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Abstrat

There exist many formal and semiformal notations for speifying objet orien-

ted software systems and many programming tehniques that support objet ori-

ented onepts. However, orret, extensible and reusable software is diÆult to

ahieve. We are interested in translating non exeutable system spei�ations into

exeutable ones and how onstrutive methods an be used in formal OO software

system development.
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1 Introdution

A widely used tehnique in modern software engineering is to model a system by a

ombination of di�erent, but semantially ompatible "views" of the system [CD94℄.

The primary bene�t of suh approah is to keep very omplex systems manageable and

to detet misoneptions or inonsistenies at an early stage. Normally, software systems

are divided into three models: strutural, behavioural and funtional models. Strutural

model desribes the relationship between the lasses of omponents used in the system as

well as the atual on�guration of the system omponents themselves. Behavioural model

desribes the life-yle of omponents, i.e. the di�erent on�gurations of omponents in

the time and funtional model omprises data transformations and data invariants. In an

objet-oriented system (based on imperative programming), the basi omponent is alled

lass, whih desribes an implementation of an abstrat data type (ADT), inluding a

set of methods that implement operations on the ADT. A lass an be omposed with

others to de�ne new larger (and omplex) lasses (generalizations, aggregations,...). At

exeution time, instanes of a lass are reated dynamially. Suh instanes are alled

objets. An objet ontains atual data (of the type of its ADT). Its method, when

invoked by messages sent by other objets, are used to manipulate its data.

Reusability arises through inheritane. Inheritane allows ode reuse, sine the ode

for the methods in a lass is generated only one and "shared" by all the objets of any

sublass. Extensibility results from the ability to obtain new lasses adding new hara-

teristis to existing ones. Reliability results from the ability to monitor assertions and

invariants ontained in lasses. Current objet-oriented programming tehnology support

these onepts but does not support formal system development. A �rst requirement to
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ahieve this objetive is to de�ne a system spei�ation language with a preise notation

and semanti. Our starting point is a well-de�ned unit alled omponent.

A omponent is a theory that embodies our knowledge of an element in a system.

Within this theory we de�ne semantially notions similar to lasses, assoiations, gener-

alizations, aggregations,... et.

Corretness of exeutable systems is established at two levels. Firstly, at omponent

level, models of exeutable omponents are isomorphi to models of omponent spei-

�ations. At system level, models of software systems are onstruted from models of

omponents in a ompositional way.

The paper is organised as follows. Firstly, we introdue preliminary de�nitions and

desribe the basi units in the system, the omponents. In the next there setions, we

show how onstrutive methods an be used to obtain orret, extensible and reusable

exeutable systems and �nally, we present onlusions and future tasks of our preliminary

work.

2 De�nitions

De�nition 1: A Type-Component Spei�ation T ould be regarded as an enrihed

axiomatisation of a olletion of ADT's. However, it has more than the usual ADT's

sine it an also ontain axioms for reasoning about the domain (domain axioms) and

reasoning about adt's (indution shemes).

In general, a type-omponent de�nes a new abstrat data type T starting from pre-

de�ned type-omponents. The syntax of a type-omponent T is similar to that used in

algebrai abstrat data types. T has funtion symbols and relation symbols. We onsider

the partition of the set of funtion symbols into a set C of onstrutors and a set D of

de�ned funtions. Construtors are used to build data types, whereas de�ned funtions

operate on these data types. Let R be a set of relation symbols inluding the binary

equality relation =. A literal r(t

1

; :::; t

n

) is a n-ary relation symbol applied to n terms.

An equation is a literal with = as relation symbol. Conditional equations are equations of

the form ! l = r. Unonditional equations are equations of the form l = r. Equations

will be used only from left to right, we all them rewrite rules. An extension operation

introdues a new de�ned symbol q in a type-omponent T through a set D

q

of axioms,

that we all a de�nition of q. We onsider reursive de�nitions and expliit de�nitions.

De�nition 2: A Reursive De�nition of a funtion or relation is like a primitive

reursive de�nition. If q is a funtion symbol then D

q

is a set of onuent and terminating

rewrite rules and it de�nes a total funtion. If q is a relation symbol then D

q

de�nes a

deidable relation.

De�nition 3: An Expliit De�nition of a (new) relation q has the form 8x(q(x) $

R(x)), where R is a formula of the old language, that we all de�ning formula. R(x)

is quanti�er free or ontains only bounded quanti�ers. For example, let x and y be

natural variables, in 8x; y(q(x; y) $ y = x + 1), y = x + 1 is quanti�er free and in

8x; y(q(x; y)$ 8i < x(y = i+ 1)), 8i < x(y = i + 1) is bounded quanti�ed.

De�nition 4: An isoinitial model I of T is a reahable model suh that for any

relation r de�ned in T , ground instanes r(t) or :r(t) are true in I i� they are true in

all models of T . A reahable model is one where eah element of the domain an be

represented by a ground term.

The intended model of type omponent spei�ation T is an isoinitial model.
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The existene of isoinitial models is of ourse not guaranteed but following the work of

[MMO94℄, we an onstrut type-omponents with isoinitial models. A brief explanation

of the method is: Firstly, we start with a small omponent T

0

with an obvious isoinitial

model I

0

. If the freeness axioms hold in T , then T

0

onsists of just the onstrutor

symbols in T together with their freeness axioms. Then we suessivelly extends T

i

into

T

i+1

by adding a new funtion or relation symbol q, together with their axioms D

q

(in

a expliit or reursive manner) in suh a way that I

i

an be expanded into an isoinitial

model I

i+1

of T

i+1

. For example, if q is a funtion symbol and D

q

is its de�nition then

T

i+1

= T

i

[ D

q

[ f:t = t

0

g suh that t and t

0

are ground terms and T

i

[ D

q

6` t = t

0

.

Notie that T

i+1

is a reursive axiomatisation i� equality on ground terms is deidable.

Example of objet-omponent and type-omponent:

Objet-omponent Person; Type-omponent ListNat;

IMPORT: Oid;Nat; IMPORT: Nat

SORTS: Oid;Nat; Person SORTS: Nat; ListNat

FUNCTIONS: FUNCTIONS:

for all oid : Oid; age : Nat;money : Nat nil :) ListNat

<oid; age;money>) Person : : (Nat; ListNat) ) ListNat

redit : (Person)) Nat no : (Nat; ListNat) ) Nat

RELATIONS: RELATIONS:

purh : (Person;Nat) (possible purhase) elemi : (ListNat;Nat;Nat)

AXIOMS: for all p : Person;  : Nat AXIOMS:

p:age � s

(17

(0)! redit(p) = 0 :nil = a:B

:p:age � s

(17

(0)! redit(p) = 2 � p:money a:B = :D! a =  ^ B = D

p:age � s

(17

(0)! purh(p; y)$ H(nil) ^ 8a; J(H(J)! H(a:J))

8i � p:money(y = i) ! 8L(H(L))

BEHAVIOUR: no(x; nil) = 0

birthday : (Person) a = b! no(a; b:L) = no(a; L)+1

birhtday(p:oid; p:age; p:money)$ :a = b! no(a; b:L) = no(a; L)

(<p:oid; p:age; p:money>;<p:oid; s(p:age); p:money>) elemi(L; 0; x)$ 9B(L = x:B)

buy : (Person;Nat) elemi(L; s(i); x)

buy(p; )$  � redit(p) ^+purh(p; ) $ 9b; B(L = b:B ^ elemi(B; i; x))

De�nition 5: An Objet-Component Spei�ation O ould be regarded as a type-

omponent spei�ation T with the following di�erenes: terms in O (objets) have

unique identity. Identity is represented by ground terms of the sort Oid (de�ned in

the type omponent spei�ation Oid). We onsider < v

Oid

; v

T

1

; :::; v

T

k

> as the unique

objet onstrutor where v

Oid

; v

T

1

; :::; v

T

k

are variables of sorts Oid; T

1

; :::; T

k

respetive-

ly. Oid; T

1

; :::; T

k

sorts are de�ned in Oid; T

1

; :::; T

k

type-omponent spei�ations and

inluded in the IMPORT setion of O. (Total) funtions and relations in O have pro�les

f

i

(S

j

; :::; S

k

) ) S

m

and r

j

(O; S

j

; :::; S

k

) respetively where for all m, j and k, S

r

; S

j

; S

k

are inluded in setion SORT of O. We onsider a new setion alled BEHAVIOUR where

we de�ne behaviour relations of the objets in O.

If-and-only-if de�nitions are often too restritive and inexible, and we would prefer

weaker forms of spei�ations that admit multiple interpretations, orresponding to dif-

ferent program behaviours that are all orret for the problem at hand. To this end, we

aept onditional de�nitions (i.e. 8x((x)! r(x)$ d(x))).

The state of any objet o of O is represented by ground instanes of its objet onstru-

tor and the meaning of its relations. Objet onstrutors hange in the time, preserving
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oid values, (i.e. from <oidvalue; v

1

; :::; v

k

> to <oidvalue; v

0

1

; :::; v

0

k

>). The meaning of

equality relation is �xed (totally de�ned funtions). The rest of relations, the meaning of

"i�" relations is �xed (onstant) in all the life-yle of o and the meaning of onditional

relations is variable in the following sense: 8x((x) ! r

1

(x) $ r

2

(x)), an always be

given as a pair of impliations:

8x(r

min

1

(x)! r

1

(x))

8x(r

1

(x)! r

max

1

(x))

where r

min

1

(x) $ (x) ^ r

2

(x) and r

max

1

(x) $ :(x) _ r

2

(x). At eah moment in the

life-yle of o, we an aept any de�nition for r

1

suh that r

min

1

� r

1

� r

max

1

.

De�nition 6: Following de�nition 4, the Intended model I of an objet omponent

spei�ation O is a reahable model suh that for any relation r de�ned in O, ground

instanes r(t) or :r(t) are true in I i� they are true in all models of O. We onsider objet

omponents O as aggregates of type omponents (Oid,T

1

,...,T

k

). If type omponents have

isoinitial models then eah objet an be represented by a ground term (reahability).

Funtions and relations in O are de�ned as expliit de�nitions (quanti�er free or bounded

quanti�ation) in the language fT

1

[:::[T

k

g hene for any relation r de�ned in O, ground

instanes r(t) or :r(t) are true in I i� they are true in all models of O. Conditional

spei�ations in O an have many interpretations then there are many expansions of the

intended model of O, we will all Models(O) to the set of all expansions of the intended

model of O. BEHAVIOUR setion in O de�nes:

1. Elementary Transitions, et

k

, are expliit de�nitions of the form:

et

k

(l)$ (<l>;<f(l)>)

where l is an objet onstrutor pattern and f is an aggregate of funtions (type

omponents funtions) applied to elements of <l>. Elementary transitions preserve

objet identi�ations (Oid). Left and right omponents in et

k

represent the initial

and �nal state of the transition respetively. If et

k

(l) is an elementary transition

de�ned in O and <> is the (ground) objet onstrutor of any objet o of O and

there exists a ground substitution � suh that <>= � <l> then transition et

k

on

o an be de�ned as:

o

new

= o

old

j

<f()>

<>

where o

old

is the objet at the initial state of et

k

and o

new

is the same objet

replaing its onstrutor <> by <f()>.

2. Complex Transitions, t

j

, built from relations, r

i

, de�ned in RELATIONS setion and

from elementary transitions, et

k

, de�ned in BEHAVIOUR setion.

Complex transition patterns are of the form:

(*) 8x(t

j

(x)$ r

i

(x) ^ et

k

(:::) ^ :::)

In (*), if r

i

is de�ned by a onditional spei�ation then r

i

an be pre�xed with

either a "+" symbol or a "�" symbol. Roughly, a "+" pre�x in r

i

means that if the

intended model of O, I 6` r

i

(t), (t ground), and if there exists an intended model

I

new

2Models(O) suh that I

new

` r

i

(t) then o "hanges its model" from I to I

new

.

In a similar way, a "�" pre�x in r

i

means that if I ` r

i

(t), (t ground), and if there

exists an intended model I

new

2Models(O) suh that I

new

6` r

i

(t) then o "hanges

its model" from I to I

new

.
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De�nition 7: the life yle of an objet o 2 O is represented by a sequene of objet

onstrutors, intended models of O and elementary and omplex transitions that are true

in I.

life yle = f<  >; I; fet

k

; t

j

gg

i

for i = 1::1

We must proeed with speial are in the onstrution of the intended model I of O

with BEHAVIOUR setion. The behaviour of an objet in O (fet

k

; t

j

g) depends on its

state (<> and I). Hene, the onstrution of intended models I is fundamental in order

to prevent bizarre behaviours.

3 Model Constrution Method

The intended model of type and assoiation omponent spei�ations is an isoinitial

model. We onstrut it following the ideas of [MMO94℄ (De�nition 4).

We present the following algorithm in order to onstrut the intended models of the

rest of omponents (objet and extension omponents, we will refer them as O):

1. IMPORT setions in O must inlude only type-omponents with isoinitial models.

2. Only ground onstrutor terms are allowed for objets in O.

3. Eah funtion f in O is de�ned by a set of onuent and terminating equations D

f

.

4. Eah relation r

i

in O is de�ned by expliit or reursive de�nitions. In a inremental

onstrution of the intended model, (onsider I

1::3

as the intended model of any

omponent, (inrementally onstruted from 1)-3) previous steps), if we want to

expand O with a relation r

i

de�ned by a onditional spei�ation then there exist

many expansions of I

1::3

. For example, I

1::4

may be any intended model where r

i

is

interpreted as r

max

i

or may be an isoinitial model where r

i

is interpreted as r

min

i

,...

et.

5. Let I

1::4

be the isoinitial (inrementally onstruted forO) from 1)-4) previons steps.

Let E be the set of elementary transitions in O. At this point, we are interested in

the expasion of I

1::4

with E. If for all pair of elementary transitions et

i

, et

k

in E,

left-hand sides are not uni�able (non-ambiquity) and pattern variables in right-hand

sides are inluded in pattern variables in left-hand sides (et

k

(l) $ (<l>;<f(l)>))

then the expansion of I

1::4

with E is de�ned as:

I

1::5

= I

1::4

[ fet

k

(t) j for all t ground and t = �lg

[

f:et

k

(t

0

) j for all t

0

ground and not uni�able with lg

else the expansion is not de�ned.

6. Let I

1::5

be the model of O (inrementally onstruted from 1)-5) previous steps).

At this point, we expand I

1::5

adding the axioms whih de�ne omplex transitions

t

j

.

Cases:
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(a) If only an elementary transition et

k

(m) with m as an instane of l (et

k

(l) !

(<l>;<f(l)>) and not pre�xed relations are present in the body of t

j

(i.e.

t

j

(x)$ et

k

(m) ^Rest(x))

then

I

1::6

= I

1::5

[ ft

j

(t) j t ground and I

1::5

` et

k

(:::) ^ rest(t)g

[

f:t

j

(t

0

) j t

0

ground and I

1::5

6` et

k

(:::) ^ rest(t

0

)g

(b) If only elementary transitions and not pre�xed relations are present in the body

of t

j

(t

j

(x) $ et

1

(m) ^ et

2

(n) ^ ::: ^ et

n

(s) ^ rest(x)) then the expansion

is de�ned if elementary transitions in the body of t

j

form a hain Ch. The

omplex transition t

j

an be replae by t

j

(x) $ Ch ^ rest(x) and then

the expansion proeed as in 1) with this new de�nition else the model is not

de�ned.

A set of elementary transitions St is onsidered as a hain if there exists a

permutation of St: perm(St) = fet

1

(m) $ (<m>;<f

1

(m)>; et

2

(n) $ (<

n>;<f

2

(n)>); :::; et

n

(s) $ (<s>;<f

n

(s)>)g suh that m is an instane

of the objet onstrutor pattern in et

1

de�nition, n is an instane of the

objet onstrutor pattern in et

2

de�nition,..., s is an instane of the objet

onstrutor pattern in et

n

de�nition and for all t

1

= �

1

m ground, f

1

(t

1

) is an

instane of n and, ..., and f

n�1

(t

n�2

) is an instane of r and for all t

n�1

= �

n�1

r,

ground, f

n

(t

n�1

) is an instane of f

1

(m) then perm(St) an be onsidered as

a new elementary transition

Ch(m)$ (<m>;<f

n

(f

n�1

(::::f

1

(m)):::)>)

() If only + pre�xed and not pre�xed relations are present in the body of t

j

(i.e. t

j

(x) $ +r(m) ^ rest(x)) where r is a relation de�ned by a onditional

spei�ation and m is a term pattern. The model I of O an ontain any of

the ground instanes of r(m), r(t), suh that r(t) is not true in the (initial)

interpretation of r (I

1::4

) and r(t) 2 r

max

. Let Ins(r;m) be the set of all

the ground instanes of r(m) that are in r

max

but they are not true in I

1::4

.

Let I

exp

be the I

1::6

model of O expanded with the set Ins(r;m), (I

exp

=

I

1::6

[ Ins(r;m)), then for all + pre�xed relation:

I

1::7

= I

exp

[ ft

j

(t) j t ground and I

exp

` r(t) ^ rest(:::)g

[

f:t

j

(t

0

) j t

0

ground and I

exp

6` r(t

0

) ^ rest(:::)g

Hene, all objet o 2 O in a system begin its exeution with a behaviour t

j

bounded to the interpretation of r in I

1::6

but extensible to r [ Ins(r;m) in a

orret way. Any exeution of t

j

(t) where r(t) 2 Ins(r;m) implies a dynami

hange in r to r [ r(t).

(d) If only � pre�xed and not pre�xed relations are present in the body of t

j

(i.e. t

j

(x) $ �r(s) ^ rest(x)) where r is a relation de�ned by a onditional

spei�ation and s is a term pattern. The model I of O an not ontain any

of the ground instanes of r(s), r(t), suh that r(t) is true in the (initial)

interpretation of r (I

1::4

) and r(t) 62 r

min

. Let Del(r; s) be the set of all the
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ground instanes of r(s) that are in I

1::4

but they are not true in r

min

. Let I

red

be the I

1::6

model of O redued with the set Del(r; s), (I

red

= I

1::6

�Del(r; s)),

then for all � pre�xed relation:

I

1::7

= I

red

[ ft

j

(t) j t ground and I

red

` r(t) ^ rest(:::)g

[

f:t

j

(t

0

) j t

0

ground and I

red

6` r(t

0

) ^ rest(:::)g

Hene, all objet o 2 O in a system begin its exeution with a behaviour t

j

bounded to the interpretation of r in I

1::6

but reduible to r � Del(r; s) in a

orret way. Any exeution of t

j

(t) where r(t) 2 Del(r; s) implies a dynami

hange in r to r � r(t).

(e) If + and � pre�xed relations and (possible) elementary transitions and (pos-

sible) not pre�xed relations appear in the body of t

j

(the more general sit-

uation) then the model is de�ned i� the following ondition holds: either

the intersetion between + and � pre�xed relation symbols is empty or is not

empty but the implied relations do not have ground instanes in ommon, (i.e.

+r(m) ^ :::: ^ �r(s) and 6 9t j t is a ground instane of m and s). If not, the

model of O is not de�ned.

For all + and � pre�xed relation: I

expred

= I

1::6

+ Ins(r;m)�Del(r; s)

I

1::7

= I

expred

[ ft

j

(t) j t ground and I

expred

` r(t) ^ rest(:::)g

[

f:t

j

(t

0

) j t

0

ground and I

expred

6` r(t

0

) ^ rest(:::)g

For all (only) + pre�xed relations we follow ) step and for all (only)� pre�xed

relations we follow d) step.

The model onstrution is an iterative proess, at eah step, we expand the

model with a new omplex transition relation t

j

.

4 Extension Components

Extension omponents are omponents obtained from other omponents adding new ax-

ioms and, possibly, new symbols. An extension omponent inherits all the axioms and

de�nitions that have been developed in original omponents.

Example of extension omponent:

Extension omponent EPerson;

EXTEND: Person;

RELATIONS:

rih(Person;Nat)

AXIOMS: p : Person;m : Nat

rih(p)$ redit(p) � s

(200

(0)

BEHAVIOR:

deposit : (Person)

deposit(p:oid; p:age; p:money)$

(<p:oid; p:age; p:money>;<p:oid; p:age; p:money + p:money>)

ebuy : (Person;Nat)

ebuy(p; )$ 8i �  (i � s

(100

(0) ^ +purh(p; i))
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In this example, we show an extension of Person (rih person). If a person p is a rih

person then he/she must be interpreted as Person enrihed with new strutural proper-

ties, i.e. rih relation and new behavioural properties i.e. deposit and ebuy transitions.

The model of EPerson is de�ned i� Person+EPerson has model applying onstrution

method in previous setion. In a + operation between objet omponent spei�ations,

two objet omponent spei�ations are put together (setion by setion). Like lasses

(based on imperative programming), we an onstrut a hierarhy of omponents by

extension omponents.

5 Assoiation Components

For us, a system is a set of related objet-omponents. These relations are established

by assoiation omponents. An assoiation omponent does not exist per se, it need of

objet omponents in its de�nition.

Example of assoiation omponent:

Assoiation omponent PersonCompany;

IMPORT: Person; Company;

SORTS: Person; Company; PersonCompany;

FUNCTION:

<Person; Company>) PersonCompany

RELATIONS:

invariant

1

: (Person; Company)

invariant

2

: (Person)

invariant

3

: (Person; Company)

AXIOMS:p : Person;  : Company

invariant

1

(p; )$ 9 <i; j>: PersonCompany (p:oid = i:oid ^ :oid = j:oid)

p:age � s

(18

(0) ^ p:age � s

(65

(0)! invariant

2

(p)$ 9(invariant

1

(p; ))

invariant

3

(p; )$ p:age > s

(65

(0)! :invariant

1

(p; )

Assoiation omponents do not have BEHAVIOUR setions. We onsider assoiation

omponents in a system as a set of invariants. These invariants govern whih (ground)

instanes of the assoiation omponents are true and whih are not true in the system.

Quanti�ations must be understood as bounded quanti�ations on (�nite) populations of

objet omponents. At exeution time, hanges in objet omponents in the assoiation

promote hanges in assoiation objets (dynami insertion and deletion of assoiation

instanes). We an onstrut the intended model of assoiation omponents following

our model onstrution method restrited to the 1..4 steps.

Finally, the system must be undestood as a olletion ("put together") omponent

spei�ations then, for us, the intended model of any software system results from the

omposition of the models of its omponents. All of the type omponents, objet om-

ponents and extension omponents in a system must have intended models. Assoiation

omponents an be onsidered as the "glue" between the previous omponents; any ob-

jet population must preserve invariant relations ontained in assoiation omponents.

Finally, eah omponent in a system must be onsidered as a theory and the omposition

of these theories represents the system. Hene, intended model of the system is de�ned

i� eah omponent has intended model.
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6 Exeutable Components and Systems

In this setion, we briey show how delarative semanti of omponents an be intepreted

in operational terms. We will speify our operational semanti by the use of de�nitional

trees, a onept introdued by [Ant92℄ to de�ne eÆient normalization strategies. Tree

is alled de�ntional tree with pattern l ! r i� one of the following ases holds: Tree =

rule(l ! r) where l ! r is a variant of a rewrite rule in the omponent spei�ation.

Tree = branh(�; p; T ree

1

; ::::T ree

k

) where � is a pattern, p is an ourrene of a

variable in �, 

1

:::

k

are di�erent onstrutors of the sort of � j

p

(argument in position p

of �) (k > 0) and, for i = 1; :::k, Tree

i

is a de�nitional tree with pattern �[

i

(x

1

; ::::x

n

)℄

p

where n is the arity of 

i

and x

1

; :::; x

n

are new distint variables. A de�nitional tree of

an n-ary de�ned funtion f is a de�nitional tree Tree with pattern f(x

1

; :::; x

k

) where

x

1

; :::; x

n

are distint variables suh that for eah rule l ! r with l = f(t

1

; :::; t

n

) there is

a node rule (l

0

! r

0

) in Tree with l variant of l

0

.

We de�ne the validity of an equation as a strit equality on terms by the following

rules, where ^ is assumed to be a right-assoiative in�x symbol.

 = ! true 8=0 2 C

(x

1

; :::; x

n

) = (y

1

; :::; y

n

)! (x

1

= y

1

) ^ ::: ^ (x

n

= y

n

) 8=n 2 C

true ^ x! x

(note: we write =n for n-ary onstrutors)

Example of de�nitional tree:

0 + y = y

s(x) + y = s(x+ y)

its de�nitional tree is

branh(x + y; 1; rule(0 + y ! y); rule(s(x) + y ! s(x + y)))

Relations in O an be translated into a variant of de�nitional trees extended with and

and or nodes. Let D

q

be the set of axioms that de�nes q, for example,

elemi(L; 0; x)$ 9B(L = x:B)

elemi(L; s(i); x)$ 9b; B(L = b:B ^ elemi(B; i; x))

1. Establish � as q(x

1

; :::; x

n

) with x

1

; :::; x

n

distint variables (i.e. elemi(x; y; z))

2. Construt Tree for all p variable position in pattern �, where existentially quanti�ed

variables in the body are replae by or nodes and universally quanti�ed variables

in the body are replae by and nodes.

Tree

elemi

= branh(elemi(x; y; z); 1;

branh(elemi(nil; y; z); 2;

or[rule(elemi(nil; 0; z)! nil = z:nil),

rule(elemi(nil; 0; z)! nil = z:x

2

:L

2

)℄);

or[rule(elemi(nil; s(i); z)! nil = 0:nil ^ elemi(nil; i; z)),

rule(elemi(nil; s(i); z)! nil = s(j):nil ^ elemi(nil; i; z)),

rule(elemi(nil; s(i); z)! nil = 0:x

2

:L

2

^ elemi(x

2

:L

2

; i; z));

rule(elemi(nil; s(i); z)! nil = s(j):x

2

:L

2

^ elemi(x

2

:L

2

; i; z))℄)
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branh(elemi(x

1

:L

1

; y; z); 2;

or[rule(elemi(x

1

:L

1

; 0; z)! x

1

:L

1

= z:nil),

rule(elemi(x

1

:L

1

; 0; z)! x

1

:L

1

= z:x

2

:L

2

)℄);

or[rule(elemi(x

1

:L

1

; s(i); z)! x

1

:L

1

= 0:nil ^ elemi(nil; i; z)),

rule(elemi(x

1

:L

1

; s(i); z)! x

1

:L

1

= s(j):nil ^ elemi(nil; i; z)),

rule(elemi(x

1

:L

1

; s(i); z)! x

1

:L

1

= 0:x

2

:L

2

^ elemi(x

2

:L

2

; i; z));

rule(elemi(x

1

:L

1

; s(i); z)! x

1

:L

1

= s(j):x

2

:L

2

^ elemi(x

2

:L

2

; i; z))℄))

An example of exeution for elemi(s(0):0:s(0):nil; s(0); 0): Firstly, this goal uni�es

with branh(elemi(x

1

:L

1

; y; z) and then with seond or node, we inspet eah rule in

the or node. The fourth rule onstruts the solution true in a reursive manner on the

subgoal elemi(0:s(0):nil; 0; 0).

Indution shemes an be translated into de�nitional trees in the following manner:

(H(nil) ^H(I)! H(a:I))! 8xH(x)

is represented by

branh(ind(H; x); 2; and[rule(H(nil)! v

1

); rule(H(I)! true); rule(H(a:I)! v

2

)℄)

where H is bounded to relation symbols, v

1

; v

2

are distint variables bounded to true or

false values resulting in the proofs of H(nil), H(I) and H(a:I) respetively.

For example, 8x(elemi(x; 0; 0))! true:

branh(ind(elemi(x; 0; 0); x); 2;

and[rule(elemi(nil; 0; 0)! v

1

);

(rule(elemi(I; 0; 0)! true); (rule(elemi(a:I; 0; 0)! v

2

)

rule(elemi(nil; 0; 0)! nil = 0:nil !

Tree

elemi

false)

rule(elemi(L

1

; 0; 0)! true)

rule(elemi(x

1

:L

1

; 0; 0)! nil = 0:nil !

Tree

elemi

false

rule(elemi(x

1

:L

1

; 0; 0)! nil = 0:x

2

:L

2

!

Tree

elemi

false

(Hene, 8x(elemi(x:0:0))! true is not true in ListNat).

Elementary transitions et

k

(l) $ (< l>;< f(l)>) an be represented as Tree

et

k

=

rule(l ! f(l)). Complex transitions are represented as relations inluding elementary

transitions. Ins(r;m) and Del(r; s) sets an be omputed at exeution time: uni�ation

algorithm proves if r(t) is an instane of r(m) or r(s). + and � pre�xed relations and

state hanges an be simulated with an assert-retrat Prolog mehanism. Extension and

assoiation omponents are not distint of objet omponents then we proeed in a similar

way. Dynami reation and destrution of links an be simulated by assert and retrat's.

Negative literals :r(t) an be omputed in the following manner: we inspet r(t) if it an

be rewrite as true then :r(t) is not true and if r(t) an not be rewrite as true, then :r(t)

is true. This is possible beause we treat only with deidable relations in omponent

spei�ations.

Finally, de�nitional trees, uni�ation algorithms and assert/retrat mehanisms are

neessary software elements in order to obtain exeutable system but not suÆient. How

govern objet transitions? and how stimulate to the system in order to hange its state?.

First question implies that OO systems need additional ontroller omponents that govern

transitions and preserve invariants. Seond question implies the onept of event and link

to the previous question. These problems form our future work.
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7 Conlusions and Future Work

In this preliminary work, we have shown how onstrutive method an be used in the on-

strution of exeutable systems totally orret with respet to system spei�ations. Sys-

tem onstrution is automati, provided type-omponents and objet-omponents with

intended models. Reusability of systems have been inreased due to it is ahieved at

semanti level. Our systems are interpreted as theories, then adding new spei�ations

(in the way explained in our work) is equivalent to expand our systems. Synthesis of logi

programs, within the O-O ontext, is treated in [KO95℄. Dr. Lau and Dr. Ornaghi show

how from frameworks it is possible to obtain programs. There are two di�erene wrt

our work: a) the kinds of spei�ations in [KO96℄ are intended for dedutive synthesis,

however we have oriented our work for onstrutive synthesis and b) we treat dynami

aspets of objets, however in [KO95℄ the authors are entered in stati aspets mainly.

Our work is only at initial state and muh e�ort is needed in order to de�ne di�erent

semanti haraterizations of generalization and aggregations omponents and exeutable

systems.
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