
Narrowing the gap between Set-Constraints and

CLP(SET)-Constraints

Agostino Dovier Carla Piazza Gianfranco Rossi

Abstract

We compare two (apparently) rather di�erent set-based constraint languages,

and we show that, in spite of their di�erent origins and aims, there are large classes

of constraint formulae for which both proposals provide suitable procedures for

testing constraint satis�ability with respect to a given privileged interpretation.

Speci�cally, we present a technique for reducing any set-constraint to a CLP(SET)-

constraint; moreover, we show how the satis�ability check for some classes of set-

constraints can be performed by the CLP(SET) constraint solver.

Keywords: Set Constraints, Constraint Logic Programming with Sets.

1 Introduction

Generally speaking, set-based constraints can be de�ned as formulae of a �rst-order lan-

guage L whose literals make use of classical set-theoretic symbols, such as 2;�;[: : :.

The (set) constraint satis�ability problem amounts to �nding an algorithm (a set con-

straint solver) which is able to decide the satis�ability of a constraint c in a privileged

interpretation D of L, that is, in a �xed constraint domain, which involves (possibly

in�nite) sets.

A well-known class of set-based constraints is the class of so called set-constraints. The

set-constraint satis�ability problem was set �rst in the �elds of program analysis and type

inference, where, intuitively speaking, set-constraints are used to capture some properties

of a programs ([16, 17], and [19] for an algebraic description). Various algorithms have

been proposed for the satis�ability checking of sub-classes of the general set-constraint

satis�ability problem (see, e.g., [3, 2, 14, 15]). Finally, in [7] the general problem has

been proved to be decidable. However, in [7] and in other works (e.g., [1, 24]), the non-

deterministic exponential complexity of the problem has been pointed out. Recently,

a number of proposals have been put forward aimed at identifying useful polynomial

sub-classes of the general problem (e.g., [22]).

Another interesting approach to set-based constraints is that of constraint logic pro-

gramming (CLP) [18]. A CLP (X) scheme is a parametric CLP language whose parameter

Dovier: Dip. Scienti�co-Tecnologico, Univ. di Verona. Strada Le Grazie 3, 37134 Verona (I).

dovier@sci.univr.it

Piazza: Dip. di Matematica e Informatica, Univ. di Udine. Via Le Scienze 206, 33100 Udine (I).

piazza@dimi.uniud.it

Rossi: Dip. di Matematica, Univ. di Parma. Via M. D'Azeglio 85/A, 43100 PARMA (I). gi-

anfr@prmat.math.unipr.it

The work is partially supported by MURST project: Tecniche formali per la speci�ca, l'analisi, la

veri�ca, la sintesi e la trasformazione di sistemi software and by CNR Grant 97.02426.CT12.

43

44 APPIA-GULP-PRODE'98

X can be instantiated to a generic domain of contraints and computation. Several pro-

posals have been put forward for set-based instantiations of the parameter X , to obtain

CLP languages with sets. In particular, the languages CLPS [21] and Conjunto [13] are

two of these proposals, aimed at developing a practical tool for programming with sets.

Another|more general and theoretically sound|proposal following this approach is that

of the language flogg and its CLP counter-part CLP(SET) (see [9, 12, 10]). CLP(SET)

is a general-purpose CLP language dealing with sets that can be nested (sets of sets),

hybrid (sets of terms, sets as arguments of standard terms, and so on) and possibly de-

�ned in an intensional way ([5, 11]). Observe that once a set instance of CLP has been

de�ned, it is possible to combine it with other CLP languages (e.g., CLP (R)) to get a

richer and powerful language [4].

It is worth mentioning that most of the results obtained for flogg, and for set-based

languages in general, are strongly related to the results obtained in the Computable Set

Theory area [6]. C.S.T. was mainly developed at the NYU in the Eighties, in reply to the

need to potentiate the inferential engine for Theorem provers and for the implementation

of the imperative language SETL [23]. The general problem was that of identifying com-

putable classes of formulae of suitable sub-theories of the general ZF set-theory. Although

a lot of similarities exist between the area of set-constraints and C.S.T., unfortunately

no explicit connection has been established so far between them.

Aim of this paper is the analysis and comparison|as concerns the language expressive

power|of the two apparently distinct classes of set-based constraints, the class of set-

constraints and the class of CLP(SET)-constraints.

We compare the two proposals by trying to reduce the constraint satis�ability problem

for one class of constraints to the same problem for the other class (some work in this

direction is also presented in [20], where, in particular, the possibility of using the

language CLP(SET) is pointed out). The main contribution of this paper is to show

that, in spite of their di�erent origin and aims, there is a large class of constraint formulae

for which both proposals provide suitable procedures for testing constraint satis�ability

with respect to a given privileged interpretation. This comparison can serve to narrow

the gap between two research areas that have proceeded quite separately so far. Such a

result is obtained by:

� using a uniform approach and notation in presenting the two proposals;

� augmenting the CLP(SET) language of [12] by allowing it to deal with also the union

and disjoint constraints as recently proposed in [10];

� developing a suitable rewriting procedure of set-constraints to CLP(SET)-constraints;

� characterizing sub-classes of set-constraints (which include, for instance, INES-constra-

ints [22]) for which the rewriting preserves satis�ability.

The paper is organized as follows. In Sect. 2 and 3 we review the notions of set-

constraint and the basic features of the language CLP(SET). In Sect. 4 we de�ne the

technique to be used for comparing the two languages, and in Sect. 5 we show how to

translate a (general) set-constraint to a CLP(SET) program. Finally, in Sect. 6 we show

how it is possible to use CLP(SET) to test satis�ability (even in domains with in�nite

sets) for a non-trivial sub-class of set-constraints.

2 Set-Constraints

In order to establish a common basis for comparing the two proposals, we present both

of them as particular instances of the general constraint satis�ability problem for �rst-

Narrowing the gap between Set-Constraints and CLP(SET)-Constraints 45

order languages. As concerns notation and terminology, we will keep to the syntactic

conventions usually adopted in logic programming. In particular, capital letters X; Y; Z,

etc. are used to represent variables; f , g, etc. stand for functional symbols. Moreover,

if t is a term, then vars(t) denotes the set of (free) variables occurring in t. With

�

t we

denote a list of terms t

1

; : : : ; t

n

.

De�nition 1 Given a signature � of functional and constant symbols (each with a �xed

arity), consider the new signature:

�

0

= � [f0; 1;[;\; {g [ff

�1

k

: f 2 � and 1 � k � ar(f)g;

the set of predicate symbols � = f�g, and a denumerable set of variables V. A set-

constraint language is a language L = h�

0

;�;Vi. A set-constraint is a �nite conjunction

of literals of L.

According to [16], we de�ne the domain in which satis�ability of set-constraints has

to be tested as follows.

De�nition 2 Given a set-constraint language L, the privileged interpretation P for L is

P = h}(T

�

); (�)

P

i, where T

�

is the set of ground �rst-order terms built form the signature

� (assume that there is at least one constant symbol in �) and }(T

�

) is its powerset.

Moreover, the interpretation function (�)

P

for the symbols of �

0

is de�ned as follows:

1

0

P

= ; 1

P

= T

�

(f(a

1

; : : : ; a

n

))

P

= ff(t

1

; : : : ; t

n

) : 8 i�n; n � 0; t

i

2a

P

i

g

(f

�1

k

(a))

P

= ft

k

: k � n; n � 1; f(t

1

; : : : ; t

n

) 2 a

P

g

(a [b)

P

= a

P

[b

P

(a \ b)

P

= a

P

\ b

P

({(a))

P

= T

�

n a

P

while the interpretation of the predicate symbol � is the obvious: (a � b)

P

i� a

P

� b

P

.

P is the domain used in most of the papers dealing with set-constraints. Replacing

T

�

with T

1

�

, namely the set of in�nite trees over �, in the de�nition above, one obtains

the domain }(T

1

�

). This is the domain analyzed in [8]. In [22] the domains used are

}(T

+

�

) = }(T

�

) n f;g and }(T

1

�

)

+

= }(T

1

�

) n f;g.

Example 3 Let � = fa; sg, ar(a) = 0 and ar(s) = 1. Then the set-constraint X � s(a)

is satis�able (two possible evaluations are admitted: [X=;] and [X=fs(a)g]). The set-

constraint s(X) � X ^ X 6� 0 is also satis�able by the evaluation [X=T

�

] (notice that

withoutX 6� 0, also [X=;] would be a solution). The evaluation [X=fs(s(s(� � �)))g] is a

solution over }(T

1

�

).

Several authors have investigated the problem of checking the satis�ability of set-

constraints, using di�erent techniques and presenting di�erent methods for solving con-

traints ([3, 2, 14, 15]). In particular, Charatonik and Pacholski [7] have shown that the

set-constraint satis�ability problem is decidable and NEXPTIME complete.

Remark 4 The interpretation of the function application f(a

1

; : : : ; a

n

) and of the inverse

function application f

�1

k

(a) are a colored version of the standard set-theoretic operation

of cartesian product and projection, respectively. As a matter of fact, if A

1

; : : : ; A

n

; A are

the sets associated with a

1

; : : : ; a

n

; a, then f(a

1

; : : : ; a

n

) denotes A

1

� � � � �A

n

colored by

f and f

�1

k

(a) is the projection on the direction k of the tuples of A colored by f .

1

Equality (

:

=) is implicitly included in �, with the usual interpretation (s

:

= t)

P

i� s

P

� t

P

. As a

matter of fact, it holds that s

:

= t i� s � t ^ t � s.

46 APPIA-GULP-PRODE'98

3 CLP(SET)-Constraints

CLP(SET) [12, 10] is an instance of the general CLP scheme [18].

De�nition 5 Consider a signature � of functional symbols such that f;; f� j �gg � �, a

numerable set of variables V, and a set of predicate symbols � = f

:

=;2;[

3

; jj; c

of

g. A

CLP(SET)-language is a language L = h�;�;Vi. A CLP(SET)-constraint is a �nite

conjunction of literals of L.

The domain where to test the satis�ability of CLP(SET)-constraints is de�ned by

taking a quotient of the set of ground terms T

�

.

De�nition 6 The relation � � T

�

� T

�

is the least congruence such that:

8r; s; t 2 T

�

ftjfsjrgg � fsjftjrgg

8r; s 2 T

�

fsjfsjrgg � fsjrg

and it is closed under the functor application (i.e., if t

i

� t

0

i

for each i, then f(

�

t) � f(

�

t

0

)).

In this way, f� j �g is interpreted as a set-constructor symbol, not as a list constructor,

while free functional symbols are interpreted as usual in Herbrand models. A detailed

presentation of the interpretation of the language can be found in [9, 12] and, for this

extended case, in [10]. However, denoting as [t]

�

the canonical representative (no matter

what algorithm is used to choose it) of the congruence class of t, we de�ne:

De�nition 7 Given a CLP(SET)-language L, the privileged interpretation T for L is

T = hT

�

=�; (�)

T

i, where the interpretation function (�)

T

is de�ned by t

T

= [t]

�

for any

term t 2 T

�

, while the interpretation of the predicate symbols is:

(s

:

= t)

T

i� s

T

= t

T

(t 2 s)

T

i� ft j sg

T

= s

T

(c

of

(f(�s); g(

�

t)))

T

i� (f(�s))

T

= (g(

�

t))

T

(c

of

(ft j sg; k))

T

i� (c

of

(s; k))

T

for all m;n; k and for all x

0

� � �x

m

y

0

� � � y

n

z

0

� � � z

k

:

([

3

(s

1

; s

2

; s

3

))

T

i� 8v((v 2 s

3

)

T

$ (v 2 s

1

)

T

_ (v 2 s

2

)

T

)^

9k((c

of

(s

1

; k))

T

^ (c

of

(s

2

; k))

T

^ (c

of

(s

3

; k))

T

)

(jj(s

1

; s

2

))

T

i� 8v((v 2 s

1

)

T

! (v =2 s

2

)

T

)^

9k((c

of

(s

1

; k))

T

^ (c

of

(s

2

; k))

T

)

The CLP language presented here extends that of [12] with the introduction of the

constraint predicate symbols [

3

; jj, and c

of

, as done in [10]. This extension is justi�ed

by the need of augmenting the expressive power of the constraint language as concerns

expressivity of the computed solutions. Actually, one could de�ne �;\;[and other

basic set-theoretical operations also by CLP(SET) programs (see [12]). However, it can

be proved

2

that given a set-theoretic model M of the language, there is no open formula

' in the language based on f;; f� j �g;

:

=;2g, s.t. T j= 8XY (X � Y $ 9Z

1

: : : Z

n

'):

Thus, for instance, if � is programmed, the solutions to the goal X � Y are the (in�nite)

[X = ;]; [X = fZ

1

g; Y = fZ

1

jNg]; [X = fZ

1

; Z

2

g; Y = fZ

1

; Z

2

jNg]; : : : ; [Y = X]; [Y =

2

The proof is very technical and outside the scope of this paper.

Narrowing the gap between Set-Constraints and CLP(SET)-Constraints 47

fZ

1

jXg]; [Y = fZ

1

; Z

2

jXg;]; : : :. The same holds also for union and intersection, since

X � Y is equivalent to both X [Y = Y and X \ Y = X.

When dealing with hybrid entities, such as, for instance, the term f; j ag, a functional

or predicate symbol concerning with the color of a set is required. In [12] a functional

symbol ker is adopted. However, a functional symbol a�ects the interpretation domain.

The use of a predicate symbol, c

of

, allows a clean treatment of such entities (cf. also [9]).

In the same spirit, we have introduced [

3

as a ternary predicate symbol, rather than a

binary functional symbol. Moreover, the predicate jj, that states the disjointness of two

sets, is introduced as a necessary tool for implementing intersection (see [10]):

3

s � t i� [

3

(s; t; t)

\

3

(r; s; t) i� 9R; S([

3

(R; t; r) ^ [

3

(S; t; s) ^ RjjS):

A constraint solver for CLP(SET)-constraints is described in detail in [12, 10].

Example 8 Here are some examples of constraints in the CLP(SET)-language, along

with substitutions that make them satis�able in the CLP(SET)-interpretation T :

�X 62 f;jXg ^ fajY g

:

= fbjZg satis�ed by the substitution [X=f;g; Y=fbg; Z=fag];

� [

3

(X; Y; Z) ^ [

3

(X; Y;W) ^ Z 6=W which is unsatis�able;

� [

3

(X; Y; fajZg) ^XjjfajV g ^ a 62 Z satis�ed by [X=;; Z=;; V=;; Y=fag].

4 How to compare the two proposals

The main di�erences between the two classes of languages presented so far are summarized

in the table below.

Set-Constraints CLP(SET)-Constraints

Primitive constraints �;[;\; {

:

=;2;[

3

; jj

Domain Flat hybrid sets Hereditarily �nite hybrid sets

Int. of functional symbols P j= 9

�

X f(X

1

; : : : ;X

n

) 6= 0 T j= 8

�

X X

0

=2 f(X

1

; : : : ;X

n

)

Hybrid means that set elements can be (also) non-set objects (those denoted by terms

whose outermost functional symbol is a free Herbrand functor). Flat means that sets can

not be nested, whereas hereditarily �nite means that sets can contain a �nite number of

elements that can be (also) other hereditarily �nite sets. Note that the interpretation of

the functional symbols is very di�erent in the two domains as pointed out in the table.

In order to compare the two proposals, we need to de�ne a general notion of translation

between two languages.

De�nition 9 Given two �rst order languages L

1

and L

2

, two interpretations M

1

and

M

2

, two classes of formulae C

1

and C

2

, a translation from C

1

into C

2

is a function

� : C

1

! C

2

. � is a conservative translation under M

1

and M

2

if for each formula

' 2 C

1

:

9�

1

M

1

j= '[�

1

] i� 9�

2

M

2

j= �(')[�

2

] :

3

Strictly speaking, also literals based on predicate symbols 2, and

:

= could be equivalently replaced by

literals based on [

3

: s 2 t i� [

3

(t; t; fs j tg), s

:

= t i� [

3

(s; s; t). Therefore, we could avoid considering

these symbols as part of the set �. Notwithstanding, we prefer letting the constraint solver to deal with

this kind of operations as primitive constraints, both for the sake of simplicity, and for e�ciency reasons.

48 APPIA-GULP-PRODE'98

The comparison between the language of set-constraints and the language of CLP(SET)-

constraints is obtained by de�ning suitable conservative translations from increasingly

larger sub-classes of the former to the latter. At the end, we will prove that the language

of CLP(SET)-constraints is at least as powerful as a non-trivial sub-class of the language

of set-constraints, akin to the class of co-de�nite set-constraints.

As concerns the inverse translation, the problem is the coding of the membership

symbol. As a matter of fact, x 2 y is set-theoretically equivalent to fxg � y. However,

it is not possible to express the nesting of a set fxg in the language of set constraints.

The inability to deal with the predicate 2 in the set-constraint domain P would require

us either to restrict to a smaller sub-class of CLP(SET)-constraints or to try to extend

the language of set-constraints. While the former seems to turn out to impose too severe

limitations, the latter would require a non-trivial extension of the set-constraint language

which is out of the scope of this paper.

On the other hand, the main di�culties in de�ning translations from the language of

set-constraints to that of CLP(SET)-constraints come from the following two features:

� set-constraints can be satis�ed using in�nite sets, whereas T can have only �nite sets;

� as shown in Remark 4, the atoms X

:

= f(X

1

; : : : ; X

n

) and X

:

= f

�1

k

(Y) represent a

form of cartesian product and projection and are a special case of intensionally de�ned

sets (that is, they de�ne a set by stating a property that must be satis�ed by all its

elements rather than by explicitly enumerating all the elements).

As concerns the last point above, it is important to note that in CLP(SET) it is pos-

sible to de�ne Restricted Universal Quanti�ers (RUQ) by means of CLP(SET) clauses.

RUQs are formulae of the form (8X 2 s)G, with G an arbitrary CLP(SET)-goal con-

taining X. This form stands for the quanti�ed implication 8X((X 2 s)! G).

Given a program P , CLP(SET) replaces a RUQ-goal (8X 2 s)G[X;

�

Y] by the new

goal forall

G

(s;

�

Y) which is de�ned by the following two clauses added to P :

4

forall

G

(;;

�

Y):

forall

G

(fA j Rg;

�

Y) A =2 R ^ G

[X=A]

^ forall

G

(R;

�

Y):

Furthermore, it is easy to generalize such a technique in order to implement by

CLP(SET) clauses also the more general form of RUQs (8X

1

2 s

1

) � � � (8X

n

2 s

n

)9

�

Z

G[

�

X;

�

Z] where X

1

; : : : ; X

n

are all distinct variables which do not occur in s

1

; : : : ; s

n

.

Hereafter, we call CLP(SET)-constraints, enriched with RUQs, enriched CLP(SET)-

constraints. Enriched CLP(SET)-constraints will be used in the next section to represent

functional set-expressions and projections of set-constraints.

5 Translating set-constraints to CLP(SET)-constraints

In this section we show how to transform a set-constraint into enriched CLP(SET)-

constraints (CLP(SET)-constraints of Def. 5|that are always decidable|plus restricted

universal quanti�ers applied to them). If the starting constraint admits in�nite solutions,

the constraint solver of CLP(SET) could enter into in�nite computation during the

satis�ability checking. However, we will identify two sub-classes of set-constraints that

can be decided using this method.

Given a set-constraint C, the translation of C can be split into two parts: �rst we

reduce C to an equivalent set-constraint C

0

in at form (actually, an extension of the at

4

A procedure that transforms flogg clauses with RUQs to equivalent CLP(SET)-clauses without

RUQs is described in detail in [9].

Narrowing the gap between Set-Constraints and CLP(SET)-Constraints 49

form of INES-constraints [22]); then we translate C

0

to the corresponding CLP(SET)-

constraints.

De�nition 10 A at-constraint is a conjunction of literals of the form:

Z

:

= 0 Z

:

= 1 Z

:

= f(X

1

; : : : ; X

n

)

Z

:

= f

�1

k

(X) Z

:

= X [Y Z

:

= X \ Y

Z

:

= {(X) X � Y X 6� Y

where X, Y , and Z are variables and f is a function symbol or a constant.

Given a set-constraint C, it is straightforward (and always possible) to transform C

into an equi-satis�able at-constraint C

0

.

The following is the de�nition of a function � that translates any atom of a constraint

in at form C

0

to extended CLP(SET)-constraints.

De�nition 11 Let C be a set-constraint and C

0

be the corresponding constraint in at

form. Let U be a new variable not occurring in C. The translation � is de�ned as follows:

for every literal of C

0

:

X�Y

�

7! X�Y � 2 f�; 6�g

Z

:

= 0

�

7! Z

:

= ; Z

:

= 1

�

7! Z

:

= U

Z

:

= X�Y

�

7! �(X; Y; Z) � 2 f[

3

;\

3

g

Z

:

= {(X)

�

7! [

3

(X;Z; U) ^XjjZ

f(X

1

; : : : ; X

n

) � Y

�

7! (8Z

1

2 X

1

) � � � (8Z

n

2 X

n

)(f(Z

1

; : : : ; Z

n

) 2 Y)

Y � f(X

1

; : : : ; X

n

)

�

7! (8Z 2 Y)9Z

1

; : : : ; Z

n

(Z

:

= f(Z

1

; : : : ; Z

n

) ^

V

n

i=1

Z

i

2 X

i

)

Y

:

= f(X

1

; : : : ; X

n

)

�

7! �(Y � f(X

1

; : : : ; X

n

)) ^ �(f(X

1

; : : : ; X

n

) � Y)

Z

:

= f

�1

k

(X)

�

7! �(Z � f

�1

k

(X)) ^ �(f

�1

k

(X) � Z)

Z � f

�1

k

(X)

�

7! (8Y 2 Z)9Y

1

: : : Y

n

(f(Y

1

; : : : ; Y

k�1

; Y; Y

k+1

; : : : ; Y

n

) 2 X)

f

�1

k

(X) � Z

�

7! (8Y 2 X)8Y

1

: : : Y

n

(Y

:

= f(Y

1

; : : : ; Y

k

; : : : ; Y

n

)! Y

k

2 Z)

Moreover, if C

0

= C

0

1

^ : : : ^ C

0

n

and vars(C

0

) = fZ

1

; : : : ; Z

m

g, then �(C

0

) = �(C

0

1

)^

: : : ^ �(C

0

n

) ^ (Z

1

� U) ^ : : : ^ (Z

m

� U) ^ U 6= ;. Finally, we set �(C) = �(C

0

).

The new variable U represents a �nite universe to which we refer to for testing the

satis�ability of the translation.

The last rule seems to cross the syntactical limits of extended CLP(SET)-constraints,

hiding a form of negation. As a matter of fact, it is equivalent to (8Y 2 X):p(Y; Z),

where the predicate p is de�ned as: p(Y; Z) Y = f(Y

1

; : : : ; Y

n

) ^ Y

k

=2 Z. If �

is �nite, then we can use a constructive approach to rewrite the RUQ constraint as

(8Y 2 X)not

p

(Y; Z) and the predicate not

p

is de�ned as:

not

p

(g(

�

Y); Z): g 2 �; g 6� f

not

p

(f(Y

1

; : : : ; Y

n

); Z) Y

k

2 Z:

To avoid the drawbacks of negation, we will make the assumption that, whenever the

last rewriting rule needs to be employed, � is �nite.

50 APPIA-GULP-PRODE'98

We would like to prove that C is satis�able i� �(C) is satis�s�able (i.e., � is a conser-

vative translation). This is not an immediate result because in the CLP(SET) domain

there are only �nite sets of trees while in the set-constraints domain there are also in�-

nite sets (of course, there are set-constraints that are satis�able only using in�nite sets

of terms); for instance:

Example 12 The set-constraint f(X) � X ^ a � X is satis�able in P but its least

solution is [X=fa; f(a); f(f(a)); : : :g], which clearly involves an in�nite set.

On these constraints CLP(SET) generates a computation which never ends (for each

variable it collects iteratively the elements of the solution). Of course, we can nevertheless

use CLP(SET) for testing satis�ability of special sub-classes of set-constraints.

De�nition 13 Let S

0

be the class of set-constraints composed only by set operators (no

functional symbols or projections are used).

For this class it holds the following result (that contains, in the proof, a conservative

translation result):

Theorem 14 Let � contain (at least) a constant symbol and a functional symbol. Then

every S

0

-set-constraint is satis�able in }(T

�

) i� it is satis�able in }(T

�

) using only �nite

sets of terms.

Proof. (sketch) Let C be a S

0

-set-constraint. This implies that �(C) is a CLP(SET)

constraint not involving RUQs and based only on the (set-theoretic) language ;; f� j �g;=;

2;[

3

; jj. Thus, �(C) belongs to a class of set-thoretic formulas `reecting on the �nite'.

In other words, �(C) is satis�able i� it is satis�able over the universe of hereditarily �nite

and well-founded sets (isomorphical to the universe of T , when no functional symbols

are involved), (c.f. [6]).

It is easy to see that any solution of C involving �nite (in�nite) sets of �nite terms has

a corresponding solution for �(C) involving �nite (in�nite) sets (in the case of in�nite,

consider a set-theoretic universe, extending T) of terms. >From the property above, there

is a solution on hereditarily �nite sets for �(C). >From that solution it is possible to use

the constant symbol and the functional symbol of � to compute a �nite solution for C.2

A larger class for which CLP(SET)-constraint solver could be used safely is the class

S

f

of �nitely satis�able set-constraint (which includes S

0

). It is easy to prove that the

translation of constraints of this class using � generates �nitely satis�able CLP(SET)-

constraints.

However, it is not immediate to �nd a syntactic characterisation of S

f

and moreover

the restriction to this class seems to be too strong (for the applications). So we try to

analyze the output of CLP(SET) also over set-constraints which are in�nitely satis�able.

In next section we will prove that, for the class S

2

(akin to the class of co-de�nite set-

constraints [8]) we can test satis�ability using CLP(SET) both for �nite and in�nite

solutions, by checking the partial solution evaluated at a certain step (which depends on

the given constraint).

Narrowing the gap between Set-Constraints and CLP(SET)-Constraints 51

6 Using CLP(SET) to decide the class S

2

Now we deal with the class S

2

of set-constraints of the form:

V

n

i=1

(`

i

� r

i

) in which:

� { and 1 do not appear,

� `

i

's contain only variables, constant and function symbols, and the union operator, and

� the projections in r

i

's are only applied to unary functional symbols.

Observe that there are two di�erences between S

2

and the class of so-called co-de�nite

set-constraints ([8]). The former enlarges the latter in that in S

2

there are no restrictions

about the functional symbols in `

i

; on the other hand, in S

2

projections are allowed

only if applied to unary functional symbols: a condition not required by co-de�nite set-

constraints. This restriction ensures that the equivalence t � f

�1

1

(s) i� f(t) � s

holds.

Unless explicitly speci�ed, all results will hold both on the interpretation domain }(T

�

)

and on }(T

1

�

). As usual, we de�ne a canonical form for constraints that allows an easiest

satis�ability analysis.

De�nition 15 A constraint C is in canonical form (or in the class S

1

) if it is a con-

junction of atoms of the form: e � X, or X � e, or X � Y [Z, where X; Y; Z are

variables, and e can be 0, a variable, or a term of the form f(X

1

; : : : ; X

n

), n � 0, and

X

i

s are variables. With jCj we denote the number of atoms in C.

In Fig. 1 we de�ne a set of transformation rules to reduce every S

2

-constraint in a

disjunction of S

1

constraints or false. We call simpl the procedure that applies, as

much as possible, one of the rules in Fig. 1. It holds that:

Lemma 16 Given a S

2

-constraint C, simpl(C) always terminates and the result is a

disjunction of S

1

-constraints or false.

Lemma 17 C is satis�able i� at least one of the disjoints returned by simpl(C) is sat-

is�able.

The rewriting procedure allows to reduce the general satis�ability problem for S

2

to

the problem of the satis�ability of S

1

-constraints. To face this problem, we �rst assume

the restriction that in C there are no atoms of the form X � Y [Z, and state the

Theorem 24. Then we show how to extend such a result to the whole class S

2

.

We will make use of the following sequence of evalutations that, intuitively, will help

us in �nding the least model of a S

1

-constraint (with restriction):

5

8

<

:

�

0

[X] = ;

�

n+1

[X] = �

n

[X] [

[

e�X in C

�

n

[e] [

[

Y�f(:::;X;:::) in C

f

�1

k

(�

n

[Y])

and we de�ne the limit of such a succession as �[X] =

S

n2!

�

n

[X]. The de�nition is for

variables, but using the interpetation de�ned in Sect. 2 it can be extended to all terms.

The following technical lemmata is crucial for the successive results:

Lemma 18 Let C be a S

1

-constraint (with restriction). 1) If � satis�es C and X � e

is in C, then for all integer k, and for each term t (t 2 �

k

(X) ! t 2 �

k+1

(e)). 2) If �

does not satisfy C, then C is unsatis�able.

5

The absence of atoms of the form X � Y [Z ensures the existence of a least model

52 APPIA-GULP-PRODE'98

0 � t 7! true (or omitted)

t � s

s and t ground, t 6� s, and

(s is a constant or 0 and

t is a constant or a term not containing 0)

9

>

>

=

>

>

;

7! false

f(t

1

; : : : ; t

n

) � f(s

1

; : : : ; s

n

) 7! (

V

n

i=1

t

i

� s

i

_

W

n

i=1

(t

i

� 0)

f(t

1

; : : : ; t

n

) � g(s

1

; : : : ; s

m

) 7!

W

n

i=1

t

i

� 0

X � f(t

1

; : : : ; t

n

)

there is i = 1; : : : ; n s.t. nonvar(t

i

)

�

7!

V

n

i=1

(X

i

� t

i

) ^X � f(X

1

; : : : ;X

n

)

f(t

1

; : : : ; t

n

) � X

there is i = 1; : : : ; n s.t. nonvar(t

i

)

�

7!

V

n

i=1

t

i

� X

i

^ f(X

1

; : : : ;X

n

) � X)_

W

n

i=1

(t

i

� 0)

t � g

�1

1

(s)

ar(f) = 1

�

7! f(t) � s

e

1

[e

2

� e 7! e

1

� e ^ e

2

� e

e � e

1

\ e

2

7! e � e

1

^ e � e

2

f(t

1

; : : : ; t

n

) �

f(s

1

; : : : ; s

n

) [f(r

1

; : : : ; r

n

)

7!

W

n

i=1

(t

i

� 0) _ (

V

n

i=1

(t

i

� s

i

))_

(

V

n

i=1

(t

i

� r

i

))

f(t

1

; : : : ; t

n

) � f(s

1

; : : : ; s

n

) [g(r

1

; : : : ; r

m

) 7! f(t

1

; : : : ; t

n

) � f(s

1

; : : : ; s

n

)

f(t

1

; : : : ; t

n

) � g(s

1

; : : : ; s

m

) [h(r

1

; : : : ; r

k

) 7!

W

n

i=1

t

i

� 0

f(t

1

; : : : ; t

n

) � X [t 7!

f(X

1

; : : : ;X

n

) � X^

f(t

1

; : : : ; t

n

) � f(X

1

; : : : ;X

n

) [t

f(t

1

; : : : ; t

n

) � g

�1

1

(r) [s 7!
f(t

1

; : : : ; t

n

) � X [s ^X � g

�1

1

(r)

X � f(t

1

; : : : ; t

n

) [t 7! X � Y [t ^ Y � f(t

1

; : : : ; t

n

)

X � g

�1

1

(r) [s 7! X � Y [s ^ Y � g

�1

1

(r)

Figure 1: Rules for the procedure simpl

We introduce the notion of a graph G(C) obtained from a S

1

-constraint C.

De�nition 19 Let C be a S

1

-constraint. G(C) is the directed labeled multi-graph (i.e.,

the set of edges is in fact a multiset) such that:

the nodes of G(C) are the variables and the constant occurring in C, and 0;

ifX � a is in C and a is a constant symbol or 0, then hX; ai is an edge of G(C), labeled

by a

d

;

ifX � f(X

1

; : : : ; X

n

) is in C, then hX;X

1

i; : : : ; hX;X

n

i are edges of G(C) labeled by f

i

d

;

if a � X is in C and a is a constant symbol, then ha;Xi is an edge of G(C), labeled by a

s

;

if f(X

1

; : : : ; X

n

) � X is in C then hX

1

; Xi; : : : ; hX

n

; Xi are edges of G(C) labeled by f

s

;

ifX � Y [Z is in C, then hX; Y i; hX;Zi are edges of C labeled by XY Z.

The graph G(C) is a sort of automaton whose initial nodes are those associated to

constants. They start a ow of tokens in the graph that will originate the possible terms

that must belong to any solution set of the various variables. This ow of information is

a graphical counter-part of the construction of the evaluation �.

Example 20 If C is a � X ^ f(X) � Y ^ g(Y) � Z ^ Z � g(X), then G(C) is:

X

f

s

! Y

a

s

" -

g

d

#

g

s

a Z

�

1

(X) = fag �

1

(Y) = ; �

1

(Z) = ;

�

2

(X) = fag �

2

(Y) = ff(a)g �

2

(Z) = ;

�

3

(X) = fag �

3

(Y) = ff(a)g �

3

(Z) = fg(f(a))g

�

4

(X) = fa; f(a)g �

4

(Y) = ff(a)g �

4

(Z) = fg(f(a))g

: : : : : : : : :

Narrowing the gap between Set-Constraints and CLP(SET)-Constraints 53

The following lemma (whose proof is omitted due to lack of space) reminds (also in

the proof) the pumping lemma for �nite state automata:

Lemma 21 Let C be a S

1

-constraint (with restriction). If � does not satis�es C, then

there is X � e in C and a term t such that t 2 �

k

[X] and t 62 �

k+1

[e], where k =

4jCj(jCj+ 1).

We are ready for the announced theorem:

Theorem 22 Let C be a S

1

-constraint (with restriction). C is unsatis�able i� there is

X � e in C and a term t such that t 2 �

k

[X] and t 62 �

k+1

[e], where k = 4jCj(jCj+ 1).

Proof. If C is unsatis�able, then by de�nition, � does not satisfy C. Lemma 21 ensures

that there are k and t ful�lling the required property.

If C is satis�able, then by Lemma 18 (2), � satis�es C. The claim follows from

Lemma 18 (1). 2

In Sect. 5 we have shown how to convert a set-constraint into a CLP(SET) constraint.

The translation introduces constraints based on restricted universal quanti�ers. The

technique of CLP(SET) for solving a constraint of this form is that to build a set one

element per time. Such a (blind) search strategy is highly non-deterministic. However,

what we argue here is that, provided such non-determinism is controlled (fairness) there

is a strong connection between the search strategy of CLP(SET) and the construction

of � using the graph G(C).

De�nition 23 Given an enriched CLP(SET) constraint C

1

^ : : : ^ C

n

, a computation

of the satis�ability algorithm is fair if between two consecutive insertions of elements in

the set built in a constraint C

i

involving RUQs, all the sets that must be built to solve

constraints C

1

^ : : : ^ C

i�1

^ C

i+1

^ : : : ^ C

n

, have been updated.

Any step of the construction of � is simulated by at most a number � of actions

of the satis�ability algorithm (it depends from the granularity of the analysis of the

satis�ability algorithm implementation). The following theorem is extremely interesting,

since it connects the two worlds of set-constraints and of logic programming with sets.

Moreover, it allows the use of a satis�ability algorithm developed for �nite terms (and

sets) to check also the satis�ability of a set constraint also in the universe of in�nite terms.

Theorem 24 Let C be a S

1

-constraint (with restriction), C

0

the result of its translation

as CLP(SET) constraint and h = �k. Then, if a fair computation of the constraint

solver of CLP(SET) on C

0

:

� terminates with success in less than h steps, then C is satis�able in }(T

�

) (hence in

}(T

1

�

));

� terminates de�nitely with failure in less than h steps, then C is unsatis�able in }(T

1

�

)

(hence in }(T

�

));

� does not terminate in less than h steps, then C is satis�able in }(T

1

�

) (but not neces-

sarily in }(T

�

)).

As described in [22], the most interesting satis�ability result concerns interpretations

on }(T

1

�

), thus the CLP(SET) approach solves exactly that problem.

54 APPIA-GULP-PRODE'98

What remains to do here is to extend the results of Theorems 22 and 24 to the full

class of S

1

-constraints (without restrictions). As a corollary, and using Lemmata 16 and

17, this result will hold also on the (apparently) wider class of S

2

-constraints.

For doing that, we need to consider atoms of the form: X � Y [Z. Reasoning

on graphs, this kind of atoms induces a form of non-determinism. Intuitively, this fact

reects in the de�nition of � in such a way that to compute �

k+1

[Y] and �

k+1

[Z] we need

to split (non-deterministically) �

k

[X]. Therefore, the de�nition of � must be modi�ed;

with this de�nition, however, Theorems 22 and 24 can be proved without the restriction

on C with the only di�erence in computing the number k used in the statements, that

now grows exponentially w.r.t. jCj.

6

7 Conclusions

In this paper we have tried to establish a link between the two research areas of set-

constraints and constraint logic programming with sets. In particular, we have shown

how set-constraints can be rewritten in the language of CLP(SET) and how some classes

of set-constraints can be decided using the CLP(SET) constraint solver. The proposed

rewriting procedure is indeed quite complex; however, its aim is mainly that of proving

the expressivity of the CLP(SET)constraint language. For this reason, the complexity

of the whole process has not been analyzed in detail, yet. It can be a good starting point

for the continuation of the work.

References

[1] A. Aiken, D. Kozen, M. Vardi, and E. Wimmers. The complexity of set constraints. In

E. B�orger, Y. Gurevich, and K. Meinke, eds., Proc. 1993 Conf. on CSL, vol. 832 of LNCS,

pp. 1{17. Springer-Verlag, Berlin, 1993.

[2] A. Aiken, D. Kozen, and E. Wimmers. Decidability of systems of set constraints with

negative constraints. Technical report, Computer Science Department, Cornell University,

june 1993.

[3] A. Aiken and E. Wimmers. Solving systems of set constraints. In Proc. 7th Symp. LICS,

pp. 329{340. IEEE, 1992.

[4] F. Baader and K. Schulz. Combination of constraint solvers for free and quasi-free struc-

tures. Theoretical Computer Science, 192:107{161, 1998.

[5] P. Bruscoli, A. Dovier, E. Pontelli, and G. Rossi. Compiling Intensional Sets in CLP. In

Pascal Van Entenryck, ed., Proc. Eleventh ICLP, pp. 647{661. The MIT Press, Cambridge,

Mass., 1994.

[6] D. Cantone, A. Ferro, and E. G. Omodeo. Computable Set Theory, Vol. 1. International

Series of Monographs on Computer Science. Clarendon Press, Oxford, 1989.

[7] W. Charatonik and L. Pacholski. Negative set constraints with equality. In Proc. 9th

Symp. LICS. IEEE, 1994.

6

Actually, we are looking for a simpler proof that, making use of classical results on automata,

becomes simpler than the current one that analyzes a great variety of cases. The problem is to map our

graphs to (standard) automata.

Narrowing the gap between Set-Constraints and CLP(SET)-Constraints 55

[8] W. Charatonik and A. Podelski. Set constraints for greatest models. Technical report

mpi-i-97-2-004, Max-Planck-Institut f�ur Informatik, April 1997.

[9] A. Dovier, E. G. Omodeo, E. Pontelli, and G. Rossi. flogg: A Language for Programming

in Logic with Finite Sets. Journal of Logic Programming, 28(1):1{44, 1996.

[10] A. Dovier, C. Piazza, E. Pontelli, and G. Rossi. On the Representation and Management

of Finite Sets in CLP-languages. NMSU-CSTR-97-18, Dept. of Computer Science, New

Mexico State University, USA, December 1997.

[11] A. Dovier, E. Pontelli, and G. Rossi. The CLP language flogg, and the relation between In-

tensional sets and Negation. NMSU-CSTR-9503, Dept. of Computer Science, New Mexico

State University, USA, March 1995.

[12] A. Dovier and G. Rossi. Embedding Extensional Finite Sets in CLP. In D. Miller, ed.,

Proc. of ILPS'93, pp. 540{556. The MIT Press, Cambridge, Mass., 1993.

[13] C. Gervet. Conjunto: Constraint Logic Programming with Finite Set Domains. In

M. Bruynooghe, ed., Proc. of ILPS'94, pp. 339{358. The MIT Press, Cambridge, Mass.,

1994.

[14] R. Gilleron, S. Tison, and M. Tommasi. Solving system of set constraints with negated

subset relationships. In Proc. 34th Symp. Foundations of Computer Science, pp. 372{380.

IEEE, 1993.

[15] R. Gilleron, S. Tison, and M. Tommasi. Solving systems of set constraints using tree

automata. In Proc. Symp. Theoretical Aspects of Computer Science, vol. 665 of LNCS, pp.

505{514. Springer-Verlag, Berlin, 1993.

[16] N. Heintze and J. Ja�ar. A �nite presentation theorem for approximating logic programs.

In Proc. 17th POPL, pp. 197{209. ACM, 1990.

[17] N. Heintze and J. Ja�ar. Set Constraints and Set-Based Analysis. Technical report,

Carnegie Mellon University, 1994.

[18] J. Ja�ar and M. J. Maher. Constraint Logic Programming: A Survey. Journal of Logic

Programming, 19{20:503{581, 1994.

[19] D. Kozen. Logical Aspects of Set Constraints. In E. B�orger, Y. Gurevich, and K. Meinke,

eds., Proc. 1993 Conf. on CSL, vol. 832 of LNCS, pp. 175{188. Springer-Verlag, Berlin,

1993.

[20] D. Kozen. Set Constraints and Logic Programming. Technical report 94-1467, Computer

Science Department, Cornell University, 1994.

[21] B. Legeard and E. Legros. Short overview of the CLPS system. In J. Maluszynsky and

M. Wirsing, eds., Proc. Third Int'l PLILP, vol. 528 of LNCS, pp. 431{433. Springer-Verlag,

Berlin, 1991.

[22] M. M�uller, J. Niehren, and A. Podelski. Inclusion constraints over non-empty sets of trees.

In M. Dauchet, ed., Proc. 9th TAPSOFT, vol. 1214 of LNCS, pp. 345{356. Springer-Verlag,

Berlin, 1997.

[23] J. T. Schwartz, R. B. K. Dewar, E. Dubinsky, and E. Schonberg. Programming with sets,

an introduction to SETL. Springer-Verlag, Berlin, 1986.

[24] K. Stef�ansson. Systems of set constraints with negative constraints are NEXPTIME-

complete. In Proc. 9th LICS. IEEE, 1994.

56 APPIA-GULP-PRODE'98

