
Semantics of a data-parallel logic language using

the BSP execution model

Arnaud Lallouet

Abstract

We present a parallel logic language which uses the bulk synchronous

parallelism (BSP) execution model [13]. The BSP model provides a simple

way to program parallel machines by restricting the SPMD style : pro-

cesses are limited to a bounded asynchronism during local computations

and communication is a global operation followed by a global synchro-

nization. This in conjunction with explicit location provides a simple cost

model that allow performance prediction. We adapt the data-parallel logic

language DPlog [7] to �t with theses characteristics and we present both

a declarative and an operational semantics. The resulting language, we

call BS-DPlog, o�ers a great expressive power without any compromise

to the advantages of BSP.

Keywords: Parallel Logic Programming, Semantics, BSP model

1 Introduction

We propose a parallel logic language called BS-DPlog which uses the Bulk

Synchronous Parallelism (BSP) execution model. It aims to inherits from logic

programming a declarative semantics and a high level of abstraction and from

BSP an e�cient execution model to reason about parallel computations and a

simple model of performances prediction.

Context of this work Distributed memory and MIMD is now a well-establish-

ed architecture for parallel machines but they are notoriously di�cult to program.

When using concurrent (CSP-like) languages, one has to deal with features like

indeterminism or deadlock. Although they provide additional power of expression

suitable for certain problems, they are super
uous when one wishes only to speed

up the resolution of a problem. Collection-oriented languages [11] manipulate

Universit�e l'Orl�eans - LIFO, 45067 Orl�eans Cedex 2

E-mail: Arnaud.Lallouet@lifo.univ-orleans.fr

1

2 APPIA-GULP-PRODE'98

vectors instead of scalars and are easier to use because they provide a single

thread of control to the programmer : they act like a processor of arrays. We

call this synchronous and centralized point of view macroscopic [2]. They are

now associated to the SPMD model of programmation (single program, multiple

data) and their implementation synchronize the di�erent threads (at least) when

needed. Following [2], this asynchronous and distributed point of view can be

called microscopic. Declarative languages belonging to this category are mostly

functional : Caml-Flight [4], NESL [1] or 8

1

2

[8]. In Logic Programming, most of

the work has been done for concurrent languages and automatic parallelization

[3].

The BSP model The data-parallel execution model BSP [13] has now a wide

recognition as a useful paradigm for parallel programming and provides a simple

way to write programs (SPMD) associated to good performance and cost pre-

diction. However, the integration with declarative programming, and especially

logic programming has not yet been done.

A BSP program is a data-parallel SPMD program composed of a sequence

of superstep, each one divided in three phases. First, each processor executes

a local and independent computation in which it may request transfers of data

from/to other nodes. The second phase performs the requested communications

and the third is a global synchronization. Locations are explicit (direct mode)

and there is no virtualization mechanism (see �gure 1). Performances of this

Figure 1: The BSP execution model

model are expressed by three parameter : the number of processors p, the time l

required for a global synchronization and the time g needed for all the processors

to communicate one word to another (1-relation). For a relation of arity h, the

time is gh. The execution time of a superstep s is the sum of the longest local

processing time, of the data transfers time and the global synchronization time :

T ime(s) = max

0�i<p

W

(s)

i

+ max

0�i<p

h

(s)

i

� g + l

Semantics of a data-parallel logic language using the BSP execution model 3

where W

(s)

i

= local processing time on processor i, h

(s)

i

= the number of words

transfered by processor i.

Data-parallel logic programming In [7] and [6], we present a data-parallel

logic language called DPlog. We take this language as a basis for the language

proposed in this paper. Here follows an intuitive presentation of the language.

A DPlog program is a set of de�nite Horn clauses (i.e. without negation)

of the form h b

1

; : : : b

n

where h, b

1

, ..., b

n

are vectorial atoms. A DPlog

program handle vectorial (multi-dimensional) objects indexed by locations and

reductions on the vector's elements are done in parallel. The workspace of lo-

cations is described by particular objects called indexes. The most usual index

domain is a �nite subset of IN

n

(n-dimensional arrays). The same program is

attributed to each index, and each computation occurs locally, starting with its

own query. For instance, let's consider the program P

1

in �gure 2, and the set of

indexes f0; 1; 2; 3g. Then, we use a vectorial notation [[a; b; a; a]]

f0;1;2;3g

to express

the query a on the set of indexes f0; 2; 3g and the query b on the index 1 at the

same time. This query succeeds because each goal can be locally deduced from

the program. The fact that programs are identical does not mean that all compu-

P

1

:

a b

b

P

2

:

a b

b This = 3

P

3

:

a get b from This - 1

b

Figure 2: Three small DP-log programs

tations have to be the same. The behavior of the program may also depend on the

value of the actual index. This is achieved by a special vectorial constant, This,

whose value at an index is precisely the index of the computation. Considering

the same query and the program P

2

of �gure 2, the query fails because the goal b

can only succeed at index 3. A computation at a given index may also depend on

results computed at other indexes. This is the purpose of the general communi-

cation primitive \get p from j" where p is an atom to be proven at index j. This

is illustrated by the program P

3

of �gure 2 : the atom a is true at index i if the

atom b is true at index i� 1. This means that every proof of a at index i will use

an auxiliary proof of b at index i�1. A communication can ask to get a relocated

proof of an atom or may use any other mean to ensure that the communicated

atom belongs to the model of the called index. Operationally, when asked for

a \get", an index launches a new proof process to get a proof of this atom. In

this language, communications are thus non-atomic. Practically, they necessitate

the use of tables to memorize past computations in order to avoid in�nite loops

through communications and to limit the cost of such an operation [6]. The op-

erational semantics we propose for this language is synchronous (one could say

\SIMD-like") but the BSP execution model provides a simple and powerful way

to express asynchronous parts. The choice of the independent computations is

4 APPIA-GULP-PRODE'98

left to the programmer as in every language with explicit parallelism. The solu-

tion we present here can also be viewed as a particular case of the general model

in which tables are limited to a single element (a more general execution model

is left for future work).

The truth value of a vector is simply the conjunction of the truth value of

its components. According to this point of view, data-parallel computations are

nothing more than a restricted form of AND-parallelism [5]. But we present a

vector semantics, in order to �t better with the operational view, in particular

wrt cost prediction which is not easy without explicit locations.

Adaptation to the BSP model To �t with the BSP model, we need four

important features that are not present in DPlog :

1. Explicit processor location : an index corresponds to a true processor loca-

tion.

2. Global synchronization : there is no context of activity like in most data-

parallel languages. Hence all indexes perform every synchronization.

3. Local computation part : we split the set of predicates into two subsets.

One is devoted to local computations while the second is concerned with

global ones. This is a two-level language construct : from a high level

point of view, global predicates operate like ordinary predicates in logic

programming (except the fact they act on vectors). Their execution is

synchronized (from the programmer's point of view) and when they perform

backtracking, this yields to express several BSP calculus. This latter feature

can be used to model the traversal of a BSP program space (see �gure 3).

On the other side, local predicates act di�erently. They are just tools used

1st BSP calculus 2nd BSP calculus 3rd BSP calculus

non-deterministic choice of the superstep

Figure 3: Describing several BSP computations as a search space

inside of a superstep. For them we choose to forbid backtracking across

synchronization by pruning the end of the search tree. Backtracking over

Semantics of a data-parallel logic language using the BSP execution model 5

potentially di�erent predicates would lead to a complex behavior and should

be di�cult to implement to preserve e�ciency. As a consequence, we loose

completeness wrt the declarative semantics, but we do not make concessions

on the expressivity of the language because non-determinism with search

space traversal is still available at the higher level.

4. Atomic communication primitive : in the BSP model, communication is a

global and atomic operation, i.e. it concerns all indexes and the cost of

such an operation is predictable. In BS-DPlog, we choose to limit the

table used for communication in DPlog to one item we call the public

memory. Every time a global atom is reduced and a synchronization occur,

the atom is copied into the processor's public memory. When a get is

performed, it must unify with the atom in this memory and the result is

immediately returned. It induces a particular style of programmation (i.e.

produce an atom and transfer it somewhere else) that �ts well with the

BSP programming style.

All these features provide a declarative way to construct BSP programs in the

logic programming style. The bene�ts we expect come from these two �elds : a

declarative style for which there exists many formal techniques to specify and

validate programs, to perform semantics-based transformations, . . . and simple

programmation of complex parallel machines with performance prediction.

Plan of the paper In this paper, we start from the synchronous data-parallel

language DPlog and we add step by step di�erent features to desynchronize

parts of the program. First we give a declarative semantics to state what is

computed. Then we explore di�erent operational semantics. The �rst one we

give is ground and top-down [7]. Then we precise the non-deterministic use of the

rules by giving the DP-SLD strategy [6]. Then we carefully provide asynchronous

local computations by using don't care non-determinism and a commit operator.

Because these asynchronous parts are forced to be independent by a syntactical

condition, we preserve the expressiveness of the language as well as the interesting

features of BSP like the cost model. Finally we �nalize our approach with the

languageBS-DPlog which provides a concrete syntax for bulk synchronous logic

programming.

2 Least model declarative semantics

We propose to de�ne the declarative semantics. We only de�ne here what is

computed with no relation to bulk synchronous parallelism, which is a highly

operational notion. Nevertheless, we do so with operations whose BSP interpre-

tation is possible. A �xpoint semantics has already been presented to de�ne the

6 APPIA-GULP-PRODE'98

declarative semantics of the (operationally di�erent) language DPlog [7]. Let's

�rst set some basic de�nitions.

Let V AR; FUNC and PRED be denumerable sets of variables, function and

predicate symbols. Let PRED

loc

� PRED be a set of predicate symbol which

will have a special operational meaning. On top of these sets, we build TERM

the set of terms (including TERM

G

the set of ground terms) and ATOM the

set of atomic formulae (including HB the set of ground atoms or Herbrand base).

We call a normal atomic formula a simple atom. For the purpose of distribution,

we consider LOC � TERM

G

a �nite set of special ground terms we call index or

locations. Let NProcs be the cardinality of LOC. A context is a subset of LOC.

A vector or collection on a set E is a family of elements of E indexed by a

context. Conversely, if A is a vector, we denote its context by

e

A. For every index

i 2

e

A, we denote by Aj

i

the projection of A on the index i, and more generally,

for a context c �

e

A, let Aj

c

be the projection of A on the indices of c. We

usually denote vectors by ordinary letters | in order to keep the formalism as

light as possible | but sometimes it is necessary to have a more precise notation,

especially when communications are involved. Then we use the notation [[a

i

]]

i2c

to denote the vector (a

i

) indexed by i 2 c.

Parallel programs need to communicate and hence we introduce a special goal

construct in order to tackle this : "get p from l" where p is a simple atom and l

a location. We call it a relocated atom. The intended meaning of this is that the

relocated atom "get p from l" is true at a given index i if p is true at index l. In

this context, we de�ne a litteral to be a simple or relocated atom. Note that we

do not allow imbrication of gets for evident reasons.

We de�ne as usual a goal to be a �nite sequence of litterals. A de�nite clause

is a formula of the form h B where h is a simple atom and B a goal. Note

that relocated atoms cannot be heads of clauses. A program is a set of de�nite

clauses. A BS-DPlog goal is a vector of goals indexed by a context. A BS-

DPlog program is a vector indexed by LOC of the same program at each index.

We follow a classical way of de�ning the declarative semantics : it consists

in considering only ground instances of the program clauses : Inst(P). An

interpretation is thus a set of ground atoms. Here we say that an interpretation

is a set of vectors of ground litterals, but we place a restriction upon this : we

impose that the set is the cartesian product of its projection on each index (A =

�

i2LOC

Aj

i

). We do this because logical consequences are handled independently

at each index. Thus, the macroscopic and microscopic point of view commute :

an interpretation can be considered as a set of vectors as well as a vector of sets.

But having the same program on each index does not mean the same conse-

quences hold everywhere, or the bene�t of this language would not be important.

In order to make computations dependent of the location, we introduce the spe-

cial vector constant This whose value at a location is the location itself (the

actual index of computation). However, for the double purpose of readability

Semantics of a data-parallel logic language using the BSP execution model 7

and optimisation, this constant will be implemented di�erently in BS-DPlog.

An interpretation I is a model of a vector of litterals a if, for every index

i 2 LOC, either aj

i

is a simple atom and aj

i

2 Ij

i

or aj

i

is a relocated atom get

p from l and p 2 Ij

l

. In the last case, we say that the relocated atom get p from

l belongs to Ij

i

.

Interpretations are structured into a complete lattice ordered by the product

ordering of the set inclusion at each index. An interpretation is a model of a

clause h B if h 2 I whenever B � I. It is a model of the program if it is

a model of every clause. The least model following this ordering is equal to the

intersection of all models, as in classical logic programming. The existence of the

model [[HB]]

LOC

states that this model exists and is not empty. As usual, we call

this model M

P

and we take it as the declarative semantics of the program.

3 Operational semantics

In this section, we describe several operational semantics, in increasing order of

determinism and precision.

3.1 Top-down semantics

This �rst semantics allows to build a proof tree for a given ground goal. It consists

of the three following rules :

� Partitioning. Reducing a goal at each index often involves more than one

clause. We choose to split the context into di�erent parts (that could pos-

sibly use the same clause), and continue the computation independently :

(Partitioning [TDG-P])

Aj

c

1

: : : Aj

c

n

A

if (c

i

)

i21::n

is a partition of

e

A

� Reduction. This rule reduces an atom from a goal according to a program

clause :

(Reduction [TDG-R])

fb j b 2 Bg

h

if h B 2 Inst(P)

� Communication. We handle general communications, i.e. any location can

communicate with any other. The following rule simply relocates atoms to

be remotely proved to their respective indices. Let v = [[get p

i

from j

i

]]

i2c

be a vector of relocated atoms. We de�ne two functions : CI (for called

indices) associates to v the set of indices (context) involved in the commu-

nication and Reloc

k

associates to v the set of simple atoms called at the

index k :

CI(v) = fj j 9i 2 c; vj

i

= get p from jg

8 APPIA-GULP-PRODE'98

Reloc

k

(v) = fp j 9i 2 c; vj

i

= get p from kg

The cartesian product of the sets Reloc

k

is the set of vector obtained after

the expansion of all relocations.

(Communication [TDG-C])

�

k2CI(v)

Reloc

k

(v)

v = [[get p

i

from j

i

]]

i2c

The top-down ground semantics (S

TDG

) is the least set of vectors of litterals

closed by the rules. The following theorem states the equivalence between the

declarative and operational semantics :

Theorem 3.1

M

P

= S

TDG

3.2 Synchronous Data-Parallel SLD

Here we present an extension of SLD-resolution suitable to reduce multiple goals

synchronously. Three levels of non-determinism are left in the above rules : choice

of the selected atom and choice of the clause as in logic programming, but more-

over choice of the context split. We give here a computation rule close to the

idea of SLD-resolution to go through the search tree.

As in SLD-resolution, we choose to select the leftmost atom and reduce it

with the �rst possible clause given by the de�nition of the predicate. Here we

give a rule for any LD-resolution, i.e. any choice of the selected atom. Let's take

a vector of goals, say [[a

1

; : : : ; a

k

; : : : ; a

m

]]

c

on a context c and let's suppose the

chosen atom is a

k

and the chosen clause is h b

1

; : : : ; b

n

. After a partition of

the context c

1

[c

2

= c, we get the following result, where mgu denotes the most

general uni�er of its arguments :

[[a

1

; : : : ; a

k

; : : : ; a

m

]]

c

 [[a

1

; : : : ; b

1

; : : : ; b

n

; : : : ; a

m

]]

c

1

([[�]]

c

1

)[[[a

1

; : : : ; a

k

; : : : ; a

m

]]

c

2

with � = mgu(a

k

; h), at each index. In this rule, the context c

2

may be empty and

the vector substitution mgu is applied pointwise to each element of the vector.

The main problem is to �nd a suitable partition of the context to minimize

independent computation. This is desirable in this context because the semantics

is synchronous. If the context was splitted too many times, it would yields more

applications of the rule. On the other hand, a single reduction step on a large

context performs reductions on many vector elements at the same time. The

programmer has this rule in mind as an operational reference and the model

is virtually synchronous, whatever the actual execution. The context split is

done only when necessary when only a subcontext of the current context can

be reduced with the chosen clause. In our example, we choose to let c

1

= fi 2

c j mgu(a

k

; h) exists g. However, if computation of part of this subcontext fails,

Semantics of a data-parallel logic language using the BSP execution model 9

we must backtrack with a remaining c

0

1

� c

1

. In this case, the remaining context

is simply merged with c

2

and the computation proceeds.

The following rule implements this concept, for the general case of multiple

subcontexts to be reduced independently :

De�nition 3.2 (DP-SLD rule)

[

c2C

[[a

1

; : : : ; a

k

c

; : : : ; a

m

c

]]

c

[

c2C;c6=c

0

[[a

1

; : : : ; a

k

c

; : : : ; a

m

c

]]

c

[[[a

1

; : : : ; b

1

; : : : ; b

n

; : : : ; a

m

0

c

]]

c

0

1

([[�]]

c

0

1

)

[[[a

1

; : : : ; a

k

c

; : : : ; a

m

0

c

]]

c

0

2

where : c is a partition of LOC, c

0

is the selected context, a

k

is the selected atom,

h b

1

; : : : ; b

n

is the selected clause, c

0

= c

0

1

[c

0

2

, and � = mgu(a

k

; h)

The model is virtually synchronous, hence applications of this rule are supposed

to occur sequentially. In the next section concerning the BSP model, we relax

this constraint. Because of the global synchronisation implicit in this rule, some

dirty | but useful | features of Prolog can be freely added : cut, I/O, assert, . . .

with the same advantages and drawbacks than in classical logic programming.

4 Local computations and the BSP model

4.1 An operational semantics for BSP logic programming

One main characteristics of the BSP model is that it allows a limited form of asyn-

chronism during the local computation parts. Hence, since our aim is to model

BSP programs, we want to be able to describe these local steps. However, due

to the balance needed for BSP, we put a simple and reasonable limitation upon

these computations for implementation conveniences : we refuse any backtrack-

ing across synchronizations. Completeness is lost, of course, but without limiting

the expression power of the language. The programmer only has to express the

search space at top level, using the local computations as tools to achieve his

algorithm.

Here comes the use of the set of predicates symbols PRED

loc

� PRED. They

are the local predicates and their execution is asynchronous. Moreover, during

a local computation phase, no communication can occur nor the use of a global

predicate, in order to ensure the independence of every local calculus. Hence we

place the following restriction on clause bodies : a de�nition for p 2 PRED

loc

can only use simple atoms whose predicate symbols is in PRED

loc

. Our language

BS-DPlog re
ects this limitation in its two levels construct.

As a counterpart, we force global predicate to execute on the full location

range (LOC). Hence we have two alternatives : either the predicate is global

and every index proceeds, or the predicate is local and computation depends on

10 APPIA-GULP-PRODE'98

the actual index. This has a major impact on the resolution rule : either one

synchronous step involving every index is performed, or NProc asynchronous and

independent steps are performed.

A global atom p subject to communication is memorized in its public memory

mem(p). Hence a communication just has to take the value. This memorization

is performed whenever a new value has been encountered for this relation and a

global synchronization occur. It can of course yield a partially instanciated atom.

An interesting point is that we have preserved the opportunity of adding extra-

logical features, exactly as in the synchronous version. For example, the cut would

have the same e�ect as usual for the global synchronous part : it prunes the right

side of the search tree at each index.

Here are the BSDP-SLD rules. The three rules are mutually exclusive since

they do not operate on the same kind of atom. The �rst rule de�nes the reduction

of a global predicate (

G

), the second models communications (

C

) and the last

implements a local computation step (

L

) that abstracts the details of the local

execution. The choice of the rule for a local derivation step is syntactically

determined by the membership of the selected atom to PRED

LOC

:

De�nition 4.1 (BSDP-SLD rule)

(Global atom [BSDP-SLD G])

[[a

1

; : : : ; a

k

; : : : ; a

m

]]

LOC

G

 [[a

1

; : : : ; b

1

; : : : ; b

n

; : : : ; a

m

]]

LOC

([[�]]

LOC

)

with : a

k

= selected atom (global), h b

1

; : : : ; b

n

= selected clause, � = mgu(a

k

; h)

(Relocated atom [BSDP-SLD C])

[[a

1

; : : : ; a

k

; : : : ; a

m

]]

LOC

C

 [[a

1

; : : : ; a

k�1

; a

k+1

; : : : ; a

m

]]

LOC

([[�]]

LOC

)

with : a

k

= get p from j = selected atom (relocated), � = mgu(p;mem(p))

(Local atom [BSDP-SLD L])

[[a

1

; : : : ; a

k

; : : : ; a

m

]]

LOC

L

 [[a

1

; : : : ; a

k�1

; a

k+1

; : : : ; a

m

]]

LOC

([[�]]

LOC

)

with : a

k

= selected atom (local), � = the substitution obtained by the full local

reduction of a

k

at each index.

4.2 Description of the language and examples

Here we make a further step towards a real language : we provide a simple

syntactic way to express whether a predicate belongs to PRED

loc

or not.

Global predicates are written as ordinary Prolog predicates. They can call local

predicates or other global predicates, or perform communications with the get

construction. This latter structure only ranges on global predicates. Moreover,

Semantics of a data-parallel logic language using the BSP execution model 11

global atoms are copied into a public memory whenever they occur as argument

in a get. For example, the following program computes at an index the average

of its successor and predecessor :

average(X,Y) :-

dec(I1),

inc(I2),

get average(X1,_) from I1,

get average(X2,_) from I2,

Y is (X1+X2)/2.

Local predicates are indexed by a term enclosed by brackets. This term is

often a variable and denotes their actual index :

dec[0](I) :- I is maxproc.

dec[X](I) :- I is X-1.

inc[maxproc](0).

inc[X](I) :- I is X+1.

Let assume that the index space is f0; 1; 2g, thus the constant nproc (num-

ber of processors) is 3 and maxproc (number of last processor) is 2. A typical

query for this program is the vector [[average(3,Y), average(7,Y), average

(1,Y)]]. The predicate average occurs in a communication, thus its initial

value is memorized at every index. Let's see what happens at index 1. Once

the index of communication is known, get average(X1,) from I1 uni�es the

atom average (X1,) with the content of the private memory at index 0, i.e.

average(3,), yielding the binding X1 = 3. Similarly, the latter get yields X2

= 1 and we get Y = 3+1/2 = 2 at this index. The same behavior occurs at the

other indexes at the same time.

The bracket notation for local computations is far more convenient than the

vector constant This we used for the semantics. Moreover, it allows the following

optimisation : clauses labeled by a constant index should not be copied on the

other locations. This static repartition is suitable if the local programs are truly

di�erent :

local[0] :- long_computation 1 ...

local[1] :- long_computation 2 ...

As a summary, here is a formal speci�cation of the syntax ofBS-DPlog. Basic

objects are simple atoms (s-atoms) and locations. Simple atoms are splitted in

two categories : local atoms (l-atoms) that act upon scalars and global atoms

(g-atoms) that act upon vectors.

l-goal ::= sequence of l-atom

l-clause ::= l-atom[location] :- l-goal

t-location ::= location | variable

12 APPIA-GULP-PRODE'98

g-litteral ::= g-atom |

l-atom |

get g-atom from location |

par (l-atom -> g-litteral ; g-litteral)

g-goal ::= sequence of g-litteral

g-clause ::= g-atom :- g-goal

clause ::= g-clause | l-clause

program ::= set of clause

5 Conclusion

Communications act upon goals and not only variables. This choice allows to

de�ne a clear declarative semantics. Another choice would have been to use

something like \getX from l into Y " whose meaning is yet declaratively unclear.

The counterpart of our choice is that when you are only interested in values of

variables at a di�erent index, a special operational mechanism has to short-cut

the whole evaluation of the goal. This is implemented by the public memory.

Data-parallel execution of logic programs has also been investigated | among

others | in the Reform project [9] and [12]. Both approaches are relevant to

automatic parallelization. A more complete survey of these approaches and a

few more can be found in [6]. An other interesting approach is multi-dimensional

logic programming [10], although it does not yet provide a parallel execution

model. In all these approaches, there is no performance model. Comparisons can

also be made with non-logic languages like NESL [1] or Caml-Flight (formerly

DPML) [4], both in functional programming. We do not exactly tacke the same

problems (BSP vs general data-parallelism).

In summary, we propose a logic language adapted to the BSP execution model.

It has been given all the important features : explicit locations, independent local

computation phases and atomic general communication. Our aim is to take the

bene�ts of both worlds : declarative speci�cation of a problem and simple parallel

execution model with performance prediction.

Acknowledgments The author whishes to thank Ga�etan Hains for many fruit-

ful discussions and useful comments on an early version of the document.

References

[1] Guy E. Blelloch. Programming parallel algorithms. Communications of the ACM,

39(3):85{97, 1996.

[2] Luc Boug�e. Le mod�ele de programmation �a parall�elisme de donn�ees : une perspec-

tive s�emantique. Technique et Science Informatiques, 12(5):541{562, 1993. also in

english RR92-45, IMAG, ENS Lyon.

Semantics of a data-parallel logic language using the BSP execution model 13

[3] J. Chassin de Kergommeaux and P. Codognet. Parallel logic programming sys-

tems. ACM Computing surveys, July 1994.

[4] C. Foisy and E. Chailloux. Caml Flight : a portable SPMD extension of ML

for distributed memory multiprocessors. In A.W. B�ohm and J.T. Feo, editors,

Workshop on high performance functional computing, Denver, Colorado, April

1995. Lawrence Livermore National Laboratory.

[5] Manuel V. Hermenegildo and Manuel Carro. Relating data-parallelism and (And-

) parallelism in logic programs. In EUROPAR'95, volume 966 of LNCS, pages

27{42. Springer, August 1995.

[6] Arnaud Lallouet. Expressivit�e d'un langage de programmation logique data-

parall�ele. Technique et Science Informatiques, accepted for publication, 1998.

[7] Arnaud Lallouet and Yann Le Guyadec. Contribution to the semantics of a data-

parallel logic programming language. In Fernando Silva V��tor Santos Costa and

Inês de Castro Dutra, editors, Post International Logic Programming Symposium

Workshop on Parallel Logic Programming Systems, pages 32{41. Portland, Oregon,

December 8 1995.

[8] Olivier Michel and Jean-Louis Giavitto. Design and implementation of a declara-

tive data-parallel language. In J. Barklund, B. Jayaraman, and J. Tanaka, editors,

ICLP post-conference workshop on parallel and data-parallel execution of declar-

ative languages, S. Margherita Ligure, Italy, June 17 1994. UPMAIL, Uppsala

University, ftp://ftp.csd.uu.se/pub/papers/reports/0078/.

[9] H. Millroth. Reforming compilation of logic programs. In International Logic

Programming Symposium, San Diego, CA, 1991.

[10] Mehmet A. Orgun and Weichang Du. Multi-dimensional logic programming :

theoretical foundations. Theoretical Computer Science, 185:319{345, 1997.

[11] Jay M. Sipelstein and Guy E Blelloch. Collection-oriented languages. Proceedings

of the IEEE, 79(4):504{523, April 1991.

[12] Donald A. Smith and Timothy Hickey. Multi-SLD resolution. In Logic Program-

ming and Automated Reasoning. Springer-Verlag, 1994.

[13] L. Valiant. A bridging model for parallel computation. Communications of the

ACM, pages 103{111, August 1990.

14 APPIA-GULP-PRODE'98

