
Abstract Correction of OBJ-like Programs ?

M. Alpuente1, D. Ballis2, S. Escobar1, M. Falaschi2, and S. Lucas1

1 DSIC, Universidad Politécnica de Valencia, Camino de Vera s/n, Apdo. 22012,
46071 Valencia, Spain. {alpuente,sescobar,slucas}@dsic.upv.es.

2 Dip. Matematica e Informatica, Via delle Scienze 206, 33100 Udine, Italy.
{demis,falaschi}@dimi.uniud.it.

Abstract. Debussy is an (abstract) declarative diagnosis tool for func-
tional programs which are written in OBJ style. The debugger does not
require the user to either provide error symptoms in advance or answer
any question concerning program correctness. In this paper, we formalize
an inductive learning methodology for repairing program bugs in OBJ-
like programs. Correct program rules are automatically synthesized from
examples which might be generated as an outcome by the Debussy di-
agnoser.

1 Introduction

This paper is motivated by the fact that the debugging support for functional
languages in current systems is poor [16], and there are no general purpose,
good semantics-based debugging tools available. Traditional debugging tools for
functional programming languages consist of tracers which help to display the
execution [6, 13, 14] but which do not enforce program correctness adequately as
they do not provide means for finding nor reparing bugs in the source code w.r.t.
the intended program semantics. This is particularly dramatic for equational
languages such as those in the OBJ family, which includes OBJ3, CafeOBJ and
Maude.

Abstract diagnosis of functional programs [2] is a declarative diagnosis frame-
work extending the methodology of [8], which relies on (an approximation of)
the immediate consequence operator TR, to identify bugs in functional programs.
Given the intended specification I of the semantics of a programR, the debugger
checks the correctness of R by a single step of the abstract immediate conse-
quence operator T κ

R, where the abstraction function κ stands for depth(k) cut
[8]. Then, by a simple static test, the system can determine all the rules which
are wrong w.r.t. a particular abstract property.

In this paper, we endow the functional debugging method of [2] with a bug-
correction program synthesis methodology which, after diagnosing the buggy

? This work has been partially supported by CICYT under grant TIC2001-2705-C03-
01, MCYT grants HA2001-0059, HI2000-0161 and by Generalitat Valenciana under
grant GR03/025.

program, tries to correct the erroneous components of the wrong code automat-
ically. The method uses unfolding in order to discriminate positive from nega-
tive examples (resp. uncovered and incorrect equations) which are automatically
produced as an outcome by the diagnoser. Informally, our correction procedure
works as follows. Starting from an overly general program (that is, a program
which covers all the positive examples as well as some negative ones), the algo-
rithm unfolds the program and deletes program rules until reaching a suitable
specialization of the original program which still covers all the positive examples
and does not cover any negative one. Both, the example generation and the top-
down correction processes, exploit some properties of the abstract interpretation
framework of [2] which they rely on. Let us emphasize that we do not require
any demanding condition on the class of the programs which we consider. This is
particularly convenient in this context, since it should be undesirable to require
strong properties, such as termination or confluence, to a buggy program which
is known to contain errors.

We would like to clarify the contributions of this paper w.r.t. [1], where a
different unfolding-based correction method was developed which applies to syn-
thetizing multiparadigm, functional-logic programs from a set of positive and
negative examples. First, the method for automatically generating the example
sets is totally new. In [1] (abstract) non-ground examples were computed as
the outcome of an abstract debugger based on the loop-check techniques of [3],
whereas now we compute (concrete) ground examples after a depth-k abstract
diagnosis phase [8] which is conceptually much simpler and allows us to compute
the example sets more efficiently. Regarding the top-down correction algorithm,
the one proposed in this paper significantly improves the method in [1]. We
have been able to devise an abstract technique for testing the “overgenerality”
applicability condition, which saves us from requiring program termination or
the slightly weaker condition of µ-termination (termination of context-sensitive
rewriting [11]). Finally, the new algorithm works for a much larger class of pro-
grams, since we do not even need confluence whereas [1] applies only to induc-
tively sequential programs or noetherian constructor systems (depending on the
lazy/eager narrowing strategy chosen).

The rest of the paper is organized as follows. Section 2 summarizes some
preliminary definitions and notations. Section 3 recalls the abstract diagnosis
framework for functional programs of [2]. Section 4 formalizes the correction
problem in this framework. Section 5 illustrates the example generation method-
ology. Section 6 presents the top-down correction method together with some
examples. Section 7 concludes.

2 Preliminaries

Term rewriting systems provide an adequate computational model for functional
languages. In this paper, we follow the standard framework of term rewriting (see
[4]). For simplicity, definitions are given in the one-sorted case. The extension
to many–sorted signatures is straightforward, see [15]. In the paper, syntactic

equality of terms is represented by ≡. By V we denote a countably infinite set of
variables and Σ denotes a set of function symbols, or signature, each of which
has a fixed associated arity. T (Σ,V) and T (Σ) denote the non-ground word (or
term) algebra and the word algebra built on Σ ∪V and Σ, respectively. T (Σ) is
usually called the Herbrand universe (HΣ) over Σ and will be simply denoted by
H. B denotes the Herbrand base, namely the set of all ground equations which
can be built with the elements of H. A Σ-equation s = t is a pair of terms
s, t ∈ T (Σ,V), or true.

Terms are viewed as labelled trees in the usual way. Positions are represented
by sequences of natural numbers denoting an access path in a term, where Λ
denotes the empty sequence. Given S ⊆ Σ∪V , OS(t) denotes the set of positions
of a term t which are rooted by symbols in S. t|u is the subterm at the position
u of t. t[r]u is the term t with the subterm at the position u replaced with r. By
Var(s) we denote the set of variables occurring in the syntactic object s, while
[s] denotes the set of ground instances of s. A fresh variable is a variable that
appears nowhere else.

A substitution is a mapping from the set of variables V into the set of terms
T (Σ,V). A substitution θ is more general than σ, denoted by θ ≤ σ, if σ = θγ for
some substitution γ. We write θ|̀s to denote the restriction of the substitution
θ to the set of variables in the syntactic object s. The empty substitution is
denoted by ε. A renaming is a substitution ρ for which there exists the inverse
ρ−1, such that ρρ−1 = ρ−1ρ = ε. An equation set E is unifiable, if there exists θ
such that, for all s = t in E, we have sθ ≡ tθ, and θ is called a unifier of E. We
let mgu(E) denote ’the’ most general unifier of the equation set E [12].

A term rewriting system (TRS for short) is a pair (Σ,R), where R is a finite
set of reduction (or rewrite) rules of the form λ → ρ, λ, ρ ∈ T (Σ,V), λ 6∈ V
and Var(ρ) ⊆ Var(λ). Term λ is called the left-hand side (lhs) of the rule and ρ
is called the right-hand side (rhs). We will often write just R instead of (Σ,R)
and call R the program. For TRS R, r << R denotes that r is a new variant of
a rule in R such that r contains only fresh variables. Given a TRS (Σ,R), we
assume that the signature Σ is partitioned into two disjoint sets Σ := C] D,
where D := {f | f(t1, . . . , tn) → r ∈ R} and C := Σ \ D. Symbols in C are
called constructors and symbols in D are called defined functions. The elements
of T (C,V) are called constructor terms, while elements in T (C) are called values.
A pattern is a term of the form f(d̄) where f/n ∈ D and d̄ is a n-tuple of
constructor terms. A TRS R is a constructor system (CS), if all lhs’s of R are
patterns. A TRS R is left-linear (LL), if no variable appears more than once in
the lhs of any rule of R.

A rewrite step is the application of a rewrite rule to an expression. A term
s rewrites to a term t via r << R, s →r t, if there exist u ∈ OΣ(s), r ≡ λ → ρ,
and substitution σ such that s|u ≡ λσ and t ≡ s[ρσ]u. We say that S := t0 →r0

t1 →r1
t2 . . . →rn−1

tn is a rewrite sequence from term t0 to term tn. When no
confusion can arise, we will omit any subscript (i.e. s → t). A term s is a normal
form, if there is no term t with s →R t. t is the normal form of s if s →∗

R t and

t is a normal form (in symbols s →!
R t). We say that a TRS R is terminating, if

there is no infinite rewrite sequence t1 →R t2 →R . . .
The narrowing mechanism is commonly applied to evaluate terms contain-

ing variables. Narrowing non-deterministically instantiates variables so that a

rewrite step is enabled. This is done by computing mgu’s. Formally, s
σ,p
;r t is

a narrowing step via r << R, if there exist p ∈ OΣ(s) and r ≡ λ → ρ such that
σ = mgu({λ = s|p}) and t ≡ s[ρ]pσ.

3 Denotation of functional programs

In this section we first recall the semantic framework introduced in [2]. We will
provide a finite/angelic relational semantics [9], given in fixpoint style, which as-
sociates an input-output relation to a program, while intermediate computation
steps are ignored. Then, we formulate an abstract semantics which approximates
the evaluation semantics of the program.

In order to formulate our semantics for term rewriting systems, the usual
Herbrand base is extended to the set of all (possibly) non-ground equations [10].
HV denotes the V-Herbrand universe which allows variables in its elements, and
is defined as T (Σ,V)/∼=, where ∼= is the equivalence relation induced by the
preorder ≤ of “relative generality” between terms, i.e. s ≤ t if there exists σ s.t.
t ≡ σ(s). For the sake of simplicity, the elements of HV (equivalence classes) have
the same representation as the elements of T (Σ,V) and are also called terms.
BV denotes the V-Herbrand base, namely, the set of all equations s = t modulo
variance, where s, t ∈ HV . A subset of BV is called a V-Herbrand interpretation.
We assume that the equations in the denotation are renamed apart. The ordering
≤ for terms is extended to equations in the obvious way, i.e. s = t ≤ s′ = t′ iff
there exists σ s.t. σ(s) = σ(t) ≡ s′ = t′.

3.1 Concrete semantics

The considered concrete domain E is the lattice of V-Herbrand interpretations,
i.e., the powerset of BV ordered by set inclusion.

In the sequel, a semantics for program R is a V-Herbrand interpretation.
Since in functional programming, programmers are generally concerned with
computing values (ground constructor normal forms), the semantics which is
usually considered is Semval(R) := {s = t | s →!

R t, t ∈ T (C)}. Sometimes, we
will call proof of equation s = t, a rewrite sequence from term s to value t.

Following [9], in order to formalize our evaluation semantics via fixpoint
computation, we consider the following immediate consequence operator.

Definition 1. [2] Let I be a Herbrand interpretation, R be a TRS. Then,

TR(I) = {t = t | t ∈ T (C)} ∪ {s = t | r = t ∈ I , s →R r}.

The following proposition is immediate.

Proposition 1. [2] Let R be a TRS. The TR operator is continuous on E.

Definition 2. [2] The least fixpoint semantics of a program R is defined as
F

val
(R) = TR ↑ ω.

Example 1. Suppose you toss a coin after having chosen one of its faces. If the
face revealed after the coin flip is the predicted one, you win a prize. The problem
can be modeled by the following specification I (written in OBJ-like syntax):

obj GAMESPEC is
sorts Nat Reward .

op 0 : -> Nat .
op s : Nat -> Nat .
op prize : -> Reward .
op sorry-no-prize : -> Reward .
op coinflip : Nat -> Reward .
op win? : Nat -> Reward .
var X : Nat .
eq coinflip(X) = win?(X) .
eq win?(s(s(X))) = sorry-no-prize .
eq win?(s(0)) = prize .
eq win?(0) = sorry-no-prize .

endo

Face values are expressed by naturals 0 and s(0); besides, specification I tells
us that we win the prize at stake (expressed by the constructor prize), if the
revealed face is s(0), while we get no prize whenever the revealed face is equal
to 0. The associated least fixpoint semantics is

F
val

(I) = { prize = prize, sorry-no-prize = sorry-no-prize,
win?(0) = sorry-no-prize, win?(s(0)) = prize,
win?(s(s(X)) = sorry-no-prize, coinflip(0) = sorry-no-prize,
coinflip(s(0)) = prize, coinflip(s(s(X)) = sorry-no-prize}.

The following result establishes the equivalence between the (fixpoint) se-
mantics computed by the TR operator and the evaluation semantics Sem

val
(R).

Theorem 1 (soundness and completeness). [2] Let R be a TRS. Then,
Semval(R) = F

val
(R).

3.2 Abstract semantics

Starting from the concrete fixpoint semantics of Definition 2, we give an ab-
stract semantics which approximates the concrete one by means of abstract
interpretation techniques. In particular, we will focus our attention on abstract
interpretations achieved by means of a depth(k) cut [8], which allows to finitely
approximate an infinite set of computed equations.

First of all we define a term abstraction as a function /k : (T (Σ,V),≤) →
(T (Σ,V ∪ V̂),≤) which cuts terms having a depth greater than k. Terms are cut
by replacing each subterm rooted at depth k with a new variable taken from
the set V̂ (disjoint from V). depth(k) terms represent each term obtained by
instantiating the variables of V̂ with terms built over V . Note that /k is finite.

We denote by T/k the set of depth(k) terms (T (Σ,V ∪ V̂)/k). We choose as
abstract domain A the set P({a = a′ | a, a′ ∈ T/k}) ordered by the Smyth’s
extension of ordering ≤ to sets, i.e. X ≤S Y iff ∀ y ∈ Y ∃ x ∈ X : x ≤ y. Thus,
we can lift the term abstraction /k to a Galois Insertion of A into E by defining

κ(E) := {s/k = t/k | s = t ∈ E}
γ(A) := {s = t | s/k = t/k ∈ A}

Now we can derive the optimal abstract version of TR simply as T κ
R :=

κ ◦ TR ◦ γ and define the abstract semantics of program R as the least fixpoint
of this (obviously) continuous operator, i.e. Fκ

val
(R) := T κ

R ↑ ω. Since /k is finite,
we are guaranteed to reach the fixpoint in a finite number of steps, that is,
there exists a finite natural number h such that T κ

R ↑ ω = T κ
R ↑ h. Abstract

interpretation theory assures that T κ
R ↑ ω is the best correct approximation of

Sem
val

(R). Correct means Fκ
val

(R) ≤S κ(Sem
val

(R)) and best means that it is
the maximum w.r.t. ≤S .

By the following proposition, we provide a simple and effective mechanism
to compute the abstract fixpoint semantics.

Proposition 2. [2] For k > 0, the operator T κ
R : T/k ×T/k → T/k ×T/k holds

the property T̃ κ
R(X) ≤S T κ

R(X) w.r.t. the following operator:

T̃ κ
R(X) = κ(B) ∪ {σ(u[l]p)/k = t | u = t ∈ X, p ∈ OΣ∪V(u),

l → r << R, σ = mgu(u|p, r)}

Definition 3. [2] The effective abstract least fixpoint semantics of a program R

is defined as F̃κ
val

(R) = T̃ κ
R ↑ ω.

Proposition 3 (Correctness). [2] Let R be a TRS and k > 0.

1. F̃κ
val

(R) ≤S κ(F
val

(R)) ≤S F
val

(R).

2. For every e ∈ F̃κ
val

(R) such that Var(e) ∩ V̂ = ∅, e ∈ F
val

(R).

Example 2. Consider again the specification in Example 1. Its effective abstract
least fixpoint semantics for κ = 3 (without considering symbol win?) becomes

F̃3
val

(I) = { prize = prize, sorry-no-prize = sorry-no-prize,
coinflip(0) = sorry-no-prize, coinflip(s(0)) = prize,
coinflip(s(s(X̂))) = sorry-no-prize}.

4 The Correction Problem

The problem of repairing a faulty functional program can be addressed by using
inductive learning techniques guided by appropriate examples. Roughly speak-
ing, given a wrong program and two example sets specifying positive (pursued)
and negative (not pursued) computations respectively, our correction scheme
aims at synthesizing a set of program rules that replaces the wrong ones in order
to deliver a corrected program which is “consistent” w.r.t. the example sets [5].
More formally, we can state the correction problem as follows.

Problem formalization. Let R be a TRS, I be the specification of the in-
tended semantics, E+ and E− be two finite sets of equations such that

E+ ⊆ Sem
val

(I) and E− ∩ (Sem
val

(R) \ Sem
val

(I)) 6= ∅.

The correction problem consists in constructing a TRS Rc satisfying the follow-
ing requirements

E+ ⊆ Semval(R
c) and E− ∩ Semval(R

c) = ∅.

Equations in E+ (resp. E−) are called positive (resp. negative) examples. The
TRS Rc is called correct program. Note that by construction positive and neg-
ative example sets are disjoint, which permits to drive the correction process
towards a discrimination between E+ and E−.

5 How to generate example sets automatically

Before giving a constructive method to derive a correct program, we present a
simple methodology for automatically generating example sets, so that the user
does not need to provide error symptoms, evidences or other kind of informa-
tion which would require a good knowledge of the program semantics that she
probably lacks.

In the following, we observe that we can easily compute “positive” equations,
i.e. equations which appear in the concrete evaluation semantics Semval(I), since

all equations in F̃κ
val

(I) not containing variables in V̂ belong to the concrete
evaluation semantics Semval(I), as stated in the following lemma.

Lemma 1. Let I be a TRS and EP := {e|e ∈ F̃κ
val

(I)∧Var(e)∩ V̂ = ∅}. Then,
EP ⊆ Semval(I).

Now, by exploiting the information in F̃κ
val

(I) and F̃κ
val

(R), we can also gen-
erate a set of “negative” equations which belong to the concrete evaluation se-
mantics Semval(R) of the wrong program R but not to the concrete evaluation
semantics Sem

val
(I) of the specification I.

Lemma 2. Let R be a TRS, I be a specification of the intended semantics
and EN := {e|e ∈ F̃κ

val
(R) ∧ Var(e) ∩ V̂ = ∅ ∧ F̃κ

val
(I) 6≤S {e}}. Then, EN ⊆

(Semval(R) \ Semval(I)).

Starting from sets EP and EN , we construct the positive and negative exam-
ple sets E+ and E− which we use for the correctness process, by considering the
restriction of EP and EN to examples of the form l = c where l is a pattern and
c is a value, i.e. a term formed only by constructor symbols and variables. The
motivation for this is twofold. On the one hand, it allows us to ensure correct-
ness of the correction algorithm without any further requirements on the class
of programs which we consider. On the other hand, by considering these “data”
examples, the inductive process becomes independent from the extra auxiliary

functions which might appear in I, since we start synthesizing directly from data
structures.

The sets E+ and E− are defined as follows.

E+ = {l = c | f(t1, . . . , tn) = c ∈ EP ∧ f(t1, . . . , tn) ≡ l is a pattern ∧
∧ c ∈ T (C) ∧ f ∈ ΣR}

E− = {l = c | l = c ∈ EN ∧ l is a pattern ∧ c ∈ T (C)}

where ΣR is the signature of program R.
In the sequel, the function which computes the sets E+ and E−, according

to the above description, is called ExampleGeneration(R, I).

6 Program correction via example-guided unfolding

In this section we present a basic top-down correction method which is based on
the so-called example-guided unfolding [5], which is able to specialize a program
by applying unfolding and deletion of program rules until coming up with a
correction. The top-down correction process is “guided” by the examples, in the
sense that transformation steps focus on discriminating positive from negative
examples. The accuracy of the correction improves as the number of positive
and negative examples increase as it is common to the learning from examples
approach.

In order to successfully apply the method, the semantics of the program to be
specialized must include the positive example set E+ (that is, E+ ⊆ Semval(R)).
Programs satisfying this condition are called overly general (w.r.t. E+).

The over-generality condition is not generally decidable, as we do not impose
program termination [1]. Fortunately, when we consider the abstract semantics
framework of [2] we are able to ascertain a useful sufficient condition to decide
whether a program is overly general, even if it does not terminate. The following
proposition formalizes our method.

Proposition 4. Let R be a TRS and E+ be a set of positive examples. If, for
each e ∈ E+, there exists e′ ∈ F̃κ

val
(R) s.t. (1) e′ ≤ e and (2) Var(e′) ∩ V̂ = ∅;

then, R is overly general w.r.t. E+.

Now, by exploiting Proposition 4, it is not difficult to figure out a procedure
OverlyGeneral(R, E) testing this condition w.r.t. a program R and a set of
examples E, e.g. a boolean function returning true if program R is overly general
w.r.t. E and false otherwise.

6.1 The unfolding operator

Informally, unfolding a program R w.r.t. a rule r delivers a new specialized
version of R in which the rule r is replaced with new rules obtained from r by
performing a narrowing step on the rhs of r.

The following definition is auxiliary.

Definition 4. Let t ∈ τ(Σ ∪V) and ⊥ be a symbol not in Σ. The skeleton of t,
in symbols skel(t), is defined as follows (i) skel(t) = f(skel(t1), . . . , skel(tn)), if
t ≡ f(t1, . . . , tn) and f ∈ D; (ii) skel(t) = ⊥ otherwise.

Given a term t, we define the set of its top positions as TOΣ(t) = OΣ(skel(t)).
In other words, those positions p in t pointing to a defined function symbol such
that there is no constructor symbol occurring above p in t.

Example 3. Consider the standard definition of natural numbers given in Peano’s
syntax. Then, TOΣ(+(+(X, Y), s(+(X, Y)))) = {Λ, 1}.

Definition 5. Given two rules r1 ≡ λ1 → ρ1 and r2, we define the rule unfold-

ing of r1 w.r.t. r2 as Ur2
(r1) = {λ1σ → ρ′ | ρ1

σ,p
;r2

ρ′, p ∈ TOΣ(ρ1)}.

Definition 6. Given a TRS R and a rule r << R, we define the program un-
folding of r w.r.t. R as follows UR(r) =

(
R∪

⋃
r′∈R Ur′(r)

)
\ {r}.

Note that, by Definition 6, for any TRS R and rule r << R, r is never in UR(r).

Definition 7. Let R be a TRS, r be a rule in R. The rule r is unfoldable w.r.t.
R if UR(r) 6= R \ {r}.

The “transformed” semantics, obtained after applying the unfolding operator
to a given left-linear constructor system R still contains the semantics of R, as
stated in the following theorem.

Theorem 2 (unfolding correctness). Let R be a left-linear CS, r << R be
an unfoldable rule and R′ = UR(r). Let e ≡ (l = c) be an equation such that
l ∈ T (Σ,V) and c ∈ T (C). Then, if e ∈ Sem

val
(R), then e ∈ Sem

val
(R′).

6.2 The top-down correction algorithm

Basically, the idea behind the basic correction algorithm is to eliminate rules
from the program in order to get rid of the negative examples without losing the
derivations for the positive ones. Clearly, this cannot be done by näıvely remov-
ing program rules, since sometimes a rule is used to prove both a positive and a
negative example. So, before applying deletion, we need to specialize programs
in order to ensure that the deletion phase only affects those program rules which
are not necessary for proving the positive examples. This specialization process
is carried out by means of the unfolding operator of Definition 6. Considering
this operator for specialization purposes has important advantages. First, posi-
tive examples are not lost by repeatedly applying the unfolding operator, since
unfolding preserves the proper semantics (see Theorem 2). Moreover, the nature
of unfolding is to “compile” rewrite steps into the program, which allows us to
shorten and distinguish the rewrite rules which occur in the proofs of the positive
and negative examples.

Figure 1 shows the correction algorithm, called TDCorrector, which takes
as input a program R and a specification of the intended semantics I, also

procedure TDCorrector(R, I)
(E+, E−)← ExampleGeneration(R,I)
if not OverlyGeneral(R,E+) then Halt

k ← 0; Rk ←R
while ∃ e− ∈ E− : eFκ

val(Rk) ≤S {e
−} do

if ∃ r ∈ Rk s.t. r is unfoldable and r ∈ First(E+) then

Rk+1 ← URk
(r); k ← k + 1

else Halt

end if

for each r ∈ Rk do

if OverlyGeneral(Rk\{r}, E
+) then Rk←Rk\{r}

end for

end while

end procedure

Fig. 1. The top-down correction algorithm.

expressed as a program. First, TDCorrector computes the example sets E+

and E− by means of ExampleGeneration, following the method presented
in Section 5. Then, it checks whether program R is overly general following the
scheme of Proposition 4, and finally it enters the main correction process.

This last phase consists of a main loop, in which we perform an unfolding step
followed by a rule deletion until no negative example is covered (approximated)
by the abstract semantics of the current transformed program Rn. This amounts
to saying that no negative example belongs to the concrete semantics of Rn.
We note that the while loop guard is decidable, as the abstract semantics is
finitely computable. Note the deep difference w.r.t. the algorithm of [1], where
decidability is ensured by requiring both confluence and (µ-termination) of the
program.

During the unfolding phase, we select a rule upon which performing a pro-
gram unfolding step. In order to specialize the program w.r.t. the example sets,
we pick up an unfoldable rule which occurs in some proof of a positive exam-
ple. More precisely, we choose a rule which appears first in a proof of a positive
example, i.e. e ∈ First(E+), where function First is formally defined as follows.

Definition 8. Let R be a TRS and E be an example set. Then, we define

First(E) :=
⋃

e∈E

{r | e ∈ T̃ κ
{r}(F̃

κ
val

(R))}.

Once unfolding has been accomplished, we proceed to remove the “redundant”
rules, that is, all the rules which are not needed to prove the positive example set
E+. This can be done by repeatedly testing the overgenerality of the specialized
program w.r.t. E+ and removing one rule at each iteration of the inner for loop.
Roughly speaking, if program Rk \ {r} is overly general w.r.t. E+, then rule r
can be safely eliminated without losing E+. Then, we can repeat the test on
another rule. Let us consider the coin-flip game to illustrate our algorithm.

Example 4. The following OBJ program R is wrong w.r.t. the specification I of
Example 1.

obj GAME is
sorts Nat Reward .

op 0 : -> Nat .
op s : Nat -> Nat .
op prize : -> Reward .
op sorry-no-prize : -> Reward .
op coinflip : Nat -> Reward .
var X : Nat .
eq coinflip(s(X)) = coinflip(X) . (1)
eq coinflip(0) = prize . (2)
eq coinflip(0) = sorry-no-prize . (3)

endo

Note that program R is non-confluent and computes both values prize and
sorry-no-prize for any natural sn(0), n > 0. By fixing κ = 3, we get the
following effective least fixpoint abstract semantics for R.

F̃3
val

(R) = { prize = prize, sorry-no-prize = sorry-no-prize,
coinflip(0) = prize, coinflip(0) = sorry-no-prize,
coinflip(s(0)) = prize, coinflip(s(0)) = sorry-no-prize,
coinflip(s(s(X̂))) = prize, coinflip(s(s(X̂))) = sorry-no-prize}.

Cosidering the abstract fixpoint semantics F̃3
val

(I) computed in Example 2 and
following the methodology of Section 5, we obtain the example sets below:

E+ = {coinflip(s(0)) = prize, coinflip(0) = sorry-no-prize}
E− = {coinflip(s(0)) = sorry-no-prize, coinflip(0) = prize}.

Now, since program R fulfills the condition for overgenerality expressed by
Proposition 4, the algorithm proceeds and enters the main loop. Here, pro-
gram rule (1) is unfolded, because (1) is unfoldable and is in First(E+). So,
the transformed program is

eq coinflip(s(s(X))) = coinflip(X) . (4)
eq coinflip(s(0)) = prize . (5)
eq coinflip(s(0)) = sorry-no-prize . (6)
eq coinflip(0) = prize . (7)
eq coinflip(0) = sorry-no-prize . (8)

Subsequently, a deletion phase is executed in order to check whether there are
rules not needed to cover the positive example set E+. The algorithm discovers
that rules (4), (6), (7) are not necessary, and therefore are removed producing
the correct program which consists of rules (5) and (8).

7 Conclusions

In this paper, we have proposed an example-guided methodology for synthesizing
(partially) correct functional programs written in OBJ style, which complements
the diagnosis method which was developed previously in [2]. Specifications of the
intended semantics, expressed as programs, are used to carry out the diagnosis

as well as the correction. This is not only a common practice in logic as well as
equational (or term rewriting) languages, but also in functional programming
(e.g. QuickCheck [7]).

We want to point out that this method is not comparable to [1] as it is
lower-cost and it works for a much wider class of TRSs. In particular, it is
able to repair non-confluent programs. This is not only theoretically more chal-
lenging, but also convenient in our framework, where it is not reasonable to
expect that confluence holds for an erroneous program (even if program con-
fluence was in the programmer’s intention). We are currently extending the
prototypical implementation of the diagnosis system Debussy [2] (available at
http://www.dsic.upv.es/users/elp/soft.html) with a correction tool which is
based on the proposed abstract correction methodology, and use it for an exper-
imental evaluation of the system.

References

1. M. Alpuente, D. Ballis, F. J. Correa, and M. Falaschi. Automated Correction of
Functional Logic Programs. In Proc. of ESOP 2003, vol. 2618 of LNAI, 2003.

2. M. Alpuente, M. Comini, S. Escobar, M. Falaschi, and S. Lucas. Abstract Diagnosis
of Functional Programs. In Proc. of LOPSTR’02, Springer LNCS, 2003.

3. M. Alpuente, M. Falaschi, and F. Manzo. Analyses of Unsatisfiability for Equa-
tional Logic Programming. JLP, 22(3):221–252, 1995.

4. F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University
Press, 1998.

5. H. Bostrom and P. Idestam-Alquist. Induction of Logic Programs by Example–
guided Unfolding. JLP, 40:159–183, 1999.

6. O. Chitil, C. Runciman, and M. Wallace. Freja, Hat and Hood - A Compar-
ative Evaluation of Three Systems for Tracing and Debugging Lazy Functional
Programs. In Proc. of IFL 2000, pages 176–193. Springer LNCS 2011, 2001.

7. K. Claessen and J. Hughes. QuickCheck: A Lightweight Tool for Random Testing
of Haskell Programs. In Proc. of ICFP’00, 35(9):268–279, 2000.

8. M. Comini, G. Levi, M. C. Meo, and G. Vitiello. Abstract diagnosis. JLP, 39(1-
3):43–93, 1999.

9. P. Cousot. Constructive Design of a Hierarchy of Semantics of a Transition System
by Abstract Interpretation. TCS, 277(1-2):47–103, 2002.

10. M. Falaschi, G. Levi, M. Martelli, and C. Palamidessi. Declarative Modeling of
the Operational Behavior of Logic Languages. TCS, 69(3):289–318, 1989.

11. S. Lucas. Termination of (Canonical) Context-Sensitive Rewriting. In Proc.

RTA’02, pages 296–310. Springer LNCS 2378, 2002.
12. M. J. Maher. Equivalences of Logic Programs. In Foundations of Deductive

Databases and Logic Programming, pages 627–658. Morgan Kaufmann, 1988.
13. H. Nilsson. How to look busy while being as lazy as ever. JFP, 11(6):629–671,

2001.
14. J. T. O’Donell and C. V. Hall. Debugging in Applicative Languages. Lisp and

Symbolic Computation, 1(2):113–145, 1988.
15. P. Padawitz. Computing in Horn Clause Theories, volume 16 of EATCS Mono-

graphs on Theoretical Computer Science. Springer-Verlag,1988.
16. P. Wadler. Functional Programming: An angry half-dozen. ACM SIGPLAN No-

tices, 33(2):25–30, 1998.

