
Parsing with Non-Deterministi
 Fun
tions

Rafael Caballero Rold�an, Fran
is
o J. L�opez Fraguas

Abstra
t

Parsing has been a traditional workben
h for showing the virtues of de
larative

programming. Both logi
 and fun
tional programming
laim the ability of writing

parsers in a natural and
on
ise way. We address here the task from a fun
tional-

logi
 perspe
tive. By modeling parsers as non-deterministi
 fun
tions we a
hieve a

very natural manner of building parsers, whi
h
ombines the ni
est properties of the

fun
tional and logi
 approa
hes. In parti
ular, we are able to easily de�ne within

our framework parsers in a style very
lose to the `monadi
 parsers' of fun
tional

programming, but using simpler
on
epts.

Keywords: parsing, fun
tional-logi
 programming, non-deterministi
 fun
-

tions.

1 Introdu
tion

The problem of syntax analysis or parsing has been one of the most thoroughly studied

issues in
omputer s
ien
e (see e.g. [ASU86℄). Its wide range of appli
ations, from

ompilers development to natural languages re
ognition, is enough to attra
t the attention

of any programming approa
h. This has been also the
ase for logi
 programming (LP, in

short) and fun
tional programming (FP, in short), and the parsing problem
onstitutes

in fa
t one of the favorite �elds for exhibiting the virtues of de
larative programming.

Language pro
essing has been very related to LP sin
e its origins. There is a more or

less standard approa
h [War80, CH87, SS86℄ to the
onstru
tion of parsers in LP, whi
h

is based on a spe
i�
 representation for grammars, the so-
alled De�nite Clause Gram-

mars (DCG's) [PW80, SS86℄. DCG's are not logi
 programs, although they are readily

translated to them. With DCG's, one
an hide the details of handling the input string to

be parsed, whi
h is passed from parser to parser using the Prolog te
hnique of di�eren
e

lists [SS86℄. Parsing in LP bene�ts from the expressive power of non-determinism and

uni�
ation. We
an mention:

� The ability to
ope almost trivially with non-deterministi
 grammar spe
i�
ations, as

the multiple
hoi
e BNF
onstru
tion `j'. The built-in ba
ktra
king me
hanism will take

harge of the sear
h for a su

essful result. Also, multiple solutions are automati
ally

provided where possible (e.g. ambiguous grammars).

� The skill in representing
ontext sensitive languages.

Departamento de Sistemas Inform�ati
os y Programa
i�on, Universidad Complutense de Madrid.

e-mail: rafa
r�eu
mos.sim.u
m.es, fraguas�eu
max.sim.u
m.es

Work partially supported by the Spanish CICYT (proje
t TIC 95-0433-C03-01 "CPD") and the

ESPRIT Working Group 22457 (CCL-II).

87

88 APPIA-GULP-PRODE'98

� Simple
onstru
tion of output representations, using pattern-mat
hing and logi
al vari-

ables. The representation or translated
ode is
arried out expli
itly by using an in-

put/output extra argument.

� Multiple modes of use: parsers may be used not only as re
ognizers but also as gener-

ators of senten
es.

The most popular approa
h to writing parsers in FP is that of parser
ombinators

[Wad85, Hut92, Fok95℄. That is, parsers - starting from a set of basi
 ones { may be

ombined through
arefully de�ned HO fun
tions (the
ombinators) yielding new useful

parsers. In the Haskell [HAS97℄
ommunity,
ombinator parsing has derived re
ently into

so-
alled monadi
 parsing [Wad90, Wad95, HM97℄.

Parsing with FP bene�ts of the power of types, fun
tional notation and HO fun
tions

for writing
lear, well-stru
tured programs. As more
on
rete advantages we
an mention:

� Parser
ombinators provide an in
remental point of view of the
ompiler
onstru
tion.

� HO
ombinators provide the ability of expressing BNF extensions, su
h as the repetitive

appli
ation of the same parser zero or more times, whi
h
an not be expressed so
leanly

in the LP setting.

� The use of monads, spe
ially in
ombination with the do notation [Lau93, HM97℄ gives

a very appealing stru
ture to the parsers built up.

Many e�orts have been done in the last de
ade in order to integrate LP and FP

into a single paradigm, fun
tional-logi
 programming (FLP in short, see [Han94℄ for a

survey). As any other paradigm, FLP should develop its own programming te
hniques

and methodologies, but little has been done from this point of view. We address here the

problem of developing FLP parsers in a systemati
 way, trying to answer the question:

an FLP
ontribute signi�
antly by itself (not just mimi
king LP or FP) to the task

of writing parsers? This work should be then better understood as a
ontribution to

FLP methodology, rather than from the perspe
tive of
ompiler
onstru
tion or parsing

theory.

We sti
k to a parti
ular view of FLP whose
ore notion is that of non-deterministi

fun
tion. A framework for su
h approa
h was given in [GH+96℄, and later on extended

to
ope with higher-order features [GHR97℄, and polymorphi
 algebrai
 types in [AR97℄.

The rest of the paper is organized as follows. In the next se
tion we will brie
y des
ribe

the spe
i�
 fun
tional-logi
 language we are going to use: T OY [CLS97℄. Se
tion 3

presents a simpli�ed format of our parsers { parsers as re
ognizers { whose only mission

is to re
ognize valid senten
es of the language de�ned by a grammar. These simple

parsers serve to present the main ideas of our approa
h and make
lear the di�eren
es

with respe
t to the LP and FP
ases. In Se
tion 4 we dis
uss how to enhan
e parsers

for obtaining, as a side produ
t of re
ognizing a senten
e, a suitable representation of it.

We will arrive at this point to a style of writing parsers very
lose to the `monadi
' style

and the `do' notation of FP, but using mu
h simpler
onstru
ts and without the need of

any extra synta
ti
 support. Finally, Se
tion 5 summarizes some
on
lusions.

2 A su

in
t des
ription of T OY

All the programs in the next se
tions are written in the fun
tional-logi
 language T OY.

We present here the subset of the language relevant to this work. A more
omplete

Parsing with Non-Deterministi
 Fun
tions 89

des
ription and a number of representative examples
an be found in [CLS97℄.

A T OY program
onsists of datatype, type alias and in�x operator de�nitions, and

rules for de�ning fun
tions. Syntax is mostly borrowed from Haskell [HAS97℄ (with the

remarkable ex
eption that variables begin with upper-
ase letters whereas
onstru
tor

symbols use lower-
ase, as fun
tion symbols do). In parti
ular, fun
tions are
urried and

the usual
onventions about asso
iativity of appli
ation hold.

Datatype de�nitions like data nat = zero j su
 nat, de�ne new (possibly polymorphi
)

onstru
ted types and determine a set of data
onstru
tors for ea
h type. The set of all

data
onstru
tor symbols will be noted as CS (CS

n

for all
onstru
tors of arity n).

Types �; �

0

; : : :
an be
onstru
ted types, tuples (�

1

; : : : ; �

n

), or fun
tional types of the

form � ! �

0

. As usual, ! asso
iates to the right. T OY provides prede�ned types

su
h as [A℄ (the type of polymorphi
 lists, for whi
h Prolog notation is used), bool (with

onstants true and false), int for integer numbers, or
har (with
onstants 'a','b', . . .).

Type alias de�nitions like type parser re
 A = [A℄ ! [A℄ are also allowed. Type alias are

simply abbreviations, but they are useful for writing more readable, self-do
umenting

programs. Strings (for whi
h we have the de�nition type string = [
har℄)
an also be

written with double quotes. For instan
e, "sugar" is the same as ['s','u','g','a','r'℄.

The purpose of a T OY program is to de�ne a set FS of fun
tions. Ea
h f 2 FS

omes with a given program arity whi
h expresses the number of arguments that must

be given to f in order to make it redu
ible. We use FS

n

for the set of fun
tion symbols

with program arity n. Ea
h f 2 FS

n

has an asso
iated prin
ipal type of the form

�

1

! : : : ! �

m

! � (where � does not
ontain !). Number m is
alled the type arity

of f and well-typedness implies that m � n. As usual in fun
tional programming, types

are inferred and, optionally,
an be de
lared in the program.

With the symbols in CS; FS, together with a set of variables X; Y; : : :, we form more

omplex expressions. We distinguish two important synta
ti
 domains: expressions and

patterns. Expressions are of the form e ::= X j
 j f j (e

1

; : : : ; e

n

) j (e e

0

), where

 2 CS , f 2 FS . As usual, appli
ation asso
iates to the left and parentheses
an be

omitted a

ordingly. Therefore e e

1

: : : e

n

is the same as (: : : ((e e

1

) e

2

) : : :) e

n

). Of

ourse expressions are assumed to be well-typed. First order patterns are a spe
ial kind

of expressions whi
h
an be understood as denoting data values, i.e. values not subje
t to

further evaluation, in
ontrast with expressions, whi
h
an be possibly redu
ed by means

of the rules of the program. Patterns t; s; : : : are de�ned by t ::= X j (t

1

; : : : ; t

n

) j
 t

1

: : : t

n

,

where
 2 CS

n

.

Ea
h fun
tion f 2 FS

n

is de�ned by a set of
onditional rules of the form

f t

1

: : : t

n

= e (= e

1

== e

0

1

; : : : ; e

k

== e

0

k

where (t

1

: : : t

n

) form a tuple of linear (i.e., with no repeated variable) patterns, and e; e

i

; e

0

i

are expressions. No other
onditions (ex
ept well-typedness) are imposed to fun
tion

de�nitions. Rules have a
onditional reading: f t

1

: : : t

n

an be redu
ed to e if all the

onditions e

1

== e

0

1

; : : : ; e

k

== e

0

k

are satis�ed. The
ondition part is omitted if k = 0.

The symbol == stands for stri
t equality, whi
h is the suitable notion (see e.g.

[Han94℄) for equality when non-stri
t fun
tions are
onsidered. With this notion a
on-

dition e == e'
an be read as: e and e'
an be redu
ed to the same pattern. When used

in the
ondition of a rule, == is better understood as a
onstraint (if it is not satis�-

able, the
omputation fails), but the language
ontemplates also another use of == as a

90 APPIA-GULP-PRODE'98

fun
tion, returning the value true in the
ase des
ribed above, but false when a
lash of

onstru
tors is dete
ted while redu
ing both sides

As a synta
ti
 fa
ility, T OY allows repeating variables in the head of rules, but in

this
ase repetitions are removed by introdu
ing new variables and stri
t equations in the

ondition of the rule. As an example, the rule f X X = 0 would be transformed into f X

Y = 0 (= X == Y.

In addition to ==, T OY in
orporates other prede�ned fun
tions like the arithmeti

fun
tions +,*, . . . , or the fun
tions if then and if then else, for whi
h the more usual

syntax if then and if then else is allowed. Symbols ==,+,* are all examples of

in�x operators. New operators
an be de�ned in T OY by means of in�x de
larations, like

in�xr 50 ++ whi
h introdu
es ++ (used for list
on
atenation, with standard de�nition)

as a right asso
iative operator with priority 50. Operators for data
onstru
tors must

begin with ':', like in the de
laration in�x 40 :=. Se
tions, or partial appli
ations of in�x

operators, like (==3) or (3==) are also allowed.

A distinguished feature of T OY, heavily used along this paper, is that no
on
u-

en
e properties are required for the programs, and therefore fun
tions
an be non-

deterministi
, i.e. return several values for given (even ground) arguments. For ex-

ample, the rules
oin = 0 and
oin = 1
onstitute a valid de�nition for the 0-ary

non-deterministi
 fun
tion
oin. A possible redu
tion of
oin would lead to the value 0,

but there is another one giving the value 1. The system would perform �rst the �rst one,

but if ba
ktra
king is required by a later failure or by request of the user, the se
ond

one would be tried. Another way of introdu
ing non-determinism in the de�nition of a

fun
tion is by putting extra variables in the right side of the rules, like in z list = [0jL℄.

Any list of integers starting by 0 is a possible value of z list. But note that in this
ase

only one redu
tion is possible.

Our language adopts the so
alled
all-time
hoi
e semanti
s for non-deterministi

fun
tions, following [Hus93, GH+96℄. Call-time
hoi
e has the following intuitive mean-

ing: given a fun
tion
all (f e

1

. . . e

n

), one
hooses some �xed value for ea
h of the e

i

before applying the rules for f. As an example, if we
onsider the fun
tion double X =

X+X, then the expression (double
oin)
an be redu
ed to 0 and 2, but not to 1. As it

is shown in [GH+96℄,
all-time
hoi
e is perfe
tly
ompatible with non-stri
t semanti
s

and lazy evaluation, provided sharing is performed for all the o

urren
es of a variable

in the right-hand side of a rule.

Computing in T OY means solving goals, whi
h take the form e

1

== e

0

1

; : : : ; e

k

== e

0

k

,

giving as result a substitution for the variables in the goal making it true. Evaluation of

expressions (required for solving the
onditions) is done by a variant of lazy narrowing

based on the so-
alled demand driven strategy (see [LLR93℄). With respe
t to higher-order

fun
tions, a �rst order translation following [Gon93℄ is performed.

3 Parsers as re
ognizers

In this se
tion we present a �rst simpli�ed approa
h to our fun
tional-logi
al parsers.

The fun
tions we are going to de�ne represent synta
ti
 analyzers, that is, they re
ognize

whether a senten
e belongs to a formal language or not, without performing any addi-

tional task. In later se
tions we will enhan
e their possibilities, retrieving representations

whenever the senten
e is su

essfully parsed.

Fun
tional-logi
 parsers take as input parameter a list of terminal symbols, represent-

Parsing with Non-Deterministi
 Fun
tions 91

ing a possible senten
e of the language. If some pre�x of the list is su

essfully parsed,

the rest of the list is returned as output value. Otherwise the parser fails, enfor
ing

ba
ktra
king whether possible alternatives remain unused. Therefore, the type of our

�rst parsers is:

type parser re
 A = [A℄ ! [A℄

that is, parsers as re
ognizers take a list of type A and return also a list of type A, A

standing for
har in most of the examples in this paper. To parse a senten
e S through

a parser P, we must try the goal P S == [℄, whi
h su

eeds if P parses su

essfully the

whole senten
e S.

In the following paragraphs the basi

omponents of the fun
tional-logi
 parsers as

re
ognizers are de�ned, and a number of examples are in
luded to illustrate their
hara
-

teristi
s. The names of these
omponents are partially borrowed from the literature on

FP parsers, mainly those des
ribed in [Fok95℄.

Basi
 Parsers. We begin by de�ning the simplest parser: the empty parser, whi
h

just re
ognizes the empty word. This word is pre�x of every senten
e in any formal

language, and therefore empty always su

eeds, remaining the input list una�e
ted as

output value.

empty :: parser re
 A

empty L = L

The next fun
tion takes a terminal symbol T and returns the parser that re
ognizes T

if it is in the head of the input list, failing otherwise:

terminal:: A ! parser re
 A

terminal T [TjL℄ = L

The output value is the rest of the list, dis
arding the re
ognized symbol T.

Sometimes it is desirable to re
ognize not a �xed symbol, but any one ful�lling a given

property P. Fun
tion satisfy a

omplishes this aim:

satisfy:: (A ! bool) ! parser re
 A

satisfy P [XjL℄ = if P X then L

For example, the parser digit = satisfy is digit re
ognizes every string whose �rst
hara
ter

is in the set f'0',...,'9'g. Fun
tion terminal appears now as a spe
ialization of satisfy,

regarding the alternative de�nition: terminal X = satisfy (X==).

Parser Combinators. We have already de�ned the basi
 pie
es we will use to build

our parsers. What is needed now, in order to join the basi
 parsers in di�erent ways,

is a set of parser
ombinators. A parser
ombinator is a higher-order fun
tion whi
h

takes parsers as input parameters and returns a new parser as output value. The two

main parser
ombinators we are going to de�ne are the alternative and the sequen
e

ombinators.

The non-deterministi
 fun
tion `<j>', whi
h we
all the alternative
ombinator,
ap-

tures the non-deterministi
 essen
e of BNF representations, and
orresponds to the BNF

onstru
tion `j'.

92 APPIA-GULP-PRODE'98

in�xr 10 < j>

(<j>):: parser re
 A ! parser re
 A ! parser re
 A

(P1 <j>P2) L = P1 L

(P1 <j>P2) L = P2 L

The �rst
hoi
e of the in�x operator <j> is its �rst parameter P1. Later, if the parsing

pro
ess fails or more solutions are requested by the user, the parser P2 will be sele
ted

using ba
ktra
king. Indeed, the operator <j>
an be avoided using di�erent rules for

ea
h alternative, i.e. instead of P = P1 <j>P2 we
ould write two rules for P, namely

P = P1 and P = P2. At this point of the dis
ussion both options may be regarded as

equivalent, although we will see soon that they are not exa
tly the same.

The sequen
e
ombinator <�> introdu
es the
onse
utive appli
ation of two parsers:

in�xr 20 <�>

(<�>):: parser re
 A ! parser re
 A ! parser re
 A

(P1 <�> P2) L = P2 O1 (= P1 L == O1

The use of the stri
t equality in the
ondition P1 L == O1 ensures that the appli
ation

of the �rst parser P1 to the input L will be fully evaluated before applying the se
ond

parser P2 to the resulting output O1. The in�x de
larations previous to the de�nitions

of <�> and <j> �x their priorities as to minimize parentheses when
ombining them,

and establish that both operators asso
iate to the right. Thus we may
ombine easily

the two
ombinators, de�ning for instan
e the parser

palin = empty < j> a < j> b < j> a <�> palin <�> a < j> b <�> palin <�> b

where a, b are de�ned as a = terminal 'a' and b = terminal 'b', respe
tively. This parser

re
ognizes the language of the palindrome words over the alphabet � = fa; bg. Using

this parser we may try the goal palin "abbababba" == [℄ whi
h retrieves the answer yes

meaning that the senten
e belongs to the language, while the goal palin "abb" == [℄

fails be
ause abb is not a palindrome.

Parsers as generators. Owing to the possibility of in
luding logi
 variables in goals,

FLP parsers may be regarded as generators as well as re
ognizers. For example, the goal

palin [X,Y℄ == [℄ `asks' for senten
es of length two in the language re
ognized by palin.

Two answers are retrieved, namely X='a', Y='a' and X='b', Y='b', meaning that "aa"

and "bb" are the only words of length two in this language.

More higher-order parser
ombinators. To in
rease the expressiveness of the

parsers, the extended BNF
onstru
tion fPg representing zero or more repetitions of the

same parser P, may be de�ned. We
all it the star of the parser P :

star:: parser re
 A ! parser re
 A

star P = P <�> (star P) < j> empty

For example we may de�ne an identi�er as a letter followed by a sequen
e of zero or more

letters and digits: identi�er = satisfy is letter <�> star (satisfy is letter <j>satisfy is digit)

assuming a suitable de�nition of is letter.

Despite the simple and natural de�nition of star, it
ontains one remarkable subtlety.

Consider the following two rules de�ning the non-deterministi
 parser ab:

ab = terminal 'a' ab = terminal 'b'

Parsing with Non-Deterministi
 Fun
tions 93

if sent = terminals "if "<�>
ondition<�> terminals " then "

<�> number <�> terminals " else " <�> number

ondition = number <�> operator <�> number

operator = (terminal '<') < j> (terminal '>') < j>

(terminals ">=") < j> (terminals "<=")

Figure 1: Parser for simple if senten
es.

that is, parser ab re
ognizes either one letter a or one letter b. Thus, the parser star ab

should re
ognize any sequen
e of a's and b's. But if we try the simple goal (star ab) "ab"

== [℄ the answer returned is no. This surprising behaviour is due to the two o

urren
es

of the variable P in the body of star and it is related to the `
all-time
hoi
e' semanti
s

adopted for non-deterministi
 fun
tions. Spe
i�
ally, if ab takes any value, either terminal

'a' or terminal 'b', `
all-time
hoi
e' �xes the same value for all the o

urren
es of ab in

the
omputation of star ab. Hen
e, the parser star ab only
an re
ognize senten
es of the

form aaa... or bbb....

The problem disappears if we use the operator <j> in the de�nition of ab:

ab = terminal 'a' < j> terminal 'b'

Now the
omputed value of ab is neither terminal 'a' nor terminal 'b' as before, but the

irredu
ible expression terminal 'a' <j> terminal 'b'. The de�nition of <j> explains this

fa
t: the operator needs an extra parameter (i.e. the input senten
e) before sele
ting

any of its arguments Thus, the non-deteministi

hoi
e is delayed and the repetition

of the variable P in the body of star implies no more troubles. Consequently, whenever

we want to use the
ombinator star, parsers must rely on the fun
tion <j> to handle

non-determinism, instead of de�ning di�erent rules for the same non-terminal.

Sometimes is useful to represent the repetition of a given parser one or more times

instead of zero or more times. The
ombinator some a

omplishes this aim:

some:: parser re
 A ! parser re
 A

some P = P <�> (star P)

For instan
e, a number
an be thought as a sequen
e of one or more digits: number =

some digit where digit has been de�ned above.

Example: Parser for simple if senten
es. Putting together what we have so

far, we
an de�ne the parser shown in Figure 1. Conditional expressions are regarded as

omparisons between two natural numbers using a relational operator, while the bodies

of the parts if and else are natural numbers, with number the parser de�ned above. This

�gure introdu
es the new parser terminals, with type terminals:: [A℄ ! parser re
 A , that

generalizes terminal by re
ognizing a list of terminals instead of a single one. Its de�nition,

terminals L = foldr (<�>) empty (map terminal L), relies on the standard fun
tions foldr and

map, and
onstitutes a typi
al example of how FLP inherits the higher-order ma
hinery

usual in FP. The goal if sent "if 25>10 then 7 else 666" == [℄ su

eeds, showing that

the senten
e is in the language re
ognized by if sent.

94 APPIA-GULP-PRODE'98

Context sensitive languages. The previous examples show how FLP parsers
an

re
ognize
ontext-free grammars following a notation
lose to BNF-rules. Now we are

going to de�ne a parser for the formal language a

n

b

n

n

, showing that these parsers, by

pro�ting from the virtues of logi
al variables, share with LP parsers the skill in re
ognizing

ontext sensitive grammars. The ab
 parser may be seen in Figure 2.

data nat = zero j su
 nat

ab
 =
ount 'a' N <�>
ount 'b' N <�>
ount '
' N

ount zero = empty

ount C (su
 N) = terminal C <�>
ount C N

Figure 2: Parser for the
ontext sensitive language a

n

b

n

n

.

The parser
ount C N re
ognizes sequen
es of zero or more repetitions of the terminal C.

It has an argument N of type nat expressing how many times the letter is repeated. The

main parser ab
 employs a fresh variable N to enfor
e mat
hing in the number of letters

onsumed by ea
h parser. The role of ea
h parser is
lear here: N be
omes instantiated

when the parser
ount 'a' N a
ts, and then is used guiding the parsers
ount 'b' N and

ount '
' N.

Comparison with FP and LP parsers. FLP parsers present several di�eren
es

with FP and LP parsers, and here we sket
h some of them. Although we have only

presented the parsers as re
ognizers, the following dis
ussion is valid also for the parsers

presented in further se
tions.

We must point out the following di�eren
es between the FP and the FLP parsers:

� Observe that the type de�nition of FP parsers as re
ognizers would be [A℄! [[A℄℄, that

is, they would return lists of results
ontaining together all the results that our parsers

return in di�erent
omputations using non-determinism. This di�eren
e leads to simpler

and more natural de�nitions for FLP parsers.

� Parsing
ontext sensitive languages is easier using FLP parsers than using FP parsers.

For example, suppose we would like to de�ne the parser presented in Figure 2 using FP.

Then, the parser
ount C N
ould be used for parsing the sequen
es of b's and
's, but not

for the a's, sin
e the number of a's is not known in advan
e. Therefore di�erent parsers

should be used for a's, and for b's and
's.

� FLP parsers might be
onsidered both re
ognizers and generators, while FP parsers

are just re
ognizers. However, the possibility of generating senten
es is widely used in

LP parsers, for example when dealing with natural languages, as showed in [AD89℄.

In
ontrast, the main di�eren
es between FLP and LP parsers are:

� LP parsers as re
ognizers are modeled by means of predi
ates with two arguments, the

�rst one for the input and the se
ond one for the output. If we had adopted the LP point

of view, parsers would have the type [A℄ ! [A℄ ! bool.

� Although some attempts have been developed (e.g. [Abr88℄), introdu
ing higher-order

ombinators in LP parsers is not easy (at least in pure LP). This entails the ne
essity

of transforming the grammar rules into
lauses using some meta-interpreter, as in the

ase of Prolog formalism of DCG 's. Conversely, FLP parsers are dire
tly fun
tions of

the language and no extension of the language is needed. Moreover, FLP parsers allow

Parsing with Non-Deterministi
 Fun
tions 95

de�ning new
ombinators when ne
essary, while introdu
ing, for instan
e, the
ombinator

star using DCG 's is not dire
tly allowed.

4 Parsers with representation.

Usually the parsing pro
ess is required to perform two di�erent tasks, namely,
he
king

whether the input string is a valid senten
e of the formal language (that is what we have

a

omplished so far) and building a
ertain representation of the parsed string (e.g. the

parsing tree). This se
tion is devoted to the se
ond point.

Thus, we need to asso
iate some representation to parser fun
tions. In FLP there are

two alternative ways of returning values:

The FP solution, returning the representation as an output value. Noti
e, however,

that our parsers return an output value yet and hen
e we need to
ombine the two values,

the non-parsed part of the string and its representation, into a single output value. The

natural solution is returning a pair of values. Therefore, given the type of the representa-

tion Repr and the type of the elements of the parsed list Token the parametrized parser

type might be type parser Repr Token = [Token℄ ! (Repr, [Token℄) meaning that parsers

will return a pair of values, whose �rst
omponent is the representation of the parsed

senten
e, while the se
ond one is the yet not parsed part of the senten
e.

The LP solution. In LP all the values need to be parameters, and thus representations

will be output parameters. In this
ase the type of parsers will be type parser Repr Token =

Repr ! [Token℄ ! [Token℄ that is, a parser re
ognizes the senten
e whose representation

is given as a parameter. A
tually, when re
ognizing senten
es the parameter is just an

unbounded variable whi
h retrieves the representation of the parsed string.

Although the �rst type seems the natural
hoi
e, it needs some plumbing de�ni-

tions when building new parsers. This problem has been over
ome in FP using monads

[Wad95℄, and adding some synta
ti
 support in order to make the resulting expressions

easier to read (e.g. the do-notation [Lau93, HM97℄). We have adopted instead the se
ond

point of view, and we pretend to show here how this
hoi
e,
arrying the representation

as an output parameter, provides FLP parsers with most of the bene�ts that monads do

with FP parsers. Moreover, no synta
ti
 support is needed in our approa
h, nor even

lambda abstra
tions are required.

Thus, the sele
ted type for FLP parsers follows the FP approa
h for output lists, but

the LP approa
h for representations:

type parser Repr Token = Repr ! [Token℄ ! [Token℄

From now on, we
all parses as re
ognizers just re
ognizers, in order to distinguish them

from the parsers presented in this se
tion whi
h are named simply as parsers.

We are going to introdu
e representations in two stages: �rst we rede�ne the previous

basi
 parsers and parser
ombinators, providing them with a default representation. Then

we introdu
e a new
ombinator do, whi
h allows parsers to in
lude spe
i�
 representa-

tions. This
ombinator will be used instead of the sequen
e
ombinator <�> whenever

the default representation does not seem suitable.

Default Representations. Here we de�ne a new set of basi
 parsers and parser

ombinators for dealing with values of type parser. They may be thought as upgrades

of the fun
tions we de�ned for re
ognizers in the previous se
tion. For this reason the

96 APPIA-GULP-PRODE'98

same fun
tion names are used, whi
h should not be
onfusing as from now on only the

new de�nitions are
onsidered.

The new basi
 parsers and parser
ombinators have the same meaning that their

previous versions, but they also in
lude and handle default representations. These rep-

resentations will be built automati
ally, providing new parsers with `representations for

free', whi
h may be valuable whenever we agree with the values provided or we do not

are about representations. But, whi
h should be the default representation when pars-

ing a senten
e? The default representation of a senten
e is ... the senten
e itself. This

feature may be
he
ked easily examining the upgraded set of basi
 parsers and parser

ombinators showed in Figure 3. In fa
t, it is not diÆ
ult to prove indu
tively the prop-

erty pR I == O =) R ++ O == I, for any parser p built up from fun
tions in the

�gure, and for any R; I; O lists of terminals �nite and totally de�ned.

empty:: parser [A℄ A

empty [℄ L = L

satisfy:: (A ! bool) ! parser [A℄ A

satisfy C [X℄ [XjR℄ = if C X then R

terminal:: A ! parser [A℄ A

terminal [T℄ [TjR℄ = R

(<�>):: parser [A℄ B ! parser [A℄ B ! parser [A℄ B

(P1 <�> P2) R L = P2 R2 O1 (= P1 R1 L == O1, R1++R2 == R

(<j>):: parser A B ! parser A B ! parser A B

(P1 <j> P2) R L = P1 R L

(P1 <j> P2) R L = P2 R L

Figure 3: Basi
 parsers and parser
ombinators with representation.

To be
ome parsers, the rest of the re
ognizers we have de�ned so far need only to

hange their types from parser re
 to parser in
luding the type of the new representations.

The fun
tion rules do not need any
hange as a ni
e out
ome of the te
hnique of default

representations. For example the de�nition of fun
tion star is still valid, and we only

need to
hange its type to star:: parser [A℄ B ! parser [A℄ B. The <�> , empty and

<j> fun
tions provide fun
tion star with its own default representation, whi
h is a list

whose elements are the representations retrieved for ea
h o

urren
e of P. Consider for

instan
e the re
ognizer de�ned in Figure 1. With the new de�nitions, it may be regarded

as a fun
tion of type parser, and simply try the goal if sent R "if 25>10 then 7 else 666"

== [℄ whi
h returns yes with R=="if 25>10 then 7 else 666".

It
an be argued that su
h a representation, the same senten
e that we have parsed,

is useless, but in support of this te
hnique we must point out that:

1. It provides an in
remental point of view of the
ompiler development. The default

representation may be used in a �rst stage of the development, when we are inter-

Parsing with Non-Deterministi
 Fun
tions 97

ested in the language itself, ignoring representations. Later, suitable representations

an be in
luded with only a few
hanges in the
ode.

2. When de�ning the �nal representation, some of the default
onstru
tions are surely

going to be kept una�e
ted. For example, is not likely that we prefer other repre-

sentation for an identi�er rather than its own name. This mix of user provided and

default representations may qui
ken the development pro
ess.

Providing general representations. Now we are going to set up the new
onstru
-

tions do s and do. They allow parsers to in
lude spe
i�
 representations, repla
ing the

sequen
e
ombinator <�> whenever we are not interested in the default representation.

The �rst
onstru
tion introdu
ed is the simple do, represented as do s. The next

example shows the purpose and usefulness of this
onstru
tion and will help when under-

standing its de�nition. The parser with default representation binding re
ognizes variable

assignments of the form var1 = var2; : binding = identi�er <�> terminal '=' <�> identi�er

<�> terminal ';' where identi�er and terminal are now regarded as of type parser. Suppose

we de
ide that a suitable representation for an assignment may be a value of the data

type data bind rep = [
har℄ := [
har℄, where := is an in�x
onstru
tor and the two lists

standing for the names of the variables. Then we may de�ne

binding (V1:=V2) = do s [identi�er V1, terminal '=' , identi�er V2, terminal ';' ℄

We have in
luded in the same list all the parsers that were
onne
ted by <�> , providing

ea
h parser with an argument standing for its representation. The �nal aspe
t of the

fun
tion is not very di�erent from that of LP parsers: the representation of the parser

appears in the shape of a pattern, (V1:=V2), whose variables are the representations of

its
omponent parsers. The dummy variables () mean that we are not going to use those

representations. Note that we still rely on the default representations for identi�er, as

this value is the very representation we need, i.e. the name of the variable.

As we said before identi�er is of type parser. Therefore identi�er V1 is of type

parser re
, and the same is valid for all the fun
tions in the list. Thus, the
ombinator

do s may be seen as a generalization of the sequen
e
ombinator for re
ognizers, though

here it is used in a quite di�erent
ontext. The next de�nition should be now understable:

do s::[parser re
 A℄ ! parser re
 A

do s [℄ Input = Input

do s [XjXs℄ Input = do s Xs O1 (= X Input == O1

Fun
tion do s eases the
onstru
tion of
ertain representations, but it enfor
es repre-

sentations to be patterns. What is needed to build general representations is to
ombine

all the intermediate values through a �xed expression Exp.

Su
h generalization of do s is provided by the
onstru
tion do. It takes a list L of

re
ognizers and an expression Exp as input values, and returns the parser that re
ognizes

the same senten
es that the elements in the list when
onne
ted in sequen
e, and whose

representation is the result of evaluating Exp after re
ognizing the senten
e.

do::[parser re
 A℄ ! B ! parser B A

do L Exp Rep Input = O (= do s L Input == O, Exp==Rep

98 APPIA-GULP-PRODE'98

if sent = do [terminals "if " ,
ondition C, terminals " then " ,

num N1, terminals " else " , num N2℄ (if C then N1 else N2)

ondition = do [num N1, operator Op, num N2℄ (Op N1 N2)

operator = (terminal '<')�!(<) < j> (terminals "<=")�!(<=) < j>

(terminal '>')�!(>) < j> (terminals ">=")�!(>=)

Figure 4: Parser for simple if senten
es with representation.

For instan
e, the best representation of a number is surely its numeri
 value, as is

settled in parser num: num = do [some digit L℄ (num value L) . The representation of num

is therefore the result of applying the fun
tion num value to the default representation

L of some digit, where digit is the parser de�ned before. The fun
tion may be de�ned

as num value L = foldl ((+)�(10�)) 0 (map val L), where val is a fun
tion that
onverts

a single digit in its numeri
 value, and foldr, the
omposition (.) and map, are standard

fun
tions.

Example: simple if senten
es with representation. The �nal version of the

parser for the if senten
es is presented in �gure 4. The representation now is the result

of evaluating the senten
e, that is, the number in the if part if the
ondition is satis�ed,

or the number in the else part otherwise.

Note the in
lusion of the new
onstru
tion �! in the de�nition of operator. This
on-

stru
tion may be useful when the �nal representation of a parser does not depend upon

intermediate values. It takes as input parameter one parser P and its desired representa-

tion R. Then applies the parser, and returns R as output representation, dismissing the

representation retrieved by P. It may be de�ned in the following, straightforward way

in�xr 30 �!

(�!):: parser A B ! C ! parser C B

(P �! R) R = P

In this
ase ea
h operator uses �! to return as representation the operator itself, regarded

as a partial fun
tion. The representation of the parser
ondition is the result of applying

the operator to the two numbers returned by the previously de�ned parser num. Finally

the representation of if sent is determined by the expression if C then N1 else N2. The

goal if sent R "if 25>10 then 7 else 666" == [℄ returns now R == 7.

Observe that our
onstru
tion do is very similar to that of FP parsers. However, ours

is simply a HO fun
tion, whereas the do of FP needs a spe
i�
 synta
ti
 support.

It has been argued [Pre96℄ that the non-determinism of a grammar
an be turned

out into determinism by means of adding an extra argument to the deterministi
 FLP

parsers. This extra argument is something similar to a parse tree that distinguishes the

di�erent alternatives
hosen while parsing the input string. We
laim that this solution

is less e�e
tive than ours, as it limits the possible representations retrieved by parsers,

and builds large stru
tures of nested alternatives with unne
essary information.

Parsing with Non-Deterministi
 Fun
tions 99

5 Con
lusions.

We have shown how a fun
tional-logi
 language supporting non-deterministi
 fun
tions

allows de�ning parsers whi
h
ombine most of the ni
est properties of both fun
tional

and logi
 parsers. Spe
i�
ally, FLP parsers share with LP parsers the natural way of

handling non-determinism provided by non-deterministi

omputations, the skill in re
-

ognizing
ontext sensitive languages, and the possibility of multiple modes of use. On

the other hand, FLP parsers pro�t from many FP features, as the de�nition of pow-

erful HO
ombinators or the use of fun
tional types. For the problem of
onstru
ting

involved representations of the parsed senten
es, we have proposed a te
hnique (our do

onstru
tion) resembling FP monads in the style of parsers that
an be written, but with

the advantage of not needing any extra synta
ti
 support. A
tually, this similarity may

deserve a thorough study, for it suggests that our te
hnique
ould be generalized to other

areas where monads have been employed su

essfully. For the sake of spa
e, we have

not dis
ussed here other issues related to parsing whi
h
an be addressed su

essfully in

our FLP framework. A remarkable one is the possibility, by making use of higher order

patterns in rules, of managing parsers as data, in su
h a way that interesting properties

{ for instan
e, if the underlying grammar is LL(1) {
an be examined (see [CL98℄ for

details).

A
knowledgements:

We thank Mario Rodr��guez-Artalejo for many valuable
omments about this work.

Referen
es

[Abr88℄ H. Abramson. Metarules and an Approa
h to Conjun
tion in De�nite Clause Trans-

lation Grammars: Some Aspe
ts of Grammati
al Metraprogramming . Logi
 Pro-

gramming, Pro
s. of the Fifth Interantional Conferen
e and Symposium . 1988. R.A.

Kowalski and K.A. Bowen (eds.), pp 233-248.

[AD89℄ H. Abramson, V. Dahl, Logi
 Grammars. Springer-Verlag, 1989

[AR97℄ P. Arenas-S�an
hez, M. Rodr��guez-Artalejo. A Semanti
 Framework for Fun
tional

Logi
 Programming with Algebrai
 Polymorphi
 Types. Pro
s. of CAAP'97, Springer

LNCS 1214, 453{464, 1997.

[ASU86℄ A. V. Aho, R. Sethi, and J.D. Ullman. Compilers: Prin
iples, Te
hniques, and Tools.

Addisson-Wesley, 1986.

[CH87℄ J. Cohen, T. Hi
key. Parsing and Compiling using Prolog, ACM TOPLAS 9 (2),

1987, 125{163.

[CLS97℄ R. Caballero-Rold�an, F.J. L�opez Fraguas and J. S�an
hez-Hern�andez. User's Manual

For T OY . Te
hni
al Report D.I.A. 57/97, Univ. Complutense de Madrid 1997. The

system is available at http://mozart.sip.u
m.es/in
oming/toy.html

[CL98℄ R. Caballero-Rold�an and F.J. L�opez Fraguas. Fun
tional-Logi
 Parsers in T OY .

Te
hni
al Report S.I.P. 74/98. Univ. Complutense de Madrid 1998.

Available at http://mozart.sip.u
m.es/papers/1998/trparser.ps.gz

[Fok95℄ J. Fokker. Fun
tional Parsers. In J. Jeuring and E. Meijer editors, Le
ture Notes on

Advan
ed Fun
tional Programming Te
hniques, Springer LNCS 925, 1995.

[GH+96℄ J.C. Gonz�alez-Moreno, T. Hortal�a-Gonz�alez, F.J. L�opez-Fraguas, M. Rodr��guez-

Artalejo. A Rewriting Logi
 for De
larative Programming. Pro
s. of ESOP'96,

Springer LNCS 1058, 156{172, 1996.

100 APPIA-GULP-PRODE'98

[GHR97℄ J.C. Gonz�alez-Moreno, T. Hortal�a-Gonz�alez, M. Rodr��guez-Artalejo. A Higher Order

Rewriting Logi
 for Fun
tional Logi
 Programming. Pro
s. of ICLP'97, The MIT

Press, 153{167, 1997.

[Gon93℄ J.C. Gonz�alez-Moreno. A Corre
tness Proof for Warren's HO into FO Translation.

Pro
s. of GULP'93, 569{585, 1993.

[Han94℄ M. Hanus. The Integration of Fun
tions into Logi
 Programming: A Survey. J. of

Logi
 Programming 19-20. Spe
ial issue \Ten Years of Logi
 Programming", 583{

628, 1994.

[HAS97℄ Report on the Programming Language Haskell: a Non-stri
t, Purely Fun
tional Lan-

guage. Version 1.4, Peterson J. and Hammond K. (eds.), January 1997.

[Hus93℄ H. Hussmann. Non-determinism in Algebrai
 Spe
i�
ations and Algebrai
 Programs.

Birkh�auser, 1993.

[Hut92℄ G. Hutton. Higher-Order Fun
tions for Parsing. J. of Fun
tional Programming

2(3):323-343, July 1992.

[HM97℄ G. Hutton, E. Meijer. Fun
tional Pearls. Monadi
 Parsing in Haskell. To appear

in J. of Fun
tional Programming. Extended version: Te
h-Rep NOTTCS-TR-96-4.

Dept. of Computer S
ien
e. Univ. Nottingham ,1996

[Lau93℄ J. Laun
hbury. Lazy imperative programming. In Pro
s. ACM Sigplan Workshop on

State in Programming Languages, YALE/DCS/RR-968, Yale University, 1993.

[LLR93℄ R. Loogen, F.J. L�opez-Fraguas,M. Rodr��guez-Artalejo. A Demand Driven Computa-

tion Strategy for Lazy Narrowing. Pro
s. of PLILP'93, Springer LNCS 714, 184{200,

1993.

[Pre96℄ C. Prehofer. Solving Higher-Order Equations. From Logi
 to Programming. Progress

in Theoreti
al Computer S
ien
e, Birh�auser, 1998.

[PW80℄ F. Pereira, D.H.D. Warren. De�nite Clause Grammars for Language Analysis, Ar-

ti�
ial Intelligen
e 13, 1980, 231{278.

[SS86℄ L. Sterling, E. Shapiro. The Art of Prolog, The MIT Press, 1986.

[Wad85℄ P. Wadler. How to Repla
e Failure by a List of Su

esses, Pro
. IFIP FPCA'85,

Springer LNCS 201, 1985, 113{128.

[Wad90℄ P. Wadler. Comprehending Monads, Pro
. ACM Conf. on Lisp and Fun
tional Pro-

gramming, 1990.

[Wad95℄ P. Wadler. Monads for fun
tional programming. In J. Jeuring and E. Meijer ed-

itors, Le
ture Notes on Advan
ed Fun
tional Programming Te
hniques, Springer

LNCS 925. 1995

[War80℄ D.H.D Warren. Logi
 Programming and Compiler Writing, Software Pra
ti
e and

Experien
e 10, 1980, 97{125.

