
A Comparison for Uni�cation-Based Parsers

M. Vilares Ferro, D. Cabrero Souto, M.A. Alonso Pardo

Abstract

Uni�cation-based grammars have been the object of study in computational

linguistics over the last few years with the intention of creating powerful parsing

environments. However, it is not common to �nd practical studies about what the

real interest of these techniques is, and which approaches are better adapted in

each case.

We attempt to justify the practical consideration of dynamic programming

in the continuum of Horn-like formalisms, showing that conclusions attained for

de�nite clause grammars are a natural extension of the same conclusions in context-

free theory. Our aim is to demonstrate the practical interest of this technology,

suggesting a simple decision guide for the interested reader.

Keywords: Parsing, dynamic programming, push-down automata, static

analysis, structure sharing.

1 Introduction

Highly redundant computations are a characteristic drawback in non-deterministic

parsing, as is the case in natural language processing (NLP). We shall di�erentiate

between two domains: O�-line and on-line parsers, using the terminology introduced

in [8]. O�-line strategies produce some kind of preliminary grammatical skeleton over

which the system must �lter out the undesirable parsers taking into account the �ner

language structure. In this way, the number of ambiguities grows in the former phase

and, if no sharing structure technique is considered, exponentially increases the number

of computations in the latter one.

On-line systems apply linguistic restrictions at parsing time, which often results in a

syntactic context splitting phenomenon. Here, the problem of exponential complexity

appears in the subsequent treatment. This is the case of uni�cation-based grammars,

where the notion of syntactic category has been extended to a possible in�nite domain

and therefore the number of di�erent parse interpretations can also become in�nite.

In this paper, we briey review the techniques usually applied to solve these problems

as well as possible alternative approaches in dynamic programming. We focus on the case

of de�nite clause grammars (DCGs) for on-line parsers, and in context-free grammars

(CFGs) as the usual skeleton formalism for o�-line parsers. Section 2 establishes our

Work partially supported by the Government of Spain under project HF97-223, and by the

Autonomous Government of Galice under projects XUGA10505B96 and XUGA20402B97.

M. Vilares and M.A. Alonso are with the Cole Lab., Computer Science Department, University of

Corunna, Campus de Elvi~na s/n, 15071 La Coru~na, Spain. E-mail: fvilares, alonsog@dc.�.udc.es.

D. Cabrero is currently with the Ram�on Pi~neiro Research Center for Humanities, Estrada Santiago-

Noia, Km. 3, A Barcia, 15896 Santiago de Compostela, Spain. E-mail: dcabrero@cirp.es.

113

114 APPIA-GULP-PRODE'98

formal testing framework in order to guarantee the validity of the work, introducing the

architecture to be tested. Sections 3 and 4, respectively give a survey of each parsing

strategy in both cases, o�-line and on-line, locating them in the formal testing framework.

In section 5, we include and comment on the experimental results. Finally, section 6 is a

conclusion about the work presented.

2 A common framework

In order to provide a valid support to compare the di�erent strategies, we introduce

a common descriptive parsing formalism for both CFGs and DCGs, using dynamic

programming or not. To do it, we extend the original concept of the logical push-

down automaton (LPDA) introduced by Lang in [5]. We do it as a generalization of

the operational model described by the authors in [13]. An LPDA is de�ned as a 7-upla

A = (X;F;�;�; $; $

f

;�), where X is a denumerable and ordered set of variables, F is

a �nite set of functional symbols, � is a �nite set of extensional predicate symbols, � is

a �nite set of predicate symbols used to represent the literals stored in the stack, $ is the

initial predicate, $

f

is the �nal predicate; and � is a �nite set of transitions. The stack of

the automaton is a �nite sequence of items [A; it; bp; st]:�, where the top is on the left,

A is in the algebra of terms T

�

[F [X], � a substitution, it is the current position in the

input string, bp is the position in this input string at which we began to look for that

con�guration of the LPDA, and st is a state for the driver controlling the evaluation.

Transitions are of three kinds:

� Horizontal: B 7�! CfAg. Applicable to stacks E:� �, i� there exists the most

general uni�er (mgu), � = mgu(E;B) such that F� = A�, for F a fact in the

extensional database. We obtain the new stack C�:�� �.

� Pop: BD 7�! CfAg. Applicable to stacks of the form E:�E

0

:�

0

�, i� there is

� = mgu((E;E

0

�); (B;D)), such that F� = A�, for F a fact in the extensional

database. The result will be the new stack C�:�

0

�� �.

� Push: B 7�! CBfAg. We can apply it to stacks E:� �, i� there is � = mgu(E;B),

such that F� = A�, for F a fact F in the extensional database. We obtain the

stack C�:� B:� �.

where B, C and D are items and A is in T

�

[F [X], a control condition to operate the

transition. The use of it and bp is equivalent to indexing the parse, which allows us to

reduce the search space in dynamic programming, and to implement a garbage collector

facility, by deleting information relating to earlier substrings, as parsing progresses. This

relies on the concept of itemset [3], for which we associate a set of items to each token in

the input string, and which represents the state of the parsing process at that point of

the scan.

In order to deal with classic context-free formalisms, it is su�cient to substitute the

notion of uni�cation by matching, taking �, � and �

0

as identity in transitions. Typically,

the control predicate fAg will represent in this case a condition over a lookahead string.

Dynamic programming is introduced by collapsing stack representations on a �xed

number of items, typically the last two or only the top one to give rise to the dynamic

frames S

2

and S

1

respectively, as opposed to the standard dynamic frame S

T

where a

A Comparison for Uni�cation-Based Parsers 115

stack is given by all its components and backtracking is the technique to simulate non-

determinism. Correctness and completeness of S

2

in relation to S

T

is trivial given that

transitions depend in the worst case on the last two elements in the stack. For S

1

the case

is di�erent, since during pop transitions no information is available about the element

under the top of the stack. In order to solve this lack of information, we rede�ne the

behavior of transitions on items S

1

, as follows:

� Horizontal case: (B 7�! C)(A) = C�, where � = mgu(A;B).

� Pop case: (BD 7�! C)(A) = fD� 7�! C�g, where � = mgu(A;B), and

D� 7�! C� is the dynamic transition generated by the pop transition. This is

applicable not only to the item from which we had computed the top, but also to

those to be generated and which share the same syntactic context.

� Push case: (B 7�! CB)(A) = C�, where � = mgu(A;B).

Intuitively, S

1

provides the best sharing properties and, in consequence, optimal

computational tractability. However, it can be proved that correctness is only guaranteed

for weakly predictive parsing strategies [12, 2], typically pure bottom-up approaches or

mixed-strategies including a predictive phase, static or dynamic, complemented with a

bottom-up construction of the parse.

3 O�-line parsers

We compare several context-free parsing schema, often the grammatical formalism for the

skeleton in o�-line approaches, in di�erent dynamic frames. We have considered three

basic parser generators: the Agfl [6] environment

1

, an implementation of the classic

Earley's algorithm [3], and the Galena [13] system. These correspond, respectively,

to a classic top-down approach with backtracking, a mixed-strategy with dynamic

prediction, and a mixed-strategy with static prediction based on an LALR(1) extended

automaton taken from the Ice [12] environment. We have chosen Ice as the most

e�cient representative of the family of unrestricted LR-like context-free parsers that

includes systems such as Sdf [4] and Glr [9], both based on Tomita's algorithm [11].

To locate these parsing schema in our testing frame, we introduce the categories

5

k;i

; i 2 f1; : : : ; n

k

g for each rule

k

: A

k;0

! A

k;1

; : : : ; A

k;n

k

, whose meaning we shall

later detail in each case.

3.1 A top-down architecture

Here, the symbol 5

k;i

shows that the �rst i categories in the right-hand-side of rule

k

have already been recognized, as it is shown Fig. 1. So, we obtain the following set of

transitions that characterize the parsing strategy:

1. [$; 0; 0;] 7�! [5

0;0

; 0; 0;] $ 2. [5

k;i

; it; bp;] 7�! [A

k;i+1

; it; it;]

[5

k;i

; it; bp;]

3. [A

k;0

; it; bp;] 7�! [5

k;0

; it; bp;] 4. [5

k;n

k

; it; bp;]

[5

k

0

;i

; bp; r;] 7�! [5

k

0

;i+1

; it; r;]

which we can briey interpret as follows:

1

Agfl is not a real uni�cation-based parser since it is built on the notion of a�x grammar. However,

it can be assimilated to a DCG parser where functional symbols are not allowed. This permit us to take

into account one of the most known parsing systems available in NLP.

116 APPIA-GULP-PRODE'98

1. Requires the recognition of the axiom A

0;0

, which we represent by 5

0;0

.

2. Selects the leftmost unrecognized category, A

k;i+1

.

3. The body of

k

becomes a sequence of new categories to be recognized.

4. After recognition of

k

, we return to the calling rule

0

k

.

The state, here represented by \ ", has no operative sense in this approach.

3.2 Earley's approach

As in the precedent case, Earley's algorithm requires the same interpretation for symbols

5

k;i

and states have no operative sense in items. In addition, given a category A

k;i

, we

shall consider the associated symbols A

0

k;i

and A

00

k;i

to respectively indicate that A

k;i

is yet

to be recognized or has been already recognized. So, the parsing scheme can be de�ned

by the transitions:

1. [$; 0; 0;] 7�! [A

0

0;0

; 0; 0;] $ 2. [A

0

k;0

; it; it;] 7�! [5

k;0

; it; it;]

[A

0

k;0

; it; it;]

3. [5

k;i

; it; bp;] 7�! [A

0

k;i+1

; it; it;] 4. [5

k;n

k

; it; bp;]

[5

k;i

; it; bp;] [A

0

k;0

; bp; bp;] 7�! [A

00

k;0

; it; bp;]

5. [A

00

k;i+1

; it; bp;]

[5

k;i

; bp; r;] 7�! [5

k;i+1

; it; r;]

that we informally explain as:

1. States the axiom A

0;0

, which we represent by A

0

0;0

.

2. Requires the recognition of A

0

k;0

, which we represent by 5

k;0

.

3. Selects the leftmost unrecognized category, A

0

k;i+1

.

4. The body of

k

has been recognized. We push A

00

k;0

to show that A

0

k;0

has been

recognized.

5. After recognition of A

00

k;i+1

, the parse advances to the next term in

k

.

For top-down architectures For bottom-up architectures

A

k;0

:� A

k;1

; A

k;2

; � � � ; A

k;i

A

k;i+1

; � � � ; A

k;n

k

: A

k;0

:�A

k;1

; A

k;2

; � � � ; A

k;i

; A

k;i+1

; � � � ; A

k;n

k

:

. . . the �rst i categories have been recognized. . . . categories after the i

th

position have been

recognized

Figure 1: The meaning of symbols 5

k;i

A Comparison for Uni�cation-Based Parsers 117

3.3 A bottom-up strategy with static control

We introduce the Ice parser included inGalena. Here, a symbol5

k;i

expresses that the

categories in the right-hand-side of

k

after the i position have already been recognized,

as it is shown in Fig. 1. The set of transitions de�nes a generalized LALR(1) automaton

as follows:

1. [A

k;n

k

; it; bp; st] 7�! [5

k;n

k

; it; it; st] [A

k;n

k

; it; bp; st]

faction(st; token

it

) = reduce(

k

)g

2. [5

k;i

; it; r; st

1

]

[A

k;i

; r; bp; st

1

] 7�! [5

k;i�1

; it; bp; st

2

]

faction(st

2

; token

it

) = shift(st

1

)g; i 2 [1; n

k

]

3. [5

k;0

; it; bp; st

1

] 7�! [A

k;0

; it; bp; st

2

]

fgoto(st

1

; A

k;0

) = st

2

g

4. [A

k;i

; it; bp; st

1

] 7�! [A

k;i+1

; it+ 1; it; st

2

] [A

k;i

; it; bp; st

1

]

faction(st

1

; A

k;i+1

) = shift(st

2

)g; i 2 [0; n

k

)

5. [A

k;i

; it; bp; st

1

] 7�! [A

l;0

; it+ 1; it; st

2

] [A

k;i

; it; bp; st

1

]

faction(st

1

; A

l;0

) = shift(st

2

)g

6. [$; 0; 0; 0] 7�! [A

0;0

; 0; 0; st] [$; 0; 0; 0]

faction(0; token

0

) = shift(st)g

where action, goto, shift and reduce are well-known concepts in LR parsing [1]. We

interpret these transitions as follows:

1. Pushes 5

k;n

k

to indicate that the body of

k

is to be recognized.

2. The parser advances after the refutation of A

k;i

.

3. All literals in the body of

k

have been recognized, and therefore A

k;0

can also be

recognized.

4. Pushes the literal A

k;i+1

, assuming that it will be needed for the recognition.

5. Begins with the recognition of

k

.

6. States the axiom A

0;0

.

4 On-line parsers

We now go deep into the inuence of dynamic programming when considering more

complex grammatical formalisms. To do so, we take the DCG extensions of the

context-free parsing strategies previously tested. To be more precise, we shall consider

the Agfl [6] environment as representative of a typical top-down evaluator, an

implementation of Earley's deduction scheme [8], and �nally the Galena [13] system

using a simple uni�cation oriented extension of Ice [12]. We have chosen Galena as

representative of the family of LR-like inference environments [7, 10].

Previous to introducing the experimental results, we locate each architecture in our

uni�ed framework. Here, we deal with clauses

k

of the form A

k;0

:�A

k;1

; : : : ; A

k;n

k

, where

A

k;i

are now logical terms. We introduce the vector

~

T

k

of the variables occurring in

k

,

and the predicate symbol 5

k;i

. Besides the positional meaning of this predicate symbol,

which is dependent on each particular evaluation strategy, instances of 5

k;i

(

~

T

k

) serve as

temporary information storage structures for remaining subgoals during the evaluation.

118 APPIA-GULP-PRODE'98

0

1

i
t
e
m
s

value of i

1000

2000

3000

4000

5000

6000

5 10 15 20

T
Galena cfg on S

Galena cfg on S
1

1

Galena dcg on S

T
Galena dcg on S

0 1 2 3 4

1

10
1

10
2

10
3

10
4

10
5

10
6

i
t
e
m
s

value of i

DyALog cfg on S
2

DyALog dcg on S
2

Agfl cfg on S
T

Figure 2: Experimental results with Galena and pure top-down parsing

Intuitively, the interpretation of the following evaluation schema is analogous to those

considered for o�-line parsers, replacing the notions of matching, recognition, axiom,

category and rule by uni�cation, refutation, query, goal and clause; respectively.

4.1 A top-down architecture

We begin with the simulation of the top-down strategy, which is given by the transitions:

1. [$; 0; 0;] 7�! [5

0;0

(

~

T

0

); 0; 0;] $ 2. [5

k;i

(

~

T

k

); it; bp;] 7�! [A

k;i+1

; it; it;]

[5

k;i

(

~

T

k

); it; bp;]

3. [A

k;0

; it; bp;] 7�! [5

k;0

(

~

T

k

); it; bp;] 4. [5

k;n

k

(

~

T

k

); it; bp;]

[5

k

0

;i

(

~

T

k

0

); bp; r;] 7�! [5

k

0

;i+1

(

~

T

k

0

); it; r;]

where an instance of 5

k;i

(

~

T

k

) indicates that all literals until the i

th

literal in the body of

k

have been proved.

4.2 Earley's approach

In the case of Earley's deduction, the set of transitions is now given by:

1. [$; 0; 0;] 7�! [A

0

0;0

; 0; 0;] $ 2. [A

0

k;0

; it; it;] 7�! [5

k;0

(

~

T

k

); it; it;]

[A

0

k;0

; it; it;]

3. [5

k;i

(

~

T

k

); it; bp;] 7�! [A

0

k;i+1

; it; it;] 4. [5

k;n

k

(

~

T

k

); it; bp;]

[5

k;i

(

~

T

k

); it; bp;] [A

0

k;0

; bp; bp;] 7�! [A

00

k;0

; it; bp;]

5. [A

00

k;i+1

; it; bp;]

[5

k;i

(

~

T

k

); bp; r;] 7�! [5

k;i+1

(

~

T

k

); it; r;]

with the same interpretation for instances of 5

k;i

(

~

T

k

) as in the preceding case. The

meaning of atoms A

0

k;i

and A

00

k;i

is analogous to the context-free case. They respectively

indicate that the term A

k;i

in the DCG is yet to be proved or it has already been proved.

A Comparison for Uni�cation-Based Parsers 119

4.3 A bottom-up strategy with static control

Finally, we introduce the evaluation scheme of Galena, given by the transitions:

1. [A

k;n

k

; it; bp; st] 7�! [5

k;n

k

(

~

T

k

); it; it; st] [A

k;n

k

; it; bp; st]

faction(st; token

it

) = reduce(

k

)g

2. [5

k;i

(

~

T

k

); it; r; st

1

]

[A

k;i

; r; bp; st

1

] 7�! [5

k;i�1

(

~

T

k

); it; bp; st

2

]

faction(st

2

; token

it

) = shift(st

1

)g; i 2 [1; n

k

]

3. [5

k;0

(

~

T

k

); it; bp; st

1

] 7�! [A

k;0

; it; bp; st

2

]

fgoto(st

1

; A

k;0

) = st

2

g

4. [A

k;i

; it; bp; st

1

] 7�! [A

k;i+1

; it+ 1; it; st

2

] [A

k;i

; it; bp; st

1

]

faction(st

1

; A

k;i+1

) = shift(st

2

)g; i 2 [0; n

k

)

5. [A

k;i

; it; bp; st

1

] 7�! [A

l;0

; it+ 1; it; st

2

] [A

k;i

; it; bp; st

1

]

faction(st

1

; A

l;0

) = shift(st

2

)g

6. [$; 0; 0; 0] 7�! [A

k;0

; 0; 0; st] [$; 0; 0; 0]

faction(0; token

0

) = shift(st)g

Control conditions are built from actions in a driver given by a LALR(1) automaton

built from the context-free skeleton of the DCG. This skeleton is obtained from the

original program by keeping only functors in the clauses in order to obtain terminals

from the extensional database, and variables from heads in the intensional one, taking

into account the arity. The idea is to use the driver to cut out evaluation conicts arising

from coincidence of logical terms signatures during the proof process.

0

1000

2000

3000

4000

0 1 2 3 4 5 6

i
t
e
m
s

value of i

Earley cfg on S
1

1
Earley deduction dcg on S

Figure 3: Experimental results using Earley-like strategies

5 Experimental results

To show how dynamic programming improves the e�ciency of compilation schema, we

shall focus on two aspects: the number of computations as contrasted with classic

backtracking techniques, and a simple comparison between di�erent parsing strategies.

Although this work has been supported by a lot of di�erent tests, we have considered an

only example to illustrate our discussion, in order to facilitate understanding. We use

the syntax of a simple subset of nominal sentences in English. Henceforth, we take as

our guideline example the following DCG:

120 APPIA-GULP-PRODE'98

s(esp(Tree)) :� sentence(Tree):

sentence(phr(Tree

1

;Tree

2

)) :� np(Tree

1

; Nmbr); vp(Tree

2

; Nmbr):

sentence(phr(Tree

1

;Tree

2

)) :� sentence(Tree

1

); pp(Tree

2

):

np(np(s(Wrd)); Nmbr) :� noun(Wrd : word;Nmbr : number):

np(pr(Wrd); Nmbr) :� pronoun(Wrd : word;Nmbr : number):

np(np(det(Wrd

1

); s(Wrd

2

)); Nmbr) :� determiner(Wrd

1

: word;Nmbr : number;Gndr : gender);

noun(Wrd

2

: word;Nmbr : number;Gndr : gender):

np(np(Tree

1

;Tree

2

); Nmbr) :� np(Tree

1

; Nmbr); pp(Tree

2

):

pp(pp(prep(Wrd); T ree)) :� preposition(Wrd : word); np(Tree;Nmbr):

vp(vp(verb(Wrd); T ree); Nmbr) :� verb(Wrd : word;Nmbr : number); np(Tree;Nmbr):

To simplify the explanation, we assume that lexical information is directly recovered

from a specialized tagger by the name of the corresponding attribute, which allows us to

focus on syntactic phenomena. So, the third clause in the de�nition of the predicate np

instances the variable Wrd

1

to the value of the current input token by using the syntax

Wrd

1

: word. Similarly, we recover the number and the gender, by using respectively the

key-words number and gender. The context-free skeleton is de�ned by the rules:

S ! Sentence Sentence ! Np Vp Sentence ! Sentence Pp

Np ! noun Np ! pronoun Np ! determiner noun

Np ! Np Pp Pp ! preposition Np Vp ! verb Np

We have chosen input strings of the form

I see a father (of a son of a father)

i

where i � 0 is the number of repetitions of the substring \of a son of a father". Here,

the number of di�erent parses C

i

increases exponentially with i. This number is:

C

0

= C

1

= 1 and C

i

=

2i

i

!

1

i + 1

; if i > 1

allowing us to study the compilation schema when highly redundant computations

appears.

Tests have been performed on dynamic frames S

T

with Agfl, Earley and Ice, S

2

with Agfl and Ice, and S

1

with Earley and Ice. Tests on S

2

and S

T

have no interest

for Earley, given that the classic algorithm is naturally described in S

1

. For Agfl, tests

on S

1

are out of place due to its top-down architecture that thwarts completeness, and

tests on S

2

have been obtained from an alternative adaptation of the parsing scheme

based on DyALog [2], since the original tool does not work in dynamic programming.

Finally, tests on S

T

for Agfl in the DCG case have been obtained excluding all

functional symbols since this facility is not available in Agfl. To avoid distortion of the

results, our testing grammar has been chosen in such a way that the number of S

T

items

in the CFG and the corresponding DCG is the same. In e�ect, the absence of clauses with

a common context-free skeleton, and the fact that in our example functional symbols are

exclusively used in a constructive sense, permits us to attain this goal. Results on S

2

for

Agfl, using our alternative implementation, include functional symbols.

Results related to Galena and Agfl are shown in Fig. 2. In the case of Earley's

algorithm results are shown in Fig. 3. In all cases, dynamic programming highlights

A Comparison for Uni�cation-Based Parsers 121

a better computational behavior with respect to classic approaches based on S

T

. In

addition, a simple view shows that the best results correspond to Galena, a mixed-

strategy with static predictions, over Earley and classic top-down parsing.

Tests using dynamic programming, both for the parsing of the sole context-free

backbone and whole DCG, are shown in Fig. 4. The natural dynamic frame of each

parsing model was used to obtain all the �gures. One again the bene�t due to Galena's

mixed-strategy is shown. By looking at both �gures we can also realize that in the case

of Galena, the lowest increment was achieved in the number of generated items when

going from CFG to DCG. In particular, results on DCGs proves the e�ciency of Galena

to cut out uni�cation conicts during resolution. Finally, the apparently bad behavior of

Galena in these tests cannot be extended to other CFGs. In e�ect, they are a natural

consequence of the reduced number of prediction computations due to the structure of

our grammar, as it is claimed in [12].

0 1 2 3 4

10
2

10
4

i
t
e
m
s

value of i

10

10
3

0

Galena dcg on S
1

DyALog dcg on S
2

Earley deduction dcg on S
1

0

i
t
e
m
s

value of i

0

1000

2000

3000

4000

Earley cfg on S
1

Galena cfg on S
1

DyALog cfg on S
2

5 10 15 20

Figure 4: Comparing strategies for CFGs and DCGs

6 Conclusion

This paper reviews the fundamental computational properties of some of the best-known

compilation schema in the continuum of Horn-like formalisms. We have exempli�ed

our discussion in a well-known application domain, NLP, using both o�-line and on-line

approaches and considering dynamic programming as an alternative to obtain greater

e�ciency in practical systems.

We have considered a uniform formal framework, introducing a unique operational

model which allows us to encompass all the parsing architectures considered. In

122 APPIA-GULP-PRODE'98

particular, we have identi�ed the notion of item as a computation unit, which is

manipulated by a set of transitions that can be divided into three classes. In this manner,

the interpretation of the practical tests on this basis ensures the validity of the work

presented.

As a secondary outcome, this paper seems to corroborate the superiority, often argued,

of bottom-up parsers including some kind of static prediction facility, over classic top-

down algorithms or bottom-up strategies with dynamic predictions. Here, it is important

to remark upon the importance of an e�cient indexation tool, capable of signi�cantly

reducing the search space in dynamic programming. In e�ect, the performance shown

by top-down architecture compared to bottom-up ones in practical NLP environments is

often due to the e�ciency of backtracking in managing this search space. In our case,

the use of itemsets permits us to limit this di�erence in the bottom-up case, thereby

increasing the e�ciency.

References

[1] A.V. Aho and J.D. Ullman. The Theory of Parsing, Translation and Compiling,

volume 1-2. Prentice-Hall, Englewood Cli�, New Jersey, U.S.A., 1973.

[2] E. de la Clergerie. Automates �a Piles et Programmation Dynamique. PhD thesis,

University of Paris VII, France, 1993.

[3] J. Earley. An e�cient context-free parsing algorithm. Communications of the ACM,

13(2):94{102, 1970.

[4] J. Heering, P.R.H. Hendriks, P. Klint, and J. Rekers. The syntax de�nition formalism

sdf - reference manual. SIGPLAN Notices, 24(11):43{75, 1989.

[5] B. Lang. Towards a uniform formal framework for parsing. In M. Tomita, editor,

Current Issues in Parsing Technology, pages 153{171. Kluwer Academic Publishers,

1991.

[6] H. Meijer. The project on extended a�x grammars at Nijmegen. Attribute Grammars

and their Applications, SLNC, 461:130{142, 1990.

[7] U. Nilsson. AID: An alternative implementation of DCGs. New Generation

Computing, 4:383{399, 1986.

[8] F.C.N. Pereira and D.H.D. Warren. Parsing as deduction. In Proc. of the 21

st

Annual Metting of the Association for Computational Linguistics, pages 137{144,

Cambridge, Massachusetts, U.S.A., 1983.

[9] J. Rekers. Parser Generation for Interactive Environments. PhD thesis, University

of Amsterdam, Amsterdam, The Netherlands, 1992.

[10] D.A. Rosenblueth and J.C. Peralta. LR inference: Inference systems for �xed-

mode logic programs, based on LR parsing. In International Logic Programming

Symposium, pages 439{453, The MIT Press, Cambridge Massachussets 02142 USA,

1994.

A Comparison for Uni�cation-Based Parsers 123

[11] M. Tomita. E�cient Parsing for Natural Language. A Fast Algorithm for Practical

Systems. Kluwer Academic Publishers, Norwell, Massachusetts, U.S.A., 1986.

[12] M. Vilares. E�cient Incremental Parsing for Context-Free Languages. PhD thesis,

University of Nice. ISBN 2-7261-0768-0, France, 1992.

[13] M. Vilares and M.A. Alonso. An LALR extension of DCGs in dynamic programming.

In C. Mart��n Vide, editor, Mathematical Linguistics, volume 2, Amsterdam, The

Netherlands, 1998. John Benjamins Publishing Company.

124 APPIA-GULP-PRODE'98

