Automatic simplification of the visualization
of functional expressions by means of fisheye views

J. Angel Velazquez lturbide

Abstract

We facethe problem of simplifying automaticdly the visualization d functional
expressons. The problem rises when debugging in programming environments
based on a rewriting model of expresson evauation, lecaise very large
intermediate expressons must be displayed. A simplificaion technique shoud
filter those parts of an expresson which are not interesting for debugging. We
propacse fisheye views as an adequate tedhnique becaise they provide abalance
between showing dobal context and locd information; in particular, we have
designed fisheye views of functional expressons to show the structure of the
whole expresson and subexpressons aroundits redex. The anourt of information
shown can be eaily adjusted by the programmer, since it relates diredly to the
syntadic structure of expresgons. The technique is general, since it can be used
with any tednique for visudizing expressons, from text pretty-printing to
graphicd representations. We dso include in the paper several examples of
applicaion, dscussalternatives for several aspeds of the technique and introduce
a more general definition we are currently studying and experimenting.

Keywords: functional programming, programming environments, visualization.

1 Introduction

The evaluation d functional programs is based on a model of expresson evauation by
rewriting. Consequently, the state of evauation at any moment is given by the aurrent
intermediate expresson resulting after previous rewritings. A debugger for functional
programming adapted to such an evaluation model must allow the programmer to ded with
intermediate expressions by means of adequate tools.

Intermediate expressons obtained duing evaluation can be quite large, becming
incomprehensible. Therefore, the debugger shoud na always $ow the whole expresson, bu
only relevant parts. Some traditional solutions, such as tradng, are good in the sense of
allowing the programmer to focus on several points of interest. However, they are ad ha
solutions, na truly integrated with such operational view of evaluation. In addition, they are
incomplete and rigid, because they do nd usually allow to know other parts of the aurrent
expression, apart from the last function application and variable bindings.

We facethis problem in a programming environment we have built with an educaional
purpose [9]. HIPE (Hope™ Integrated Programming Environment) is based on the language

! Escuela de CC. Experimentales y Tecnologia, Universidad Rey Juan Carlos,
Camino de Humanes 63, 28936 Mdstoles, Madrid, Spain. E-mail: a.velazquez@escet.urjc.es

101

102 APPIA-GULP-PRODE'98

Hope" [6] and dfers the programmer a rewriting model of expresson evaluation? The
programmer can control the read of evaluation from the aurrent intermediate expresson: to
rewrite one or several steps, to evaluate completely either the expresson a the redex, and to
advanceto a bre&paint (in HIPE, the goplicaion d any user-defined function seleded by the
programmer). In either case, the debugger shows the resulting expresson (either intermediate
or final). The programmer can also choose the evaluation strategy, either eager or lazy.

A solution to handle large expressons is browsing: the programmer can navigate through
the epresson, expanding and contrading different subexpressons acwrding to their
perceved degreeof interest. Although this lutionis smple and flexible, the programmer is
burdened with determining what parts of an expresson are interesting. Thus, browsing can be
used as a mplementary fadlity, bu it shoud na be used as the primary solution to simplify
visuali zation. We require automatic techniques which simplify the visualization d the airrent
expression in the most comfortable and meaningful way to the programmer.

We have studied approaches to this problem in the functional programming community [2]
and to the scdability problem in the visuali zation and the user interface ommunities (see eg.
[4, §). As a @onclusion, we @mnsider more adequate for our automation requirement those
techniques which simplify the “logicd space” of objeds to show than thase which simplify
the “graphicd space” of the visualization. That is, we think that the simplificaion must
remove those parts in afunctional expresson which are nat interesting for the debugging task.
The technique that best fits our approadh is fisheye vew, a technique to filter information [3]
(although it can also be used as a basis for defining graphical presentations [7]).

The name “fisheye view” derives from fisheye or wide angle lenses: these lenses provide a
strategy of vision consisting in showing neaby places in grea detail while still showing far
places in lessdetail . Furnas [3] gives a rough ideaof the technique by referring to the poster
known as the “New Yorker's view of the United States’, where Manhattan is shown stred by
stred, New Jersey is given in much lessdetail, and the rest of the states are reduced to a few
landmarks (Chicago, California, etc.). The basic idea behind fisheye views is to provide a
balance between locd detail and global context. Locd detail is required for locd interadions
with the situation, while global context is needed to knov where we ae and even to knawv
how to interpret local information.

We can highlight two relevant contributions in this paper. First, we study the alaptation
and wse of fisheye views to visualize functional expressons. An important advantage of
fisheye views is that, given their generdity, they are independent from any particular
visualization. We ill ustrate this point by showing its use both with naive pretty-printing and
with graphicd displays. A secondcontributionis the generalization d the definition d fisheye
views. Basicdly, this generalization comes from the convenience of defining several criteria
for neanesswithin a functional expresson, and to be ale to define several focus of interest;
some relevant cases of these variations are dso described. The generali zation allows to use
different filters in dfferent debugging situations within the same functional programming
environment.

The paper is dructured as follows. The following sedion describes fisheye views as
defined by the human-computer interadion community. In the third sedion, we alapt fisheye
views to functional expressons, defining all their constituent elements, and apply them as a
filter for pretty-printing and for graphicd displays. Sedion 4 generalizes the definition o
fisheye views, motivating the utility of alternative definitions with several debugging needs. In

*The choice of the languege is not important for the purpose of our paper. We still use Hope" because of its
simplicity and adequacy for an educaional use, and becaise its Smple implementation allows us to reduce
development and experimentation efforts.

Automatic simplification of the visualization of functional expressions by mean of fisheye views 103

the fifth sedion we explain ou experience using fisheye views. Finally, a discusson and ou
conclusions are given.

2 Fisheyeviews

In his minal work, Furnas [3] defines a fisheye view of any general structure by means of a
function Degree Of Interest (DOI) which assgns to every point in the structure anumeric
value representing its worthiness to the user. The visualization d a structure is a display
formed by points whose degree of interest is greder than a threshold (an arbitrary integer
quantity). A simple but succesgul definition d DOI, that considers bath locd and global
interest, is:
DOI(x,f) = API(X) - D(x,)

where DOI measures the degree of interest of a paint x of the structure when the focus of
attention is point f. The functions APl and D define the A Priori Interest of any point and the
Distancebetween two points, respectively.

This definition d DOI can be austomized in dfferent ways to any structure. In particular, a
“natural” definition d of the distancefunction D for treestructures is the number of arcsin the
path that links two pdnts in the tree In turn, a “natural” definition d API(x) states that the
closer a node to the root, the more interesting it is. In summary:

DOI(x,f) = -[d(x,root) + d(x,)]

For instance, Figure 1 shows a simple ternary tree anaated with its DOI values, given a
particular focus.

-2
-2 4 -4
2 -4 ‘4‘ 6 -6 -‘6 ‘-6 -6 ‘-6

Figure 1. Ternary tree annotated with DOI values for a given focus

The fisheye view of this treevaries with the adopted threshald t. Figure 2 shows two fisheye
views, for values$=-2,-4. Noticet=-6 causes the whole tree to be displayed.

-2 -2
— R
-2 -2 -4 -4
— T
-2 -2 -4 -4
f f
Figure 2. Two fisheye views of the ternary tree in Figure 1

104 APPIA-GULP-PRODE'98

Notice that an annaated tree has a spine of minimal values between its root and the focus.
Sets of points with successvely larger values are distributed in “concentric drcles’ around
this gine. This property has a number of nice @nsequences with resped to efficiency [3] and
ease of display. For instance, we can ignore ay subtreewhase root has a numeric value under
the threshold.

3 Fisheyeviews of functional expressions

We eplain in this ®dion the alaptation d fisheye views to simplify the visualization d
functional expressons. In the first subsedion, we austomize most of its elements. The seaond
subsedion dfines the most subtle dement, the distance function, delaying until the third
subsection some additional details. Finally, subsection 3.4 contains two examples.

3.1 Definition of fisheye views of functional expressions

The gplicaion d fisheye views to visualize functional expressons requires the definition o
several elements. Firstly, we must identify the structure on which to apply the fisheye
technique. There is a camoncd representation for syntadic structures in general, and
functional expresgons in particular: their abstrad syntax tree (AST). It has the alditional
advantage for our purposes that it is atreestructure. We ae nat going to define explicitly the
AST of Hope" expressons (see eg. [1]), bu we hope that it is clea from explanations and
examples.

We nedl to spedfy two more dementsin the DOI formulae dove: what is the focus? what
distance function to apply? The axswers to these questions depend onthe particular use we
plan to make of the fisheye view medianism. Remind lrere that we ae interested in showing
relevant parts of intermediate functional expressons during debugging. We propcse the
following answers:

» Focus. There ae severa interesting parts of an intermediate expresson, for instance the
subexpresson resulting from the previous rewriting, and the next redex. The latter isin
general the most useful choice since when debuggng, the programmer wants to knov
what will happen next. Notice that a normal form expresson daes nat contain redex, so
there are neither focus nor distance to it in this particular case.

» Distance function. The most dired option is the syntadic distance in the AST between
nodes. However, we have foundthat comprehension is improved by modifying slightly
this distance function, in a way that we eplain in the two following subsedions.
Because of reasons that later will be apparent, we call sjpdugal distance function

We dtill haveto define the display of the expresson. To keep the discusson simple, we pretty-
print naively the expression, with hidden subexpressions identified by elision *...".
As an example, consider the following conditional expression:

if 4=0 then 1 else 4*fact(4-1)

that is produced after one step of eager evaluation d fact 4 , given the usual reaursive
definition d fact. Notice that the redex is 4=0. The astrad syntax treeof the expresson can
be seen in Figure 3, where eab nock is annaated with its API, D and DOI values (in this

Automatic simplification of the visualization of functional expressions by mean of fisheye views 105

order, withou their minus sgn, and enclosed by bradets). In addition, some nodes contain
auxiliary information (e.g. identifiers for functions), and the redex node is underlined. The
values of some nodes may result a bit surprising, but they are due to small modificaions of
the distance function that we explain in the next two subsections.

cond [0+1=1]

e e

apply[1+0=1] int (1) apply [1+2=3]
[1+2=3]
fun (=) [1+0=1] tuple [1+0=1] fun (*) tuple [1+2=3]
[1+2=3]
int (4) int (0) int (4) apply [2+3=5]
[2-1=1] [2-1=1] [2+3=5]

fun (fact) apply [3+4=7]

[2+3=5] /\

fun (-) tuple[3+4=7]

[3+4=7] /\

int (4) int(1)
[4+5=9] [4+5=9]

Figure 3. Annotated AST of a functional expression

Given different thresholds the resulting fisheye views of the expression are:

—

if 4=0 then ... else ...
if 4=0 then 1 else ...*...
if 4=0 then 1 else 4*fact ...

—~ ~ ~ ~+
Il I.l Il

if 4=0 then 1 else 4*fact(4-1)

3.2 Definition of the spatial distance function

The spatial distance function between two nodks in the AST is a variant of the function that
computes the distance between two nodes in an arbitrary tree We do nd give the detail s here,
but it just acaimulates the number of arcs in the path that conreds both nodes, i.e. the
distance value for eat arc is always 1. The only relevant variation we introduce on this
simple dgorithm is that some acs are nat courted, i.e. we @nsider that the distance of an arc
is either O or 1. Distance zero is assigned to some arcs to achieve a more meaningful display.

106 APPIA-GULP-PRODE'98

Let us sethe distance from ead classof node in the AST to its dired descendants. We
explain the rationale for such distance by thinking of the display we would like to oltain when
ead classof noce is the frontier among visible and hidden nodks in the fisheye view. Notice
that the definition d the distance functionis influenced by the expedations abou the anount
of information to show.

» Condtiond expressons. We show the expresson keywords, bu nat its subexpressons:

if ... then ... else Therefore, the three descendants of the condtional node
are at distance one.
e Qualified exor%sons It is analogous, so they are written let .. == ..in. , or
.. where ... == ... end , and the three descendants are at dlstance one.
. Tuple. We want to show that it isatuple formed by a cetain nunber of comporents,
which are & the same level, for instance, (...,...) for pairs. Consequently, all the

components of the tuple are at distance one.

» Lambdaexpresson. It is analogous to the tuple cae: we want to show its keywords and
the number of lambda rules. For instance, for a lambda expresson containing two
lambda rules, it looks lambda ... | ... end . Thus, al the lambda rules are &
distance one.

» Application. It has two descendant expressons, the function a constructor to apply, and
the agument. As arepresentative of the gpli cation, we show the functionto be gplied,
but the agument is gill kept hidden. For instance, we display ... for any functionf.
Thus, the first descendant of an applicaion nock is at distance zero, bu the seamndis at
distance one.

e Lambdarule. It is smilar to the goplication case: in arder to give more information than
merely saying it is alambda rule, we show one level of its pattern, bu we do nd show
the orrespondng expresson. For instance we see nil => .. for a pattern
corresponding to the empty list, and: ... => ... for the non-empty list.

» Equivalence It is analogous to the two previous cases. We show the variable and the
equivalence symbol, but not the corresponding pattern,&e. for a variablev.

3.3 Additional features

The spatial distance function defined above provides nice excerpts of functional expressons,
but two additional features can improve the treatment of application expressions.

As we naticed in the previous subsedion, the definition o the distance function is
influenced by the expedations abou the anournt of information to show. The definition we
made of the distance function for applications is incomplete, becaise it corresponds to the
particular case of prefix functions. There ae two aher important subcases of the gplication
expresson with resped to pretty-printing: application d an infix function, and alist or string
literal (formed by successve gplicaions of the cnstructor cons, :: in Hope"). The detail s of
distances associated to arcs are alittl e aumbersome, but easy to infer, so we only mention here
the criteria adopted for showing subexpressions:

 Infix function. Remind what happens with a prefix function applied to two arguments.

We want to seef ... in afirst approach, later f (...,...) , and so we can go on
showing parts of ead comporent of the tuple. However, we exped to dsplay the
applicaion d an infix function dfferently. Wefirst show ... f ... and then we begin

to show its two arguments.

Automatic simplification of the visualization of functional expressions by mean of fisheye views 107

e List or string. The list or string natation is much more friendy than its plain syntadic
structure. We ajust the distance function so that they are pretty-printed similarly to
tuplesi...,...,...] or-.”

A fina improvement can be made in relation to the presentation d the redex; we motivate it
with the cae of the redex being an applicaion nod. The definition d the spatial distance
given abowve for function applicaion hes the nice feaure of showing something abou an
applicaion, ramely the functionto be gplied, bu nat the agument, for instancefact ... or
. However, this gyle of presentation istoo poa for aredex, espedaly when it is the
applicdion d a primitive or reaursive function. In effed, in these caes me knowledge of
the redex argument shoud be given, for instance fact 3 or 4-1 . In summary, we want to
“widen” the redex node with its direct descendants.

This change of presentation can be atieved by modifying the computation dstances.
Noticethat, when the redex is an applicaion nod, we ae trying to consider such noce andits
direa descendants (function and arguments) as a single nocke in the AST. The distance to the
root already makes a difference anong these threenodes. So, their union can only be adieved
in an urcommon way: we set the distance from the aguments to the goplicaion nodkto be-1.
Figure 3 is an example of this case, where the redex contains the equality function.

The redex is aso widened for two aher cases: the redex node being a @mndtiona or a
qualified expresson. In thisway, we aroid the posshility of simply showing the keywords for
the redex (for example, if ... then ... else ...), becaise & least the bodean
expressionrue oOrfalse and something about the two branches is shown.

3.4 Someexamples

We finish this dion by including two examples. First, we show how the evaluation process
looks in a simple example, the fadoria function. We only unfold completely the first
applicdion d fact, and later show the intermediate expressons whose redex is a reaursive
applicaion. For every expresson, we set a threshold value that restricts the display to the set
of nodes with minimum DOI values, so that only the nodes in the path from the roat to the
redex are shown. We highlight redexes with bold typing.

fact 4

!
if 4 = Othen...else...

1
if false then 1 else ... * ...

!

.. *fact (4 - 1)
l

K fact 3

!
L fact 2)

.l..*(... ol O fact 1))

!
TR (PP (PP (PP fact 0)))

1
24: num

The seaond example is used to ill ustrate the independence of the fisheye view technique with
resped to the display format of expressons. We show an example of the simplification d an

108 APPIA-GULP-PRODE'98

expresson invalving trees, which can be displayed much more user-friendy in a graphicd
format than in atextua one. We use the same mixed display as in a previous work [5], where

lists and trees are represented graphically and the rest of expressions as text.
Consider the following tree:

Figure 4. Graphical representatation of a literal tree

which is a graphical representation of the functional literal:

Node (Node (Empty,0,Empty),
4

N7ode (Node (Empty,6,Empty),
8

Node (Empty,9,Empty)));

We can apply afunction mirror to reverse such atree The expresson oliained after the first
rewriting is a tree whaose root contains the integer value 4 and its two subtrees have to be
reversed yet. The left subtreeis the next redex, so its fisheye view contains more detail s than
that of the right subtree Again, we use dision ‘... to refer to hidden subexpressons and we
bold the redex. In this case, the threshold is set to show the three sets of minimum DOI values.

mrror()

o

nirrory(...)

Figure 5. Graphical representation with fisheye views of an expression involving tre:

Automatic simplification of the visualization of functional expressions by mean of fisheye views 109

4 Alternative fisheye views of functional expressions

The fisheye views of functional expressons given above ae useful in general. However, there
are many kinds of algorithms and programming errors, so it can be @nwenient to the
programmer to have severa strategies for filtering, rather than merely one. This can leal to
variants on the previous definition d fisheye views; in the first subsedion we describe one
such variant. In order to be &le to cope with aternative definitions, in the second subsedion
we generalize further the definition of fisheye views.

4.1 Temporal fisheyeviews

A first aternative on defining fisheye views consists in using a different distance function.
Notice that we have emphasized the spatial dimension d functional expresgons, considering
that expressons which are & the same distance from the redex in the AST are eually
important. However, this is not always true while debugging, becaise expressons do nd
emerge in isolation, bu along atemporal process Therefore, a diff erent distance function can
be defined, based on the “temporal distance” of a subexpression to the redex.

The temporal distance function D(x,f) is defined as the minima number of rewriting steps
required to evaluate the subexpresson whose roat is x when the arrent redex isf. In pradice,
this number of steps will commonly be larger, since new expressons will be introduced
during the rewriting process.

For instance, let us consider the distance for the cndtional expresson. The condtionis
evaluated first, followed by the evaluation d ether the subexpresson then or the
subexpresgon else. Therefore, we can say that the tempora distance from a cndtional node
to its condition is 1 and to the other two subexpressions is 2.

Notice that using this temporal distance function orly makes snse when computing the
distanceto the redex, bu not when computing the distanceto the expressonroct. Besides, the
temporal distance function can orly be used succesqully with eager evaluation, where the
relative order of evaluation d all the subexpressons is known, but it is far more problematic
with lazy evaluation.

4.2 General fisheyeviews

We have studied the posshility of using two dfferent distance functions. We have dso
mentioned the posshility of not using the redex as the focus, bu the subexpresgon resulting
from the previous rewriting. We can aso think of other variations in the definition d the DOI
function, for example, we could be interested in highlighting all the reaursive cdls of a cetain
function by considering all of them as focus. In fad, a programmer in a debugging sesson
would exped to have aversatile tod, where she can use the most adequate fisheye view to
any particular problem or algorithm.
This situation leads us to generalize three parts of the definition of the function DOI:
» Focus. There can be an arbitrary number. The faaliti es of the debugger will determine
the most convenient focus to use. In particular, we have drealy identified severa useful
ones: the next redex, the subexpresson resulting from the previous rewriting, and the
recursive calls of a given function.
» Distance functions. We have seen two useful distance functions: spatial and temporal.
Although in principle distances and focus are independent, in pradice eab dstanceis
most sensible for some focus than for others.

110 APPIA-GULP-PRODE'98

» Sum of distance®kemind the DOI function used for trees in previous sections:
DOI(x,f) = -[d(x,root) - d(x,f)]
where the right hand side mmes from the expresson API(x) - D(x,f). This formula can
be interpreted in a different way: there ae two focus, the roat of the AST and f. The
formula can be generalized to an arbitraryfsef focus, resulting in:
DOI(x,F) =-[>D(x,f)], forallfinF
In the formula, distances to focus are alded, bu more generally, they can be combined
with an arbitrary combination functiddomb(i.e. the product or minimum functions):
DOI(x,F) = -[Comb(Dk,f))], forallfinF

This generalized definition d the DOI function opens new paosshiliti es to design fisheye
views adequate to dfferent purposes. Although they require more study, certain fads can
alrealy beidentified. First, addition has a number of nice properties with resped to efficiency
and ease of display, mentioned at the end d sedion 2. Other functions can be more
convenient in some cases, but they have a cost.

A seoond consequence of our generalization is that the DOI function daes nat require the
AST roat to be afocus, bu it is |eft to the dhoice of the programmer. In this case, the global
context of the whole expresgon is lost, resulting views smilar to traces. This contradicts our
criterion d reaoncili ng the use of global and locd information. However, it also gives more
flexibility to the programmer, while debugging in a structured, ambhocway.

5 Experience

We have integrated fisheye views in ou programming environment pretty-printer. At the
moment, we have implemented fisheye views based onthe spatia distance function and for
eager evaluation. The airrent version d the programming environment is smilar to Turbo
Pascd environment for MS-DOS, being avallable a the aldress
ftp://ftp.escet.urjc.es/programacion/thipe

Apart from the dgorithm to annaate distancesin the AST and the alaptation d the pretty-
printer, it was necessary to give asimple user interfaceto the programmer, so that she wuld
understand the basics of the mechanism without unnecessary and annoying details.

In the implemented definition d fisheye views, a smple solution was possble becaise
their annaations exhibit the known property that the nodes with lowest values are dong a
spine which links the root and the redex. The rest of numeric values are distributed in
“concentric drcles’, ead ore with avalue smaller by 2. Each concentric drcle in the AST is
formed by the direct descendants of nodes in the contiguous inner circle.

Given this property, a simple interface ca be provided to the user. She must only say the
number of concentric arcles that she wants to see The lowest value is zero, indicaing that
only the spine will be shown. The smallest value that produces a display of the whde
expression can be arbitrarily small or large, depending on the depth of the AST.

From the implementation pant of view, the rrespondence between the number of
syntadic drcles and the threshold to use is the following: the threshold is equal to the value
associated to the redex (i.e. the lowest value at the AST) plus twice the number of circles.

Even with this smple interadion, nd aways the user knows the most adequate number to
define the fisheye view. She has the passhility of changing it and redisplaying the expresson.
Initialy, the programming environment sets the highest integer value to the threshold, so that,
by default, complete expressions are shown.

Automatic simplification of the visualization of functional expressions by mean of fisheye views 111

6 Discussion

There ae few experiences smilar to ous to simplify automatically the visualization o
functional expressons; in fad, we only know of that by Foulster and Runciman [2]. They
define filters for the visualization d lazy programs written in a subset of Haskell. There ae
two kinds of filters, ore to identify the intermediate expressons to show and another one to
define the display of every such expresson. A language, including a set of primitives, is
provided that alows the programmer to define filters in a flexible way. However, the
programmer must work hard to use them: she must lean a new programming language, sheis
nat given hints on what filters are more adequate, and the interadion with the programming
environment is complex. Our solution is much simpler from the point of view of the
programmer. Therefore, their solution can be more alequate for professonal programmers,
but it is too complex for occassional programmers or for novices in an educational use.

The arrent implementation o fisheye views have some visualization and efficiency
properties that make them appeding. The tedhnique is a genera filtering method, independent
from the pretty-printing format: we showed in subsedion 3.4that it can even be used for
graphicd visudizations. In fad, we ae now integrating it into a mixed text-graphics
visualizer [5], where list and trees values are displayed graphicaly and the rest of expressons
are displayed textually. It is being included in WinHIPE, a new version for Windows of the
environment, available & the aldress ftp://ftp.escet.urjc.es/programacion/winhipe ,
which is in an advanced stage of construction.

We have naticed that the technique must be complemented with ather techniques in order
to make its best use. In particular, browsing is a good way to investigate in a particular
subexpresson withou affeding the visualization d others. In addition, the best pretty-
printing tedhniques we have (graphics, coloring, etc.), the best use of fisheye views can be
made. Finaly, highlighting the redex in any expresson is very useful to understand the
resulting view.

An interesting problem is its interadion with pretty-printing of infix functions. These
functions are auser-friendly faality for the programmer, which make program text more
complex to understand, bu that, given adequate rules for priority and associativity, result in a
more mnvenient notation. What we had na predicted is the interplay between elision‘..." and
infix operators. we tend to read elision as ancther infix operator, so it is not always easy to
interpret text with both features. Coloring can be a good aid to eliminate these ambiguities.

A future line of work consists in further studying whether fisheye views indeed provide an
improvement of debugging efficiency. We have studied their impad in many programs,
including multi ple reaursive functions, bu a more systematic assesanent shoud be addressed.
In any case, it isobvious to us that debugging is a cmmplex adivity where many faaliti es and
aids must be provided. Any improvement in ore fadlity easies the debugging process bu
only by improving all these facilities, debugging can be dramatically eased.

Another interesting isaue is the most adequate value of the threshad for diff erent problems.
We have smplified the user interadion to set it, and we have thowght of some further
interacdion improvements. We have observed that usualy the threshold value depends on the
syntadic depth of the data type of parametersin reaursive cdls: it is quite different its value to
fully view a number, alist or atree What remains an interesting problem is whether we can
also provide automatic aids to set them.

Ancther future work is related to the linea nature of fisheye views. Whil e debugging, the
programmer often gives much more importance to some parts of a program than to athers. We
have to study whether this noninea interest can be simulated using variants of fisheye views

112 APPIA-GULP-PRODE'98

(e.g. multiple focus in reaursive cdls or different distance functions). The main problem for
norlinea seledionisthat it does have such good poperties for pretty-printing simplicity and
efficiency.

7 Conclusions

We have gplied the fisheye view technique to simplify automaticdly the visualization d
functional expresgons in a programming environment. Fisheye views alow to trade-off the
presentation d locd detail (here, the redex) and global context (the whole expresson) in order
to provide ameaningful simplified expresgon. It can easily be adjusted by the programmer,
since it relates diredly to the syntadic structure of expressons. The technique is general,
sinceit can be used with any technique for visualizing expresson, from text pretty-printing to
graphica representations. The success of the technique depends on the use of other related
tedhniques, such as browsing or pretty-printing. We have dso shown several aternatives and a
more general definition we are currently studying and experimenting.

Acknowledgments

The work here reported was made in July 1997 duing a stay at the University of York, invited
by the Functional Programming Group dreded by Colin Runciman. | want to thank Cristobal
Pargja Flores, Ricardo Jiménez Peris, Marta Patifio Martinez and Colin Runciman for some
discussions about the topic, and two anonymous referees for their comments.

References

[1] A.J FiddandP. E. Harrison, Functiond Programning, AddisonWesley, 1988

[2] S. P. Foubister and C. Runciman, “Tedniques for simplifying the visualization d graph
reduction”,Functional Programming, Glasgow 1998pringer-Verlag, 1994, pp. 66-77

[3] G.W. Furnas, “Generalized fisheye views’, ACM S GCHI’ 86 Conference on Human Factors in
Computing Systempp. 16-23

[4] L. M. Gémez Henriquez, Sstematizacién y uso de las témicas de visuaizacion de programas
concurrentes, PhD Thesis, Faaltad de Informética, Universidad Politémica de Madrid, Spain,
May 1995

[5] R. Jménez Peris, C. Pargja Flores, M. Patifio Martinez and J. A. Velazquez Iturbide, “ Graphicd
visudlization d the evduation d functional programs’, SGCSE/SGCUE Conference on
Integrating Techndogy into Computer Science Education (ITICSE'96), ACM Press pp. 3638

[6] N. Perry, Hope', Tednicd Report IC/FPR/ILANG/2.5.17, Dept. of Computing, Imperial
College, University of London, October 1989

[7] M. Sarkar and M. H. Brown, “Graphicd fisheye views’, Commnunications of the ACM,
37(12):73-84, December 1994

[8] B. Shneiderman, Designing the User Interface Strategies for Effedive Human-Computer
Interaction Addison-Wesley, 3rd ed., 1998

[9] J. A. Velazquez Iturbide, “Improving functional programming environments for education’, in
Man-Machine Commnunication for Educationad Systems Design, M. D. Brouwer-Janse and T. L.
Harrington (eds.), Springer-Verlag, 1994, pp. 32832

