
A Parallel Logic Programming Approach to Job Shop
Scheduling Constraint Satisfaction Problems*

Jorge Puente, Ramiro Varela, Camino R. Vela, Cesar Alonso**

Centro de Inteligencia Artificial. Universidad de Oviedo en Gijón
Campus de Viesques. E-33271 Gijón. Spain.
Tel. +34-8-5182032. FAX +34-8-5182125.

$EVWUDFW

In this paper we put together a Parallel Logic Programming schema and a heuristic
search strategy in order to solve constraint satisfaction problems. The idea is to introduce
heuristic information in the construction of logic programs in order to improve the
performance. The experimental results show that logic programs can be designed that
exhibit parallelism, and that the use of heuristic information translates into speedup in
obtaining answers.

.H\ZRUGV�� 3DUDOOHO� /RJLF� 3URJUDPPLQJ�� &RQVWUDLQW� 6DWLVIDFWLRQ� 3UREOHPV�� -RE

6KRS�6FKHGXOLQJ��+HXULVWLFV�

�����,QWURGXFWLRQ

The aim of this paper is to propose a strategy for problem solving that combines parallelism
and heuristic search. Parallelism will be exploited by means of the 5)'�536 model that we
proposed [Var95b] for evaluating logic programs in parallel. As other models described in the
literature [Con83, War90, Kal91, Pon95, She96], this model can exploit three of the most
important sources of parallelism that the language of logic can express, namely 25
SDUDOOHOLVP, LQGHSHQGHQW�$1'�SDUDOOHOLVP �,$3� and SURGXFHU�FRQVXPHU�SDUDOOHOLVP. On the
other hand, we choose the -RE�6KRS�6FKHGXOLQJ �-66� constraint satisfaction problem to deal
with in this work. This is a NP-hard problem that has given rise to a high research effort, so a
large number of solutions have been proposed. Among these solutions, we can found the
application of almost every artificial intelligence technique, for instance constraint logic
programming [Hen92], neural nets [Ado90], machine learning [Zwe92], genetic algorithms
[Cor97] and heuristic search [Sad96]. Maybe, the last two ones being the most frequently
used. Within the scope of this work, we consider the variable and value ordering heuristics
proposed in [Sad96] for -66 problems. These heuristics will be used to guide the construction
of logic programs for solving -66 problems, in order for these programs to be efficiently
evaluated in parallel. As we will see, these programs exhibit all of the three types of
parallelism above commented, and can be improved with the assistance of heuristics.

The remainder of the paper is organized as follows: in Section 2 we introduce the
5)'�536 process model for parallel evaluation of logic programs. Section 3 defines the -66
problem as it is considered in this paper. Section 4 describes the logic programming approach
that we propose for -66 problems. Section 5 summarises the variable and value ordering
heuristics proposed in [Sad96] and shows how they can be used in the construction of logic

                                                
* This work has been partially supported by the FICYT of the Principado de Asturias under Project PB-TIC-

9703
**  E-mail: {puente,ramiro,camino,calonso}@aic.uniovi.es



programs. Section 6 outlines the characteristics of the simulator tool that we have used for
obtaining experimental results. Section 7 presents some experimental results that clarify the
performance of our approach. Finally, in Section 8 we present the conclusions of the work.

�����7KH�3URFHVV�0RGHO

We have proposed a new model for exploiting ,$3 with 25 parallelism in which
computations are represented by $1'�25 trees. Figure 1 depicts the tree expanded by our
model when the query T�;�<��S�;� is evaluated with respect to the program given by the
set of facts S�D��S�E��T�F�H��T�E�H��T�E�G�. The literals within a query are
evaluated according to a partial ordering; we assume that for the former query the ordering is
first T�;�<� and then S�;�. Therefore, one $1' process is created first for solving the
query. This process generates one 25 process for solving T�;�<� which in its turn generates,
in parallel, three $1'�processes associated respectively with the three clauses of the program
that solve the literal. In this case, these processes produce the identity solution. This solution,
previously composed with the label of the edge, gives a solution to the father 25 node. This
node sends the three solutions to the root $1' node, which creates two parallel 25�processes
(one from the two solutions with the variable ; instantiated to the constant E, and the other
one from the third answer with the variable instantiated to the constant F) to compute
solutions of S�;� compatible with those computed for T�;�<�. That is, two processes are
generated to solve instances of S�;�: S�E� and S�F�. The first one returns the solution
7UXH, whereas the second finishes with negative result. Finally at the root node we have two
answers to the query.

The main feature of our proposed model is that the duplication of processes is avoided, in
contrast to other models, such as those proposed in [Kal91, Gup92], which would generate

T�;�<�

S�;�

SURF
T�;�<�

�;�F�<�H�

SURF
S�D�=�

�;�E�<�G�

SURF
S�E�

�;�E�<�H�

�7UXH�

,1)�7UXH� 

^�;�E�<�G���;�E�<�H�`

a) b) c)

Figure 2

T�;�<�

 �;�E�<�G�
(;�E�<�H�
�;�F�<�H�

S�E�

7UXH

�T�E�G�� �T�E�H�� �T�F�H�� �S�E��

�;�E�<�G�
�;�E�<�H�

�;�F�<�H�

T�;�<��S�;�

    �;�E�<�G��;�E�<�H�

AND

OROR

,

S�F�

    )DOVH

OR

Figure 1



two processes for solving S�E� in the former example, one from each solution of the literal
T�;�<� with the variable ; instantiated to the value E. In order to achieve that in an efficient
way, we have developed a strategy for partial solutions management. In the example at hand,
this strategy permits us to link two solutions of T�;�<�, �;�E�<�H� and �;�E�<�G�, to
the process generated for solving S�E�, thus avoiding its duplication. This is achieved by
means of two data structures: a 'DWD�)ORZ�/DWWLFH��')/� to codify the partial order among the
literals of a query in order to exploit� ,$3, and a 3URFHVVHV� DQG� 6ROXWLRQV� 1HW �361� to
represent the partial solutions as well as the 25 process identifiers that computed these partial
solutions. Figure 2 shows the�')/ (a) and the 361 (b) generated from the query at the root
node of the $1'�25 tree of Figure 1. Moreover, Figure 2c shows the application of the
LQIHUHQFH�IXQFWLRQ��,1), to the node 7UXH�of the 361. This node indicates that the 25 process
labelled by� SURFS�E� finished with a positive answer. The function ,1) is in charge of
computing solutions to the query by joining the partial solutions spread over the 361�

Our model can exploit SURGXFHU�FRQVXPHU��RU�FRQVXPHU�LQVWDQFH� parallelism, as is shown
in [Var96b]; this is a secondary source of parallelism that has to do with both $1'�and 25 in
the presence of non determinism. Given two literals with common variables, it consists of
starting the evaluation of one instance of the second literal �FRQVXPHU� to compute compatible
solutions with one solution of the first �SURGXFHU� as soon as this solution appears� In our
example, if producer/consumer parallelism is exploited, as the literal T�;�<� has multiple
solutions, we can start exploring S�[L� as soon as we have a new value �;�[L� from a
solution to T�;�<�� Therefore, as we can see in Figure 2b, the process SURFS�E� is created
as soon as the first solution to the literal T�;�<� with the variable ; instantiated to the value
E is obtained. When the second one appears, it has only to be linked to the process identifier
SURFS�E�. Producer/consumer parallelism is interesting in non deterministic programs.
Furthermore, in the presence of infinite relations, it maintains the completeness of the system.
As pointed out in [Kal91], exploitation of this parallelism was the point of departure for the
5('8&(�25�3URFHVV�0RGHO��530�� Exploitation of this class of parallelism was also one of
our starting goals.

For further details about the process model, in particular about the ')/ and the 361, we
refer to the interested reader to other works as [Var94, 95a, b, 96a, b].

�����7KH�-RE�6KRS�6FKHGXOLQJ�&RQVWUDLQW�6DWLVIDFWLRQ�3UREOHP

In this section we introduce the -66 problem we are considering along the paper. The job shop
requires scheduling a set of jobs ^-������-Q` on a set of physical resources ^5������5T`. Each job
-L consists of a set of tasks ^WL������WLPL` to be sequentially scheduled, and each task has a single
resource requirement. We assume that there are a release date of all jobs and a due date
between which all the tasks have to be performed. Each task has a fixed duration GXLM and a
start time VWLM whose value has to be selected. The domain of possible start times of the tasks is
initially constrained by the release and due dates.

Therefore, there are two non-unary constraints of the problem: SUHFHGHQFH�FRQVWUDLQWV and
FDSDFLW\� FRQVWUDLQWV. Precedence constraints defined by the sequential routings of the tasks
within a job translate into linear inequalities of the type: VWLO + GXLO ≤ VWLN (i.e. VWLO before VWLN).
Capacity constraints that restrict the use of each resource to only one task at a time translate
into disjunctive constraints of the form: VWLO + GXLO ≤ VWMN�∨ �VWMN + GXMN ≤ VWLO�(i.e. two tasks that use
the same resource can not overlap).



The objective is to come up with a feasible solution as fast as possible, a solution being a
vector of start times, one for each task, such that starting at these times all the tasks end
without exceeding the due date and all the constraints are satisfied.

None of the simplifying assumptions are required by the approach that will be discussed:
jobs usually have different release and due dates, tasks within a job can have different
duration, several resource requirements, and several alternatives for each of these
requirements.

Figure 3 depicts an example with three jobs ^-��-��-�`� and four physical resources
^5��5��5��5�`. It is assumed that the tasks of the first two jobs have duration of two time units,
whereas the tasks of the third one have duration of three time units. The release time is 0 and
the due date is 10. Label 3L represents a precedence constraint and label &M represents a
capacity constraint. Start time values constrained by the release and due dates and the duration
time of tasks are represented as intervals. For instance [0,4] represents all start times between
time 0 and time 4, as allowed by the time granularity, namely {0,1,2,3,4}. Table 1 shows one
of the solutions of the problem instance depicted if Figure 3.

�����7KH�/RJLF�3URJUDPPLQJ�$SSURDFK�WR�-66�3UREOHPV

In this section we show how the job shop scheduling problem can be represented in the
language of logic by means of a set of clauses, and how these clauses can be determined in
order to exploit parallelism. Firstly, for each task we define a single literal having a solution
for each of the possible start times. So, for instance, the task W�� will be defined by the ground
instances W������ W������� W������� W������� W�����. Moreover, each one of the constraints will be
defined by means of binary relations: one binary relation for each of the precedence
constraints and two binary relations for each of the capacity constraints, for instance

3��;���;�����W���;����W���;����;���≥�;���GX���

C1 C2
C3

C4

t11   R1

[0,4]

t12   R2

[2,6]

t13   R3

[4,8]

P1 P2

t21   R2

[0,4]

t22   R4

[2,6]

t23   R3

[4,8]

P3 P4

t31   R1

[0,4]

t32   R3

[3,7]

P5

J1

J2

J3

C5

Figure 3

;�� ;�� ;�� ;�� ;�� ;�� ;�� ;��

3 5 8 0 2 6 0 3

Table 1



&��;���;������W���;����W���;����;���≥�;���GX���

&��;���;������W���;����W���;����;���≥�;���GX���

It is clear that an instantiation of the whole set of variables appearing in constraints making
true each of them represents a solution of the problem. It is also clear that, in general, there are
a big number of variables shared by two or more literals, and that every constraint literal has a
lot of solutions, so it makes sense to organize the evaluation of the constraint literals under
,$3. In order to do that, in this work we propose a strategy that consists of two steps: firstly,
an LQGHSHQGHQW�FRQVWUDLQW�WUHH is computed from the FRQVWUDLQW�GHSHQGHQF\�JUDSK; and then,
from the independent constraint tree, a logic program that can be annotated for evaluation
under ,$3 is determined. An independent constraint tree is a tree representing a partial
ordering for the evaluation of the whole set of constraint literals under ,$3; and the constraint
dependency graph is an undirected graph representing the variable dependencies among the
constraint literals. Figure 4a depicts the constraint dependency graph for the problem of Figure
3. The independent constraint tree is not unique for a given constraint dependency graph;
Figure 4b shows an independent constraint tree determined from the graph of Figure 4a.

In order to compute an independent constraint tree from a constraint dependency graph, we

DOJRULWKP independent constraint tree (*: constraints dependency graph);

calculate & ^&������&Q` such that every &L contains only one constraint of * that is

independent of every constraint contained in the remainder &Ms; each of the &Ls of & is a

leaf of the independent constraint tree;

calculate &* as the set of constraints of *�not belonging to any &L;

ZKLOH & is not unitary GR

for each &L in & determine &Lª to contain the constraints of &* adjacent only to some of

the constraints in &L, if  &Lª is not empty, update &* by removing the constraints in &Lª,

update & also by removing &L and inserting &Lª, &Lª is the label of the father node of &L;

^QRZ�LQ�&�WKHUH�DUH�QRW�DQ\�FRQVWUDLQ�DGMDFHQW�RQO\�WR�FRQVWUDLQWV�RI�RQH�RI�WKH�&Ls`

select &L and &M of & and determine &N to contain the constraints of &* that are

adjacent only to constraints in &L and &M and that are not adjacent to any constraint of

the remainder &Os of &; ^&N�PLJKW�EH�HPSW\`

update &* by removing the constraints of &N, remove &L and &M of &, insert &N in the

independent constraint tree as the father of the nodes &L and &M

HQGZKLOH

HQG�

Figure 5

C1(X11,X31)

C4(X13,X32)

P1(X11,X12)

P2(X12,X13)

P5(X31,X32)

C3(X13,X23)

C2(X21,X12)

P3(X21,X22)

P4(X22,X23)

C5(X23,X32) C1(X11,X31)

C4(X13,X32)

P1(X11,X12)

P2(X12,X13)

P5(X31,X32)C3(X13,X23)

C2(X21,X12)

P3(X21,X22)

P4(X22,X23)

C5(X23,X32)

a) b)

Figure 4



propose the algorithm of Figure 5. This algorithm first tries to obtaining a set as big as
possible of independent constraints, these constraints are the leaves of the tree. Then, a search
for constraints dependent of only one or two computed nodes is repeated in order to
determining the remaining nodes of the tree. As we can observe, there are several non
deterministic actions that have to be solved by means of heuristics.

Now, from the independent constraints tree a logic program is determined. This program is
not unique for a given tree, but distinct programs can be derived with different sizes in the
clauses, so giving rise to different granularity levels of the processes generated during
program evaluation. For instance, from the tree depicted in Figure 4b at least the following
two programs can be determined (here the facts and the constraint relations are not
represented).

3URJUDPB�

p1p3c2(X11,X12,X21,X22):-p1(X11,X12), p3(X21,X22), c2(X21,X12).

c3p5c5(X13,X23,X31,X32):-c3(X13,X23), p5(X31,X32), c5(X32,X23).

c3p5c5c4(X13,X23,X31,X32)�� c3p5c5(X13,X23,X31,X32), c4(X13,X32).

p1p3c2c3p5c5c4p2(X11,X12,X21,X22,X13,X23,X31,X32):-

p1p3c2(X11,X12,X21,X22), c3p5c5c4(X13,X23,X31,X32), p2(X12,X13).

p1p3c2c3p5c5c4p2c1(X11,X12,X21,X22,X13,X23,X31,X32):-

p1p3c2c3p5c5c4p2(X11,X12,X21,X22,X13,X23,X31,X32), c1(X11,X31).

all(X11,X12,X13,X21,X22,X23,X31,X32):-

p1p3c2c3p5c5c4p2c1(X11,X12,X21,X22,X13,X23,X31,X32), p4(X22,X23).

3URJUDP_2

p1p3c2(X11,X12,X21,X22):-p1(X11,X12), p3(X21,X22), c2(X21,X12).

c4c5(X23,X32,X13):-c4(X13,X32),c5(X32,X23).

c3p5c4c5(X13,X23,X31,X32):-c3(X13,X23), p5(X31,X32), c4c5(X23,X32,X13).

p2c1p4(X12,X13,X11,X31,X22,X23):-p2(X12,X13),c1(X11,X31), p4(X22,X23).

all(X11,X12,X13,X21,X22,X23,X31,X32):-

p1p3c2(X11,X12,X21,X22), c3p5c4c5(X13,X23,X31,X32),

p2c1p4(X12,X13,X11,X31,X22,X23).

�����9DULDEOH�DQG�9DOXH�2UGHULQJ�+HXULVWLFV�IRU�WKH�-66�3UREOHP

As we have pointed out in the introduction, one of the original contributions of this work will
be the utilization of heuristic information in the construction stage of logic programs for
solving -66 problems. Our purpose is to incorporate the variable and value ordering heuristics
proposed by Norman Sadeh and Mark S. Fox in [Sad96]. These heuristics are based on a
probabilistic model of the search space. A probabilistic framework is introduced that accounts
for the chance that a given value will be assigned to a variable and the chances that values
assigned to different variables conflict with each other.

The heuristics are evaluated from the profile demands of the tasks for the resources. In
particular the LQGLYLGXDO� GHPDQG and the DJJUHJDWH� GHPDQG values are considered. The
individual demand 'LM�5S�7� of a task WLM for a resource 5S at time 7� is simply computed by
adding the probabilities σLM�τ� of the resource 5S is demanded by the task WLM at some time



within the interval >7�GXLM���7@��The individual demand is an estimation of the reliance of a
task on the availability of a resource. Consider, for example, the initial search state depicted in
Figure 3. As the task W�� has five possible start times or reservations, and assuming that there
is no reason to believe that one reservation is more likely to be selected than another, each
reservation is assigned an equal probability to be selected, in this case 1/5. Given that the task
W�� has duration of 2 time units, this task will demand to the resource 5� at time 4 if its start
time is either 3 or 4. So, the individual demand of the task W�� for resource 5� at time 4 is
estimated as '���5���� σ������σ����� ����� On the other hand, the aggregate demand
'

DJJU
�5�τ� for a resource is obtained by adding the individual demands of all tasks over the

time. Table 2 shows the individual demands of all ten tasks of the problem, as well as the
aggregate demands for all four resources.

From the aggregate demand of a resource a contention peak is identified. This is an interval
of the aggregate demand of duration equal to the average duration of all the tasks with the
highest demand. Table 2 shows the contention peaks of all the four resources. Then, the task
with the largest contribution to the contention peak of a resource is determined as the most
critical and therefore it is selected first for reservation. This is the heuristic of variable
ordering referred in [Sad96] as 255� �2SHUDWLRQ� 5HVRXUFH� 5HOLDQFH�. This heuristic can be
introduced in the construction of the independent constraint tree by inserting as leaves of the
tree those constraints that involve tasks with large contribution to the corresponding
contention peaks.

On the other hand, the value ordering heuristic proposed in [Sad96] is also computed from
the profile demands for the resources. Given a task WLM that demands the resource 5S, the
heuristic consists of estimating the VXUYLYDELOLW\� RI� WKH� UHVHUYDWLRQV��The survivability of a
reservation 〈VWLM 7〉 is the probability that the reservation will not conflict with the resource
requirements of other tasks, that is, the probability that none of the other tasks require the
resource during the interval >7�7�GXLM��@. When the task demands are for only one resource,
this probability can be estimated as [Sad96]

Interv. 0 1 2 3 4 5 6 7 8 9 10

D11(R1,T) 0.2 0.4 0.4 0.4 0.4 0.2

D31(R1,T) 0.2 0.4 0.6 0.6 0.4 0.2 0.2

Daggr(R1,T) 0.4 0.8 1 1 0.8 0.4 0.2

D12(R2,T) 0.2 0.4 0.4 0.4 0.4 0.2

D21(R2,T) 0.2 0.4 0.4 0.4 0.4 0.2

Daggr(R2,T) 0.2 0.4 0.6 0.8 0.8 0.6 0.4 0.2

D13(R3,T) 0.2 0.4 0.4 0.4 0.4 0.2

D23(R3,T) 0.2 0.4 0.4 0.4 0.4 0.2

D32(R3,T) 0.2 0.4 0.6 0.6 0.6 0.4 0.2

Daggr(R3,T) 0.2 0.8 1.4 1.4 1.4 1.2 0.6

D22(R4,T) 0.2 0.4 0.4 0.4 0.2

Daggr(R4,T) 0.2 0.4 0.4 0.4 0.2

Table 2



( ) ( )( )
( )( )

( )( ) ( )( )
1

1

1 1

−
−

−















− ∗ ∗ −

AVG D R D R

AVG n

aggr
p ij p

p

AVG n du AVG dup ij

, ,τ τ

τ

τ

,

where GX stands for the average duration of the tasks, QS�τ� is the number of tasks that can
demand the resource 5S at time τ and $9*�I�τ�� represents the average value of function I�τ�
in the interval >7�7�GXLM��@. Table 3 shows the survivability of all the reservations possible for
all ten tasks of the problem.

As it looks clear, the value ordering heuristic consist of trying first the reservations with
large values of its survivability. This heuristic can be easily introduced in the construction of
the logic programs for the JSS problem by means of the ordering of declaration of ground
literals that define each of the tasks: literals with large values are declared first. In particular,
we will use the values of the survivability of the reservations in the initial state of the search
process. So, during the program evaluation, reservations with high survivability will be used
first under the assumption that they are more likely to be present within a solution of the
whole problem.

For a depth study of these heuristics, as well as for further refinements, we refer to the
interested reader to [Sad96].

�����+HXULVWLF�3URJUDPV�DQG�WKH�6LPXODWRU�7RRO

In order to evaluate logic programs and to study their performance, we have developed a
simulator of our interpretation model that emulates the evolution of the set of processes
generated on an arbitrary number of processors. The scheduling policy of the processes is
based on priorities that are proportional to the waiting time of the processes in the ready to run
queue. After evaluation of a query with respect to a logic program, the simulator permits to lay
out the process tree and the Gantt chart of the processes generated for solving the query. This
information permits studying the amount of parallelism that is exploited during the evaluation
of the programs, and so it allows us to evaluate the quality of the logic programs from the
point of view of its parallel evaluation.

In order to simplify the switching context task, the atomic operations of the processes are
assumed to be “not too small”, and the quantum of time assigned to a process for execution is
the time of its next atomic operation. These atomic operations, as well as the structure of the
processes, $1' and 25, are represented in Figures 6a and 6b respectively. The procedure

$1'�3URFHVV�(DFL)
generate an OR process for each
literal with no predecessors in
the DFL;(*)
ZKLOH new answers can arrive from
the descendants OR processes GR
ZDLW�IRU�DQVZHU;
SURFHVV�DQVZHU;(*)

HQGZKLOH;
send to the parent OR process the
answer HQG�RI�SURFHVV (*)

HQG�

25�3URFHVV�(literal)
for each clause of the program which
conclussion unifies with the literal
generate an AND process to solve its
body;(*)
ZKLOH new answers can arrive from the
descendants AND processes GR
wait-for-answer;
process-answer;(*)

HQGZKLOH;
send to the parent AND process the
answer HQG�RI�SURFHVV (*)

HQG�

a) b)

Figure 6. (*) atomic operations



SURFHVV�DQVZHU of the $1' processes consist of taking an answer from its input queue and
make all the work to process it. That is, joining the answer with the answers to the previous
literals of the query, generating all the necessary processes for solving the successor literals of
the query, and finally sending the new solutions to the query to the father 25 process. In the
case of the 25 processes, the SURFHVV�DQVZHU procedure is very simple, it only consists of
sending each answer of its input queue to the father $1' process. So we could consider the
processing of several answers as an atomic operation, in order to assign a similar quantum of
processor time to both, $1' and 25 processes.

The current release of the simulator is built on KappaPC 2.3 object oriented environment,
and so it has some limitations mainly due to the limited number of active instances that the
tool can manage at a given time. As a consequence, the simulator often spends an
unacceptable amount of time when evaluates very big programs. So, in order to reduce the
number of instances generated during a simulation session, we introduce the following
transformation in logic programs for solving -66 problems. Instead of defining each of the
tasks by means of a relation with as many ground instances as possible reservations, we define
a relation for each of the constraints having one ground instance for each compatible join of
solutions of the pair of tasks involved. Now, the ordering among the constraint ground
instances is made in base to the product of survivability values of tasks ground instances
involved. For example, as we had the clause 3��;���;�����W���;����W���;����;���≥�;���GX��, and
solutions W����� and W����� are compatibles with each other, having these reservations
probabilities 0.73 and 0.63 respectively as shown in Table 3, we declare the ground instance
3������ with a probability 0.74*0.63=0.46. Table 4 shows the corresponding ground instances
to all ten constraints, declared in the order established by their probability values.

As we can see in Table 4, a number of ground instances contributing to the solution of
Table 1 arise next to the beginning of the relation, but some other do not. So it would be
interesting to design a strategy for determining the independent constraint trees that include in
the leaves those literals whose good instances arise close to the beginning of the relation. We
have pointed out in section 5 that the variable ordering heuristic could be incorporated in our
strategy by inserting as leaves of the tree those constraints with a large contribution to the
contention peak of the aggregate demand. In the example, the constraint involving tasks with
the largest contribution to the corresponding contention peaks is 3��;���;��� as we can see in
Table 2 (tasks W�� and W��). Then, following the heuristic, we have to put the literal 3��;���;���

as a leaf of the tree, as done in the tree of Figure 4b. In this case, this heuristic seems to work

Interv. 0 1 2 3 4 5 6 7 8 9 10

t11 0.73 0.54 0.44 0.54

t12 0.63 0.63 0.73 0.95 1

t13 0.41 0.3 0.3 0.35 0.53

t21 1 0.95 0.73 0.63 0.63

t22 1 1 1 1 1

t23 0.41 0.3 0.3 0.35 0.53

t31 0.59 0.51 0.51 0.59 0.73

t32 0.71 0.35 0.26 0.26 0.35

Table 3



well because the ground instance 3������ that contributes to the solution of Table 1 arises at
the first position of the relation as shown in Table 4.

�����([SHULPHQWDO�5HVXOWV

In this section we include some experimental results showing, on one hand, the amount of
parallelism that can be exploited in solving -66 problems; and on the other hand, the speedup
that the variable and value ordering heuristics produce in obtaining answers.

As we can see from the logic programs determined by solving the problem of Figure 1 (for
example the Program_2 of Section 4 including the ground instances of Table 4), they exhibit
all types of parallelism that our model can exploit; namely, OR parallelism, independent AND
parallelism and producer/consumer parallelism. The importance of the first two ones was
widely proclaimed in the literature, so, we start showing an example in order to make clear the
improvement introduced by the producer/consumer parallelism. We consider the Program_2
but only four ground instances of each of the ten constraints of Table 4, including those
instances that contribute to the solution of Table 1, declared at the beginning of the relation.
Figure 7 depicts the Gantt charts of the processes generated to solving the query
DOO�;���;���;���;���;���;���;���;���, when the producer/consumer parallelism is
exploited (Figure 7a) and when it is not exploited (Figure 7b). As we can observe, in the first
case there is a large displacement of many CPU intervals of the processes towards starting
execution time. As a consequence, the time of answer is lower in the first case than in the
second one.

3��;���;��� 3��;���;��� 3��;���;��� 3��;���;��� 3��;���;���
p1(0,6). 0.73
p1(0,5). 0.69
p1(1,6). 0.54
p1(4,6). 0.54
p1(0,4). 0.53
p1(1,5). 0.51
p1(0,2). 0.46
p1(0,3). 0.46
p1(3,6). 0.44
p1(2,6). 0.44
p1(2,5). 0.42
S������������
p1(1,4). 0.39
p1(1,3). 0.34
p1(2,4). 0.32

p2(6,8). 0.53
S������������
p2(4,8). 0.39
p2(3,8). 0.33
p2(2,8). 0.33
p2(5,7). 0.33
p2(2,4). 0.26
p2(4,7). 0.26
p2(2,7). 0.22
p2(3,7). 0.22
p2(4,6). 0.22
p2(2,5). 0.19
p2(2,6). 0.19
p2(3,5). 0.19
p2(3,6). 0.19

S������������
p3(0,3). 1.00
p3(0,4). 1.00
p3(0,5). 1.00
p3(0,6). 1.00
p3(1,3). 0.95
p3(1,4). 0.95
p3(1,5). 0.95
p3(1,6). 0.95
p3(2,4). 0.73
p3(2,5). 0.73
p3(2,6). 0.73
p3(3,5). 0.63
p3(3,6). 0.63
p3(4,6). 0.63

p4(2,8). 0.53
p4(3,8). 0.53
p4(4,8). 0.53
p4(5,8). 0.53
p4(6,8). 0.53
p4(2,4). 0.41
p4(3,7). 0.35
p4(5,7). 0.35
p4(2,7). 0.35
p4(4,7). 0.35
p4(3,5). 0.30
p4(3,6). 0.30
p4(2,5). 0.30
S������������
p4(4,6). 0.30

S������������
p5(4,7). 0.26
p5(0,7). 0.21
p5(3,7). 0.21
p5(0,4). 0.21
p5(2,7). 0.18
p5(1,4). 0.18
p5(1,7). 0.18
p5(3,6). 0.15
p5(0,5). 0.15
p5(0,6). 0.15
p5(1,6). 0.13
p5(1,5). 0.13
p5(2,5). 0.13
p5(2,6). 0.13

&��;���;��� &��;���;��� &��;���;��� &��;���;��� &��;���;���
c1(0,4). 0.53
c1(0,3). 0.43
c1(1,4). 0.39
c1(0,2). 0.37
c1(2,4). 0.32
c1(1,3). 0.32
c1(4,0). 0.32
c1(4,1). 0.28
F������������

c2(0,6). 1.00
F������������
c2(1,6). 0.95
c2(1,5). 0.90
c2(0,4). 0.73
c2(2,6). 0.73
c2(2,5). 0.69
c2(1,4). 0.69
c2(0,2). 0.63
c2(0,3). 0.63
c2(3,6). 0.63
c2(4,6). 0.63
c2(1,3). 0.60
c2(3,5). 0.60
c2(2,4). 0.53
c2(4,2). 0.40

c3(4,8). 0.22
c3(8,4). 0.22
c3(6,8). 0.16
c3(5,8). 0.16
c3(8,5). 0.16
F������������
c3(7,4). 0.14
c3(4,7). 0.14
c3(6,4). 0.12
c3(4,6). 0.12
c3(7,5). 0.11
c3(5,7). 0.11

F������������
c4(7,3). 0.25
c4(6,3). 0.21
c4(8,4). 0.19
c4(4,7). 0.14
c4(8,5). 0.14
c4(7,4). 0.12
c4(4,6). 0.11
c4(5,7). 0.11

c5(3,8). 0.38
c5(3,7). 0.25
F������������
c5(4,8). 0.19
c5(7,4). 0.14
c5(5,8). 0.14
c5(4,7). 0.12
c5(6,4). 0.11
c5(7,5). 0.11

Table 4



Now, in order to clarify the importance of the ordering among the ground instances of the
constraint literals, the same program is evaluated, but now moving the ground instances that
contribute to the solution at the end of the respective relations. In this case, the time of the
answer is 5519 units, which is larger than the time produced in the execution of Figure 7a,
where the ground instances contributing to the solution were placed to the beginning of all ten
relations. This result makes it clear the importance of a good ordering among the ground
instances in order to obtain the answers as quick as possible. Now, we consider the whole
program, that is, the Program_2 and all the ground instances of Table 4. In order to clarify the
performance of the value ordering heuristic, we simulate the evaluation of the program, first
keeping the ordering of Table 4 among the ground instances produced by the heuristic, and
then with the inverse ordering. Table 5 shows the arrival time of all twelve answers, as well as
the average time. As we can see, the ground instances ordering produced by the heuristics
translates into an important speedup.

Finally, in Figure 8 we present some results showing the improvement on performance
when the number of processors increases. Figure 8a shows the evolution of first answer time,
average answer time and total execution time when the number of processors varies form 1 to
8. As we can observe, the time of the first answer, that is usually the most significant
parameter, decreases quickly with the number of processors until a number of processors is
reached, in this case 4, that exploits all the parallelism that the problem instance exhibit. On
the other hand, Figure 8b shows the speedup obtained by increasing the number of processors.
In any case, we consider the Program_2 with all ground instances ordered by the heuristic as
shown in Table 4.

Proc1
Proc2
Proc3

Proc1
Proc2
Proc3

a) with producer/consumer parallelism. The time of
       answer is 855 units

b) without producer/consumer parallelism. The time
       of answer is 6244 units

Figure 7. Gantt charts of two simulations for solving the same problem on three processors

0

0,2

0,4

0,6

0,8

1

1,2

1 2 3 4 5 6 7 8

1XPEHU�RI�SURFHVVRUV

1
RU
P
DO
�WL
P
H

First answer

Average time

Total time

0

0,5

1

1,5

2

2,5

3

3,5

1 2 3 4 5 6 7 8

1XPEHU�RI�SURFHVVRUV

6S
HH
GX
S

First answer

Average time

a) b) speedup defined as Q
SURFHVVRUVQZLWKWLPH

SURFHVVRUZLWKWLPH






___
_1__

Figure 8.



�����&RQFOXVLRQV

In this work, a new strategy for problem solving that combines parallel logic programming
and heuristics for guide the search is proposed. The experimental results show that logic
programming can express the parallelism that constraint satisfaction problems exhibit, and
that heuristics can help to design these programs in order to improve performance.
Nevertheless, in order to obtain more reliable results, experimentation with bigger problem
instances would be necessary, for example with the benchmarks proposed in [Sad96]. In order
to do that, we are developing a more powerful tool capable of simulating bigger programs in a
reasonable amount of time. We expect that simulation studies will allow us to improve the
strategy of designing heuristic programs that can be further executed on a real parallel
machine in order to compare the results with other approaches.

5()(5(1&(6

[Ado90] H. M. Adorf and M. D. Johnston. $�GLVFUHWH�VWRFKDVWLF�QHXUDO�QHWZRUN�DOJRULWP�IRU

FRQVWUDLQW�VDWLVIDFWLRQ�SUREOHPV. Proc. of the International Joint Conference on Neural
Networks. San Diego. 1990.

[Con83] J. S. Conery, 7KH� $1'�25� 3URFHVV� 0RGHO� IRU� 3DUDOOHO� ,QWHUSUHWDWLRQ� RI� /RJLF

3URJUDPV. Ph. D. Th. Dpto. Information and Computer Science. Univ. California.
Irvine. 1983

[Cor97] D. Corne and P. Ross. 3UDFWLFDO�,VVXHV�DQG�5HFHQW�$GYDQFHV�LQ�-RE��DQG�2SHQ��6KRS

6FKHGXOLQJ� Eds. D. Dasgupta and Z. Michalewicz. Springer-Verlag.

Answers to the query
DOO�;���;���;���;���;���;���;���;���

Arrival time with the ordering
produced by the heuristic

Arrival time with the
inverse ordering

^�;������;������;������;������;������;������;������;�����` 4542 279873
^�;������;������;������;������;������;������;������;�����` 5358 232000
^�;������;������;������;������;������;������;������;�����` 7998 263182
^�;������;������;������;������;������;������;������;�����` 8775 218288
^�;������;������;������;������;������;������;������;�����` 12922 253609
^�;������;������;������;������;������;������;������;�����` 13871 210598
^�;������;������;������;������;������;������;������;�����` 25272 195292
^�;������;������;������;������;������;������;������;�����` 32384 184719
^�;������;������;������;������;������;������;������;�����` 37106 179484
^�;������;������;������;������;������;������;������;�����` 110452 121825
^�;������;������;������;������;������;������;������;�����` 111531 112500
^�;������;������;������;������;������;������;������;�����` 116724 105895
^�;������;������;������;������;������;������;������;�����` 129241 92451
^�;������;������;������;������;������;������;������;�����` 136279 86145
^�;������;������;������;������;������;������;������;�����` 142002 81989
^�;������;������;������;������;������;������;������;�����` 227164 29625
^�;������;������;������;������;������;������;������;�����` 229245 29602
^�;������;������;������;������;������;������;������;�����` 239543 29578

Average time 88356 150370

Table 5. Results of simulation of Program_2 on a number of 4 processors



[Gup92] G. Gupta  3DUDOOHO� ([HFXWLRQ� RI� /RJLF� 3URJUDPV� RQ� 6KDUHG� 0HPRU\

0XOWLSURFHVVRUV� Ph. D. Thesis Dept. Of Computer Science. Univ. North Carolina at
Chapel Hill. 1992.

[Hen92] P. van Hentenryck, H. Simonis and M. Dincbas. &RQVWUDLQW� VDWLVIDFWLRQ� XVLQJ

FRQVWUDLQW�ORJLF�SURJUDPPLQJ. Artificial Intelligence 58, pp. 113-159. 1992.

[Kal91] L. V. Kalé. 7KH� 5('8&(�25�3URFHVV�0RGHO� IRU� 3DUDOOHO� ,QWHUSUHWDWLRQ� RI� /RJLF

3URJUDPV. The Journal of Logic Programming. Vol 11, pp. 55-84. 1991

[Pon95] E. Pontelli, G. Gupta and M. Hermenegildo. 	�$&(��$�+LJK�3HUIRUPDQFH�3DUDOOHO

3URORJ� 6\VWHP� Proc. 9th International Parallel Processing Symposium, pp. 564-571.
IEEE Press. 1995.

[Sad96] N. Sadeh and M. S. Fox. 9DULDEOH� DQG� YDOXH� RUGHULQJ� KHXULVWLFV� IRU� WKH� MRE� VKRS

VFKHGXOLQJ�FRQVWUDLQW�VDWLVIDFWLRQ�SUREOHP. Artificial Intelligence 86, pp. 1-41. 1996.

[She96] K. Shen. ,QLWLDO� 5HVXOWV� IURP� WKH� 3DUDOOHO� ,PSOHPHQWDWLRQ�'$6:$0. Proc. of the
Joint International Conference and Symposium on Logic Programming. MIT Press.
1996.

[Var94] R. Varela. (O�0RGHOR�536�SDUD� OD�*HVWLyQ�GHO�3DUDOHOLVPR�$1'�,QGHSHQGLHQWH�HQ

3URJUDPDV� /yJLFRV. Proccedings of the 1994 Joint Conference on Declarative
Programming GULP_PRODE’94, pp. 251-265. 1994.

[Var95a] R. Varela, E. Sierra, L. Jiménez y C. R. Vela. &RPELQDFLyQ�GH�6ROXFLRQHV�3DUFLDOHV

HQ�3URJUDPDFLyQ�/yJLFD�3DUDOHOD. C-AEPIA’95. Alicante. 1995.

[Var95b] R. Varela. 8Q� 0RGHOR� SDUD� HO� &iOFXOR� 3DUDOHOR� GH� 'HGXFFLRQHV� HQ� /yJLFD� GH

3UHGLFDGRV. Tesis Doctoral. Departamento de Matemáticas, Universidad de Oviedo.
1995.

[Var96a] R. Varela and C. R. Vela. $1'�25� 7UHHV� IRU� 3DUDOOHO� 'HGXFWLRQV, ITHURS’96.
León, Spain. July 1996.

[Var96b] R. Varela, C. R. Vela and J. Puente.� (IILFLHQW�3URGXFHU�&RQVXPHU�3DUDOOHOLVP� LQ

/RJLF�3URJUDPPLQJ. APPIA-GULP-PRODE’96. San Sebastian. July 1996.

[War90] D. H. D. Warren. 7KH� ([WHQGHG� $QGRUUD� 0RGHO� ZLWK� ,PSOLFLW� &RQWURO. ICLP’90
Parallel Logic Programming Workshop. 1990.

[Zwe92] M. Zweben, E. Davis, B. Daun, E. Drascher, M. Deale and M. Eskey. /HDUQLQJ� WR
LPSURYH�FRQVWUDLQW�EDVHG�VFKHGXOLQJ. Artificial Intelligence 58, pp. 271-296. 1992.


