
101

Automatic simplification of the visualization
of functional expressions by means of fisheye views

J. Ángel Velázquez Iturbide1

Abstract

We face the problem of simpli fying automatically the visualization of functional
expressions. The problem rises when debugging in programming environments
based on a rewriting model of expression evaluation, because very large
intermediate expressions must be displayed. A simpli fication technique should
filter those parts of an expression which are not interesting for debugging. We
propose fisheye views as an adequate technique because they provide a balance
between showing global context and local information; in particular, we have
designed fisheye views of functional expressions to show the structure of the
whole expression and subexpressions around its redex. The amount of information
shown can be easily adjusted by the programmer, since it relates directly to the
syntactic structure of expressions. The technique is general, since it can be used
with any technique for visualizing expressions, from text pretty-printing to
graphical representations. We also include in the paper several examples of
application, discuss alternatives for several aspects of the technique and introduce
a more general definition we are currently studying and experimenting.

Keywords: functional programming, programming environments, visualization.

1 Introduction

The evaluation of functional programs is based on a model of expression evaluation by
rewriting. Consequently, the state of evaluation at any moment is given by the current
intermediate expression resulting after previous rewritings. A debugger for functional
programming adapted to such an evaluation model must allow the programmer to deal with
intermediate expressions by means of adequate tools.

Intermediate expressions obtained during evaluation can be quite large, becoming
incomprehensible. Therefore, the debugger should not always show the whole expression, but
only relevant parts. Some traditional solutions, such as tracing, are good in the sense of
allowing the programmer to focus on several points of interest. However, they are ad hoc
solutions, not truly integrated with such operational view of evaluation. In addition, they are
incomplete and rigid, because they do not usually allow to know other parts of the current
expression, apart from the last function application and variable bindings.

We face this problem in a programming environment we have built with an educational
purpose [9]. HIPE (Hope+ Integrated Programming Environment) is based on the language

1 Escuela de CC. Experimentales y Tecnología, Universidad Rey Juan Carlos,
Camino de Humanes 63, 28936 Móstoles, Madrid, Spain. E-mail: a.velazquez@escet.urjc.es

102 APPIA-GULP-PRODE'98

Hope+ [6] and offers the programmer a rewriting model of expression evaluation.2 The
programmer can control the reach of evaluation from the current intermediate expression: to
rewrite one or several steps, to evaluate completely either the expression or the redex, and to
advance to a breakpoint (in HIPE, the application of any user-defined function selected by the
programmer). In either case, the debugger shows the resulting expression (either intermediate
or final). The programmer can also choose the evaluation strategy, either eager or lazy.

A solution to handle large expressions is browsing: the programmer can navigate through
the expression, expanding and contracting different subexpressions according to their
perceived degree of interest. Although this solution is simple and flexible, the programmer is
burdened with determining what parts of an expression are interesting. Thus, browsing can be
used as a complementary facilit y, but it should not be used as the primary solution to simpli fy
visualization. We require automatic techniques which simpli fy the visualization of the current
expression in the most comfortable and meaningful way to the programmer.

We have studied approaches to this problem in the functional programming community [2]
and to the scalabilit y problem in the visualization and the user interface communities (see e.g.
[4, 8]). As a conclusion, we consider more adequate for our automation requirement those
techniques which simpli fy the “logical space” of objects to show than those which simpli fy
the “graphical space” of the visualization. That is, we think that the simpli fication must
remove those parts in a functional expression which are not interesting for the debugging task.
The technique that best fits our approach is fisheye view, a technique to filter information [3]
(although it can also be used as a basis for defining graphical presentations [7]).

The name “fisheye view” derives from fisheye or wide angle lenses: these lenses provide a
strategy of vision consisting in showing nearby places in great detail while still showing far
places in less detail . Furnas [3] gives a rough idea of the technique by referring to the poster
known as the “New Yorker’s view of the United States” , where Manhattan is shown street by
street, New Jersey is given in much less detail , and the rest of the states are reduced to a few
landmarks (Chicago, Cali fornia, etc.). The basic idea behind fisheye views is to provide a
balance between local detail and global context. Local detail i s required for local interactions
with the situation, while global context is needed to know where we are and even to know
how to interpret local information.

We can highlight two relevant contributions in this paper. First, we study the adaptation
and use of f isheye views to visualize functional expressions. An important advantage of
fisheye views is that, given their generality, they are independent from any particular
visualization. We ill ustrate this point by showing its use both with naive pretty-printing and
with graphical displays. A second contribution is the generalization of the definition of f isheye
views. Basically, this generalization comes from the convenience of defining several criteria
for nearness within a functional expression, and to be able to define several focus of interest;
some relevant cases of these variations are also described. The generalization allows to use
different filters in different debugging situations within the same functional programming
environment.

The paper is structured as follows. The following section describes fisheye views as
defined by the human-computer interaction community. In the third section, we adapt fisheye
views to functional expressions, defining all their constituent elements, and apply them as a
filter for pretty-printing and for graphical displays. Section 4 generalizes the definition of
fisheye views, motivating the utilit y of alternative definitions with several debugging needs. In

2The choice of the language is not important for the purpose of our paper. We still use Hope+ because of its
simplicity and adequacy for an educational use, and because its simple implementation allows us to reduce
development and experimentation efforts.

Automatic simplification of the visualization of functional expressions by mean of fisheye views 103

the fifth section we explain our experience using fisheye views. Finally, a discussion and our
conclusions are given.

2 Fisheye views

In his seminal work, Furnas [3] defines a fisheye view of any general structure by means of a
function Degree Of Interest (DOI) which assigns to every point in the structure a numeric
value representing its worthiness to the user. The visualization of a structure is a display
formed by points whose degree of interest is greater than a threshold (an arbitrary integer
quantity). A simple but successful definition of DOI, that considers both local and global
interest, is:

DOI(x,f) = API(x) - D(x,f)
where DOI measures the degree of interest of a point x of the structure when the focus of
attention is point f. The functions API and D define the A Priori Interest of any point and the
Distance between two points, respectively.

This definition of DOI can be customized in different ways to any structure. In particular, a
“natural” definition d of the distance function D for tree structures is the number of arcs in the
path that links two points in the tree. In turn, a “natural” definition of API(x) states that the
closer a node to the root, the more interesting it is. In summary:

DOI(x,f) = -[d(x,root) + d(x,f)]

For instance, Figure 1 shows a simple ternary tree annotated with its DOI values, given a
particular focus f.

The fisheye view of this tree varies with the adopted threshold t. Figure 2 shows two fisheye
views, for values t=-2,-4. Notice t=-6 causes the whole tree to be displayed.

-2

 -2 -4 -4

 -2 -4 -4 -6 -6 -6 -6 -6 -6
 f

Figure 1. Ternary tree annotated with DOI values for a given focus f

-2 -2

 -2 -2 -4 -4

 -2 -2 -4 -4
 f f

Figure 2. Two fisheye views of the ternary tree in Figure 1

104 APPIA-GULP-PRODE'98

Notice that an annotated tree has a spine of minimal values between its root and the focus.
Sets of points with successively larger values are distributed in “concentric circles” around
this spine. This property has a number of nice consequences with respect to eff iciency [3] and
ease of display. For instance, we can ignore any subtree whose root has a numeric value under
the threshold.

3 Fisheye views of functional expressions

We explain in this section the adaptation of f isheye views to simpli fy the visualization of
functional expressions. In the first subsection, we customize most of its elements. The second
subsection defines the most subtle element, the distance function, delaying until the third
subsection some additional details. Finally, subsection 3.4 contains two examples.

3.1 Definition of fisheye views of functional expressions

The application of f isheye views to visualize functional expressions requires the definition of
several elements. Firstly, we must identify the structure on which to apply the fisheye
technique. There is a canonical representation for syntactic structures in general, and
functional expressions in particular: their abstract syntax tree (AST). It has the additional
advantage for our purposes that it is a tree structure. We are not going to define explicitl y the
AST of Hope+ expressions (see e.g. [1]), but we hope that it is clear from explanations and
examples.

We need to specify two more elements in the DOI formulae above: what is the focus? what
distance function to apply? The answers to these questions depend on the particular use we
plan to make of the fisheye view mechanism. Remind here that we are interested in showing
relevant parts of intermediate functional expressions during debugging. We propose the
following answers:

• Focus. There are several interesting parts of an intermediate expression, for instance the
subexpression resulting from the previous rewriting, and the next redex. The latter is in
general the most useful choice since, when debugging, the programmer wants to know
what will happen next. Notice that a normal form expression does not contain redex, so
there are neither focus nor distance to it in this particular case.

• Distance function. The most direct option is the syntactic distance in the AST between
nodes. However, we have found that comprehension is improved by modifying slightly
this distance function, in a way that we explain in the two following subsections.
Because of reasons that later will be apparent, we call it the spatial distance function.

 We still have to define the display of the expression. To keep the discussion simple, we pretty-
print naively the expression, with hidden subexpressions identified by elision ‘...’.
 As an example, consider the following conditional expression:

 if 4=0 then 1 else 4*fact(4-1)

 that is produced after one step of eager evaluation of fact 4 , given the usual recursive
definition of fact. Notice that the redex is 4=0 . The abstract syntax tree of the expression can
be seen in Figure 3, where each node is annotated with its API, D and DOI values (in this

Automatic simplification of the visualization of functional expressions by mean of fisheye views 105

order, without their minus sign, and enclosed by brackets). In addition, some nodes contain
auxili ary information (e.g. identifiers for functions), and the redex node is underlined. The
values of some nodes may result a bit surprising, but they are due to small modifications of
the distance function that we explain in the next two subsections.

 Given different thresholds t, the resulting fisheye views of the expression are:

 t=-1: if 4=0 then ... else ...

 t=-3: if 4=0 then 1 else ...*...

 t=-5: if 4=0 then 1 else 4*fact ...

 t=-7: if 4=0 then 1 else 4*fact(...-...)

 t=-9: if 4=0 then 1 else 4*fact(4-1)

 3.2 Definition of the spatial distance function

 The spatial distance function between two nodes in the AST is a variant of the function that
computes the distance between two nodes in an arbitrary tree. We do not give the details here,
but it just accumulates the number of arcs in the path that connects both nodes, i.e. the
distance value for each arc is always 1. The only relevant variation we introduce on this
simple algorithm is that some arcs are not counted, i.e. we consider that the distance of an arc
is either 0 or 1. Distance zero is assigned to some arcs to achieve a more meaningful display.

 cond [0+1=1]

 apply [1+0=1] int (1) apply [1+2=3]
 [1+2=3]

 fun (=) [1+0=1] tuple [1+0=1] fun (*) tuple [1+2=3]
 [1+2=3]

 int (4) int (0) int (4) apply [2+3=5]
 [2-1=1] [2-1=1] [2+3=5]

 fun (fact) apply [3+4=7]
 [2+3=5]

 fun (-) tuple[3+4=7]
 [3+4=7]

 int (4) int(1)
 [4+5=9] [4+5=9]

 Figure 3. Annotated AST of a functional expression

106 APPIA-GULP-PRODE'98

 Let us see the distance from each class of node in the AST to its direct descendants. We
explain the rationale for such distance by thinking of the display we would like to obtain when
each class of node is the frontier among visible and hidden nodes in the fisheye view. Notice
that the definition of the distance function is influenced by the expectations about the amount
of information to show.

• Conditional expressions. We show the expression keywords, but not its subexpressions:
if ... then ... else Therefore, the three descendants of the conditional node
are at distance one.

• Qualifi ed expressions. It is analogous, so they are written let ... == ... in ... , or
... where ... == ... end , and the three descendants are at distance one.

• Tuple. We want to show that it is a tuple formed by a certain number of components,
which are at the same level, for instance, (...,...) for pairs. Consequently, all the
components of the tuple are at distance one.

• Lambda expression. It is analogous to the tuple case: we want to show its keywords and
the number of lambda rules. For instance, for a lambda expression containing two
lambda rules, it looks lambda ... | ... end . Thus, all the lambda rules are at
distance one.

• Application. It has two descendant expressions, the function or constructor to apply, and
the argument. As a representative of the application, we show the function to be applied,
but the argument is still kept hidden. For instance, we display f ... for any function f.
Thus, the first descendant of an application node is at distance zero, but the second is at
distance one.

• Lambda rule. It is similar to the application case: in order to give more information than
merely saying it is a lambda rule, we show one level of its pattern, but we do not show
the corresponding expression. For instance, we see nil => ... for a pattern
corresponding to the empty list, and ... :: ... => ... for the non-empty list.

• Equivalence. It is analogous to the two previous cases. We show the variable and the
equivalence symbol, but not the corresponding pattern, i.e. v & ... for a variable v.

 3.3 Additional features

 The spatial distance function defined above provides nice excerpts of functional expressions,
but two additional features can improve the treatment of application expressions.
 As we noticed in the previous subsection, the definition of the distance function is
influenced by the expectations about the amount of information to show. The definition we
made of the distance function for applications is incomplete, because it corresponds to the
particular case of prefix functions. There are two other important subcases of the application
expression with respect to pretty-printing: application of an infix function, and a list or string
literal (formed by successive applications of the constructor cons, :: in Hope+). The details of
distances associated to arcs are a littl e cumbersome, but easy to infer, so we only mention here
the criteria adopted for showing subexpressions:

• Infix function. Remind what happens with a prefix function applied to two arguments.
We want to see f ... in a first approach, later f (...,...) , and so we can go on
showing parts of each component of the tuple. However, we expect to display the
application of an infix function differently. We first show ... f ... and then we begin
to show its two arguments.

Automatic simplification of the visualization of functional expressions by mean of fisheye views 107

• List or string. The list or string notation is much more friendly than its plain syntactic
structure. We adjust the distance function so that they are pretty-printed similarly to
tuples: [...,...,...] or “...” .

 A final improvement can be made in relation to the presentation of the redex; we motivate it
with the case of the redex being an application node. The definition of the spatial distance
given above for function application has the nice feature of showing something about an
application, namely the function to be applied, but not the argument, for instance fact ... or
...-... . However, this style of presentation is too poor for a redex, especially when it is the
application of a primitive or recursive function. In effect, in these cases some knowledge of
the redex argument should be given, for instance, fact 3 or 4-1 . In summary, we want to
“widen” the redex node with its direct descendants.
 This change of presentation can be achieved by modifying the computation distances.
Notice that, when the redex is an application node, we are trying to consider such node and its
direct descendants (function and arguments) as a single node in the AST. The distance to the
root already makes a difference among these three nodes. So, their union can only be achieved
in an uncommon way: we set the distance from the arguments to the application node to be -1.
Figure 3 is an example of this case, where the redex contains the equality function.
 The redex is also widened for two other cases: the redex node being a conditional or a
quali fied expression. In this way, we avoid the possibilit y of simply showing the keywords for
the redex (for example, if ... then ... else ...), because at least the boolean
expression true or false and something about the two branches is shown.

 3.4 Some examples

 We finish this section by including two examples. First, we show how the evaluation process
looks in a simple example, the factorial function. We only unfold completely the first
application of fact, and later show the intermediate expressions whose redex is a recursive
application. For every expression, we set a threshold value that restricts the display to the set
of nodes with minimum DOI values, so that only the nodes in the path from the root to the
redex are shown. We highlight redexes with bold typing.

 fact 4
 ↓
 if 4 = 0 then ... else ...
 ↓
 if false then 1 else ... * ...
 ↓
 ... * fact (4 - 1)
 ↓
 ... * fact 3
 ↓
 ... * (... * fact 2)
 ↓
 ... * (... * (... * fact 1))
 ↓
 ... * (... * (... * (... * fact 0)))
 ↓
 24: num

 The second example is used to ill ustrate the independence of the fisheye view technique with
respect to the display format of expressions. We show an example of the simpli fication of an

108 APPIA-GULP-PRODE'98

expression involving trees, which can be displayed much more user-friendly in a graphical
format than in a textual one. We use the same mixed display as in a previous work [5], where
lists and trees are represented graphically and the rest of expressions as text.
 Consider the following tree:

 which is a graphical representation of the functional literal:

 Node (Node (Empty,0,Empty),
 4,
 Node (Node (Empty,6,Empty),
 8,

 Node (Empty,9,Empty)));

 We can apply a function mirror to reverse such a tree. The expression obtained after the first
rewriting is a tree whose root contains the integer value 4 and its two subtrees have to be
reversed yet. The left subtree is the next redex, so its fisheye view contains more details than
that of the right subtree. Again, we use elision ‘ ...’ to refer to hidden subexpressions and we
bold the redex. In this case, the threshold is set to show the three sets of minimum DOI values.

 4

 0 8

 5 3 6 9

 Figure 4. Graphical representatation of a literal tree

 4

 mirror() mirror(...)
 8

 Figure 5. Graphical representation with fisheye views of an expression involving trees

Automatic simplification of the visualization of functional expressions by mean of fisheye views 109

 4 Alternative fisheye views of functional expressions

 The fisheye views of functional expressions given above are useful in general. However, there
are many kinds of algorithms and programming errors, so it can be convenient to the
programmer to have several strategies for filtering, rather than merely one. This can lead to
variants on the previous definition of f isheye views; in the first subsection we describe one
such variant. In order to be able to cope with alternative definitions, in the second subsection
we generalize further the definition of fisheye views.

 4.1 Temporal fisheye views

 A first alternative on defining fisheye views consists in using a different distance function.
Notice that we have emphasized the spatial dimension of functional expressions, considering
that expressions which are at the same distance from the redex in the AST are equally
important. However, this is not always true while debugging, because expressions do not
emerge in isolation, but along a temporal process. Therefore, a different distance function can
be defined, based on the “temporal distance” of a subexpression to the redex.
 The temporal distance function D(x,f) is defined as the minimal number of rewriting steps
required to evaluate the subexpression whose root is x when the current redex is f. In practice,
this number of steps will commonly be larger, since new expressions will be introduced
during the rewriting process.
 For instance, let us consider the distance for the conditional expression. The condition is
evaluated first, followed by the evaluation of either the subexpression then or the
subexpression else. Therefore, we can say that the temporal distance from a conditional node
to its condition is 1 and to the other two subexpressions is 2.
 Notice that using this temporal distance function only makes sense when computing the
distance to the redex, but not when computing the distance to the expression root. Besides, the
temporal distance function can only be used successfully with eager evaluation, where the
relative order of evaluation of all the subexpressions is known, but it is far more problematic
with lazy evaluation.

 4.2 General fisheye views

 We have studied the possibilit y of using two different distance functions. We have also
mentioned the possibilit y of not using the redex as the focus, but the subexpression resulting
from the previous rewriting. We can also think of other variations in the definition of the DOI
function, for example, we could be interested in highlighting all the recursive calls of a certain
function by considering all of them as focus. In fact, a programmer in a debugging session
would expect to have a versatile tool, where she can use the most adequate fisheye view to
any particular problem or algorithm.
 This situation leads us to generalize three parts of the definition of the function DOI:

• Focus. There can be an arbitrary number. The faciliti es of the debugger will determine
the most convenient focus to use. In particular, we have already identified several useful
ones: the next redex, the subexpression resulting from the previous rewriting, and the
recursive calls of a given function.

• Distance functions. We have seen two useful distance functions: spatial and temporal.
Although in principle distances and focus are independent, in practice each distance is
most sensible for some focus than for others.

110 APPIA-GULP-PRODE'98

• Sum of distances. Remind the DOI function used for trees in previous sections:
DOI(x,f) = -[d(x,root) - d(x,f)]

where the right hand side comes from the expression API(x) - D(x,f). This formula can
be interpreted in a different way: there are two focus, the root of the AST and f. The
formula can be generalized to an arbitrary set F of focus, resulting in:

DOI(x,F) = -[∑D(x,f)], for all f in F
In the formula, distances to focus are added, but more generally, they can be combined
with an arbitrary combination function Comb (i.e. the product or minimum functions):

DOI(x,F) = -[Comb(D(x,f))], for all f in F

This generalized definition of the DOI function opens new possibiliti es to design fisheye
views adequate to different purposes. Although they require more study, certain facts can
already be identified. First, addition has a number of nice properties with respect to eff iciency
and ease of display, mentioned at the end of section 2. Other functions can be more
convenient in some cases, but they have a cost.

A second consequence of our generalization is that the DOI function does not require the
AST root to be a focus, but it is left to the choice of the programmer. In this case, the global
context of the whole expression is lost, resulting views similar to traces. This contradicts our
criterion of reconcili ng the use of global and local information. However, it also gives more
flexibility to the programmer, while debugging in a structured, non ad hoc way.

5 Experience

We have integrated fisheye views in our programming environment pretty-printer. At the
moment, we have implemented fisheye views based on the spatial distance function and for
eager evaluation. The current version of the programming environment is similar to Turbo
Pascal environment for MS-DOS, being available at the address
ftp://ftp.escet.urjc.es/programacion/thipe .

Apart from the algorithm to annotate distances in the AST and the adaptation of the pretty-
printer, it was necessary to give a simple user interface to the programmer, so that she could
understand the basics of the mechanism without unnecessary and annoying details.

In the implemented definition of f isheye views, a simple solution was possible because
their annotations exhibit the known property that the nodes with lowest values are along a
spine which links the root and the redex. The rest of numeric values are distributed in
“concentric circles” , each one with a value smaller by 2. Each concentric circle in the AST is
formed by the direct descendants of nodes in the contiguous inner circle.

Given this property, a simple interface can be provided to the user. She must only say the
number of concentric circles that she wants to see. The lowest value is zero, indicating that
only the spine will be shown. The smallest value that produces a display of the whole
expression can be arbitrarily small or large, depending on the depth of the AST.

From the implementation point of view, the correspondence between the number of
syntactic circles and the threshold to use is the following: the threshold is equal to the value
associated to the redex (i.e. the lowest value at the AST) plus twice the number of circles.

Even with this simple interaction, not always the user knows the most adequate number to
define the fisheye view. She has the possibilit y of changing it and redisplaying the expression.
Initially, the programming environment sets the highest integer value to the threshold, so that,
by default, complete expressions are shown.

Automatic simplification of the visualization of functional expressions by mean of fisheye views 111

6 Discussion

There are few experiences similar to ours to simpli fy automatically the visualization of
functional expressions; in fact, we only know of that by Foubister and Runciman [2]. They
define filters for the visualization of lazy programs written in a subset of Haskell . There are
two kinds of f ilters, one to identify the intermediate expressions to show and another one to
define the display of every such expression. A language, including a set of primitives, is
provided that allows the programmer to define filters in a flexible way. However, the
programmer must work hard to use them: she must learn a new programming language, she is
not given hints on what filters are more adequate, and the interaction with the programming
environment is complex. Our solution is much simpler from the point of view of the
programmer. Therefore, their solution can be more adequate for professional programmers,
but it is too complex for occassional programmers or for novices in an educational use.

The current implementation of f isheye views have some visualization and eff iciency
properties that make them appealing. The technique is a general filtering method, independent
from the pretty-printing format: we showed in subsection 3.4 that it can even be used for
graphical visualizations. In fact, we are now integrating it into a mixed text-graphics
visualizer [5], where list and trees values are displayed graphically and the rest of expressions
are displayed textually. It is being included in WinHIPE, a new version for Windows of the
environment, available at the address ftp://ftp.escet.urjc.es/programacion/winhipe ,
which is in an advanced stage of construction.

We have noticed that the technique must be complemented with other techniques in order
to make its best use. In particular, browsing is a good way to investigate in a particular
subexpression without affecting the visualization of others. In addition, the best pretty-
printing techniques we have (graphics, coloring, etc.), the best use of f isheye views can be
made. Finally, highlighting the redex in any expression is very useful to understand the
resulting view.

An interesting problem is its interaction with pretty-printing of infix functions. These
functions are a user-friendly facilit y for the programmer, which make program text more
complex to understand, but that, given adequate rules for priority and associativity, result in a
more convenient notation. What we had not predicted is the interplay between elision ‘ ...’ and
infix operators: we tend to read elision as another infix operator, so it is not always easy to
interpret text with both features. Coloring can be a good aid to eliminate these ambiguities.

A future line of work consists in further studying whether fisheye views indeed provide an
improvement of debugging eff iciency. We have studied their impact in many programs,
including multiple recursive functions, but a more systematic assessment should be addressed.
In any case, it is obvious to us that debugging is a complex activity where many faciliti es and
aids must be provided. Any improvement in one facilit y easies the debugging process, but
only by improving all these facilities, debugging can be dramatically eased.

Another interesting issue is the most adequate value of the threshold for different problems.
We have simpli fied the user interaction to set it, and we have thought of some further
interaction improvements. We have observed that usually the threshold value depends on the
syntactic depth of the data type of parameters in recursive calls: it is quite different its value to
fully view a number, a li st or a tree. What remains an interesting problem is whether we can
also provide automatic aids to set them.

Another future work is related to the linear nature of f isheye views. While debugging, the
programmer often gives much more importance to some parts of a program than to others. We
have to study whether this nonlinear interest can be simulated using variants of f isheye views

112 APPIA-GULP-PRODE'98

(e.g. multiple focus in recursive calls or different distance functions). The main problem for
nonlinear selection is that it does have such good properties for pretty-printing simplicity and
efficiency.

7 Conclusions

We have applied the fisheye view technique to simpli fy automatically the visualization of
functional expressions in a programming environment. Fisheye views allow to trade-off the
presentation of local detail (here, the redex) and global context (the whole expression) in order
to provide a meaningful simpli fied expression. It can easily be adjusted by the programmer,
since it relates directly to the syntactic structure of expressions. The technique is general,
since it can be used with any technique for visualizing expression, from text pretty-printing to
graphical representations. The success of the technique depends on the use of other related
techniques, such as browsing or pretty-printing. We have also shown several alternatives and a
more general definition we are currently studying and experimenting.

Acknowledgments

The work here reported was made in July 1997 during a stay at the University of York, invited
by the Functional Programming Group directed by Colin Runciman. I want to thank Cristóbal
Pareja Flores, Ricardo Jiménez Peris, Marta Patiño Martínez and Colin Runciman for some
discussions about the topic, and two anonymous referees for their comments.

References

[1] A. J. Field and P. E. Harrison, Functional Programming, Addison-Wesley, 1988
[2] S. P. Foubister and C. Runciman, “Techniques for simpli fying the visualization of graph

reduction”, Functional Programming, Glasgow 1994, Springer-Verlag, 1994, pp. 66-77
[3] G. W. Furnas, “Generalized fisheye views” , ACM SIGCHI’ 86 Conference on Human Factors in

Computing Systems, pp. 16-23
[4] L. M. Gómez Henríquez, Sistematización y uso de las técnicas de visualización de programas

concurrentes, PhD Thesis, Facultad de Informática, Universidad Politécnica de Madrid, Spain,
May 1995

[5] R. Jiménez Peris, C. Pareja Flores, M. Patiño Martínez and J. Á. Velázquez Iturbide, “Graphical
visualization of the evaluation of functional programs”, SIGCSE/SIGCUE Conference on
Integrating Technology into Computer Science Education (ITiCSE'96), ACM Press, pp. 36-38

[6] N. Perry, Hope+, Technical Report IC/FPR/LANG/2.5.1/7, Dept. of Computing, Imperial
College, University of London, October 1989

[7] M. Sarkar and M. H. Brown, “Graphical fisheye views” , Communications of the ACM,
37(12):73-84, December 1994

[8] B. Shneiderman, Designing the User Interface: Strategies for Effective Human-Computer
Interaction, Addison-Wesley, 3rd ed., 1998

[9] J. Á. Velázquez Iturbide, “ Improving functional programming environments for education”, in
Man-Machine Communication for Educational Systems Design, M. D. Brouwer-Janse and T. L.
Harrington (eds.), Springer-Verlag, 1994, pp. 325-332

