exists, d)\) and \(A = (A, \leq^A, \mathit{true}^A, \mathit{false}^A, \mathit{Var}, \exists^A, d^A)\). A constraint system description \((A, \alpha, C)\) is a description such that

1. \(\exists^A \preceq \exists\)

2. We have a function \(\Delta^A: C \rightarrow A\) such that for all constraints \(c\), \(\alpha(c)\Delta^A c\) is extensive and approximates \(\lambda\Delta^A c\).

3. \(\forall x \in \mathit{Var}. \exists^A x \preceq \exists x\).

4. \(\forall c \in C. \alpha(\exists^A(c)) = \exists^A \alpha(c)\).

5. \(\forall x, y \in \mathit{Var}. \alpha(\exists^A x y) = \exists^A x y\).

To derive the abstract semantics we define now the abstract versions of the semantics operators from Section 3.1. For the constraint system \(A\) we denote by \(S_A\) the set of abstract reactive sequences and by \(\mathcal{A}\) the complete lattice \((P(S_A), \subseteq)\).

We will make use of two relations defined in [6]. The possible entailment relation \(\vdash^A_{\mathit{pos}} \subseteq A \times C\) defined as

\[a \vdash^A_{\mathit{pos}} c \text{ iff there exists } c' \text{ s.t. } a \preceq^A c' \text{ and } c \leq^C c', \]

and the definite entailment relation \(\vdash^A_{\mathit{def}} \subseteq A \times C\) defined as

\[a \vdash^A_{\mathit{def}} c \text{ iff for each } c' \text{ if } a \preceq^A c' \text{ then } c \leq^C c'. \]

We define then for \(S_A\) and \(S_A^t\) and \(S_A^d\) and \(c\) a constraint

- \(c \vdash^t_s S_A = \{ (a, a\Delta^A c) \cdot s_A \in S_A \mid s_A \in S_A\} \)

- \(c \vdash^d_s S_A = \{ A_s^d \cdot s_A \cup A_s^d \mid s_A \in S_A, A_s^d \cdot s_A \in S_A\} \)

where

\[A_s^d = \{ s'_A \in S_A \mid s'_A = (a_1, a_1) \ldots (a_m, a_m) \]

\[a_j \not\vdash^d c \text{ for each } j \in [1, m - 1], \]

\[a_m \vdash^A_{\mathit{pos}} c \} \]

and

\[A_s^d = \{ s'_A \in S_A \mid s'_A = (a_1, a_1) \ldots (a_m, a_m) \]

\[a_j \not\vdash^d c \text{ for each } j \in [1, m] \}

64
Table 4: The abstract denotational semantics

FA1	$T_S^A[\text{Stop}] = \{(a_1, a_1)(a_2, a_2) \ldots (a_n, a_n) \in S_A \mid n \geq 1\} $
FA2	$T_S^A[\text{tell}(c) \rightarrow A] = c \cdot T_S^A[A]$
FA3	$T_S^A[\sum_{i=1}^{\infty} \text{ask}(c_i) \rightarrow A_i] = \sum_{i=1}^{\infty} c_i \cdot T_S^A[A_i]$
FA5	$T_S^A[\exists_x A] = \exists_x T_S^A[A]$
FA6	$T_S^A[p(y)] = \exists_y T_S^A[A]$ where $p(x) \cdot A \in P$

- $\sum_{i=1}^{\infty} c_i \cdot a_i = a_i \in S_A$ $\cup \bigcup_{i=1}^{\infty} A_i \cdot a_i$ where $A_i \cdot a_i \in S_A$
- $\langle a_1, b_1 \rangle \ldots (a_n, b_n) = \langle a_1, b_1 \cup ^A b'_1 \rangle \ldots (a_n, b_n \cup ^A b'_n)$.
- $\exists_x (S_A) = \{ s_A \in S_A \mid \text{there exists } s'_A \in S_A \text{ such that } \exists_x S_A = s'_A \text{ is } x\text{-connected and } s_A \text{ is } x\text{-invariant} \}$

Definition 5.3 $T_S^A : \text{Agents} \rightarrow A$ is the least function, with respect to the ordering induced by \subseteq, which satisfies the equations in Table 4.

The abstract semantics T_S^A can be used to approximate the observables, as shown in the following definition.

Definition 5.4 $O_{\leq}^A[A]_P = \{ (a, b) \mid \text{there exists } (a, b)(a_2, b_2) \ldots (a_n, b_n) \in T_S^A[A] \text{ such that } a_i = b_{i-1} \text{ for each } i \in [2, n] \}$.

Intuitively, for an agent A, $O_{\leq}^A[A]_P$ represent the abstract observables of A retrieved from $T_S^A[A]$.

Finally we have the following

Theorem 5.1 For all agents A and programs P, $O_{\leq}^A[A]_P \propto O_{\leq}^A[A]_P$.

5.2 An Example of Compositional Groundness Analysis

In this section we illustrate the use of the abstract denotational semantics T_S^A by a very simple example of groundness analysis for ccp programs over term equations.

Let $t_1, t_2 \ldots$ be terms on a signature and Var be a set of variables. Let E be the set of existentially quantified conjunctions of equations, i.e. the least set E such that

- for any pair of terms $t, t', t = t' \in E$,
- if $e \in E$ then $\exists x. e \in E$,
- if $e, e' \in E$ then $e \cup e' \in E$.

We denote by E_{Eqn} the Herbrand (cylindric) constraint system whose elements are those in E modulo logical equivalence. The ordering in E_{Eqn} is defined by

$$[e] \leq [e'] \text{ iff } e' \models e.$$

The operations in E_{Eqn} are the obvious, i.e. \cup is logical conjunction and $\exists x$ is the existential quantifier. The diagonal element d_{xy} corresponds to the equation $x = y$

Definition 5.5 An element $e \in E$ is solved if e is of the form

$$\exists \exists_{yx_1} = t_1 \cup \ldots \cup x_n = t_n$$

where each x_i is a distinct variable not occurring in any of the terms t_i, and each $y \in \bar{y}$ occurs in some t_j.
It is well known that any satisfiable $e \in E$ can be transformed into an equivalent one $\text{Sol}(e)$ which is solved. If e is not satisfiable we define $\text{Sol}(e) = \text{false}$.

The idea of groundness analysis is to infer statically which variables in the initial state are bound to ground terms in all possible successful computations.

In our setting a description of an element $e \in E$ will be a set of variables, meaning that any unifier of e binds these variables to ground terms. This description can be defined as

$$\alpha(e) = \begin{cases} \{x \mid x = t \in \text{Sol}(e) \text{ and } t \text{ is ground}\} & \text{if } \text{Sol}(e) \neq \text{false} \\ \text{false} & \text{if } \text{Sol}(e) = \text{false} \end{cases}$$

The abstract constraint system A has domain $\mathcal{P}($Var$)$ (i.e. $A = \mathcal{P}($Var$)$) and operations defined as follows. For any $X, Y \in \mathcal{P}($Var$)$:

1. $X \subseteq^A Y$ iff $X \subseteq Y$,
2. $X \cup^A Y = X \cup Y$,
3. $\exists^A X = X \setminus \{x\}$,

It is easy to verify that (A, α, Eqn) is a constraint system description, where $\Delta^A(e)(X) = \alpha(e) \cup X$, for $e \in E$ and $X \in A$.

Consider now the following program P, defining three procedures p, q and r.

$$p(x, y) :- \text{ask}(x = a) \rightarrow \text{Stop}$$
$$+ \\text{ask}(y = b) \rightarrow \text{Stop}.$$

$$q(x, y) :- \text{tell}(x = y) \rightarrow \text{Stop}.$$

$$r(x, y) :- p(x, y) \parallel q(x, y).$$

We want to analyze the agent $r(x, y)$. By applying the bottom-up construction of the least solution of equations $F_{A1}–F_{A6}$ we have, \(^2\) first by using the rules for ask and choice

$$F_{A1}^A[p(x, y)] = \{\{(y), \{x, y\}\}, \{(x), \{x, y\}\}\} U$$
$$\{\{(x), \{y\}\}\} U$$
$$\{\{(x, y), \{x, y\}\}\} U$$
$$\{\{(x, y), \{x\}\}\}$$

which means that the agent $p(x, y)$ will bind the variable x to a ground term if and only if it binds the variable y to the same ground term. Then, by using the rule for tell we have

$$F_{A1}^A[q(x, y)] = \{\{(y), \{x, y\}\}, \{(x, y), \{x, y\}\}\} U$$
$$\{\{(x), \{x, y\}\}, \{(x, y), \{x, y\}\}\} U$$
$$\{\{(x, y), \{y\}\}\}$$

which means that the agent $q(x, y)$ binds the variable y to a ground term if and only if it binds the variable y to the same ground term. Finally, by applying the rule of parallel composition we have

$$F_{A1}^A[r(x, y)] = \{\{(x, y), \{x, y\}\}\}$$

which means that the agent $r(x, y)$ binds both variables x and y to ground terms.

The above stated conclusions can be shown better by retrieving the abstract observables of each agent from its abstract semantics. By applying definition 5.4 we have

$$O_{\alpha}^A[p(x, y)] = \{(x), \{x, y\}\}, \{(y), \{y, y\}\}, \{(x, y), \{x, y\}\}$$
$$O_{\alpha}^A[q(x, y)] = \{(x), \{x, y\}\}, \{(y), \{y, y\}\}$$
$$O_{\alpha}^A[r(x, y)] = \{(x, y), \{x, y\}\}$$

\(^2\)To simplify, we do not consider sequences that contains the same steps more than once, i.e. of the form $(c, c), (c, c), (c, c) \ldots$
6 Conclusion and future work

We have presented an operational semantics for ccp by using reactive sequences, which is compositional and equivalent to a denotational one. We used these results to compositional analysis by applying ideas of abstract interpretation and show that our abstract semantics approximates the input/output behavior of an agent w.r.t. to a program.

The future work will be concentrated in defining a framework for the analysis of ccp where we can reason about properties such as the existence of abstract transition systems, i.e. a transition system on an abstract domain which defines an abstract operational semantics. Then we plan to define a theory according to which the semantics properties of ccp computations are inherited by the denotations which model abstractions of these computations.

References

