
Interactive Constraint Satisfaction and its Application

to Visual Object Recognition

R. Cucchiara, E. Lamma, P.Mello, M. Milano, M. Piccardi

Abstract

In classical Constraint Satisfaction Problems (CSPs) variable domains have to

be statically de�ned at the beginning of the constraint propagation process. In some

applications, however, the data acquisition/generation process is a computationally

expensive task. We present an Interactive Constraint Satisfaction model for prob-

lems where knowledge is not completely known at the beginning of the computation,

but can be interactively acquired during the computational process. Some variable

domain values can be already available when the constraint propagation process

starts, while others can be dynamically acquired during the computation only when

needed (on demand). The constraint propagation process works on already known

domain values and adds new constraints on unknown parts of domains. These new

constraints can be used to incrementally process new information without restart-

ing a constraint propagation process from scratch each time new information is

available. In addition, these constraints can guide the data acquisition process. We

present the Interactive CSP model and a propagation algorithm. We propose an

implementation of the framework in Constraint Logic Programming on Finite Do-

mains, CLP(FD). A case study in the �eld of visual object recognition is considered

in order to show the e�ectiveness of the proposed approach.

Keywords: Constraint Satisfaction, Constraint Logic Programming, Vision

Systems

1 Introduction

Constraint Satisfaction systems provide a simple but powerful framework for solving a

variety of Arti�cial Intelligence (AI) problems. Constraint Satisfaction Problems (CSP,

for short in the following) are de�ned on a �nite set of variables each ranging on a

(numerical or symbolic) domain and a set of constraints. We assume variable domains to

be �nite. A solution to a CSP is an assignment of values to variables which satis�es the

constraints. Propagation algorithms [7] (e.g., forward checking, look ahead etc.) have

been proposed based on the active use of constraints during the search process. The

idea is to remove during the search, by means of constraint propagation, combination of

assignments which cannot appear in any consistent solution.

E. Lamma, M. Milano are with DEIS, Univ. Bologna, Viale Risorgimento 2 I-40136 Bologna, Italy.

E-mail: felamma, mmilanog@deis.unibo.it

R. Cucchiara, P.Mello, M. Piccardi are with Dip. Ingegneria, Univ. Ferrara, Via Saragat 1 41100

Ferrara, Italy. E-mail: frcucchiara, pmello, mpiccardig@ing.unife.it

Work partially supported by CNR, Committee 12 on Information Technology (Project SCI*SIA).

57

58 APPIA-GULP-PRODE'98

A CSP-based inference engine can be used in many applications. In particular, we focus

on those applications where a low level system provides a large amount of (constrained)

data to be processed. A typical example is a vision system used for computing visual

features of objects in an image. Several examples of CSP-based reasoning systems have

been proposed for object recognition (see for instance [11] and [12]).

These applications usually require some form of interaction between a low level module

providing (constrained) data, and the CSP module. In classical CSPs, variable domains

have to be completely known before the constraint propagation process starts. Data

acquisition and its processing are sequentially performed thus leading to an ine�cient

behaviour of the whole system especially when the data acquisition process is computa-

tionally expensive. For example, a CSP module interacting with a low level visual system

should �rst acquire all the visual features in the scene (thus processing the whole image)

in order to create variable domains, and then start the constraint propagation process.

We argue that interleaving the generation/acquisition of domain values and their pro-

cessing could greatly increase the performances of the problem solving strategy. Domain

value acquisition can be performed on demand only when values are e�ectively needed.

This approach can be seen as a kind of lazy domain evaluation. Lazy evaluation [6] is

known as a parameter evaluation mechanism which avoids a computation if its resulting

value will never be used. Similarly, we avoid to consider values for constraint propaga-

tion and check if they are not needed. This idea has been already exploited in the �eld

of constraint satisfaction in [2, 14] where as soon as one consistent value is found, the

propagation stops in order to perform a minimal number of constraint checks.

Furthermore, a fundamental point which can be exploited in our framework is that

the generation/acquisition process can be guided by constraints, called interactive con-

straints, thus leading to retrieve only consistent values and minimizing useless knowledge

acquisitions. Note that driving the value acquisition process by means of constraints re-

sults in partially shifting the constraint satis�ability check from the constraint solver to

the value generating module. In a visual system, this feature allows to focus the attention

of the feature extraction module in a restricted part of the scene, by propagating spatial

and topological constraints; second, to constrain the feature space and assist the compu-

tation of visual features. Therefore, a CSP system should be able not only to prune the

data set after it has been computed, but also to guide the data acquisition process.

For this purpose, we present an Interactive Constraint Satisfaction model where do-

mains can be partially known when the constraint satisfaction process starts and are

dynamically acquired during the computation.

In recent years Constraint Logic Programming (CLP) has been successfully used for

solving hard combinatorial problems, [3, 4, 7] modeled as Constraint Satisfaction Prob-

lems (CSPs). CLP [9] is a class of programming languages combining the advantages of

Logic Programming (LP) and the e�ciency of constraint solving. In this paper, we focus

on Constraint Logic Programming on �nite domains, hereinafter referred to as CLP(FD).

We have implemented the interactive framework on top of the �nite domain library of

the ECL

i

PS

e

language [5].

The main contributions of the paper are the following:

� de�ne the Interactive Constraint Satisfaction model (section 2);

� provide a suitable algorithm for interactive constraint propagation, called Interac-

tive Forward Checking (section 3) that copes with partially known domains;

� present the implementation of the framework in CLP(FD) (section 4);

Interactive Constraint Satisfaction and its Application to Visual Object Recognition 59

� present a case study in the �eld of visual object recognition together with experi-

mental results (section 5).

2 Interactive CSP

In this section, we de�ne the interactive CSP model. We �rst start by giving some prelim-

inaries on CSPs. A CSP is de�ned on a set of variables X

1

; : : : ; X

n

ranging respectively

on �nite domains D

1

; : : : ; D

n

. A constraint c(X

i

1

; : : :X

i

k

) de�nes a subset of the carte-

sian product of D

1

; : : : ; D

k

, i.e., a set of con�gurations of assignments which can appear

in a consistent solution. In this paper, we focus on binary CSPs. A binary CSP can be

represented by means of a constraint network where each node is a variable and arcs are

constraints.

A standard CSP solver needs all the information and the knowledge on the problem

at the beginning of the computation. Then it propagates constraints by removing assign-

ments which cannot appear in any consistent solution. The interaction with a low level

system, and the consequent propagation, requires a partial acquisition of data which lasts

during the whole computational process. Therefore, we have to change the classical CSP

model, and allow the propagation algorithm to work on partially known domains.

To this purpose, we de�ne an Interactive CSP (ICSP) model which has to cope with

incomplete domains. Domains can be partially known in the sense that some domain

elements can be already at disposal for propagation, while other domain elements have

to be acquired from a low level system in the future. The strength of this approach

concerns the fact that the ICSP system can guide data acquisition by means of constraints,

and incrementally process new information without restarting a constraint propagation

process from scratch each time new data are available.

On the basis of these requirements, we de�ne the ICSP model as follows:

De�nition 1 An Interactive CSP (ICSP) is de�ned on a �nite set of variables fX

1

; : : : ; X

n

g

each ranging on a partially known domain fD

1

; : : : ; D

n

g where each D

i

= [Known

i

[

UnKnown

i

]. Known

i

represents the known part, while UnKnown

i

is a domain variable

itself representing information which is not yet available. Both Known

i

and UnKnown

i

can be possibly empty

1

. Also, for each i, Known

i

\ UnKnown

i

= ;. An interactive

constraint among variables de�nes a (possibly partially known) subset of the cartesian

product of variable domains. A solution to the ICSP is, as in the case of the standard

CSP, an assignment of values to variables which is consistent with constraints.

The constraint propagation is quite di�erent from the standard case. Consider for the

sake of clarity only binary constraints c(X

i

; X

j

). In the most general case, both X

i

and

X

j

domains contain a non empty known and unknown part. In order to propagate the

constraint c(X

i

; X

j

) we have to propagate four kinds of constraints:

c(Known

i

; Known

j

), c(Known

i

; UnKnown

j

)

c(UnKnown

i

; Known

j

), c(UnKnown

i

; UnKnown

j

)

and collect the propagation results

2

. While the constraint check on known parts can be

performed as usual, the check on at least one unknown part requires a data acquisition

in order to acquire new information. In addition, the data acquisition can be guided by

1

When both are empty an inconsistency arises.

2

We refer, with abuse of notation, to domains instead of variables. However, the meaning is straight-

forward.

60 APPIA-GULP-PRODE'98

means of interactive constraints in the sense that data acquisition retrieves values which

are consistent with constraints.

Let us see a simple example in the domain of integers. Consider two domain variables

X and Y ranging respectively on the following domains [1; 3; X1] and [�6; 4; Y 1]. The

known part of the domain of X contains two values [1; 3], while its unknown part is

a domain variable itself, X1, representing not yet available values for X. Similarly,

the known and unknown part of the domains of Y are [�6; 4] and Y 1 respectively. A

constraint between X and Y , say X � Y , is satis�ed if and only if variables X and Y

assume consistent values in their de�ned part (e.g., X = 1 and Y = 4 or X = 3 and

Y = 4) or if the data acquisition process provides consistent values for the variables.

In �gure 1 we sketch the pseudo-code for the binary constraint propagation in the

interactive framework. The procedure propagate constraints works on a constraint c in

order to reduce variable domains D. We have to distinguish three cases: the �rst case

concerns the classical constraint propagation when both variables present a non-empty

known part (procedure propagate known). The second case regards the propagation

between an unknown part and a known one (procedure propagate partially known). In

this case, an acquisition should be performed which can be guided by the constraint itself.

Procedure propagate partially known queries the low level system in order to retrieve

values consistent with the known part of X for variable Y . The last case concerns a

constraint propagation on two unknown parts (procedure propagate unknown). In this

case the constraint is delayed since the knowledge acquisition could not be guided by any

known value. The delayed constraint on UnKnown domain parts guarantees that future

acquisition will be consistent with constraints.

Note that constraints on at least one unknown part intensionally represent potential

solutions on not yet acquired knowledge.

An important point to be discussed concerns the number of values retrieved by the

data acquisition process. Basically, one (lazy) choice is to stop the data acquisition as

soon as one consistent value has been retrieved. In addition, a lazy approach can avoid

to start a knowledge acquisition for a variable associated with a non empty known part.

In this case, the propagate partially known procedure just produces a set of constraints

on the unknown domain variable. On the contrary, an eager choice collects all consistent

values. In the �rst case, after the knowledge acquisition, the variable representing the

unknown part of the domain cannot be removed from the domain itself since the data

acquisition is not complete. In the second case, instead, we can remove this variable and

result exactly in the same domain obtained after a classical constraint propagation.

In the above mentioned example, the constraint propagation between the known part

of the constraints can be performed as usual. The consistency check between values 1 and

3 for variable X and the unde�ned part of variable Y , i.e., Y 1, calls for a data acquisition

that is aimed to collect one or each value for Y which are consistent with the de�ned

part of the domain of X. In other words, the system collects for variable Y one or each

value which are greater or equal to 1 and 3. This is equivalent to pose a constraint on

the unde�ned part of Y , e.g., 1 � Y 1 _ 3 � Y 1 and guide the data acquisition by means

of these constraints by asking the low level system for those values that satisfy the above

mentioned constraints. Similarly, the constraint propagation acts on the unde�ned part

of X and the de�ned part of Y . Finally, the constraint between unde�ned part will check

new acquired values as soon as they will be available.

Interactive Constraint Satisfaction and its Application to Visual Object Recognition 61

procedure propagate constraints(D,c(A;B))

begin

D

A

= Known

A

[UnKnown

A

;

D

B

= Known

B

[UnKnown

B

;

propagate de�ned(Known

A

,Known

B

);

propagate partially de�ned(Known

A

,UnKnown

B

);

propagate partially de�ned(Known

B

,UnKnown

A

);

propagate unde�ned(UnKnown

A

,UnKnown

B

);

end

procedure propagate partially de�ned(Known

X

,UnKnown

Y

);

begin

guided acquisition(c(Known

X

; UnKnown

Y

));

end;

procedure propagate unde�ned(UnKnown

X

,UnKnown

Y

);

begin

delay(c(UnKnown

X

; UnKnown

Y

));

end;

Figure 1: The interactive constraint propagation

3 Interactive Forward Checking

One of the well known and widely accepted propagation algorithms for solving CSPs is

the forward checking (FC) technique [7]. The FC algorithm intertwines a labeling step,

where a variable X is instantiated to a value v in its domain, and a propagation step

where domain variables linked with X by means of constraints are checked in order to

remove values which are not compatible with v.

In our framework, we have to cope with partially known domains. Therefore, the

operational behavior of the FC algorithm should be changed accordingly. Intuitively, the

�rst labeling step instantiates a variable X to a value v in its domain if any. Otherwise,

a data acquisition is performed retrieving a value v which is successively assigned to X.

The propagation step considers domain variables X

1

; : : : ; X

k

linked with X by means of

constraints. This step removes from the known part of X

1

; : : : ; X

k

domain those values

which are not consistent with v, and (eventually) acquires consistent data for the unknown

part

3

.

Note that in the algorithm presented in Figure 1, only the �rst two procedures (propa-

gate de�ned and the �rst propagate partially de�ned) are performed since for the forward

checking strategy one variable is always instantiated (thus completely known).

Let us consider an example. The task is to recognize a rectangle in a scene by its

four edges X

1

, X

2

, X

3

and X

4

de�ned as the variables in the CSP. Variable domains

are segments retrieved from the image. Initially, the variable domains are completely

unknown:

X

1

:: [UnKnown

1

]; X

2

:: [UnKnown

2

];

X

3

:: [UnKnown

3

]; X

4

:: [UnKnown

4

]

3

This knowledge acquisition is performed or not on the basis of a eager or lazy acquisition policy.

62 APPIA-GULP-PRODE'98

The FC algorithm starts with a labeling step on variable X

1

. Since the domain of X

1

does not contain already acquired values, the labeling step performs a feature acquisition

process (possibly guided by unary constraints on X

1

). A segment s

1

in the image is

retrieved and assigned to X

1

. Now, the FC algorithm collects all the variables linked

to X

1

by means of constraints and removes from the known part of their domains all

values which are inconsistent with s

1

. If variable domains are completely unknown, or

the �rst step removes all values from the known part, a data acquisition is performed in

order to retrieve those values consistent with s

1

. Suppose we have two constraints stating

that variables X

2

and X

4

should be perpendicular to X

1

in any consistent solution, i.e.,

perpendicular(s

1

; X

2

), perpendicular(s

1

; X

4

).

The constraint check results in a data acquisition process since both X

2

and X

4

do-

mains are still unknown. Note that the feature acquisition process can be guided by the

two above mentioned constraints. Therefore, the underlying visual system looks for one

or all segments which are perpendicular to s

1

thus focusing attention around s

1

.

As concerns the number of values to be retrieved, in the forward checking algorithm

we can decide to acquire all values consistent with the currently instantiated variable or

only one value. In the �rst case, the domain of X

2

and X

4

become completely known

and they are the same as the ones resulting from the classical forward checking algorithm

after the instantiation of X

1

to s

1

. In the second case, the domains of X

2

and X

4

are left

partially known (i.e., the variable representing the unknown part cannot be removed from

the domain). This second approach is similar to performing a minimal forward checking

algorithm [2].

In a visual system environment, we decide to collect all values for variables since

feature extraction exploiting locality criteria is almost independent from the number of

features extracted. Thus, suppose that the system collects three segments s

2

, s

3

and s

4

4

which are put in the domains of X

2

and X

4

.

The unknown parts of X

2

and X

4

can be \removed" from the corresponding domains

since they represent all values which are not perpendicular to (and thus not consistent

with) s

1

. Now, a labeling step starts for X

2

thus assigning s

2

to X

2

. A second constraint

propagation process starts by considering all variables involved in a constraint with X

2

.

Suppose we have a constraint between X

2

and X

3

stating that the two variables should

be perpendicular, and a constraint with X

4

stating that the two variables should have

the same length. The �rst constraint propagation process results in a feature acquisition,

collecting all values perpendicular to X

2

, say s

5

and s

6

. These segments are put in the

(known part of the) domain of X

3

while the unknown part is deleted. The propagation

step between X

2

and X

4

is the usual forward checking constraint propagation since the

domain of X

4

is completely known. The FC algorithm continues the labeling and the

constraint propagation process as usual since all the domains now are known.

The purpose of the interactive framework is to force the low level system to retrieve

in general a number of segments which is signi�cantly lower than those retrieved by a

non-interactive system which �rst collects all the segments and then starts the constraint

propagation process. Note that in the worse case, the number of features extracted is

equal in the two frameworks.

In �gure 2, we have sketched the basic Interactive FC algorithm. It �rst selects a vari-

able V ar to be instantiated, then it performs an interactive labeling procedure (interac-

4

Note that constraints describing the rectangle are symmetric. Symmetries should be avoided in a

constraint satisfaction procedure [13]. Therefore, in practice, we do not put all the acquired segments in

both domains. In the example, however, for the sake of simplicity, we omit the treatment of symmetries.

Interactive Constraint Satisfaction and its Application to Visual Object Recognition 63

procedure IFC(C, D)

begin

for all variables do

begin

select variable(V ar,D),

interactive label(V ar,D),

collect constraints(C,D,V ar,C1),

for each constraint Constr in C1 do

propagate constraints(D,Constr),

end;

end.

procedure interactive label(V ar,D)

begin

if unknown(V ar)

then acquisition var(V ar,D

V ar

),

label(V ar)

end;

Figure 2: The incremental forward checking algorithm

tive label) which takes a value in the known part of the selected variable domain if it ex-

ists, otherwise, it acquires one value for the selected variable (procedure acquisition var).

The procedure collect constraints collects all constraints containing the selected (instanti-

ated) variable. Then, for each collected constraint, the constraint propagation algorithm

presented in �gure 1 starts.

4 Implementation

We have implemented the Interactive Constraint Satisfaction framework on top of the

�nite domain library of the ECL

i

PS

e

language [5]. We have chosen to exploit Constraint

Logic Programming [9] on �nite domains (CLP(FD)) since it is a very e�ective program-

ming paradigm for solving CSP [7, 8]. The CLP(FD) solver has been extended by means

of user de�ned constraints in order to cope with partially known domains.

In particular, the implementation has concerned:

� an extension of the constraint solver in order to cope with interactive constraints

and partially or completely unknown domains;

� some user-de�ned interactive constraints performing data acquisition (when work-

ing on unknown domain variables) and classical constraint propagation (when work-

ing on known domain variables).

As concerns the extension of the constraint solver, we have implemented a set of low-

level predicates which allow the user to process partially known domain variables, modify

them and write new constraint predicates. In particular, we have extended the following

ECL

i

PS

e

predicates

� dvar domain which extracts a partially known domain from a variable;

64 APPIA-GULP-PRODE'98

� dvar remove element which removes an element from a variable domain (this pred-

icate has been implemented also for removing the greatest or the smallest domain

element);

� dvar update which updates a domain variable;

� dom member which selects a domain element.

In addition, a new predicate specify domain has been de�ned in order to perform data

acquisition and introduce in the domain new values acquired during the computation.

On the basis of this solver extension, we have implemented some interactive constraints

performing the propagation explained in the previous sections. As an example, we sketch

here the code of an interactive constraint itouch between two variables representing two

segments.

itouch(S1,S2) :-

(dvar_domain(S1,Dom1)

-> (dvar_domain(S2,_)

-> touch(S1,S2)

; (nonvar(S1)

-> dom_to_list(Dom1,L1),

acquisition(L1,L2), specify_domain(S2,L2)

; make_suspension(itouch(S1,S2),4,Susp),

insert_suspension(S1,Susp,any of fd,fd),

insert_suspension(S2,Susp,specify of dom_pd,dom_pd)

))

; (dvar_domain(S2,Dom2)

-> (nonvar(S2)

-> dom_to_list(Dom2,L2),

acquisition(L2,L1), specify_domain(S1,L1)

; make_suspension(itouch(S1,S2),4,Susp),

insert_suspension(S2,Susp,any of fd,fd),

insert_suspension(S1,Susp,specify of dom_pd,dom_pd)

)

; make_suspension(itouch(S1,S2),4,Susp),

insert_suspension((S1,S2),Susp,specify of dom_pd,dom_pd)

)

).

In particular, if both variables are known the non-interactive constraint is called

touch(S1,S2). Otherwise, if one of the two variables is unknown a data acquisition

starts for the unknown variable on the basis of the known one. If both variables are

unknown the constraint is suspended. Note that in the case of forward checking strategy,

this latter case never happens since constraints are checked with one variable bound to

a value.

The extension of the CLP(FD) solver does not a�ect the declarative semantics of the

CLP itself, but only its operational behaviour.

5 A Case Study on Object Recognition

In this section, we consider an example of application of ICSP to the recognition of shapes

in images. In model-based machine vision a critical point is the e�cient description of

Interactive Constraint Satisfaction and its Application to Visual Object Recognition 65

object models by means of visual primitives and their relations. Each object can be

represented by means of a constraint graph where each object part or characterizing

primitive feature is modeled by a node (variable) of the corresponding CSP and spatial

or shape relations among object parts can be represented by arcs (constraints). A graph

representation of object models has been used in many di�erent contexts of 2D shapes

[12], and extended to the 3D scene recognition [11],[10].

As objects can be modeled by means of constraints, objects can be recognized by

means of constraint satisfaction. Speci�c aspects of the single primitives may be mod-

eled as unary constraints, such as the minimum length of an object part, its color, the

planarity of a surface and so on, while geometric and topological relationships between

them can be represented by binary constraints (examples of geometric constraints are an-

gular relationships between contours, lines, or surfaces, topological constraints are spatial

relationships, such as is adjacent to, touch, is contained or others).

For instance, if we want to model a rectangular shape we can identify four nodes

corresponding to the four edges composing the rectangle (numbered respectively X

1

, X

2

,

X

3

and X

4

) and we impose the following symmetric constraints:

touch(X

1

; X

2

), touch(X

2

; X

3

), touch(X

3

; X

4

), touch(X

4

; X

1

), no touch(X

2

; X

4

),

no touch(X

1

; X

3

), same length(X

2

; X

4

), same length(X

1

; X

3

), parallel(X

2

; X

4

),

parallel(X

1

; X

3

), perpendicular(X

1

; X

2

), perpendicular(X

2

; X

3

),

perpendicular(X

3

; X

4

), perpendicular(X

4

; X

1

).

In the de�ned set of constraints, only some can be used for guiding the data acquisition

process (interactive constraints), while others can only be checked by the constraint solver

as usual. In particular, the constraints involving some form of spatial locality could be

exploited to limit the image processing in a speci�c region of interest. In the above

mentioned example, the touch and perpendicular constraints are used interactively for

guiding the visual process, because they issue a focused visual search (of object edges) in

a spatial neighbourhood of a given vertex. We are currently exploring a set of guidelines

for problem modeling aimed at de�ning which constraints should be treated as interactive

and which should be considered as standard constraints.

The ICSP-based approach results particularly e�cient if the size of variable domains

is large, as in the case of images containing a large set of candidate objects, since the

constraint propagation and the interaction with the vision system considerably limits the

search space by identifying which objects to look for.

In order to explore this aspect, we have tested our approach on di�erent object recogni-

tion contexts, both for recognizing 2D shapes and 3D objects. In this paper we report the

case study of searching 2D rectangles (as modeled above) in images containing many over-

lapped rectangles. Images are taken from the image database of the well-known DARPA

image understanding benchmark [16]. The benchmark consists of a model-based vision

task, that is the recognition of a complex object made up of many basic rectangles, tied

each other by spatial relations rather than physical contours. The �rst step of recogni-

tion consists of reliable detection of the basic rectangles, which vary in size, intensity,

orientation, and location; detection is disturbed by sensor noise, leading to miss some

rectangle edges or even whole rectangles. The second step consists of matching sets of

rectangles against an object database, in order to detect possible objects.

While the benchmark was de�ned by the vision community as a general framework for

performance evaluation in image understanding, in our work we have used images from

the DARPA benchmark (512 x 512 range and intensity images) as an established data

set for experimenting the constraint-based approach.

66 APPIA-GULP-PRODE'98

The images contain tens of rectangles partially overlapped and cluttered and the ex-

periments aim at performing a visual search with selective attention; in particular the

goal is to �nd at least one object in the scene according to the de�ned model; the process

can be extended for �nding a number of objects in the image.

Images have been initially processed with standard �ltering operators in order to

smooth the sensor noise [15]. Then edges are extracted and a "k-curvature" algorithm [16]

selects possible corners and therefore detects the segments, which represent the features

used as nodes in the model. Thus, the vision system is able to acquire, if required, a

single segment in a region of interest of the image, a set of segments satisfying some

constraints, or possibly all the segments of the image.

Performances in terms of the time spent for achieving object recognition depend on

image complexity, which is a function of the number of possible model instances that can

be found and the number of features to be evaluated (belonging to both the actual model

instances and other shapes). In this paper we report experiments on images containing

the same number of not-occluded objects (10), but an increasing number of features that

can be extracted, and thus an increasing size of the variable domains.

Figure 3 shows results of six di�erent images containing from 53 to 213 segments in

which to recognize 1 to 10 non-occluded rectangles. The encouraging performance of

ICSP are described in the tables showing the execution times in seconds measured on

a Sparc 10 workstation (column N) spent to �nd 1 to 10 (all) solutions, both with the

standard CSP algorithm working on the whole segment set extracted from the image

(column CSP) and with the proposed ICSP that interacts with the segment acquisition

system (column ICSP).

In all cases, our approach signi�cantly outperforms the classical constraint satisfaction

approach. We have also reported the number of retrieved segments in both cases: column

Nseg CSP reports the number of segments retrieved in the CSP framework. Obviously,

the number of segments is constant because we retrieve all segments before starting

the constraint propagation process. Column Nseg ICSP, instead, reports the number of

segments retrieved by the ICSP framework. In general, in the extended framework the

number of failures and consequent backtracks are less than the standard case. However,

in the worse case, the number of segments retrieved and the number of choice points in

the derivation are the same.

The main advantage of the approach is twofold: from the visual system viewpoint, in

the average case, we acquire a fewer number of segments since we guide the extraction

by means of constraints. From the constraint solver point of view, we work with smaller

domains thus increasing e�ciency. Note also that this kind of acquisition corresponds

to an a-priori application of consistency techniques since the visual system provides only

consistent values with constraints.

6 Conclusion and Future Work

We have presented a model for interactive CSP which can be used when data on the

domain is not completely known at the beginning of the computation, but can be dy-

namically acquired on demand by a low level sensor system. More important, it is used

in order to guide the search by generating new constraints at each step.

We have implemented the framework by extending the ECL

i

PS

e

�nite domain library

and applied it to a case study of object recognition and identi�cation in a vision system.

Objects are modeled by means of constraints and constraint propagation is the general-

Interactive Constraint Satisfaction and its Application to Visual Object Recognition 67

N. CSP Nseg

CSP

ICSP Nseg

ICSP

1 1.66 53 0.08 4

2 3.23 53 0.45 8

3 4.40 53 0.75 13

4 5.38 53 1.13 17

5 6.78 53 1.60 22

6 7.58 53 1.90 26

7 0.94 53 2.23 31

8 10.28 53 2.63 37

9 10.85 53 2.80 42

10 12.93 53 3.37 47

N. CSP Nseg

CSP

ICSP Nseg

ICSP

1 4.05 60 0.56 8

2 6.90 60 1.03 12

3 7.57 60 1.63 16

4 8.45 60 1.83 20

5 8.81 60 2.47 29

6 9.52 60 2.93 37

7 9.82 60 3.13 43

8 10.20 60 3.70 47

9 11.00 60 4.32 52

10 14.55 60 5.12 56

N. CSP Nseg

CSP

ICSP Nseg

ICSP

1 9.23 71 0.36 9

2 12.68 71 1.33 17

3 15.85 71 1.98 25

4 18.77 71 2.95 31

5 21.11 71 4.28 39

6 21.60 71 4.97 47

7 22.10 71 5.68 51

8 25.00 71 6.72 55

9 25.11 71 7.00 63

10 26.35 71 8.07 71

N. CSP Nseg

CSP

ICSP Nseg

ICSP

1 2.33 90 0.30 7

2 5.25 90 0.83 14

3 5.98 90 1.22 18

4 6.95 90 1.42 24

5 7.30 90 1.97 35

6 8.03 90 2.37 42

7 8.30 90 2.55 55

8 8.73 90 2.73 62

9 9.55 90 3.40 73

10 10.55 90 4.07 79

N. CSP Nseg

CSP

ICSP Nseg

ICSP

1 235.1 174 6.22 21

2 239.5 174 7.32 25

3 357.1 174 10.2 43

4 387.1 174 12.6 50

5 465.5 174 20.8 75

6 554.9 174 25.8 90

7 793.9 174 42.5 114

8 831.8 174 50.5 129

9 910.5 174 59.8 137

10 1023.4 174 65.4 157

N. CSP Nseg

CSP

ICSP Nseg

ICSP

1 139 213 7.6 26

2 144 213 9.4 31

3 159 213 13.6 51

4 175 213 16.8 60

5 203 213 25.7 90

6 205 213 32.7 113

7 300 213 53.3 140

8 309 213 63.9 168

9 349 213 73.8 181

10 377 213 82.2 198

Figure 3: Experimental Results

68 APPIA-GULP-PRODE'98

purpose tool for detecting a solution. Therefore, information can be acquired on-demand

from the low level visual system thus reducing computationally-expensive low level tasks.

We are currently studying how the Interactive CSP framework can be applied to other

�elds. In particular, it has been succesfully applied to planning problems [1] where it has

been used in order to progressively collect information on the real world. In addition, we

are considering to de�ne a general methodology for solving CSPs based in the interactive

framework.

Future work concerns both the improvement of the Interactive CSP model and its

propagation algorithms and the visual application. As concerns the ICSP model, we are

currently testing other constraint propagation algorithms, like arc-consistency, in order

to determine in which cases it could be applied instead of forward checking in the visual

recognition.

In the �eld of object recognition, future work is aimed at extending the system for

integrating more complex visual features and for modeling the visual target in terms of

hierarchical ICSP, for taking into account complex and structured objects. Moreover, the

approach is currently under testing for 3D recognition on range images; in this case feature

extraction algorithms are computationally very expensive, and focussing the attention on

a limited part of an image could result in a considerable gain in e�ciency.

References

[1] R. Barru� and M. Milano. Interactive constraint satisfaction for information gath-

ering in planning. In ECAI, 1998. to appear.

[2] M.J. Dent and R.E. Mercer. Minimal forward checking. In 6th IEEE International

Conference on Tolls with Arti�cial Intelligence, pages 432{438, 1994.

[3] M. Dincbas, P. Van Hentenryck, and H. Simonis. Solving the car sequencing prob-

lems in Constraint Logic Programming. In Proceedings of European Conference on

Arti�cial Intelligence ECAI88, 1988.

[4] M. Dincbas, P.Van Hentenryck, and M.Simonis. Solving large combinatorial prob-

lems in logic programming. Journal of Logic Programming, 8(1-2):75{93, 1990.

[5] ECRC. ECL

i

PS

e

, User Manual Release 3.5.

[6] P. Henderson and J.H. Morris. A lazy evaluator. In 3rd ACM Symposium on Prin-

ciples of Programming Languages, pages 90{103, 1976.

[7] P.Van Hentenryck. Constraint Satisfaction in Logic Programming. MIT Press, 1989.

[8] P.Van Hentenryck, H.Simonis, and M.Dincbas. Constraint satisfaction using con-

straint logic programming. Arti�cial Intelligence, 58:113{159, 1992.

[9] J.Ja�ar and M.J.Maher. Constraint logic programming: a survey. Logic Program-

ming, Special Issue on 10 years of Logic Programming, 1994.

[10] M.Herman and T.Kanade. Incremental reconstruction of 3d scene from multiple

complex image. Arti�cial Intelligence, 30:289{341, 1986.

Interactive Constraint Satisfaction and its Application to Visual Object Recognition 69

[11] M.H.Yang and M.Marefat. Constrained based feature recognition: handling non

uniquitess in feature interaction. In IEEE International Conference on Robotics and

Automations, 1996.

[12] J.A. Murder, A.K.Mackworth, and W.S.Havens. Knowledge structuring and con-

straint satisfaction: the MAPSEE approach. IEEE Trans. on Pattern Analysis and

machine intelligence, 10(6):866{879, 1988.

[13] J.F. Puget. On the satis�ability of symmetrical constrained satisfaction problems.

Technical report, ILOG Headquarters, 1993.

[14] T. Shiex, J.C. Regin, C.Gaspin, and G. Verfaillie. Lazy arc consistency. In AAAI,

1996.

[15] D. Vernon. Machine Vision: Automated Visual Inspection and Robot Vision. Pren-

tice Hall, 1991.

[16] C. Weems, E. Riseman, A. Hanson, and A. Rosenfeld. The DARPA image under-

standing benchmark for parallel computers. Parallel and Distributed Computing,

11:1{24, 1991.

70 APPIA-GULP-PRODE'98

