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Abstract

Parsing has been a traditional workbench for showing the virtues of declarative
programming. Both logic and functional programming claim the ability of writing
parsers in a natural and concise way. We address here the task from a functional-
logic perspective. By modeling parsers as non-deterministic functions we achieve a
very natural manner of building parsers, which combines the nicest properties of the
functional and logic approaches. In particular, we are able to easily define within
our framework parsers in a style very close to the ‘monadic parsers’ of functional
programming, but using simpler concepts.

Keywords:  parsing, functional-logic programming, non-deterministic func-
tions.

1 Introduction

The problem of syntax analysis or parsing has been one of the most thoroughly studied
issues in computer science (see e.g. [ASUS86]). Its wide range of applications, from
compilers development to natural languages recognition, is enough to attract the attention
of any programming approach. This has been also the case for logic programming (LP, in
short) and functional programming (FP, in short), and the parsing problem constitutes
in fact one of the favorite fields for exhibiting the virtues of declarative programming.

Language processing has been very related to LP since its origins. There is a more or
less standard approach [War80, CH87, SS86] to the construction of parsers in LP, which
is based on a specific representation for grammars, the so-called Definite Clause Gram-
mars (DCG’s) [PW80, SS86]. DCG’s are not logic programs, although they are readily
translated to them. With DCGs, one can hide the details of handling the input string to
be parsed, which is passed from parser to parser using the Prolog technique of difference
lists [SS86]. Parsing in LP benefits from the expressive power of non-determinism and
unification. We can mention:

e The ability to cope almost trivially with non-deterministic grammar specifications, as
the multiple choice BNF construction ‘. The built-in backtracking mechanism will take
charge of the search for a successful result. Also, multiple solutions are automatically
provided where possible (e.g. ambiguous grammars).

e The skill in representing context sensitive languages.

Departamento de Sistemas Informaticos y Programacion, Universidad Complutense de Madrid.
e-mail: rafacr@eucmos.sim.ucm.es, fraguas@eucmax.sim.ucm.es

Work partially supported by the Spanish CICYT (project TIC 95-0433-C03-01 ”CPD”) and the
ESPRIT Working Group 22457 (CCL-II).

87



APPIA-GULP-PRODE’98

e Simple construction of output representations, using pattern-matching and logical vari-
ables. The representation or translated code is carried out explicitly by using an in-
put/output extra argument.

e Multiple modes of use: parsers may be used not only as recognizers but also as gener-
ators of sentences.

The most popular approach to writing parsers in FP is that of parser combinators
[Wad85, Hut92, Fok95]. That is, parsers - starting from a set of basic ones — may be
combined through carefully defined HO functions (the combinators) yielding new useful
parsers. In the Haskell [HAS97] community, combinator parsing has derived recently into
so-called monadic parsing [Wad90, Wad95, HM97].

Parsing with FP benefits of the power of types, functional notation and HO functions
for writing clear, well-structured programs. As more concrete advantages we can mention:

e Parser combinators provide an incremental point of view of the compiler construction.

e HO combinators provide the ability of expressing BNF extensions, such as the repetitive
application of the same parser zero or more times, which can not be expressed so cleanly
in the LP setting.

e The use of monads, specially in combination with the do notation [Lau93, HM97| gives
a very appealing structure to the parsers built up.

Many efforts have been done in the last decade in order to integrate LP and FP
into a single paradigm, functional-logic programming (FLP in short, see [Han94] for a
survey). As any other paradigm, FLP should develop its own programming techniques
and methodologies, but little has been done from this point of view. We address here the
problem of developing FLP parsers in a systematic way, trying to answer the question:
can FLP contribute significantly by itself (not just mimicking LP or FP) to the task
of writing parsers? This work should be then better understood as a contribution to
FLP methodology, rather than from the perspective of compiler construction or parsing
theory.

We stick to a particular view of FLP whose core notion is that of non-deterministic
function. A framework for such approach was given in [GH+96|, and later on extended
to cope with higher-order features [GHR97], and polymorphic algebraic types in [AR97].

The rest of the paper is organized as follows. In the next section we will briefly describe
the specific functional-logic language we are going to use: 7 O)Y [CLS97]. Section 3
presents a simplified format of our parsers — parsers as recognizers — whose only mission
is to recognize valid sentences of the language defined by a grammar. These simple
parsers serve to present the main ideas of our approach and make clear the differences
with respect to the LP and FP cases. In Section 4 we discuss how to enhance parsers
for obtaining, as a side product of recognizing a sentence, a suitable representation of it.
We will arrive at this point to a style of writing parsers very close to the ‘monadic’ style
and the ‘do’ notation of FP, but using much simpler constructs and without the need of
any extra syntactic support. Finally, Section 5 summarizes some conclusions.

2 A succinct description of 7TOY

All the programs in the next sections are written in the functional-logic language 7O) .
We present here the subset of the language relevant to this work. A more complete
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description and a number of representative examples can be found in [CLS97].

A TOY program consists of datatype, type alias and infix operator definitions, and
rules for defining functions. Syntax is mostly borrowed from Haskell [HAS97] (with the
remarkable exception that variables begin with upper-case letters whereas constructor
symbols use lower-case, as function symbols do). In particular, functions are curried and
the usual conventions about associativity of application hold.

Datatype definitions like data nat = zero | suc nat, define new (possibly polymorphic)
constructed types and determine a set of data constructors for each type. The set of all
data constructor symbols will be noted as C'S (CS™ for all constructors of arity n).

Types 7,7, ... can be constructed types, tuples (7,...,7,), or functional types of the
form 7 — 7'. As usual, — associates to the right. 7 OY provides predefined types
such as [A] (the type of polymorphic lists, for which Prolog notation is used), bool (with
constants true and false), int for integer numbers, or char (with constants 'a’,’b’, ...).
Type alias definitions like type parser_rec A = [A] — [A] are also allowed. Type alias are
simply abbreviations, but they are useful for writing more readable, self-documenting
programs. Strings (for which we have the definition type string = [char]) can also be

written with double quotes. For instance, "sugar” is the same as ['s’,'u’,’g’,’a’,’r’].

The purpose of a TO)Y program is to define a set F'S of functions. Each f € FS
comes with a given program arity which expresses the number of arguments that must
be given to f in order to make it reducible. We use FIS™ for the set of function symbols
with program arity n. Each f € FS™ has an associated principal type of the form
T — ... — T, — 7 (where 7 does not contain —). Number m is called the type arity
of f and well-typedness implies that m > n. As usual in functional programming, types
are inferred and, optionally, can be declared in the program.

With the symbols in C'S, F'S, together with a set of variables X, Y ..., we form more
complex expressions. We distinguish two important syntactic domains: expressions and
patterns. Erpressions are of the form e == X | ¢ | f | (e1,...,e,) | (e €), where
c € CS, f € FS. As usual, application associates to the left and parentheses can be
omitted accordingly. Therefore e e;...e, is the same as (...((e e1) e2)...)e,). Of
course expressions are assumed to be well-typed. First order patterns are a special kind
of expressions which can be understood as denoting data values, i.e. values not subject to
further evaluation, in contrast with expressions, which can be possibly reduced by means
of the rules of the program. Patternst,s,...are defined by ¢t ::= X | (t1,...,t,) | cty.. . ty,
where ¢ € CS™.

Each function f € FS" is defined by a set of conditional rules of the form
fti...ty, =e < ey ==¢€],...,e,==¢,

where (1 .. .t,) form a tuple of linear (i.e., with no repeated variable) patterns, and e, e;, €}
are expressions. No other conditions (except well-typedness) are imposed to function
definitions. Rules have a conditional reading: f ¢;...%, can be reduced to e if all the
conditions e; == ¢/, ..., e, == ¢}, are satisfied. The condition part is omitted if £ = 0.
The symbol == stands for strict equality, which is the suitable notion (see e.g.
[Han94]) for equality when non-strict functions are considered. With this notion a con-
dition e == €’ can be read as: e and e’ can be reduced to the same pattern. When used
in the condition of a rule, == is better understood as a constraint (if it is not satisfi-
able, the computation fails), but the language contemplates also another use of == as a
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function, returning the value true in the case described above, but false when a clash of
constructors is detected while reducing both sides

As a syntactic facility, 7OY allows repeating variables in the head of rules, but in
this case repetitions are removed by introducing new variables and strict equations in the
condition of the rule. As an example, the rule f X X = 0 would be transformed into f X
Y=0&=X==

In addition to ==, 7 O)Y incorporates other predefined functions like the arithmetic
functions +,*, ..., or the functions if_then and if_then_else, for which the more usual
syntax if _ then _ and if _ then _ else _ is allowed. Symbols ==,+,* are all examples of

infix operators. New operators can be defined in 7OY by means of infiz declarations, like
infixr 50 ++ which introduces ++ (used for list concatenation, with standard definition)
as a right associative operator with priority 50. Operators for data constructors must
begin with ’:’, like in the declaration infix 40 :=. Sections, or partial applications of infix
operators, like (==3) or (3==) are also allowed.

A distinguished feature of 7 Q) heavily used along this paper, is that no conflu-
ence properties are required for the programs, and therefore functions can be non-
deterministic, i.e. return several values for given (even ground) arguments. For ex-
ample, the rules coin = 0 and coin = 1 constitute a valid definition for the O-ary
non-deterministic function coin. A possible reduction of coin would lead to the value 0,
but there is another one giving the value 1. The system would perform first the first one,
but if backtracking is required by a later failure or by request of the user, the second
one would be tried. Another way of introducing non-determinism in the definition of a
function is by putting eztra variables in the right side of the rules, like in z_list = [O]L].
Any list of integers starting by 0 is a possible value of z_list. But note that in this case
only one reduction is possible.

Our language adopts the so called call-time choice semantics for non-deterministic
functions, following [Hus93, GH+96]. Call-time choice has the following intuitive mean-
ing: given a function call (f e;...e,), one chooses some fixed value for each of the ¢;
before applying the rules for f. As an example, if we consider the function double X =
X+X, then the expression (double coin) can be reduced to 0 and 2, but not to 1. As it
is shown in [GH+96], call-time choice is perfectly compatible with non-strict semantics
and lazy evaluation, provided sharing is performed for all the occurrences of a variable
in the right-hand side of a rule.

Computing in 7OY means solving goals, which take the form e; ==¢€/,... ex == ¢},
giving as result a substitution for the variables in the goal making it true. Evaluation of
expressions (required for solving the conditions) is done by a variant of lazy narrowing
based on the so-called demand driven strategy (see [LLR93]). With respect to higher-order
functions, a first order translation following [Gon93]| is performed.

3 Parsers as recognizers

In this section we present a first simplified approach to our functional-logical parsers.
The functions we are going to define represent syntactic analyzers, that is, they recognize
whether a sentence belongs to a formal language or not, without performing any addi-
tional task. In later sections we will enhance their possibilities, retrieving representations
whenever the sentence is successfully parsed.

Functional-logic parsers take as input parameter a list of terminal symbols, represent-
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ing a possible sentence of the language. If some prefix of the list is successfully parsed,
the rest of the list is returned as output value. Otherwise the parser fails, enforcing
backtracking whether possible alternatives remain unused. Therefore, the type of our
first parsers is:

type parser_rec A = [A] — [A]

that is, parsers as recognizers take a list of type A and return also a list of type A, A
standing for char in most of the examples in this paper. To parse a sentence S through
a parser P, we must try the goal P S == [], which succeeds if P parses successfully the
whole sentence S.

In the following paragraphs the basic components of the functional-logic parsers as
recognizers are defined, and a number of examples are included to illustrate their charac-
teristics. The names of these components are partially borrowed from the literature on
FP parsers, mainly those described in [Fok95].

Basic Parsers. We begin by defining the simplest parser: the empty parser, which
just recognizes the empty word. This word is prefix of every sentence in any formal
language, and therefore empty always succeeds, remaining the input list unaffected as
output value.

empty :: parser_rec A
empty L =1L

The next function takes a terminal symbol 7 and returns the parser that recognizes T
if it is in the head of the input list, failing otherwise:

terminal:: A — parser_rec A
terminal T [T|L] =L

The output value is the rest of the list, discarding the recognized symbol 7.

Sometimes it is desirable to recognize not a fixed symbol, but any one fulfilling a given
property P. Function satisfy accomplishes this aim:

satisfy:: (A — bool) — parser_rec A
satisfy P [X|L] = if P X then L

For example, the parser digit = satisfy is_digit recognizes every string whose first character
is in the set {’0’,...,’9’}. Function terminal appears now as a specialization of satisfy,
regarding the alternative definition: terminal X = satisfy (X==).

Parser Combinators. We have already defined the basic pieces we will use to build
our parsers. What is needed now, in order to join the basic parsers in different ways,
is a set of parser combinators. A parser combinator is a higher-order function which
takes parsers as input parameters and returns a new parser as output value. The two
main parser combinators we are going to define are the alternative and the sequence
combinators.

The non-deterministic function ‘<|>’, which we call the alternative combinator, cap-
tures the non-deterministic essence of BNF representations, and corresponds to the BNF
construction ‘|’.
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infixr 10 <|>

(<|>):: parser_rec A — parser_rec A — parser_rec A
(P1<|>P2)L=P1L

(P1 <|>P2)L=P2L

The first choice of the infix operator <|> is its first parameter P1. Later, if the parsing
process fails or more solutions are requested by the user, the parser P2 will be selected
using backtracking. Indeed, the operator <|> can be avoided using different rules for
each alternative, i.e. instead of P = P1 <|>P2 we could write two rules for P, namely
P = P1 and P = P2. At this point of the discussion both options may be regarded as
equivalent, although we will see soon that they are not exactly the same.

The sequence combinator <> introduces the consecutive application of two parsers:

infixr 20 <x>
(<x>):: parser_rec A — parser_rec A — parser_rec A
(P1 <x>P2)L=P201«=P1lL==01

The use of the strict equality in the condition P1 L == O1 ensures that the application
of the first parser P1 to the input L will be fully evaluated before applying the second
parser P2 to the resulting output Ol. The infix declarations previous to the definitions
of <x> and <|> fix their priorities as to minimize parentheses when combining them,
and establish that both operators associate to the right. Thus we may combine easily
the two combinators, defining for instance the parser

palin =empty <|> a <|> b <|> a<s>palin<x>a <|> b <> palin<«>b

where a, b are defined as a = terminal 'a’ and b = terminal 'b’, respectively. This parser
recognizes the language of the palindrome words over the alphabet ¥ = {a,b}. Using
this parser we may try the goal palin "abbababba” == [] which retrieves the answer yes
meaning that the sentence belongs to the language, while the goal palin "abb” == []
fails because abb is not a palindrome.

Parsers as generators. Owing to the possibility of including logic variables in goals,
FLP parsers may be regarded as generators as well as recognizers. For example, the goal
palin [X,Y] == [] ‘asks’ for sentences of length two in the language recognized by palin.
Two answers are retrieved, namely X="a', Y="a" and X="b’, Y='b', meaning that "aa”
and "bb” are the only words of length two in this language.

More higher-order parser combinators. To increase the expressiveness of the
parsers, the extended BNF construction { P} representing zero or more repetitions of the
same parser P, may be defined. We call it the star of the parser P:

star:: parser_rec A — parser_rec A
star P = P <x> (star P) <[> empty

For example we may define an identifier as a letter followed by a sequence of zero or more
letters and digits: identifier = satisfy is_letter <x> star (satisfy is_letter <|>satisfy is_digit)
assuming a suitable definition of is_letter.

Despite the simple and natural definition of star, it contains one remarkable subtlety.
Consider the following two rules defining the non-deterministic parser ab:

ab = terminal 'a’ ab = terminal 'b’
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if_sent = terminals "if " <x> condition<x> terminals ” then’
<x> number <x> terminals " else " <x> number

condition = number <x> operator <x> number

operator = (terminal '<’) <[> (terminal '>") <|>
(terminals ">=") <|> (terminals"<=")

Figure 1: Parser for simple if sentences.

that is, parser ab recognizes either one letter a or one letter b. Thus, the parser star ab
should recognize any sequence of a’s and b’s. But if we try the simple goal (star ab) "ab”
==[] the answer returned is no. This surprising behaviour is due to the two occurrences
of the variable P in the body of star and it is related to the ‘call-time choice’ semantics
adopted for non-deterministic functions. Specifically, if ab takes any value, either terminal
'a’ or terminal 'b’, ‘call-time choice’ fixes the same value for all the occurrences of ab in
the computation of star ab. Hence, the parser star ab only can recognize sentences of the
form aaa... or bbb....
The problem disappears if we use the operator <|> in the definition of ab:

ab = terminal 'a’ <|> terminal 'b’

Now the computed value of ab is neither terminal 'a’ nor terminal 'b’ as before, but the
irreducible expression terminal 'a’ <|> terminal 'b". The definition of <|> explains this
fact: the operator needs an extra parameter (i.e. the input sentence) before selecting
any of its arguments Thus, the non-deteministic choice is delayed and the repetition
of the variable P in the body of star implies no more troubles. Consequently, whenever
we want to use the combinator star, parsers must rely on the function <|> to handle
non-determinism, instead of defining different rules for the same non-terminal.

Sometimes is useful to represent the repetition of a given parser one or more times
instead of zero or more times. The combinator some accomplishes this aim:

some:: parser_rec A — parser_rec A
some P = P <x> (star P)

For instance, a number can be thought as a sequence of one or more digits: number =
some digit where digit has been defined above.

Example: Parser for simple zf sentences. Putting together what we have so
far, we can define the parser shown in Figure 1. Conditional expressions are regarded as
comparisons between two natural numbers using a relational operator, while the bodies
of the parts i¢f and else are natural numbers, with number the parser defined above. This
figure introduces the new parser terminals, with type terminals:: [A] — parser_rec A , that
generalizes terminal by recognizing a list of terminals instead of a single one. Its definition,
terminals L = foldr (<x>) empty (map terminal L), relies on the standard functions foldr and
map, and constitutes a typical example of how FLP inherits the higher-order machinery
usual in FP. The goal if_sent "if 25>10 then 7 else 666" == [] succeeds, showing that
the sentence is in the language recognized by if_sent.
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Context sensitive languages. The previous examples show how FLP parsers can
recognize context-free grammars following a notation close to BNF-rules. Now we are
going to define a parser for the formal language a"b"c", showing that these parsers, by
profiting from the virtues of logical variables, share with LP parsers the skill in recognizing
context sensitive grammars. The abc parser may be seen in Figure 2.

data nat = zero | suc nat

abc = count 'a’ N <x> count 'b' N <x> count 'c’ N
count _ zero = empty

count C (suc N) = terminal C <x> count C N

Figure 2: Parser for the context sensitive language a™b™c".

The parser count C N recognizes sequences of zero or more repetitions of the terminal C.
It has an argument N of type nat expressing how many times the letter is repeated. The
main parser abc employs a fresh variable N to enforce matching in the number of letters
consumed by each parser. The role of each parser is clear here: N becomes instantiated
when the parser count 'a” N acts, and then is used guiding the parsers count 'b’ N and
count 'c’ N.

Comparison with FP and LP parsers. FLP parsers present several differences
with FP and LP parsers, and here we sketch some of them. Although we have only
presented the parsers as recognizers, the following discussion is valid also for the parsers
presented in further sections.

We must point out the following differences between the FP and the FLP parsers:
e Observe that the type definition of FP parsers as recognizers would be [A] — [[A]], that
is, they would return lists of results containing together all the results that our parsers
return in different computations using non-determinism. This difference leads to simpler
and more natural definitions for FLP parsers.
e Parsing context sensitive languages is easier using FLP parsers than using FP parsers.
For example, suppose we would like to define the parser presented in Figure 2 using FP.
Then, the parser count C N could be used for parsing the sequences of b’s and ¢’s, but not
for the a’s, since the number of a’s is not known in advance. Therefore different parsers
should be used for a’s, and for b’s and ¢’s.
e FLP parsers might be considered both recognizers and generators, while FP parsers
are just recognizers. However, the possibility of generating sentences is widely used in
LP parsers, for example when dealing with natural languages, as showed in [AD89).

In contrast, the main differences between FLP and LP parsers are:

e LP parsers as recognizers are modeled by means of predicates with two arguments, the
first one for the input and the second one for the output. If we had adopted the LP point
of view, parsers would have the type [A] — [A] — bool.

e Although some attempts have been developed (e.g. [Abr88]), introducing higher-order
combinators in LP parsers is not easy (at least in pure LP). This entails the necessity
of transforming the grammar rules into clauses using some meta-interpreter, as in the
case of Prolog formalism of DCG’s. Conversely, FLP parsers are directly functions of
the language and no extension of the language is needed. Moreover, FLP parsers allow
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defining new combinators when necessary, while introducing, for instance, the combinator
star using DCG’s is not directly allowed.

4 Parsers with representation.

Usually the parsing process is required to perform two different tasks, namely, checking
whether the input string is a valid sentence of the formal language (that is what we have
accomplished so far) and building a certain representation of the parsed string (e.g. the
parsing tree). This section is devoted to the second point.

Thus, we need to associate some representation to parser functions. In FLP there are
two alternative ways of returning values:

The FP solution, returning the representation as an output value. Notice, however,
that our parsers return an output value yet and hence we need to combine the two values,
the non-parsed part of the string and its representation, into a single output value. The
natural solution is returning a pair of values. Therefore, given the type of the representa-
tion Repr and the type of the elements of the parsed list Token the parametrized parser
type might be type parser Repr Token = [Token] — (Repr, [Token]) meaning that parsers
will return a pair of values, whose first component is the representation of the parsed
sentence, while the second one is the yet not parsed part of the sentence.

The LP solution. In LP all the values need to be parameters, and thus representations
will be output parameters. In this case the type of parsers will be type parser Repr Token =
Repr — [Token] — [Token] that is, a parser recognizes the sentence whose representation
is given as a parameter. Actually, when recognizing sentences the parameter is just an
unbounded variable which retrieves the representation of the parsed string.

Although the first type seems the natural choice, it needs some plumbing defini-
tions when building new parsers. This problem has been overcome in FP using monads
[Wad95], and adding some syntactic support in order to make the resulting expressions
easier to read (e.g. the do-notation [Lau93, HM97]). We have adopted instead the second
point of view, and we pretend to show here how this choice, carrying the representation
as an output parameter, provides FLP parsers with most of the benefits that monads do
with FP parsers. Moreover, no syntactic support is needed in our approach, nor even
lambda abstractions are required.

Thus, the selected type for FLP parsers follows the FP approach for output lists, but
the LP approach for representations:

type parser Repr Token = Repr — [Token] — [Token]

From now on, we call parses as recognizers just recognizers, in order to distinguish them
from the parsers presented in this section which are named simply as parsers.

We are going to introduce representations in two stages: first we redefine the previous
basic parsers and parser combinators, providing them with a default representation. Then
we introduce a new combinator do, which allows parsers to include specific representa-
tions. This combinator will be used instead of the sequence combinator <x> whenever
the default representation does not seem suitable.

Default Representations. Here we define a new set of basic parsers and parser
combinators for dealing with values of type parser. They may be thought as upgrades
of the functions we defined for recognizers in the previous section. For this reason the
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same function names are used, which should not be confusing as from now on only the
new definitions are considered.

The new basic parsers and parser combinators have the same meaning that their
previous versions, but they also include and handle default representations. These rep-
resentations will be built automatically, providing new parsers with ‘representations for
free’, which may be valuable whenever we agree with the values provided or we do not
care about representations. But, which should be the default representation when pars-
ing a sentence? The default representation of a sentence is ... the sentence itself. This
feature may be checked easily examining the upgraded set of basic parsers and parser
combinators showed in Figure 3. In fact, it is not difficult to prove inductively the prop-
erty pRI == O =— R ++ O == I, for any parser p built up from functions in the
figure, and for any R, I, O lists of terminals finite and totally defined.

empty:: parser [A] A

empty [] L = L

satisfy:: (A — bool) — parser [A] A

satisfy C [X] [X|R] = if C X then R

terminal:: A — parser [A] A

terminal [T] [TIR] = R

(<x>):: parser [A] B — parser [A] B — parser [A] B

(PL<#>P2)RL = P2R201<=PlRlL==01, RI++R2 ==
(<|>):: parser A B — parser A B — parser A B

(PL<[> P2)RL = PILRL

(PL <[> P2)RL = P2RL

Figure 3: Basic parsers and parser combinators with representation.

To become parsers, the rest of the recognizers we have defined so far need only to
change their types from parser_rec to parser including the type of the new representations.
The function rules do not need any change as a nice outcome of the technique of default
representations. For example the definition of function star is still valid, and we only
need to change its type to star:: parser [A] B — parser [A] B. The <> , empty and
<|> functions provide function star with its own default representation, which is a list
whose elements are the representations retrieved for each occurrence of P. Consider for
instance the recognizer defined in Figure 1. With the new definitions, it may be regarded
as a function of type parser, and simply try the goal if_sent R "if 25>10 then 7 else 666"
==[] which returns yes with R=="1if 25>10 then 7 else 666" .

It can be argued that such a representation, the same sentence that we have parsed,
is useless, but in support of this technique we must point out that:

1. It provides an incremental point of view of the compiler development. The default
representation may be used in a first stage of the development, when we are inter-



Parsing with Non-Deterministic Functions

ested in the language itself, ignoring representations. Later, suitable representations
can be included with only a few changes in the code.

2. When defining the final representation, some of the default constructions are surely
going to be kept unaffected. For example, is not likely that we prefer other repre-
sentation for an identifier rather than its own name. This mix of user provided and
default representations may quicken the development process.

Providing general representations. Now we are going to set up the new construc-
tions do_s and do. They allow parsers to include specific representations, replacing the
sequence combinator <> whenever we are not interested in the default representation.

The first construction introduced is the simple do, represented as do_s. The next
example shows the purpose and usefulness of this construction and will help when under-
standing its definition. The parser with default representation binding recognizes variable
assignments of the form varl = var2;: binding = identifier <+> terminal '=" <x> identifier
<> terminal ’;" where identifier and terminal are now regarded as of type parser. Suppose
we decide that a suitable representation for an assignment may be a value of the data
type data bind_rep = [char] := [char], where := is an infix constructor and the two lists
standing for the names of the variables. Then we may define

binding (V1:=V2) = do_s [identifier V1, terminal '=" _, identifier V2, terminal ’;" ]

We have included in the same list all the parsers that were connected by <x>, providing
each parser with an argument standing for its representation. The final aspect of the
function is not very different from that of LP parsers: the representation of the parser
appears in the shape of a pattern, (V1:=V2), whose variables are the representations of
its component parsers. The dummy variables (_) mean that we are not going to use those
representations. Note that we still rely on the default representations for identifier, as
this value is the very representation we need, i.e. the name of the variable.

As we said before identifier is of type parser. Therefore identifier V1 is of type
parser_rec, and the same is valid for all the functions in the list. Thus, the combinator
do_s may be seen as a generalization of the sequence combinator for recognizers, though
here it is used in a quite different context. The next definition should be now understable:

do_s::[parser_rec A] — parser_rec A
dos [] Input = Input
dos [X|Xs] Input = dos Xs O1 <= X Input == O1

Function do_s eases the construction of certain representations, but it enforces repre-
sentations to be patterns. What is needed to build general representations is to combine
all the intermediate values through a fixed expression Ezp.

Such generalization of do_s is provided by the construction do. It takes a list L of
recognizers and an expression FEzp as input values, and returns the parser that recognizes
the same sentences that the elements in the list when connected in sequence, and whose
representation is the result of evaluating Frp after recognizing the sentence.

do::[parser_rec A] — B — parser B A
do L Exp Rep Input = O <= do_s L Input == O, Exp==Rep
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if_sent = do [terminals "if " _, condition C, terminals " then " _
num N1, terminals " else " _, num N2] (if C then N1 else N2)

condition = do [num N1, operator Op, num N2] (Op N1 N2)

operator = (terminal '<')—(<) <|> (terminals"<=")—(<=) <|>
(terminal '>')—(>) <|> (terminals ">=")—(>=)

Figure 4: Parser for simple if sentences with representation.

For instance, the best representation of a number is surely its numeric value, as is
settled in parser num: num = do [some digit L] (num_value L) . The representation of num
is therefore the result of applying the function num_value to the default representation
L of some digit, where digit is the parser defined before. The function may be defined
as num_value L = foldl ((+)-(10x)) 0 (map val L), where val is a function that converts
a single digit in its numeric value, and foldr, the composition (.) and map, are standard
functions.

Example: simple i¢f sentences with representation. The final version of the
parser for the if sentences is presented in figure 4. The representation now is the result
of evaluating the sentence, that is, the number in the if part if the condition is satisfied,
or the number in the else part otherwise.

Note the inclusion of the new construction — in the definition of operator. This con-
struction may be useful when the final representation of a parser does not depend upon
intermediate values. It takes as input parameter one parser P and its desired representa-
tion R. Then applies the parser, and returns R as output representation, dismissing the
representation retrieved by P. It may be defined in the following, straightforward way

infixr 30 —
(—>):: parser AB — C — parser C B

In this case each operator uses — to return as representation the operator itself, regarded
as a partial function. The representation of the parser condition is the result of applying
the operator to the two numbers returned by the previously defined parser num. Finally
the representation of if_sent is determined by the expression if C then N1 else N2. The
goal if sent R "if 25>10 then 7 else 666" == [] returns now R == 7.

Observe that our construction do is very similar to that of FP parsers. However, ours
is simply a HO function, whereas the do of FP needs a specific syntactic support.

It has been argued [Pre96| that the non-determinism of a grammar can be turned
out into determinism by means of adding an extra argument to the deterministic FLP
parsers. This extra argument is something similar to a parse tree that distinguishes the
different alternatives chosen while parsing the input string. We claim that this solution
is less effective than ours, as it limits the possible representations retrieved by parsers,
and builds large structures of nested alternatives with unnecessary information.
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5 Conclusions.

We have shown how a functional-logic language supporting non-deterministic functions
allows defining parsers which combine most of the nicest properties of both functional
and logic parsers. Specifically, FLP parsers share with LP parsers the natural way of
handling non-determinism provided by non-deterministic computations, the skill in rec-
ognizing context sensitive languages, and the possibility of multiple modes of use. On
the other hand, FLP parsers profit from many FP features, as the definition of pow-
erful HO combinators or the use of functional types. For the problem of constructing
involved representations of the parsed sentences, we have proposed a technique (our do
construction) resembling FP monads in the style of parsers that can be written, but with
the advantage of not needing any extra syntactic support. Actually, this similarity may
deserve a thorough study, for it suggests that our technique could be generalized to other
areas where monads have been employed successfully. For the sake of space, we have
not discussed here other issues related to parsing which can be addressed successfully in
our FLP framework. A remarkable one is the possibility, by making use of higher order
patterns in rules, of managing parsers as data, in such a way that interesting properties
— for instance, if the underlying grammar is LL(1) — can be examined (see [CL98] for
details).
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