
Some Design Issues in the Visualization of

Constraint Logi
 Program Exe
ution

Manuel Carro

m
arro��.upm.es

Manuel Hermenegildo

herme��.upm.es

Abstra
t

Visualization of program exe
utions has been found useful in appli
ations whi
h in
lude edu
ation

and debugging. However, traditional visualization te
hniques often fall short of expe
tations or are

altogether inadequate for new programming paradigms, su
h as Constraint Logi
 Programming

(CLP), whose de
larative and operational semanti
s di�er in some 
ru
ial ways from those of other

paradigms. In parti
ular, traditional ideas regarding 
ow 
ontrol and the behavior of data often


annot be lifted in a straightforward way to (C)LP from other families of programming languages.

In this paper we dis
uss te
hniques for visualizing program exe
ution and data evolution in CLP.

We brie
y review some previously proposed visualization paradigms, and also propose a number

of (to our knowledge) novel ones. The graphi
al representations have been 
hosen based on the

per
eived needs of a programmer trying to analyze the behavior and 
hara
teristi
s of an exe
ution.

In parti
ular, we 
on
entrate on the representation of the program exe
ution behavior (
ontrol), the

runtime values of the variables, and the runtime 
onstraints. Given our interest in visualizing large

exe
utions, we also pay attention to abstra
tion te
hniques, i.e., te
hniques whi
h are intended to

help in redu
ing the 
omplexity of the visual information.

Keywords: Exe
ution visualization, Constraint Logi
 Programming, Constraint Programming.

1 Introdu
tion

Program visualization has 
lassi
ally fo
used on the representation of program 
ow (using 
ow
harts

and blo
k diagrams, for example) or on the data manipulated by the program and its evolution as the

program is exe
uted (see, e.g., [BDM97, Mi
97℄ for some re
ent examples). In this paper we address

issues related to the visualization of the exe
ution of Constraint Logi
 Programming (CLP) [JM94℄.

1

Visualization of CLP exe
utions is re
eiving mu
h attention re
ently, sin
e it appears that 
lassi
al

visualizations are often too dependent on the programming paradigms they were devised for and do not

adapt well to the nature of the 
omputations performed by CLP programs. Also, the needs of CLP

programmers are quite di�erent [Fab97℄. Basi
 appli
ations of visualization in the 
ontext of CLP, as

well as Logi
 Programming (LP), in
lude:

� Debugging. In this 
ase it is often 
ru
ial that the programmer obtain a 
lear view of the program

state (in
luding, if possible, the program point) from the pi
ture displayed. In this appli
ation

visualization is 
learly 
omplementary to other methods su
h as assertions [AM94, DNTM89,

BDD

+

97℄ or text-based debugging [Byr80, Du
92, Fer94℄). In fa
t, many proposed visualizations

designed for debugging purposes 
an be seen as a graphi
al front-end to text-based debuggers

[DN94℄.

This work has been partially supported by ESPRIT LTR proje
t DISCIPL # 22532 and CICYT Proje
ts

E96-1015-265 and TIC96-1012-C02-01. We wish to thank Kim Marriott, Peter Stu
key, Abder Aggoun, Helmut

Simonis, Pas
al Bouvier, Claude Lai, Christophe Aillaud and Pierre Deransart for dis
ussions regarding this

paper and 
onstraint program visualization in general.

1

Note that we are not 
on
erned with visual programming, although undoubtedly many ideas 
an be borrowed

or adopted from that paradigm.

71



72 APPIA-GULP-PRODE'98

� Tuning and optimizing programs and programming systems (whi
h may be termed|and we will

refer to it with this name|as performan
e debugging). This is an appli
ation where visualization


an have a major impa
t, possibly in 
ombination with other well-established methods as, for

example, pro�ling statisti
s.

� Tea
hing and edu
ation. Some appli
ations to this end have already been developed and tested,

using di�erent approa
hes (see, for example, [EB88, Kah96℄).

In all of the above situations, a good pi
torial representation (either of the program data or of the

program exe
ution, depending on the obje
tive) is key for a
hieving a useful visualization. Thus, it is

important to devise representations that are well suited to the 
hara
teristi
s of CLP data and 
ontrol. In

addition, a re
urring problem in the graphi
al representations of even medium-sized exe
utions is the huge

amount of information that is usually available to represent. To 
ope su

essfully with these undoubtedly

relevant 
ases, abstra
tions of the representations are also needed. Ideally, su
h abstra
tions should show

the most interesting 
hara
teristi
s (a

ording to the parti
ular obje
tives of the visualization pro
ess,

whi
h may be di�erent in ea
h 
ase), without 
luttering the display with unneeded details.

In this paper we explore, in the 
ontext of CLP, the topi
s mentioned above: the displaying of the

exe
ution and the data, as well as abstra
tions of those depi
tions. We propose designs addressing those

topi
s, as well as implementations instrumenting those designs.

The aim of the visualization paradigms we dis
uss is quite broad|i.e., we are not 
ommitting ex-


lusively to tea
hing, or to debugging|, but our fo
us is debugging, for 
orre
tness and, mainly, for

performan
e. We divide the visualization paradigms into three 
ategories (whi
h, as we will see, 
an


oexist together seamlessly, and even be used together to a
hieve a better visualization): visualizing the

exe
ution 
ow / 
ontrol of the program, visualizing the a
tual variables (i.e., representing their runtime

values), and visualizing 
onstraints among variables. The three views are amenable to abstra
tion.

2 Visualizing Control

One of the main 
hara
teristi
s of de
larative programming is the absen
e of expli
it 
ontrol. Although

this theoreti
al property results in many advantages regarding, for example, program analysis and trans-

formation, in pra
ti
e programs are exe
uted with �xed evaluation rules.

2

Also, di�erent 
orre
t pro-

grams 
an show wide di�eren
es in eÆ
ien
y, and this eÆ
ien
y often depends on the evaluation order.

Understanding those evaluation rules is often important in order to write eÆ
ient programs (in
luding

termination, whi
h obviously a�e
ts 
orre
tness). In this 
ontext, a good visualization of the program

exe
ution (probably 
ombined with other tools) 
an help un
over performan
e (or even 
orre
tness) bugs

whi
h might otherwise be very diÆ
ult to lo
ate.

In CLP programs (espe
ially in those using Finite Domains) there are essentially two exe
ution

phases: the programmed sear
h whi
h results from the a
tual program steps en
oded in the program


lauses and the solver operations, whi
h are the propagation steps performed inside the solver or in

(generally, built-in) enumeration predi
ates.

2.1 Visualizing Control: the Programmed Sear
h

The programmed sear
h part of CLP exe
ution is similar in many ways to that of LP exe
ution. The

visualization of this part of (C)LP program exe
ution traditionally takes the form of a dire
t represen-

tation of the sear
h tree, whose nodes represent 
alls, su

esses, redos and failures|i.e., the events

whi
h take pla
e during exe
ution. Classi
al LP visualization tools, of whi
h the Transparent Prolog

Ma
hine (TPM [EB88℄) is paradigmati
, are based on this representation. In parti
ular, the TPM uses

an augmented AND-OR tree (AORTA), in whi
h AND and OR bran
hes are somewhat 
ompressed and

take up less verti
al spa
e, but the information 
onveyed by it is basi
ally the same as in a normal

AND-OR tree.

It is true that in many CLP programs (and espe
ially in those using Finite Domains) the 
ontrol part

has less importan
e than in LP, sin
e the bulk of the time in su
h programs is spent in equation solving

2

By \�xed" we mean that they 
an be deterministi
ally known at every point in time, although maybe not

known stati
ally.



Some Design Issues in the Visualization of Constraint Logi
 Program Exe
ution 73

Figure 1: A small exe
ution tree, as shown by APT

and enumeration. However, note that one of the main di�eren
es between C(L)P and, e.g., Operations

Resear
h is the ability to set up equations in an algorithmi
 fashion, and to perform sear
h for the right

set of equations, and thus it is still important during performan
e debugging to be able to represent and

understand the 
ontrol 
ow.

Thus, a �rst approa
h whi
h 
an be used in order to visualize CLP exe
ution is to represent the

part 
orresponding to the exe
ution of the program 
lauses (the programmed sear
h) using a sear
h-

tree depi
tion. Note that the other important operations of CLP exe
ution (enumeration/propagation)

typi
ally o

ur in \bursts" whi
h 
an be asso
iated to points of the sear
h tree. Thus, the sear
h tree

depi
tion 
an be seen as a skeleton onto whi
h other views of the state of the 
onstraint store during

enumeration and propagation (and whi
h we will address in Se
tion 2.3) 
an be grafted or to whi
h they


an be related.

In order to test this approa
h we have extended (in 
ollaboration with INRIA) the APT tool (A

Prolog Tra
er [Lue97℄) to serve as a CLP 
ontrol visualizer. APT is essentially a TPM-based sear
h tree

visualizer, thus inheriting many 
hara
teristi
s from the TPM, but also adding some new, interesting

features. APT is built around a meta-interpreter 
oded in Prolog whi
h rewrites the sour
e program

and exe
utes it, gathering information about the goals exe
uted and the state of the store at runtime.

This exe
ution 
an be performed depth-�rst or breadth-�rst, and 
an then be replayed at will, and all

the 
olle
ted information 
an be displayed while re-exe
uting. All the TPM windows are animated, and

are updated as the exe
ution of the program is replayed. The graphi
al part 
urrently uses a T
l/Tk

interfa
e, and runs under several systems (
urrently, SICStus [Swe95℄, and the 
lp(fd)/Calypso system

developed at INRIA [DC93℄).

The main visualization window of APT o�ers a tree-like depi
tion (Figure 1), in whi
h the state of

ea
h node (not yet 
alled, 
alled but not yet exited, exited, failed) is shown by means of a 
olor 
ode.

Nodes are represented by small squares and adorned optionally with the name of the predi
ate being


alled.

Cli
king on a node opens a di�erent window in whi
h the relevant part of the program sour
e,

i.e., the 
alling body atom and the mat
hing 
lause head, is represented, together with the (run-time)

state of the intervening variables at that node. Note that only the presentation of these node views is

dependent on the type of data (e.g., the 
onstraint domain) used. This is one of the most useful general


on
epts underlying the design of APT: the graphi
al display of 
ontrol is separated from that of data.

This allows developing data visualizations independently from the 
ontrol visualization, and using them

together. The data visualization 
an then be taken 
are of by a variety of tools, depending on the data

to be visualized. Following the proposal outlined above, this allows using APT without any 
hange as a


ontrol skeleton for visualizing CLP exe
ution. In this 
ase, the windows whi
h are opened when 
li
king

on the nodes in the tree o�er views of the 
onstraint store in the state represented by the sele
ted node.

These views vary depending on the 
onstraint domain used, or even for the same domain, depending on

the data visualization paradigm used.

We will dis
uss several visualizations for 
onstrains and 
onstrained data in Se
tions 3 and 4. As an

example of su
h a visualization, Figure 2 shows one depi
tion used for the Herbrand domain. The node



74 APPIA-GULP-PRODE'98

Figure 2: Detailed view of a node (Herbrand domain)

blow-up shows the run-time 
all on top and the mat
hing head (below). The answer substitution (i.e.,

the result of head uni�
ation and/or body exe
ution) is shown en
losed by rounded re
tangles. The

arrows represent the sour
e and target of the substitution, i.e., the data 
ow.

As mentioned before, these node state windows are animated and evolve with the exe
ution. Also,


li
king on a substitution 
auses a line to be drawn in the main tree from the 
urrent node to the node

where the substitution 
reated : this is a very powerful feature whi
h helps in 
orre
tness debugging, as

the probable sour
e of a (presumably) wrong instantiation (
ausing, for example an unexpe
ted failure

or a bad value) 
an be easily lo
ated.

2.2 Time-based Depi
tion of Control

In our experien
e, tree-based representations su
h as those of the TPM, APT, and similar tools dis
ussed

above are 
ertainly quite useful in edu
ation and, in part, for 
orre
tness debugging, i.e., �nding logi
al

errors. They are also useful to some extent in performan
e debugging, whi
h aims at dis
overing the

sour
es of unexpe
ted low performan
e in a program. In some 
ases, the shape of the sear
h tree


an help in tra
king down those sour
es, showing, for example, whi
h 
omputation patterns have been

exe
uted more often, or whi
h parts dominate exe
ution time, assuming similar time for every node.

However, the la
k of a representation of time (or, in general, resour
e 
onsumption) information greatly

hinders the use of simple sear
h-tree representations in performan
e debugging. One approa
h in order

to remedy this is to in
orporate time (or other resour
e) information into the depi
tion itself, for example

by making the distan
e between a node and its 
hildren re
e
t the elapsed time (or amount 
onsumed of

other resour
es). Su
h a representation in time spa
e naturally provides insight into the 
ost of (di�erent

parts of) the exe
ution. In su
h a CLP not all user-per
eived steps (i.e., 
alls et al.) would show the

same height: 
onstraint addition, removing, uni�
ation, untrailing, et
. 
an have di�erent asso
iated


osts in every program.

Time-oriented views have been used in several other (C)LP visualization tools, su
h as VisAndOr

[CGH93℄ (in
luded with re
ent distributions of SICStus [Swe95℄) and VISTA [Ti
92℄. VisAndOr is a

graphi
al tool aimed at displaying and understanding the performan
e of parallel exe
ution of logi


programs, while VISTA fo
uses on 
on
urrent logi
 programs. In VisAndOr graphi
al depi
tions, time

runs from top to bottom, and parallel tasks are drawn as verti
al lines. These lines represent, using 
olor

and di�erent thi
kness, whi
h pro
essor exe
utes ea
h task and the state of the task: running, waiting

to be exe
uted, or �nished. In this 
ase, the length of the verti
al lines re
e
ts a

urately a measure of

the time spent by the task. VisAndOr allows also swit
hing to an events spa
e, in whi
h every event in

the exe
ution (say, the 
reation, the start, and the end of a task, among others), takes the same amount

of spa
e. Note that in this view the stru
ture of the exe
ution is easier to see, but the notion of time

is lost|or, better, traded o� for an alternate view. This events-oriented visualization is the one usually

portrayed in the tree-like representation for the exe
ution of logi
 programs: events are asso
iated to the


alls made in the program, and spa
e is evenly divided among events. Thus events- and time-based

visualization are not ex
lusive, but rather 
omplementary to ea
h other. VISTA representations are

similar to those of VisAndOr, but time advan
es in a spiral.



Some Design Issues in the Visualization of Constraint Logi
 Program Exe
ution 75

2.3 Representing the Enumeration Pro
ess

The enumeration pro
ess typi
ally performed by �nite domain solvers (involving, e.g., domain splitting,


hoosing paths for 
onstraint propagation, heuristi
s for enumeration) often 
riti
ally a�e
ts performan
e.

Observing the behavior of this pro
ess in a given problem (or 
lass of problems) 
an often help understand

the sour
e of performan
e problems and 
ag that a di�erent set of 
onstraints (e.g., di�erent 
onstraints

whi
h model the same problem, or setting up more {or less{ redundant 
onstraints) or that a di�erent

enumeration strategy is needed.

The enumeration pro
ess typi
ally takes the form of a sear
h in whose bran
hes the values of some

variables are set and, as a result of the propagation of these 
hanges, the domains of other variables also


hange. Ea
h one of these steps results in either failure (upon whi
h another path of the sear
h is 
hosen

by setting the 
hosen variable to another value or 
hoosing another variable to set) or a new state with

updated variable values. Thus, one approa
h in order to depi
t this pro
ess is to use the same depi
tion

proposed for the programmed sear
h, i.e., use a tree representation, in either time or events spa
e. An

alternative is to simply visualize those steps as a su

ession of states for all the variables (see Se
tion 3.1

and, e.g., �gures 5-6).

In some CLP systems, the enumeration and propagation parts of the exe
ution are performed by

internal built-ins. This 
ompli
ates their visualization, sin
e then, in order to gather data for the

visualization, either the system itself has to be instrumented to produ
e the data (as in the CHIP

visualizer [AS97℄), or the suÆ
ient knowledge about the solver operation must be made available so

that its operation 
an be mimi
ked externally in a meta-interpreter inside the visualizer between a
tual

exe
ution steps.

2.4 Coupling Control Visualization with Veri�
ation

One of the te
hniques used frequently for program veri�
ation and 
orre
tness debugging is to use as-

sertions whi
h (partially) des
ribe the spe
i�
ation and 
he
k the program against these assertions (see,

e.g., [AM94, DNTM89, BDD

+

97℄ and their referen
es). Sometimes su
h assertions 
an be 
he
ked stat-

i
ally. When this is not possible, they 
an be in
orporated in the program as run-time tests. Typi
ally,

a warning is then issued if any of these run-time tests fail, 
agging an error in the program, sin
e it has

rea
hed a state whi
h does not meet the spe
i�
ation. It appears useful to 
ouple this kind of run-time

testing with 
ontrol visualizations. Nodes whi
h 
orrespond to run-time tests 
an be represented in a

spe
ial way, and 
olor 
oded to re
e
t whether they su

eed of fail. This allows to easily pinpoint the

state of exe
ution that results in the violation of an assertion (and, thus, of the spe
i�
ation) and, by


li
king on the nodes above and to the left of the failed test, to explore for the sour
es of the error.

3 Displaying Variables

Typi
ally, in imperative and fun
tional programming there is a 
lear notion of the values that variables

are bound to (although it is indeed more 
omplex in the 
ase of higher-order fun
tional variables). The

notion of variable binding in LP is somewhat more 
omplex, due to the variable sharing whi
h may

o

ur among Herbrand terms. The problem is even more 
omplex in the 
ase of CLP, where su
h

sharing is generalized to the form of impli
it equations relating variables. As a result, the value of

C(L)P variables often is a
tually a 
omplex obje
t representing the fa
t that ea
h variable 
an take a

(potentially in�nite) set of values, and that there are 
onstraints atta
hed to su
h variables whi
h relate

them and whi
h restri
t the values they 
an take simultaneously.

Textual representations of the variables in the store are usually not very informative and not easy

to interpret and understand.

3

A graphi
al depi
tion of the values of the variables 
an o�er a view

of 
omputation states that is easier to grasp. Also, if we wish to follow the history of the program

(whi
h is another way of understanding the program behavior, but fo
using on the data evolution), it

is desirable that the graphi
al representation be either animated (i.e., time in the program is depi
ted

in the visualization also in time) or laid out spatially as a su

ession of pi
tures. The latter allows


omparing di�erent behaviors easily, trading time for spa
e.

3

Also note that some solvers maintain, for eÆ
ien
y reasons, only an approximation of the values the variables


an take.



76 APPIA-GULP-PRODE'98

1 4 6532

X

Figure 3: Finite Domain depi
tion Figure 4: Shades representing age of dis
arded values

Sin
e di�erent 
onstraint domains have di�erent properties and 
hara
teristi
s, di�erent representa-

tions for variables may be needed for them. In what follows we will sket
h some ideas dealing with the

representation of variables in 
ommonly used 
onstraint domains.

3.1 Depi
ting Finite Domain Variables

Finite Domains (FD) are one of the most popular 
onstraint domains. FD variables take values over �nite

sets of integers whi
h are the domains of su
h variables. The operations allowed among FD variables

are pointwise extensions of 
ommon integer arithmeti
 operations, and the allowed 
onstraints are the

pointwise variants of arithmeti
 
onstraints. At any state in the exe
ution, ea
h FD variable has an

a
tive domain (the set of allowed values for that domain) whi
h is usually a

essible by using language

primitives. For eÆ
ien
y reasons, in pra
ti
al systems this domain is usually an upper approximation

of the a
tual set of values that the variable 
an theoreti
ally take. We will return to this 
hara
teristi


later, and we will see how taking it into a

ount is ne
essary in order to obtain 
orre
t depi
tions of

variable values.

A possible graphi
al representation for the state of FD variables (see [Mei96℄) is to assign a dot

(
.f., a square) to every possible value the variable 
an take; therefore the whole domain is a line (
.f.,

a re
tangle). Values belonging to the 
urrent domain at every moment are highlighted. An example

of the representation of a variable (X) with 
urrent domain f1; 2; 4; 5g from an initial domain [1::6℄ is

shown in Figure 3. More possibilities in
lude using di�erent 
olors / shades / textures to represent more

information about the values (this is done also, for example, in the GRACE visualizer [Mei96℄).

Looking at the stati
 values of variables at only one point in the exe
ution (for example, the �nal state)

obviously does not provide mu
h information on how the exe
ution has a
tually progressed. However, the

idea is that one su
h representation is asso
iated with ea
h of the nodes of the 
ontrol tree, as suggested

in Se
tion 2, i.e., the window that is opened upon 
li
king on a node in the sear
h tree 
ontains a

graphi
al visualization for ea
h of the variables that are relevant to the node. The variables involved


an be represented in prin
iple simply side to side as in Figure 8 (we will dis
uss how to represent the

relations between variables, i.e., 
onstraints, in Se
tion 4).

Note that, as mentioned before, often ea
h node of the sear
h tree represents several internal steps in

the solver. The visualization asso
iated to a node 
an thus represent either the �nal state of the solver

operations that 
orrespond to that sear
h tree node, or the history of the involved variables variables

through all the internal solver (or enumeration) steps 
orresponding to that node.

Also, in some 
ases, it may be useful to follow the evolution of a set of program variables throughout

the program exe
ution, independently of what node in the sear
h tree they 
orrespond to (this is done,

for example, in the new visualizer for CHIP [AS97℄). This also requires a depi
tion of the values of a set

of variables over time, and the same solutions used for the previous 
ase 
an be used.

Thus, it is interesting to have some way of depi
ting the evolution in time of the values of several

variables. A number of approa
hes 
an be used to a
hieve this:

� An animated display whi
h follows the update of the (sele
ted) variables step by step as it happens;

i.e., time is represented as time. This makes the immediate 
omparison of two di�erent stages

of the exe
ution diÆ
ult, sin
e it requires repeatedly going ba
k and forth in time. However,

the advantage is that the representation is 
ompa
t and 
an be useful for understanding how the

domains of the variables are narrowed. We will return to this approa
h later.

� Di�erent shadings (or hues of 
olor) 
an be used in the boxes 
orresponding to the values, repre-

senting in some way how long ago that value has been removed from the domain of the variable

(see Figure 4, where darker squares represent values removed longer ago). Unfortunately, 
om-

paring shades a

urately is not easy for the human eye, although it may give a rough and very


ompa
t indi
ation of the 
hanges in the history of the variable.



Some Design Issues in the Visualization of Constraint Logi
 Program Exe
ution 77

Figure 6: Evolution of FD variables for a 10 queens problem

� A third solution is to simply sta
k the di�erent state representations, as in Figure 5, thus trading

time for spa
e. This depi
tion 
an be easily shrunk if needed to a

ommodate the whole variable

history in a given spa
e. It 
an re
e
t time a

urately (for example, by re
e
ting it in the

height between 
hanges) or ignore it, working then in events spa
e, by simply sta
king a new

line of a 
onstant height every time a variable domain 
hanges, or every time a enumeration

step is performed. This representation allows easier easy 
omparison between states and has the

additional advantage of allowing more time-related information to be added to the display.

An example of the last approa
h above is one of the visu-

Figure 5: History of a variable

alizations available in the VIFID visualizer, whi
h we have

implemented at UPM, and whi
h, given a set of variables in

an FD program, generates windows displaying states or sets

of states for those variables. VIFID 
an be used as a visu-

alizer of the state in nodes of the sear
h tree, or standalone,

as a user library, in whi
h 
ase the display is triggered by

spypoints introdu
ed by the user in the program. Figure 6

shows a s
reen dump of a window generated by VIFID pre-

senting the evolution of sele
ted program variables in a pro-

gram to solve the queens problem for a board of size 10. Ea
h 
olumn in the display 
orresponds to

one su
h program variable. In this 
ase the possible values are the row numbers in whi
h a queen 
ould

be pla
ed. Lighter squares represent values still in the domain, and darker squares represent dis
arded

values. In this 
ase, ea
h row in the display 
orresponds to a spypoint in the sour
e program, at whi
h

point VIFID 
onsults the store and updates it. Points where ba
ktra
king took pla
e are marked with

small 
urved arrows pointing upwards. It is quite easy to see that very little ba
ktra
king was ne
essary,

and that variables are highly 
onstrained, so that enumeration (pro
eeding left to right) quite qui
kly

dis
arded initial values. VIFID supports several other visualizations, some of whi
h will be presented

later in the dis
ussion.

Some of the problems whi
h appear in a display of this kind are the possibly large number of variables

to be represented and size of the domains of ea
h variable. Note that the �rst problem is under 
ontrol

to some extent in the approa
h proposed: if the visualization is simply triggered from a node in the

sear
h tree, the display 
an be sele
tively made to present only the relevant variables (e.g., the ones in

the 
lause 
orresponding to that node). In the 
ase of triggering the visualization through spy points in

the user program, the number of variables is under user 
ontrol, sin
e they are sele
ted expli
itly when

introdu
ing the spypoints. The size of the domains of variables is more diÆ
ult to 
ontrol (we return to

this issue in Se
tion 7). However, note that, without loss of generality, programs using FD variables 
an

be assumed to initialize the variables to an integer range whi
h in
ludes all the possible values in the

problem allowable in the state 
orresponding to the beginning of the program.

4

Being able to dedu
e

a small initial domain for a variable allows starting from a more 
ompa
t initial representation for that

4

In the default 
ase, variables 
an be assumed to be initialized to the whole domain.



78 APPIA-GULP-PRODE'98

1 4 6532

X

Y

Z

Figure 8: Several variables side to side

1 4 6532

X

Y

Z

Figure 9: Changing a domain

variable. This in turn will allow a more 
ompa
t depi
tion of the narrowing of the range of the variable,

and of how values are dis
arded as the exe
ution pro
eeds.

3.2 Herbrand Terms

Herbrand terms 
an always be written

X = f(Y,Z),

X Yf Z

Y = a,

X f Za

W = Z,

X f Za W

W = g(K),

X f Za W g K

X = f(a,g(b)).

X f Za W g b

Figure 7: Alternative depi
tion of the 
reation of a Her-

brand term

textually, or with a slightly enhan
ed textual

representation, as in Figure 2. They 
an also

be represented graphi
ally, typi
ally as trees.

A term whose main fun
tor is of arity n is

then represented as a tree in whi
h the root

is the name of this fun
tor, and the n sub-

trees are the trees 
orresponding to its ar-

guments. This representation is well suited

for ground terms. However, free variables,

whi
h may be shared by di�erent terms, need

to be represented in a spe
ial way. A possi-

bility is to represent this sharing as just another edge (thus transforming the tree into an a
y
li
 graph),

and even, taking an approa
h 
loser to usual implementation designs, having a free variable to point to

itself. This 
orresponds to a view of Herbrand terms as 
omplex data stru
tures with single assignment

pointers. Figure 7 shows a representation using this view of the step by step 
reation of a 
omplex

Herbrand term by a su

ession of Herbrand 
onstraints. Rational trees (as those supported by Prolog II,

III, IV) 
an also be represented in a similar way|but in this 
ase the graph 
an 
ontain 
y
les, although

it 
annot be a general graph.

3.3 Intervals

In a broad sense, intervals resemble �nite domains: the 
onstraints and operations allowed in them are

analogous (pointwise extensions of arithmeti
 operations), but the (theoreti
al) set of values allowed is


ontinuous, whi
h means that an in�nite set of values are possible, even within a �nite range. Despite

the di�eren
es, similar visual representations to those proposed for �nite domains 
an easily be used for

interval variables, using a 
ontinuous line instead of a dis
rete set of squares. An important di�eren
e

between intervals and �nite domains is that intervals usually allow non-linear arithmeti
 operations for

whi
h a solution pro
edure is not known, whi
h for
es the solvers to be in
omplete. Thus, the visual-

ization of the a
tual domain

5

will in general be an upper approximation of the a
tual (mathemati
al)

domain. As a result, an exa
t display of the intervals is not possible in pra
ti
e.

4 Representing Constraints

In the previous se
tion we have dealt with representations of the values of individual variables. It is ob-

viously also interesting to represent the relationships among several variables imposed by the 
onstraints

a�e
ting those variables. This 
an sometimes be done textually by simply dumping the 
onstraints and

the variables involved in the sour
e 
ode representation. Unfortunately, this is often not straightforward

5

Not only the representation, but also the internal representation, from whi
h the graphi
al depi
tion is

drawn.



Some Design Issues in the Visualization of Constraint Logi
 Program Exe
ution 79

(or even possible in some 
onstraint domains), 
an be 
omputationally expensive, and often provides too

mu
h level of detail for intuitive understanding.

Constraint visualization 
an be used alterna-53 61 42
Z

Y

X

Figure 10: Enumer-

ating Y, representing

solver domains X and Z

53 61 42
Z

Y

X

Figure 11: Enumer-

ating Y, a

umulating

the enumeration for X

and Z

tively to provide information about whi
h vari-

ables are interrelated by 
onstraints, and how these

interrelations make those variables a�e
t ea
h other.

Obviously, 
lassi
al geometri
 representations are

a possible solution: for example, linear 
onstraints


an be represented geometri
ally through dots,

lines, planes, et
., and nonlinear ones by 
urves,

surfa
es, volumes, et
. Standard mathemati
al

pa
kages 
an be used for this purpose. However,

these representations are not without problems:


omputing the representation 
an be 
omputa-

tionally expensive, and, due to the large number

of variables involved the representations 
an eas-

ily be n-dimensional, with n >> 3.

A general solution whi
h takes advantage of

the representation of the a
tual values of a vari-

able (and whi
h is independent of how this repre-

sentation is a
tually performed) is to use proje
-

tions to present the data pie
emeal and to allow

the user to update the values of the variables that

have been proje
ted out, while observing how the

variables being represented are a�e
ted by su
h


hanges. This 
an often provide the user with an intuition of the relationships linking variables (and de-

te
t, for example, the presen
e of erroneous 
onstraints). The updating of the variables 
an be performed

intera
tively by using the graphi
al interfa
e (e.g., via a sliding bar), or adding manually a 
onstraint,

using the sour
e CLP language.

For simpli
ity, and be
ause of their relevan
e in pra
ti
e, in what follows we will fo
us on FD variables.

We will use the following 
onstraint (C1) in the examples whi
h follow:

C1 : X 2 f1::6g ^X 6= 6 ^X 6= 3 ^ Z 2 f1::6g ^ Z = 2X � Y ^ Y 2 f1::6g (1)

Figure 8 shows the a
tual domains of FD variables X, Y, and Z subje
t to the 
onstraint C1. Lighter

boxes represent points inside the domain of the variable, and darker boxes stand for values not 
ompatible

with the 
onstraint(s). This allows exploring how 
hanges in the domain of one variable a�e
t the others:

an update of the domain of a variable should indi
ate 
hanges in the domains of other variables related

to it. For example, we may dis
ard the values 1, 5, and 6 from the domain of Y, whi
h boils down to

representing the 
onstraint C2:

C2 : C1 ^ Y 6= 1 ^ Y 6= 5 ^ Y 6= 6 (2)

654321

1

2

3

4

5

6

X

Y

Figure 12: X against Y

654321

1

2

3

4

5

6

X

Z

Figure 13: X against Z

654321

1

2

3

4

5

6

Z

Y

Figure 14: Y against Z

Figure 9 represents the new domains of the variables. Values dire
tly disallowed by the user are

shown as 
rossed boxes; values dis
arded by the e�e
t of this 
onstraint are shown in a lighter shade. In

this example we see that the domains of both X and Z are a�e
ted by this 
hange, and so they depend



80 APPIA-GULP-PRODE'98

on Y. This type of visualization (with the two enumeration variants whi
h we will 
omment on in the

following paragraphs) is also available in the VIFID tool.

Within this same visualization, a more detailed inspe
tion 
an be done by leaving just one element

in the domain of Y, and wat
hing how the domains of X and Z are updated (Figures 10 and 11). This

allows 
he
king that simple 
onstraints hold among variables, or that more 
omplex properties (e.g., that

a variable is made de�nite by the de�niteness of another one) are met.

The di�eren
e between the two �gures lies in how values are determined to belong to the domain of

the variable. In Figure 10, the values for X and Z are those whi
h the solver keeps internally, and are thus

probably an upper approximation. In Figure 11, the 
orresponding values were obtained by enumerating

X and Z. Both �gures were obtained using the same 
onstraint solver, and 
omparing them gives an

idea of how a

urately the solver keeps the values of the variables: a lower a

ura
y in the update of

the variables when adding 
onstraints (whi
h makes this addition 
heaper) may not be advantageous

be
ause failure is delayed, or be
ause enumeration be
omes more 
ostly.

A stati
 version of this view 
an be obtained by plot-

Figure 15: Relating variables in VIFID

ting values of variables in a 2-D grid, whi
h is equivalent

to 
hoosing values for one of them and looking at the al-

lowed values for the other. This is shown in Figures 12, 13,

and 14, where the variables are subje
t to the 
onstraint

C2. In ea
h of these three �gures we have represented a dif-

ferent pair of variables. From these representations we 
an

dedu
e that the values X = 3 and X = 6 are not feasible,

regardless the values of Y and Z. It turns out also that the

plots of X against Y and X against Z (Figures 12 and 13) are

identi
al. From this, one might guess that perhaps Y and

Z have ne
essarily the same value, i.e., that the 
onstraint

Z = Y is enfor
ed by the store. This possibility is dis
arded

by Figure 14, in whi
h we see that there are values of Z and

Y whi
h are not the same, and whi
h in fa
t 
orrespond to

di�erent values of X. Furthermore, the slope of the highlighted squares on the grid suggests that there

is an inverse relationship between Z and Y: in
rementing one of them would presumably de
rement the

other.

Note that, in prin
iple, more than two variables 
ould be depi
ted at the same time: for example,

for three variables a 3-D depi
tion of a \Lego obje
t" made out of 
ubes 
ould be used. Navigating

through su
h a representation (for example, by means of rotations and virtual tours), does not pose

implementation problems on the graphi
al side, but it may not ne
essarily give information as intuitively

as the 2-D representation. The usefulness of su
h a 3-D (or n-D) representation is still a topi
 of further

resear
h. On the other hand, we have found it very useful to add to the 2-D representation the possibility

of 
hanging the value of one (or several) variables not plotted in the grid, and examine how this a�e
ts

the values of the 
urrent domains of the variables in the grid. The ideas proposed are used in VIFID, a

di�erent snapshot of whi
h is shown in Figure 15.

5 Abstra
tion

While representations whi
h re
e
t all the data available in an exe
ution 
an be a

eptable (and even

dida
ti
) for \toy programs," it is often the 
ase that they result in too mu
h data being displayed for

larger programs. Even if an easy-to-understand depi
tion is provided, the amount of data 
an overwhelm

the user with an unwanted level of detail, and with the burden of having to navigate through it. This


an be alleviated by abstra
ting the information presented. Here, \abstra
ting" refers to a pro
ess whi
h

allows a user to fo
us on interesting properties of the data available. Di�erent abstra
tion levels and/or

te
hniques 
an in prin
iple be applied to any of the aforementioned graphi
al depi
tions, depending on

whi
h property we want to highlight.

Note that the depi
tions presented so far already in
orporate some abstra
tions: for example, in

the APT/VIFID node views only the relevant 
lause variables (or those indi
ated by the user) are

shown, and when using VIFID standalone, the user sele
ts the interesting variables and program points

via the spypoints and the window 
ontrols. In what follows we will present several other ideas for



Some Design Issues in the Visualization of Constraint Logi
 Program Exe
ution 81

Figure 16: Exposing hidden parts of a tree Figure 17: Abstra
ting parts of a tree with 
olor tagging

performing abstra
tion, applied to the graphi
al representations we have dis
ussed so far. Also, some

new representations, whi
h are not dire
tly based on a re�nement of others already presented, will be

dis
ussed.

6 Abstra
ting Control

The sear
h tree dis
ussed in Se
tion 2 o�ers a good representation of the sear
h (or enumeration) spa
e

being traversed. It also o�ers some degree of abstra
tion with respe
t to a 
lassi
al sear
h tree by reusing

the tree nodes during ba
ktra
king. But it may still take up too mu
h spa
e and show too mu
h detail

to be useful in medium-sized 
omputations, whi
h 
an easily generate thousands of nodes.

The obvious way to 
ope with a very large number of obje
ts (nodes and links) in the limited spa
e

provided by the s
reen is to use a 
anvas that is larger than the window and provide s
rollbars to navigate

through this 
anvas. However, this makes it diÆ
ult to see the \big pi
ture". An alternative is simply

zooming the 
anvas to �t into the available spa
e. This zooming 
an be made uniformly, or with a

sele
tive zooming whi
h 
hanges the 
ompression ratio in di�erent parts of the image. The former has

the drawba
k that we lose the 
apa
ity to see the details of the exe
ution when ne
essary. The latter

seems more promising, sin
e there might be parts of the tree whi
h the user is not really interested in

wat
hing in detail (for example, be
ause they belong to parts of the program whi
h have been already

tested, and (s)he is not interested in looking at them).

Examples of tools whi
h 
ompress part of the sear
h tree are the VisAndOr and VISTA tools men-

tioned before. This 
ompression is performed automati
ally, at the points of greater density of obje
ts|

near the leaves. Those parts 
an also be zoomed out if a greater level of detail is needed. An alternative

possibility to is to allow the user to slide virtual magnifying lenses whi
h provide with a sort of �sh-eye

transformation and give both a global view (be
ause the whole tree is shrunk to �t in a window) and a

detailed view (be
ause sele
ted parts of the tree are zoomed out to greater detail). Providing at the same

time a 
ompressed view of the whole sear
h tree, in whi
h the area being zoomed is 
learly depi
ted,


an also help to lo
ate the pla
e we are looking at. An alternative solution providing these two views is

provided in VisAndOr, where the 
anvas 
an be zoomed out, and at the same time the lo
ation of the


urrent 
anvas view is given by a square in a redu
ed view of the whole pi
ture.

Another possibility to avoid 
luttering up the display is to give the user a mean to hide parts of the

tree, for example as done in the Oz explorer (Figure 16) [S
h97℄. This a
tually allows for the sele
tive

exploration of the tree (i.e., in the 
ases where a 
all is being made to a predi
ate known to be 
orre
t,

or whose performan
e has already been tested). Whereas this avoids having too many obje
ts at a

time, feedba
k on the relative sizes of the subtrees is lost. We propose to re
over this information by

tagging the 
ollapsed subtrees with a mark whi
h measures the relative \importan
e" of the subtrees.

This importan
e 
an range from exe
ution time to number of nodes, number of 
alls, number of added


onstraints, number of �xpoint steps in the solver, et
.: di�erent measures lead to di�erent abstra
tions.

Possible tagging s
hemes are di�erent shades of gray (whi
h should be automati
ally re-s
aled as subtrees

are 
ollapsed/expanded; see Figure 17 for an example) or raw numbers atta
hed to the 
ollapsed subtrees

(indi
ating the 
on
rete value measured under the subtree). This kind of tagged tree abstra
tion is


urrently being in
orporated in the APT tree representation.



82 APPIA-GULP-PRODE'98

7 Abstra
ting Values

While the problem of the presen
e of a large number of variables 
an be solved, at least in part, by user

sele
tion of interesting variables, another problem remains: for variables with a large number of possible

values representations su
h as those proposed in Se
tion 3.1 
an 
onvey too mu
h information to be really

useful. These values may be too many to be 
learly dis
erned, or to allow dedu
ing any stru
ture from

the resulting pi
tures. At the limit, the s
reen resolution may be insuÆ
ient to assign a pixel to every

single value in the domain, thus imposing an aliasing e�e
t whi
h would prevent faithfully re
e
ting the

stru
ture of the domain of the variable. This is easily solved by using the same te
hniques pointed out

above for drawing big exe
ution trees: a 
anvas that is larger than the window and s
rollbars, providing

means for zooming in and out, et
. Again, a \�sh-eye" te
hnique 
an be of help, giving the user the

possibility of zooming pre
isely those parts whi
h are more interesting, while at the same time trying to

keep as mu
h information as possible 
ondensed in a limited spa
e.

An alternative is to perform a more semanti
 \
ompa
tion" of parts of the domain. For example,

this 
an be performed automati
ally by asso
iating 
onse
utive values in the domain of a variable to an

interval (the smallest en
losing interval) and representing this interval by a redu
ed number of points. A


oarser-level solution, perhaps 
omplementary to the graphi
al representation is to present the domain of

a variable simply as a number denoting, for example, the number of points in its 
urrent domain 
ould,

thus giving an indi
ation of its degree of freedom. A similar approa
h 
an also be applied to interval

variables, using the di�eren
e between the maximum and minimum values in its domain, or the total

length of the intervals in its domain.

Another alternative for abstra
tion is to use an appli
ation-oriented �ltering of the variable domains.

For example, if some parts of the program are trusted to be 
orre
t, the e�e
ts of those parts in the


onstraint store 
an be masked out by removing them from the representation of the variables, thus

leaving less values to be depi
ted. E.g., if a variable is known to take only odd values, the even values

are simply �ltered out and not shown in the representation. This �ltering 
an be spe
i�ed using the

sour
e language|in fa
t, the 
onstraint whi
h is to be abstra
ted should be the �lter of the domain of the

displayed variables. Note that this transformation of the domain 
annot easily be 
ompletely automated:

the debugger may not have any way of knowing whi
h parts of the program are trusted and whi
h are

not, or whi
h abstra
tion should be applied to a given problem. Thus, the user should indi
ate, with

annotations in the program (assertions) or intera
tively, whi
h 
onstraints should be used to abstra
t the

variable values. The a
tual redu
tion of the representation 
an be a

omplished automati
ally given this

information. Warnings 
ould be issued by the debugger if the values dis
arded by the program do not


orrespond to those that the user (or the annotations in the program) want to remove: if this happens,

a sort of \out of domain" 
ondition 
an be raised. This 
ondition does not mean ne
essarily that there

is an error: the user may 
hoose not to show uninteresting values whi
h were not (yet) removed by the

program.

8 Abstra
ting Constraints

As the number and 
omplexity of 
onstraints in programs grow, if we resort to visualizing them as

relationships among variables (e.g., 2-D or 3-D grids plus sliding bars to assign values for other variables,

as suggested in Se
tion 4), we may end up with the same problems we had when trying to represent

values of variables, sin
e we are building on top of the 
orresponding representations. The solutions

suggested for the 
ase of representation of values are still valid (�sh-eye view, abstra
tion of domains,

. . . ), and 
an give an intuition of how a given variable relates to others. However, it is not always easy

to dedu
e from them how variables are related to ea
h other, due to the la
k of a

ura
y (inherent to

the abstra
tion pro
ess) in the representation of the variables themselves.

A di�erent approa
h to abstra
ting the 
onstraints in the store is to show them as a graph (see, e.g.,

[MR91℄ for a formal presentation of su
h a graph), where variables are represented as nodes, and nodes

are linked i� the 
orresponding variables are related by a 
onstraint (Figure 18)

6

. This representation

provides the programmer with an approximate understanding of the 
onstraints are present in the solver

6

This parti
ular �gure is only appropriate for binary relationships; 
onstraints of higher arity would need

hypergraphs.



Some Design Issues in the Visualization of Constraint Logi
 Program Exe
ution 83

Figure 18: Constraints represented as a graph

Figure 19: Bold frames represent de�nite values

(but not exa
tly whi
h 
onstraints they are), after the possible partial solving and propagations per-

formed up to that point. Moreover, sin
e di�erent solvers behave in di�erent ways, this 
an provide hints

about better ways of setting up 
onstraints for a given program and 
onstraint solver.

The topology of the graph 
an be used to de
ide whether a reorganization of the program is ad-

vantageous; for example, if there are subsets of nodes in the graph with a high degree of 
onne
tivity,

but those subsets are sparsely 
onne
ted among them, it may be worth setting up the highly 
onne
ted

se
tions and making a (partial) enumeration early, to favor more lo
al 
onstraint propagation, and then

link (i.e., set up 
onstraints) the di�erent regions, thus solving lo
ally as many 
onstraints as possible.

In fa
t, identifying sparsely 
onne
ted regions 
an be made in an almost automati
 fashion by means

of 
lustering algorithms. For this to be useful, a means of a

essing the lo
ation in the program of

the variables whi
h appears depi
ted in the graph is needed. This 
an as well help dis
over unwanted


onstraints among variables|or the la
k of them.

More information 
an be embedded in this graph representation. For example, weights in the links


an represent various metri
s related to aspe
ts of the 
onstraint store su
h as the number of times there

has been propagation between two variables or the number of 
onstraints relating them. The weights

themselves need not be expressed as numbers atta
hed to the edges, but 
an take instead a visual form:

they 
an be expressed, for example, as di�erent degrees of thi
kness or shades of 
olor. Variables 
an

also have a tag atta
hed whi
h gives visual feedba
k about interesting features. For example, the a
tual

range of the variable, or the number of 
onstraints (if it is not 
lear from the number of edges departing

from it) it is involved in, or the number of times its domain has been updated.

The pi
ture displayed 
an be animated and 
hange as the solver pro
eeds. This 
an re
e
t, for

example, propagation taking pla
e between variables, or how the variables lose their links (
onstraints)

with other variables as they a
quire a de�nite value. In Figure 19 some variables be
ame de�nite, and

as a result the 
onstraints between de�nite variables are not shown any more. The reason for doing so

is that those 
onstraints are not useful any longer. This re
e
ts the idea of a system being progressively

simpli�ed. It may also help to visualize how ba
ktra
king is performed: when ba
ktra
king happens,

either the links reappear (when a point where a variable be
ame de�nite is ba
ktra
ked over and a


onstraint is a
tive again in the store), or they disappear (when the system ba
ktra
ks past a point

where a 
onstraint was 
reated).

Further �ltering 
an be a

omplished by sele
ting whi
h types of 
onstraints are to be represented

(e.g, represent only \greater than" 
onstraints, or 
ertain 
onstraints 
agged in the program through

annotations). This is quite similar to the domain �ltering proposed in Se
tion 7.

9 Con
lusions

We have dis
ussed te
hniques for visualizing program exe
ution and data evolution in CLP. The graphi
al

representations have been 
hosen based on the per
eived needs of a programmer trying to analyze the

behavior and 
hara
teristi
s of an exe
ution. We have proposed solutions for the representation of

program 
ontrol, the runtime values of the variables, and the runtime 
onstraints. In order to be able

to deal with large exe
utions, we have also dis
ussed abstra
tion te
hniques. The proposed visualization

solutions for visualizing 
ontrol, variables, and 
onstraints 
an be easily related, so that tools based on

them 
an be used together in a 
omplementary way. We have already implemented toolkits exemplifying


ombinations, su
h as the APT/VIFD 
ombination presented, whi
h we have found useful in pra
ti
e.

7

7

Complementary approa
hes are being explored within the DISCIPL proje
t by Cosyte
, INRIA and PrologIA.



84 APPIA-GULP-PRODE'98

Referen
es

[AM94℄ K. R. Apt and E. Mar
hiori. Reasoning about Prolog programs: from modes through types

to assertions. Formal Aspe
ts of Computing, 6(6):743{765, 1994.

[AS97℄ A. Aggoun and H. Simonis. Sear
h Tree Visualization. Te
hni
al Report D.WP1.1.M1.1-2,

COSYTEC, June 1997. In the ESPRIT LTR Proje
t 22352 DiSCiPl.

[BDD

+

97℄ F. Bueno, P. Deransart, W. Drabent, G. Ferrand, M. Hermenegildo, J. Maluszynski, and

G. Puebla. On the Role of Semanti
 Approximations in Validation and Diagnosis of Con-

straint Logi
 Programs. In Pro
. of the 3rd. Int'l Workshop on Automated Debugging{

AADEBUG'97, pages 155{170, Linkoping, Sweden, May 1997. U. of Linkoping Press.

[BDM97℄ R. Bae
ker, C. DiGiano, and A. Mar
us. Software Visualization for Debugging. Communi-


ations of the ACM, 40(4):44{54, April 1997.

[Byr80℄ L. Byrd. Understanding the Control Flow of Prolog Programs. In S.-A. T�arnlund, editor,

Workshop on Logi
 Programming, Debre
en, 1980.

[CGH93℄ M. Carro, L. G�omez, and M. Hermenegildo. Some Paradigms for Visualizing Parallel Exe-


ution of Logi
 Programs. In 1993 International Conferen
e on Logi
 Programming, pages

184{201. MIT Press, June 1993.

[DC93℄ Daniel Diaz and Philippe Codognet. A minimal extension of the WAM for 
lp(FD). In

David S. Warren, editor, Pro
eedings of the Tenth International Conferen
e on Logi
 Pro-

gramming, pages 774{790, Budapest, Hungary, 1993. The MIT Press.

[DN94℄ Mireille Du
ass�e and Ja
ques Noy�e. Logi
 Programming Environments: Dynami
 Program

Analysis and Debugging. The Journal of Logi
 Programming, 19 & 20:351{384, May 1994.

[DNTM89℄ W. Drabent, S. Nadjm-Tehrani, and J. Maluszynski. Algorithmi
 debugging with assertions.

In (H. Abramson and M.H.Rogers, editors, Meta-programming in Logi
 Programming, pages

501{522. MIT Press, 1989.

[Du
92℄ Mireille Du
ass�e. A General Query Me
hanism Based on Prolog. In M. Bruynooghe and

M. Wirsing, editors, International Symposium on Programming Language Implementation

and Logi
 Programming, PLILP'92, volume 631 of LNCS, pages 400{414. Springer-Verlag,

1992.

[EB88℄ M. Eisenstadt and M. Brayshaw. The Transparent Prolog Ma
hine (TPM): An Exe
ution

Model and Graphi
al Debugger for Logi
 Programming. Journal of Logi
 Programming,

5(4), 1988.

[Fab97℄ Massimo Fabris. CP Debugging Needs. Te
hni
al report, ICON s.r.l., April 1997. ESPRIT

LTR Proje
t 22352 DiSCiPl deliverable D.WP1.1.M1.1.

[Fer94℄ J.M. Fern�andez. Depura
i�on de
larativa para babel. Master's thesis, S
hool of Computer

S
ien
e, Te
hni
al University of Madrid, O
tober 1994. In Spanish.

[JM94℄ J. Ja�ar and M.J. Maher. Constraint Logi
 Programming: A Survey. Journal of Logi


Programming, 19/20:503{581, 1994.

[Kah96℄ K. Kahn. Drawing on Napkins, Video-game Animation, and Other ways to program Com-

puters. Communi
ations of the ACM, 39(8):49{59, August 1996.

[Lue97℄ A. L�opez Luengo. Apt: implementa
i�on de un visualizador gr�a�
o de la eje
u
i�on de progra-

mas l�ogi
os. Master's thesis, Te
hni
al University of Madrid, S
hool of Computer S
ien
e,

E-28660, Boadilla del Monte, Madrid, Spain, O
tober 1997. In Spanish.



Some Design Issues in the Visualization of Constraint Logi
 Program Exe
ution 85

[Mei96℄ M. Meier. Gra
e User Manual, 1996. Available at

http://www.e
r
.de/e
lipse/html/gra
e/gra
e.html.

[Mi
97℄ Sun Mi
rosystems. Animated Sorting Algorithms, 1997. Available at

http://java.sun.
om/applets/.

[MR91℄ U. Montanari and F. Rossi. True-
on
urren
y in Con
urrent Constraint Programming. In

V. Saraswat and K. Ueda, editors, Pro
eedings of the 1991 International Symposium on Logi


Programming, pages 694{716, San Diego, USA, 1991. The MIT Press.

[S
h97℄ Christian S
hulte. Oz explorer: A visual 
onstraint programming tool. In Lee Naish, editor,

ICLP'97. MIT Press, July 1997.

[Swe95℄ Swedish Institute of Computer S
ien
e, P.O. Box 1263, S-16313 Spanga, Sweden. Si
stus

Prolog V3.0 User's Manual, 1995.

[Ti
92℄ Evan Ti
k. Visualizing Parallel Logi
 Programming with VISTA. In International Confer-

en
e on Fifth Generation Computer Systems, pages 934{942. Tokio, ICOT, June 1992.



86 APPIA-GULP-PRODE'98


