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Abstract

In this paper we put together a Parallel Logic Programmingrsziand a heuristic
search strategy in order to solve constraint satisfaction preblEme idea is to introduce
heuristic information in the construction of logic programs in ordemiprove the
performance. The experimental results show that logic programbecaesigned that
exhibit parallelism, and that the use of heuristic information taéeslinto speedup in
obtaining answers.
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1 Introduction

The aim of this paper is to propose a strategy for problem solkaigcdombines parallelism
and heuristic search. Parallelism will be exploited by mearnkea® ”D/RPS model that we
proposed [Var95b] for evaluating logic programs in parallel. As otluelets described in the
literature [Con83, War90, Kal91, Pon95, She96], this model can exploit thrie @host
important sources of parallelism that the language of logic cgmess, namelyOR
parallelism, independent AND parallelism (IAP) andproducer/consumer parallelism. On the
other hand, we choose thieb Shop Scheduling (JSS) constraint satisfaction problem to deal
with in this work. This is a NP-hard problem that has given risetigh research effort, so a
large number of solutions have been proposed. Among these solutions, we cath&und
application of almost every atrtificial intelligence technique, ifmstance constraint logic
programming [Hen92], neural nets [Ado90], machine learning [Zwe92], gealgtprithms
[Cor97] and heuristic search [Sad96]. Maybe, the last two ones beingadstefrequently
used. Within the scope of this work, we consider the variable and valuengrteuristics
proposed in [Sad96] fafSS problems. These heuristics will be used to guide the construction
of logic programs for solvingSS problems, in order for these programs to be efficiently
evaluated in parallel. As we will see, these programs exhibibfathe three types of
parallelism above commented, and can be improved with the assistance of heuristics.

The remainder of the paper is organized as follows: in Section 2ntn@duce the
RFD/RPS process model for parallel evaluation of logic programs. SectioffirB2de¢heJSS
problem as it is considered in this paper. Section 4 describes tb@iogramming approach
that we propose fadSS problems. Section 5 summarises the variable and value ordering
heuristics proposed in [Sad96] and shows how they can be used in the constlitdgic
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programs. Section 6 outlines the characteristics of the simutbthat we have used for
obtaining experimental results. Section 7 presents some expefimesniiss that clarify the
performance of our approach. Finally, in Section 8 we present the conclusions of the work.

2 The Process Model

We have proposed a new model for exploitingP with OR parallelism in which
computations are represented AYD/OR trees. Figure 1 depicts the tree expanded by our
model when the query (X, Y) ,p (X) is evaluated with respect to the program given by the
set of factsp(a),p(b),q(c,e),q(b,e),q(b,d). The literals within a query are
evaluated according to a partial ordering; we assume that féorther query the ordering is
first g(X,Yy) and thenp (Xx). Therefore, onedND process is created first for solving the
guery. This process generates aheprocess for solving (X, Y) which in its turn generates,

in parallel, threed ND processes associated respectively with the three clausesprbgram
that solve the literal. In this case, these processes produakettigyi solution. This solution,
previously composed with the label of the edge, gives a solution tattrex®R node. This
node sends the three solutions to the A9aD node, which creates two paral@R processes
(one from the two solutions with the variabfenstantiated to the constahf and the other
one from the third answer with the variable instantiated to the amins} to compute
solutions ofp (x) compatible with those computed fgrx, v). That is, two processes are
generated to solve instancesfx): p (b) andp (c). The first one returns the solution
True, whereas the second finishes with negative result. Finally abtlhenode we have two
answers to the query.

The main feature of our proposed model is that the duplication of predesseoided, in
contrast to other models, such as those proposed in [Kal91, Gup92], which woetdtge
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two processes for solving (b) in the former example, one from each solution of the literal
g (X, Y) with the variablex instantiated to the value In order to achieve that in an efficient
way, we have developed a strategy for partial solutions managdmémt. example at hand,
this strategy permits us to link two solutionsqofx, v), (x/b,Y/e) and (X/b,Y/d), t0

the process generated for solvingb), thus avoiding its duplication. This is achieved by
means of two data structuresbara Flow Lattice (DFL) to codify the partial order among the
literals of a query in order to exploidP, and aProcesses and Solutions Net (PSN) to
represent the partial solutions as well as@Reprocess identifiers that computed these partial
solutions. Figure 2 shows th&FL (a) and thePSN (b) generated from the query at the root
node of the4AND/OR tree of Figure 1. Moreover, Figure 2c shows the application of the
inference function, INF, to the noder rue of the PSN. This node indicates that tli& process
labelled by”*°“p (b) finished with a positive answer. The functidNF is in charge of
computing solutions to the query by joining the partial solutions spread ouvesihe

Our model can exploproducer/consumer (or consumer instance) parallelism, as is shown
in [Var96b]; this is a secondary source of parallelism thatdds with bothAND andOR in
the presence of non determinism. Given two literals with commonblesiait consists of
starting the evaluation of one instance of the second li@madumer) to compute compatible
solutions with one solution of the firgbroducer) as soon as this solution appedrs our
example, if producer/consumer parallelism is exploited, as #m@lld (X, v) has multiple
solutions, we can start exploring(x;) as soon as we have a new valuge/x;) from a
solution tog (X, Y). Therefore, as we can see in Figure 2b, the précéss (b) is created
as soon as the first solution to the litealx, ¥) with the variablex instantiated to the value
b is obtained. When the second one appears, it has only to be linked to s pdentifier
Pro°s (b). Producer/consumer parallelism is interesting in non determin@stgrams.
Furthermore, in the presence of infinite relations, it maintainsdh#leteness of the system.
As pointed out in [Kal91], exploitation of this parallelism was thenpof departure for the
REDUCE-OR Process Model (RPM). Exploitation of this class of parallelism was also one of
our starting goals.

For further details about the process model, in particular abod2Aheand thePSN, we
refer to the interested reader to other works as [Var94, 95a, b, 96a, b].

3 The Job Shop Scheduling Constraint Satisfaction Problem

In this section we introduce tbi&S problem we are considering along the paper. The job shop
requires scheduling a set of jof5,...,J,} on a set of physical resourcg,.....R,}. Each job

Ji consists of a set of tasks,,...,.i} to be sequentially scheduled, and each task has a single
resource requirement. We assume that there are a releasef @dditgobs and a due date
between which all the tasks have to be performed. Each task haslaldirationdu; and a

start timesz; whose value has to be selected. The domain of possible starbfithestasks is
initially constrained by the release and due dates.

Therefore, there are two non-unary constraints of the prolemedence constraints and
capacity constraints. Precedence constraints defined by the sequential routings of kise tas
within a job translate into linear inequalities of the type:+ du; < st (i.e. st; beforest).
Capacity constraints that restrict the use of each resoumd@yt@mne task at a time translate
into disjunctive constraints of the foraw; + du;; < st sty + duy < sty (i.e. two tasks that use
the same resource can not overlap).
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The objective is to come up with a feasible solution as fast a&sbfgsa solution being a
vector of start times, one for each task, such that startingeaé ttimes all the tasks end
without exceeding the due date and all the constraints are satisfied.

None of the simplifying assumptions are required by the approach ithaevdiscussed:
jobs usually have different release and due dates, tasks within eajolhave different
duration, several resource requirements, and several alternativegadtr of these
requirements.

Figure 3 depicts an example with three jobs.,.J;} and four physical resources
{R;,R,R3R,}. It is assumed that the tasks of the first two jobs have duratiwvodfme units,
whereas the tasks of the third one have duration of three time umtselBase time is 0 and
the due date is 10. Lab&i represents a precedence constraint and l@bekepresents a
capacity constraint. Start time values constrained by the rededsdue dates and the duration
time of tasks are represented as intervals. For instance [préfeats all start times between
time 0 and time 4, as allowed by the time granularity, namely {0,1,2,3a8)leTL shows one
of the solutions of the problem instance depicted if Figure 3.

Xii Xi2 Xi3 X1 X22 X023 X31 X32

3 5 8 0 2 6 0 3

Table 1

4 The Logic Programming Approach to JSS Problems

In this section we show how the job shop scheduling problem can be repdeserithe
language of logic by means of a set of clauses, and how thesesctaus be determined in
order to exploit parallelism. Firstly, for each task we defirsingle literal having a solution
for each of the possible start times. So, for instance, the;taskl be defined by the ground
instancesti1(0), tii(1), ti1(2), ti1(3), t11(4). Moreover, each one of the constraints will be
defined by means of binary relations: one binary relation for eactheofprecedence
constraints and two binary relations for each of the capacity constraints, facensta

PiXi1,X12):-t11(X11),t12(X12),X12 = X11+dui1.
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Ci(X11,X31):- t11(X11),131(X31),X31 = X11+dull.
Ci(X11,X31):- t11(X11),131(X31),X11 = X31+dusi.

It is clear that an instantiation of the whole set of variabfggearing in constraints making
true each of them represents a solution of the problem. It is also clear tleateralgthere are
a big number of variables shared by two or more literals, andwbat eonstraint literal has a
lot of solutions, so it makes sense to organize the evaluation obmiséraint literals under
IAP. In order to do that, in this work we propose a strategy that con$isi® steps: firstly,
an independent constraint tree is computed from theonstraint dependency graph; and then,
from the independent constraint tree, a logic program that can be tadnfua evaluation
under I4P is determined. An independent constraint tree is a tree representpartial
ordering for the evaluation of the whole set of constraint litenadker/4P; and the constraint
dependency graph is an undirected graph representing the variable de@snderang the
constraint literals. Figure 4a depicts the constraint dependency graph for the pbblgore
3. The independent constraint tree is not unique for a given constraint depeiggaph;
Figure 4b shows an independent constraint tree determined from the graph of Figure 4a.

In order to compute an independent constraint tree from a constraint depegd®ph, we

algorithm independent constraint tree (G: constraints dependency graph);

calculate C={C1,...,Cn} such that every Ci contains only one constraint of G that is
independent of every constraint contained in the remainder Cjs; each of the Cis of C is a
leaf of the independent constraint tree;

calculate CG as the set of constraints of G not belonging to any Ci;
while C is not unitary do

for each Ci in C determine Ci’to contain the constraints of CG adjacent only to some of
the constraints in Ci, if Ci’is not empty, update CG by removing the constraints in Ct,
update C also by removing Ci and inserting Ci’, Ci’is the label of the father node of Ci;

{now in C there are not any constrain adjacent only to constraints of one of the Cis}

select Ci and Cj of C and determine CE to contain the constraints of CG that are
adjacent only to constraints in Ci and C;j and that are not adjacent to any constraint of
the remainder Cls of C; {Ck might be empty}

update CG by removing the constraints of Ck, remove Ci and Cj of C, insert Ck in the
independent constraint tree as the father of the nodes Ci and Cj

endwhile

end.

Figure 5



propose the algorithm of Figure 5. This algorithm first tries taiabig a set as big as
possible of independent constraints, these constraints are the leéivesreé. Then, a search
for constraints dependent of only one or two computed nodes is repeated lintcorde
determining the remaining nodes of the tree. As we can observe, dlfeergeveral non
deterministic actions that have to be solved by means of heuristics.

Now, from the independent constraints tree a logic program is deesfnThis program is
not unique for a given tree, but distinct programs can be derived wiénedif sizes in the
clauses, so giving rise to different granularity levels of thecgsses generated during
program evaluation. For instance, from the tree depicted in Figuré lébsa the following
two programs can be determined (here the facts and the consghitibns are not
represented).

Program_1
plp3c2( X11, X12, X21, X22) : - p1( X11, X12), p3(X21, X22), c2(X21, X12).
c3p5c5( X13, X23, X31, X32): - c3( X13, X23), p5(X31, X32), c5(X32, X23).
c3p5c5c4( X13, X23, X31, X32) : - c3p5c5( X13, X23, X31, X32), c4(X13, X32).
plp3c2c3p5c5c4p2( X11, X12, X21, X22, X13, X23, X31, X32) : -
plp3c2( X11, X12, X21, X22), c3p5c5c4( X13, X23, X31, X32), p2(X12, X13).
plp3c2c3p5c5c4p2cl( X11, X12, X21, X22, X13, X23, X31, X32): -
plp3c2c3p5chc4p2( X11, X12, X21, X22, X13, X23, X31, X32), cl(X11, X31).
al | (X11, X12, X13, X21, X22, X23, X31, X32) : -
plp3c2c3p5chc4p2cl( X11, X12, X21, X22, X13, X23, X31, X32), p4(X22, X23).
Program_2
plp3c2( X11, X12, X21, X22) : - p1( X11, X12), p3(X21, X22), c2(X21, X12).
c4c5(X23, X32, X13) : - c4( X13, X32), c5( X32, X23) .
c3p5cdc5( X13, X23, X31, X32) : - c3( X13, X23), p5(X31, X32), c4c5(X23, X32, X13).
p2clp4( X12, X13, X11, X31, X22, X23) : - p2( X12, X13), c1( X11, X31), p4(X22, X23).
al | (X121, X12, X13, X21, X22, X23, X31, X32) : -
plp3c2( X11, X12, X21, X22), c3p5cdc5(X13, X23, X31, X32),
p2clp4( X12, X13, X11, X31, X22, X23) .

S Variable and Value Ordering Heuristics for the JSS Problem

As we have pointed out in the introduction, one of the original contributiotigsofvork will

be the utilization of heuristic information in the construction staigéogic programs for
solvingJSS problems. Our purpose is to incorporate the variable and value orderimngibgur
proposed by Norman Sadeh and Mark S. Fox in [Sad96]. These heuristizasatkon a
probabilistic model of the search space. A probabilistic framevgarkrioduced that accounts
for the chance that a given value will be assigned to a variableha chances that values
assigned to different variables conflict with each other.

The heuristics are evaluated from the profile demands of the fiaskise resources. In
particular theindividual demand and theaggregate demand values are considered. The
individual demandD;(R,,7) of a tasks; for a resourc&, at time7 is simply computed by
adding the probabilitiesr;(7) of the resource, is demanded by the tagk at some time



Interv. 0 1 2 3 4 5 6 7 8 9 10
D1(Ry, T) 02 04 04 04 04 0.2

D**(R,T) 04 08 1 1 08 04 0.2
Di12(R,T) 02 04 04 04 04 02

DR, T) 02 04 06 08 08 06 04 02

D1s(Rs,T) 02 04 04 04 04 0.2
D2y(Rs,T) 02 04 04 04 04 0.2
D3R5, T) 02 04 06 06 06 04 0.2
oYRT) 02 08 14 14 14 12 06
D2A(R4,T) 02 04 04 04 0.2
ORI 02 04 04 04 02
Table 2

within the interval/7-du;+1,7]. The individual demand is an estimation of the reliance of a
task on the availability of a resource. Consider, for example, the sg@ath state depicted in
Figure 3. As the task, has five possible start times or reservations, and assuminigpénat

is no reason to believe that one reservation is more likely toleetex than another, each
reservation is assigned an equal probability to be selected, ra#@sl/5. Given that the task
t;> has duration of 2 time units, this task will demand to the resdureg time 4 if its start
time is either 3 or 4. So, the individual demand of the tasfor resourcer, at time 4 is
estimated asD;>(R,4)=0::(3)+012(4)=2/5. On the other hand, the aggregate demand
D*¥ (R, 1) for a resource is obtained by adding the individual demands of all aasksthe
time. Table 2 shows the individual demands of all ten tasks of the probke well as the
aggregate demands for all four resources.

From the aggregate demand of a resource a contention peak is ideflifged. an interval
of the aggregate demand of duration equal to the average duratidnthed tdsks with the
highest demand. Table 2 shows the contention peaks of all the four resdurer, the task
with the largest contribution to the contention peak of a resourcdesrdeed as the most
critical and therefore it is selected first for reservati®his is the heuristic of variable
ordering referred in [Sad96] &3RR (Operation Resource Reliance). This heuristic can be
introduced in the construction of the independent constraint tree byngsastieaves of the
tree those constraints that involve tasks with large contributionhéo cbrresponding
contention peaks.

On the other hand, the value ordering heuristic proposed in [Sad96] i®aipated from
the profile demands for the resources. Given a taskat demands the resourgg, the
heuristic consists of estimating thervivability of the reservations. The survivability of a
reservationist;=7Lis the probability that the reservation will not conflict with tlesource
requirements of other tasks, that is, the probability that none of liee @isks require the
resource during the interval, T+du;-1]. When the task demands are for only one resource,
this probability can be estimated as [Sad96]
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wheredu stands for the average duration of the taskg) is the number of tasks that can
demand the resourd®, at timer andAVG(f(1)) represents the average value of funcfian

in the interval/7,7+du;-1]. Table 3 shows the survivability of all the reservations possible for
all ten tasks of the problem.

As it looks clear, the value ordering heuristic consist of tryirgy the reservations with
large values of its survivability. This heuristic can be eastlpduced in the construction of
the logic programs for the JSS problem by means of the orderingclafrateon of ground
literals that define each of the tasks: literals with largieies are declared first. In particular,
we will use the values of the survivability of the reservatiorthéninitial state of the search
process. So, during the program evaluation, reservations with high suityvailllbe used
first under the assumption that they are more likely to be pregdnh a solution of the
whole problem.

For a depth study of these heuristics, as well as for furtheeneénts, we refer to the
interested reader to [Sad96].

6 Heuristic Programs and the Simulator Tool

In order to evaluate logic programs and to study their performancéawe developed a
simulator of our interpretation model that emulates the evolution ok¢heof processes
generated on an arbitrary number of processors. The scheduling potivy pfocesses is
based on priorities that are proportional to the waiting time of the prodedbesready to run
gueue. After evaluation of a query with respect to a logic program, the simulatotsperfay
out the process tree and the Gantt chart of the processes gef@rawving the query. This
information permits studying the amount of parallelism that isaggal during the evaluation
of the programs, and so it allows us to evaluate the quality obthe programs from the
point of view of its parallel evaluation.

In order to simplify the switching context task, the atomic opmmatof the processes are
assumed to be “not too small”, and the quantum of time assigned toeagpfor execution is
the time of its next atomic operation. These atomic operationgelass the structure of the
processes4dND and OR, are represented in Figures 6a and 6b respectively. The procedure

AND Process (DFL) OR Process (literal)

generate an OR process for each for each clause of the program which

literal with no predecessors in conclussion unifies with the literal

the DFL; (*) generate an AND process to solve its
while new answers can arrive from body; (*)

t he descendants OR processes do while new answers can arrive fromthe
wait-for-answer, descendants AND processes do
process-answer; (*) wai t - for-answer;

endwhile; process-answer; (*)

send to the parent OR process the  endwhile;

answer end-of-process (*) send to the parent AND process the

end. answer end-of-process (*)
end.
a) b)

Figure 6. (*) atomic operations



Interv. 0 1 2 3 4 5 6 7 8 9 10
t11 0.73 054 044 0.54

t1o 063 063 0.73 095 1
"""" ts 04l 03 03 035 053
"""" tw 1 095 073 063 063
"""" o, 1 1 1 1 1
"""" ts 04l 03 03 035 053
"""" tw 059 051 051 059 073
"""" tw 071 035 026 026 035
Table 3

process-answer Of theAND processes consist of taking an answer from its input queue and
make all the work to process it. That is, joining the answer Wghahswers to the previous
literals of the query, generating all the necessary procsssslving the successor literals of
the query, and finally sending the new solutions to the query to the faghprocess. In the
case of theR processes, therocess-answer procedure is very simple, it only consists of
sending each answer of its input queue to the fatiVé¥ process. So we could consider the
processing of several answers as an atomic operation, in ordsigo asimilar quantum of
processor time to botdND andOR processes.

The current release of the simulator is built on KappaPC 2.3 objeotedt environment,
and so it has some limitations mainly due to the limited numbectfeainstances that the
tool can manage at a given time. As a consequence, the simulator spfends an
unacceptable amount of time when evaluates very big programs. So, inmréduce the
number of instances generated during a simulation session, we intridudellowing
transformation in logic programs for solviogS problems. Instead of defining each of the
tasks by means of a relation with as many ground instances as posshlatrens, we define
a relation for each of the constraints having one ground instancecfoiceapatible join of
solutions of the pair of tasks involved. Now, the ordering among the consgraund
instances is made in base to the product of survivability valuesskd tround instances
involved. For example, as we had the claBg&77,X12):-t11(X11),t12(X12),X12 = X11+dui1, and
solutions #1:(1) and r2:1(3) are compatibles with each other, having these reservations
probabilities 0.73 and 0.63 respectively as shown in Table 3, we declagetime instance
Pi(1,3) with a probability 0.74*0.63=0.46. Table 4 shows the corresponding ground instances
to all ten constraints, declared in the order established by their probability values.

As we can see in Table 4, a number of ground instances contributihg tmlution of
Table 1 arise next to the beginning of the relation, but some other dé&mat would be
interesting to design a strategy for determining the independerntaiohsrees that include in
the leaves those literals whose good instances arise closelieginaing of the relation. We
have pointed out in section 5 that the variable ordering heuristic couhddrgorated in our
strategy by inserting as leaves of the tree those constvathtsa large contribution to the
contention peak of the aggregate demand. In the example, the constalving tasks with
the largest contribution to the corresponding contention pedksgXs X32) as we can see in
Table 2 (taskgs: andss2). Then, following the heuristic, we have to put the litéralks: X32)
as a leaf of the tree, as done in the tree of Figure 4b. Inabés this heuristic seems to work



well because the ground instankg0,3) that contributes to the solution of Table 1 arises at
the first position of the relation as shown in Table 4.

7 Experimental Results

In this section we include some experimental results showing, on owle th@& amount of
parallelism that can be exploited in solvif§$ problems; and on the other hand, the speedup
that the variable and value ordering heuristics produce in obtaining answers.

As we can see from the logic programs determined by solving ohepr of Figure 1 (for
example the Program_2 of Section 4 including the ground instances efdljalthey exhibit
all types of parallelism that our model can exploit; namely,paRllelism, independent AND
parallelism and producer/consumer parallelism. The importance dirthgwo ones was
widely proclaimed in the literature, so, we start showing an example intoradexke clear the
improvement introduced by the producer/consumer parallelism. We cortsedBrdgram_2
but only four ground instances of each of the ten constraints of Tableldding those
instances that contribute to the solution of Table 1, declared at givening of the relation.
Figure 7 depicts the Gantt charts of the processes generatedlving sthe query
all(x11,X12,X13,x21,x22,x23,x31,x32), when the producer/consumer parallelism is
exploited (Figure 7a) and when it is not exploited (Figure 7b). Asameobserve, in the first
case there is a large displacement of many CPU intervalseeqgbfrocesses towards starting
execution time. As a consequence, the time of answer is lowhe ifirst case than in the
second one.

Pi(Xi1,X12) P2(X12,X13) P3(X21,X22) P4(X22,X23) Ps5(X31,X32)

p1(0,6). 0.73 p2(6,8). 0.53 p3(0,2). 1.00 p4(2,8). 0.53 p5(0,3). 0.42
p1(0,5). 0.69 p2(5,8). 0.50 p3(0,3). 1.00 p4(3,8). 0.53 p5(4,7). 0.26
pl(1,6). 0.54 p2(4,8). 0.39 p3(0,4). 1.00 p4(4,8). 0.53 p5(0,7). 0.21
pl(4,6). 0.54 p2(3,8). 0.33 p3(0,5). 1.00 p4(5,8). 0.53 p5(3,7). 0.21
p1(0,4). 0.53 p2(2,8). 0.33 p3(0,6). 1.00 p4(6,8). 0.53 p5(0,4). 0.21
p1(1,5). 0.51 p2(5,7). 0.33 p3(1,3). 0.95 p4(2,4). 0.41 p5(2,7). 0.18
p1(0,2). 0.46 p2(2,4). 0.26 p3(1,4). 0.95 p4(3,7). 0.35 p5(1,4). 0.18
p1(0,3). 0.46 p2(4,7). 0.26 p3(1,5). 0.95 p4(5,7). 0.35 p5(1,7). 0.18
pl(3,6). 0.44 p2(2,7). 0.22 p3(1,6). 0.95 p4(2,7). 0.35 p5(3,6). 0.15
pl(2,6). 0.44 p2(3,7). 0.22 p3(2,4). 0.73 p4(4,7). 0.35 p5(0,5). 0.15
pl(2,5). 0.42 p2(4,6). 0.22 p3(2,5). 0.73 p4(3,5). 0.30 p5(0,6). 0.15
p1(3,5). 0.42 p2(2,5). 0.19 p3(2,6). 0.73 p4(3,6). 0.30 p5(1,6). 0.13
pl(1,4). 0.39 p2(2,6). 0.19 p3(3,5). 0.63 p4(2,5). 0.30 p5(1,5). 0.13
pl(1,3). 0.34 p2(3,5). 0.19 p3(3,6). 0.63 P4(2,6). 0.30 p5(2,5). 0.13
pl(2,4). 0.32 p2(3,6). 0.19 p3(4,6). 0.63 p4(4,6). 0.30 p5(2,6). 0.13

Ci(X11,X31) C2(X21,X12) C3(X13,X23) C4(X13,X32) Cs5(X32,X23)

c1(0,4). 0.53 |c2(0,6). 1.00 c3(4,8). 0.22 c4(8,3). 0.38 c5(3,8). 0.38
c1(0,3). 0.43 |c2(0,5). 0.95 c3(8,4). 0.22 c4(7,3). 0.25 ¢5(3,7). 0.25
c1(1,4). 0.39 |c2(1,6). 0.95 c3(6,8). 0.16 c4(6,3). 0.21 c5(3,6). 0.21
c1(0,2). 0.37 |c2(1,5). 0.90 c3(5,8). 0.16 c4(8,4). 0.19 c5(4,8). 0.19
c1(2,4). 0.32 |c2(0,4). 0.73 c3(8,5). 0.16 c4(4,7). 0.14 c5(7,4). 0.14
c1(1,3). 0.32 |c2(2.6). 0.73 c3(8,6). 0.16 c4(8,5). 0.14 ¢5(5,8). 0.14
c1(4,0). 0.32 |c2(2,5). 0.69 c3(7,4). 0.14 c4(7,4). 0.12 c5(4,7). 0.12
c1(4,1). 0.28 |c2(1,4). 0.69 c3(4,7). 0.14 c4(4,6). 0.11 c5(6,4). 0.11
c1(3,0). 0.26 |c2(0,2). 0.63 c3(6,4). 0.12 c4(5,7). 0.11 ¢5(7,5). 0.11

c2(0,3). 0.63 c3(4,6). 0.12

c2(3,6). 0.63 ¢3(7,5). 0.11

c2(4,6). 0.63 ¢3(5,7). 0.11

c2(1,3). 0.60

c2(3,5). 0.60

c2(2,4). 0.53

c2(4,2). 0.40

Table 4
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Figure 7.Gantt charts of two simulations for solving the sgsnoblem on three processors

Now, in order to clarify the importance of the ordering among the grmstances of the
constraint literals, the same program is evaluated, but now movirgydbed instances that
contribute to the solution at the end of the respective relations.slitdke, the time of the
answer is 5519 units, which is larger than the time produced in tloaitexe of Figure 7a,
where the ground instances contributing to the solution were placedhegimaing of all ten
relations. This result makes it clear the importance of a goodimgdamong the ground
instances in order to obtain the answers as quick as possible. Novonsider the whole
program, that is, the Program_2 and all the ground instances of Téblerder to clarify the
performance of the value ordering heuristic, we simulate the enaluzitthe program, first
keeping the ordering of Table 4 among the ground instances produced by ikgcheund
then with the inverse ordering. Table 5 shows the arrival time of elvénanswers, as well as
the average time. As we can see, the ground instances ordering graguttee heuristics
translates into an important speedup.

Finally, in Figure 8 we present some results showing the improveameperformance
when the number of processors increases. Figure 8a shows the evoltitisihaoiswer time,
average answer time and total execution time when the number espoos varies form 1 to
8. As we can observe, the time of the first answer, that is ystmdl most significant
parameter, decreases quickly with the number of processors until tlEenomprocessors is
reached, in this case 4, that exploits all the parallelismtlieaproblem instance exhibit. On
the other hand, Figure 8b shows the speedup obtained by increasing the nyonbesssors.
In any case, we consider the Program_2 with all ground instancesatiethe heuristic as
shown in Table 4.
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Figure 8.



Answers to the query Arrival time with the ordering | Arrival time with the
all(x11,x12,x13,X21,X22,X23,X31,%32) produced by the heuristic inverse ordering
{ X11/4, X12/6, X13/8, X21/0, X22/2, X23/6, X31/0, X32/3 } 4542 279873
XI14 X126 XI38, X210, X223, X23/6, X310, X323 7 | 538 | 232000
X115 X126 X138, X210, X222, X23/6, X310, X323 7 | 7908 | 263182
X113 X126 XI3/8, X210, X223, X23/6, X310, X323 7 | 8775 | 218288
X115 X125 X138, X210, X222, X23/6, X310, X323 1| 12022 | 253609
X113 X125 X138 X210, X223, X23/6, X310, X323 1 | 13871 | 210508
XL X126 X138, X210, X224, X236, X310, X323 1| 25272 | 105202
X113 X126 X138, X210, X224, X23/6, X310, X323 1 | 32384 | 184719
X115 X125 X138, X210, X224, X236, X310, X323 1 | 37106 | 179484
X114 X126 X138, X21/1, X223, X23/6, X310, X323 1 | 110452 | 121825
X115 X126 X138, X211, X223, X23/6, X310, X323 1| 111531 | 112500
X113 X125 X138, X21/1, X223, X23/6, X310, X323 1 | 116724 | 105895
XA X126 X138, X21/1, X224, X236, X310, X323 1| 120241 | 02451
X113 X126 X138, X21/1, X224, X236, X310, X323 1 | 136279 | 86145
X115 X125 X138, X21/1, X224, X236, X3100, X523 1 | 142002 | 81089
X1 XI26 X138 X212, X224, X236, X310, X323 | 207184 | 20625
XI5 X126 X138 X212, X224, X236, X310, X523 7 | 220245 | 20602
(X113 XI26 X138 X212, X224, X236, X310, X323 | 239543 | 20578
Average time 88356 150370

Table 5.Results of simulation of Program_2 on a number pfetessors

8 Conclusions

In this work, a new strategy for problem solving that combines pataljic programming
and heuristics for guide the search is proposed. The experimentt$ refsow that logic
programming can express the parallelism that constraintasaist problems exhibit, and
that heuristics can help to design these programs in order to impeEv¥ermance.
Nevertheless, in order to obtain more reliable results, experititentaith bigger problem
instances would be necessary, for example with the benchmarks prap@Sad9d6]. In order
to do that, we are developing a more powerful tool capable of simutagggr programs in a
reasonable amount of time. We expect that simulation studieslieiv us to improve the
strategy of designing heuristic programs that can be furthesuged on a real parallel
machine in order to compare the results with other approaches.
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