Object Oriented Software Systems defined by
Constructive Logical Methods

Galan F.J. and Toro M.

Abstract

There exist many formal and semiformal notations for specifying object orien-
ted software systems and many programming techniques that support object ori-
ented concepts. However, correct, extensible and reusable software is difficult to
achieve. We are interested in translating non executable system specifications into
executable ones and how constructive methods can be used in formal OO software
system development.

Keywords: 00 system, component, adt, isoinitial models, constructive proofs.

1 Introduction

A widely used technique in modern software engineering is to model a system by a
combination of different, but semantically compatible ”views” of the system [CD94].
The primary benefit of such approach is to keep very complex systems manageable and
to detect misconceptions or inconsistencies at an early stage. Normally, software systems
are divided into three models: structural, behavioural and functional models. Structural
model describes the relationship between the classes of components used in the system as
well as the actual configuration of the system components themselves. Behavioural model
describes the life-cycle of components, i.e. the different configurations of components in
the time and functional model comprises data transformations and data invariants. In an
object-oriented system (based on imperative programming), the basic component is called
class, which describes an implementation of an abstract data type (ADT), including a
set of methods that implement operations on the ADT. A class can be composed with
others to define new larger (and complex) classes (generalizations, aggregations,...). At
execution time, instances of a class are created dynamically. Such instances are called
objects. An object contains actual data (of the type of its ADT). Its method, when
invoked by messages sent by other objects, are used to manipulate its data.

Reusability arises through inheritance. Inheritance allows code reuse, since the code
for the methods in a class is generated only once and ”"shared” by all the objects of any
subclass. Fxtensibility results from the ability to obtain new classes adding new charac-
teristics to existing ones. Reliability results from the ability to monitor assertions and
invariants contained in classes. Current object-oriented programming technology support
these concepts but does not support formal system development. A first requirement to

Dep. Lenguajes y Sistemas Informéticos, Facultad de Informética. Avenida Reina Mercedes s/n
c.p.: 41012-SEVILLA. Fax: +34 5 4557139 e-mail: galanm@arturo.lsi.us.es

125

126 APPIA-GULP-PRODE’98

achieve this objective is to define a system specification language with a precise notation
and semantic. Our starting point is a well-defined unit called component.

A component is a theory that embodies our knowledge of an element in a system.
Within this theory we define semantically notions similar to classes, associations, gener-
alizations, aggregations,... etc.

Correctness of executable systems is established at two levels. Firstly, at component
level, models of executable components are isomorphic to models of component speci-
fications. At system level, models of software systems are constructed from models of
components in a compositional way.

The paper is organised as follows. Firstly, we introduce preliminary definitions and
describe the basic units in the system, the components. In the next there sections, we
show how constructive methods can be used to obtain correct, extensible and reusable
executable systems and finally, we present conclusions and future tasks of our preliminary
work.

2 Definitions

Definition 1: A Type-Component Specification T could be regarded as an enriched
axiomatisation of a collection of ADT’s. However, it has more than the usual ADT’s
since it can also contain axioms for reasoning about the domain (domain axioms) and
reasoning about adt’s (induction schemes).

In general, a type-component defines a new abstract data type T starting from pre-
defined type-components. The syntax of a type-component 7 is similar to that used in
algebraic abstract data types. 7T has function symbols and relation symbols. We consider
the partition of the set of function symbols into a set C of constructors and a set D of
defined functions. Constructors are used to build data types, whereas defined functions
operate on these data types. Let R be a set of relation symbols including the binary
equality relation =. A literal r(t,,...,t,) is a n-ary relation symbol applied to n terms.
An equation is a literal with = as relation symbol. Conditional equations are equations of
the form ¢ — [= r. Unconditional equations are equations of the form [= r. Equations
will be used only from left to right, we call them rewrite rules. An extension operation
introduces a new defined symbol ¢ in a type-component 7 through a set D, of axioms,
that we call a definition of ¢q. We consider recursive definitions and explicit definitions.

Definition 2: A Recursive Definition of a function or relation is like a primitive
recursive definition. If ¢ is a function symbol then D, is a set of confluent and terminating
rewrite rules and it defines a total function. If ¢ is a relation symbol then D, defines a
decidable relation.

Definition 3: An Ezplicit Definition of a (new) relation ¢ has the form Vz(¢(z) <
R(z)), where R is a formula of the old language, that we call defining formula. R(z)
is quantifier free or contains only bounded quantifiers. For example, let z and y be
natural variables, in Vx,y(¢(z,y) <> v = x + 1), y = = + 1 is quantifier free and in
Vo, y(q(z,y) <> Vi< z(y =i+ 1)), Vi < z(y =i+ 1) is bounded quantified.

Definition 4: An isoinitial model I of T is a reachable model such that for any
relation r defined in 7, ground instances r(t) or —r(t) are true in [iff they are true in
all models of 7. A reachable model is one where each element of the domain can be
represented by a ground term.

The intended model of type component specification 7 is an isoinitial model.

Object Oriented Software Systems defined by Constructive Logical Methods 127

The existence of isoinitial models is of course not guaranteed but following the work of
[MMO94], we can construct type-components with isoinitial models. A brief explanation
of the method is: Firstly, we start with a small component 7y with an obvious isoinitial
model ;. If the freeness axioms hold in T, then 7, consists of just the constructor
symbols in 7 together with their freeness axioms. Then we sucessivelly extends 7; into
Ti+1 by adding a new function or relation symbol ¢, together with their axioms D, (in
a explicit or recursive manner) in such a way that I; can be expanded into an isoinitial
model I;1; of 7;4;. For example, if ¢ is a function symbol and D, is its definition then
Tis1 = TiU D, U {~t = t'} such that t and ¢ are ground terms and 7; U D, I/ t =t
Notice that 7;,; is a recursive axiomatisation iff equality on ground terms is decidable.

Example of object-component and type-component:

Object-component Person; Type-component ListNat;
IMPORT: Oid, N at; IMPORT: Nat
SORTS: Oid, Nat, Person SORTS: Nat, ListNat
FUNCTIONS: FUNCTIONS:
for all oid : Oid, age : Nat, money : Nat nil ;= ListNat
<oid, age, money>= Person . (Nat, ListNat) = ListNat
credit : (Person) = Nat nocc : (Nat, ListNat) = Nat
RELATIONS: RELATIONS:
purch : (Person, Nat) (possible purchase) elemi : (ListNat, Nat, Nat)
AXIOMS: for all p: Person,c: Nat AXIOMS:
p.age < s17(0) — credit(p) = 0 —nil = a.B
—p.age < s17(0) — credit(p) = 2 * p.money aB=cD—-a=cANB=D
p.age < sU7(0) — purch(p,y) < H (nil) AVa, J(H(J) — H(a.J))

Vi < p.money(y = i) — VL(H(L))
BEHAVIOUR: noce(x, nil) =0
birthday : (Person) a = b — nocc(a,b.L) = nocc(a, L)+1
birhtday(p.oid, p.age, p.money) < —a = b — noce(a, b.L) = noce(a, L)
(<p.oid, p.age, p.money> <p.oid, s(p.age), p.money>) elemi(L, 0, z) <> IB(L = =.B)
buy : (Person, Nat) elemi(L, s(i), x)
buy(p, ¢) <> ¢ < credit(p) A +purch(p, c) <> 3Jb, B(L = b.B A elemi(B,i,x))

Definition 5: An Object-Component Specification O could be regarded as a type-
component specification 7 with the following differences: terms in O (objects) have
unique identity. Identity is represented by ground terms of the sort Oid (defined in
the type component specification Oid). We consider < vpjq4, vy, ..., v7, > as the unique
object constructor where voiq, vr,, ..., vr, are variables of sorts Oid, T, ..., T respective-
ly. Oid, T, ..., T} sorts are defined in Oud, 71, ..., T type-component specifications and
included in the IMPORT section of O. (Total) functions and relations in O have profiles
fi(Sj, ..., Sk) = Sy and 7;(0, S}, ..., Si) respectively where for all m, j and k, S,,S;, Sk
are included in section SORT of 0. We consider a new section called BEHAVIOUR where
we define behaviour relations of the objects in O.

If-and-only-if definitions are often too restrictive and inflexible, and we would prefer
weaker forms of specifications that admit multiple interpretations, corresponding to dif-
ferent program behaviours that are all correct for the problem at hand. To this end, we
accept conditional definitions (i.e. Va(c(z) — r(z) ¢ d(x))).

The state of any object o of O is represented by ground instances of its object construc-
tor and the meaning of its relations. Object constructors change in the time, preserving

128 APPIA-GULP-PRODE’98

oid values, (i.e. from < oidvalue,vy, ..., v > to < oidvalue, v}, ...,v, >). The meaning of
equality relation is fized (totally defined functions). The rest of relations, the meaning of
7iff” relations is fized (constant) in all the life-cycle of 0 and the meaning of conditional
relations is wvariable in the following sense: Vz(c(x) — ri(z) <> r(x)), can always be

given as a pair of implications:
Va(r{"™" (x) — r1(2))
Va(ry(z) = " (2))

where 77" (x) < c(x) A ro(z) and r(z) <> —c(z) V ro(z). At each moment in the
life-cycle of 0, we can accept any definition for 7, such that r7*™ C r; C rjae,

Definition 6: Following definition 4, the Intended model I of an object component
specification O is a reachable model such that for any relation r defined in O, ground
instances r(t) or —r(t) are true in I iff they are true in all models of ©. We consider object
components O as aggregates of type components (Qid,T},...,T;). If type components have
isoinitial models then each object can be represented by a ground term (reachability).
Functions and relations in O are defined as explicit definitions (quantifier free or bounded
quantification) in the language {T7U...UT}} hence for any relation r defined in O, ground
instances r(t) or —r(t) are true in I iff they are true in all models of ©. Conditional
specifications in O can have many interpretations then there are many expansions of the
intended model of O, we will call Models(O) to the set of all expansions of the intended
model of O. BEHAVIOUR section in O defines:

1. Elementary Transitions, ety, are explicit definitions of the form:
etp(l) < (<l>, <f(1)>)

where [is an object constructor pattern and f is an aggregate of functions (type
components functions) applied to elements of </>. Elementary transitions preserve
object identifications (Oid). Left and right components in ety represent the initial
and final state of the transition respectively. If ety () is an elementary transition
defined in @ and <c¢> is the (ground) object constructor of any object o of © and
there exists a ground substitution o such that <c¢>= o <[> then transition et; on
o can be defined as:

_ <f(e)>
Onew = Oold |<c>

where 0,4 is the object at the initial state of et, and o0,., is the same object
replacing its constructor <c> by <f(c)>.

2. Complex Transitions, ctj, built from relations, r;, defined in RELATIONS section and
from elementary transitions, et;, defined in BEHAVIQUR section.

Complex transition patterns are of the form:
(*) Vo (ctj(x) <> ri(x) Aetg(...) A L)

In (*), if r; is defined by a conditional specification then r; can be prefixed with
either a ”4” symbol or a ”—” symbol. Roughly, a ”+” prefix in r; means that if the
intended model of O, I t# r;(t), (¢t ground), and if there exists an intended model
Lew € Models(Q) such that I,., F r;(t) then o ”changes its model” from I to Iy
In a similar way, a ”—" prefix in r; means that if I - r;(¢), (£ ground), and if there
exists an intended model I,,.,, € Models(O) such that I, / 7;(t) then o ”changes
its model” from I to I,,e,.

Object Oriented Software Systems defined by Constructive Logical Methods 129

Definition 7: the life cycle of an object o € O is represented by a sequence of object
constructors, intended models of O and elementary and complex transitions that are true
in .

life cycle = {< ¢ >,I,{ety,ct;}}; fori=1..00

We must proceed with special care in the construction of the intended model I of O
with BEHAVIOUR section. The behaviour of an object in O ({ety,ct;}) depends on its
state (<¢> and I). Hence, the construction of intended models [is fundamental in order
to prevent bizarre behaviours.

3 Model Construction Method

The intended model of type and association component specifications is an isoinitial
model. We construct it following the ideas of [MMO94] (Definition 4).

We present the following algorithm in order to construct the intended models of the
rest of components (object and extension components, we will refer them as O):

1. IMPORT sections in O must include only type-components with isoinitial models.
2. Only ground constructor terms are allowed for objects in O.
3. Each function f in O is defined by a set of confluent and terminating equations Dy.

4. Each relation r; in O is defined by explicit or recursive definitions. In a incremental
construction of the intended model, (consider I; 3 as the intended model of any
component, (incrementally constructed from 1)-3) previous steps), if we want to
expand O with a relation 7; defined by a conditional specification then there exist
many expansions of I 3. For example, I 4 may be any intended model where r; is
interpreted as 7% or may be an isoinitial model where r; is interpreted as r™" ...
etc.

5. Let I 4 be the isoinitial (incrementally constructed for O) from 1)-4) previons steps.
Let E be the set of elementary transitions in . At this point, we are interested in
the expasion of I, 4 with E. If for all pair of elementary transitions et;, et; in E,
left-hand sides are not unifiable (non-ambiquity) and pattern variables in right-hand
sides are included in pattern variables in left-hand sides (etx (1) <> (<i>, <f(l)>))
then the expansion of I; 4 with E is defined as:

L 5 = I 4U{etg(t) | for all t ground and t = ol}
U
{=ety(t') | for all ¢ ground and not unifiable with [}

else the expansion is not defined.

6. Let I 5 be the model of O (incrementally constructed from 1)-5) previous steps).
At this point, we expand I; 5 adding the axioms which define complex transitions
Ctj.

Cases:

130

(a)

APPIA-GULP-PRODE’98

If only an elementary transition ety (m) with m as an instance of [(ety(l) —
(<I>,<f(l)>) and not prefixed relations are present in the body of ct; (i.e.
ctj(x) <> ety(m) N\ Rest(x))

then

L = I5U{ct;j(t) |t ground and Iy 5 - eti(...) A rest(t)}
U
{=ct;(t') |t ground and I, 5 I/ ety(...) Arest(t)}

If only elementary transitions and not prefixed relations are present in the body
of ct; (ctj(x) <> eti(m) A eta(n) A ... Aetp(s) A rest(z)) then the expansion
is defined if elementary transitions in the body of c¢t; form a chain C'h. The
complex transition ct; can be replace by ct;(z) <+ Ch A rest(x) and then
the expansion proceed as in 1) with this new definition else the model is not
defined.

A set of elementary transitions St is considered as a chain if there exists a
permutation of St: perm(St) = {et;(m) < (<m>, < fi(m)>,eta(n) < (<
n>,< fa(n)>),...,et,(s) < (<s>,<fn(s)>)} such that m is an instance
of the object constructor pattern in et; definition, n is an instance of the
object constructor pattern in et, definition,..., s is an instance of the object
constructor pattern in et,, definition and for all t; = oym ground, fi(¢;) is an
instance of n and, ..., and f,,_1(¢,_2) is an instance of r and for all ¢, _; = 0,37,
ground, f,(t,—1) is an instance of fi(m) then perm(St) can be considered as
a new elementary transition

Ch(m) < (<m>, <fu(fa-1(-...fr(m))...)>)

If only + prefixed and not prefixed relations are present in the body of ct;
(i.e. ctj(x) <> +r(m) Arest(r)) where r is a relation defined by a conditional
specification and m is a term pattern. The model I of O can contain any of
the ground instances of r(m), r(t), such that r(¢) is not true in the (initial)
interpretation of r (I 4) and r(t) € r™*. Let Ins(r,m) be the set of all
the ground instances of r(m) that are in 7™ but they are not true in I 4.
Let I., be the I; g model of O expanded with the set Ins(r,m), (lemp =
I, s U Ins(r,m)), then for all + prefixed relation:

I 7 = I U{ct;(t) | t ground and I, F r(t) Arest(...)}
U
{=ct;(t) |t ground and L., t/ 7(t') Arest(...)}

Hence, all object 0 € O in a system begin its execution with a behaviour ct;
bounded to the interpretation of r in I g but extensible to r U Ins(r,m) in a
correct way. Any execution of ct;(t) where r(t) € Ins(r, m) implies a dynamic
change in r to r U r(t).

If only — prefixed and not prefixed relations are present in the body of ct;
(i.e. ctj(x) <> —r(s) Arest(r)) where r is a relation defined by a conditional
specification and s is a term pattern. The model I of O can not contain any
of the ground instances of r(s), r(¢), such that r(¢) is true in the (initial)
interpretation of 7 (I;.4) and 7(t) & r™". Let Del(r,s) be the set of all the

Object Oriented Software Systems defined by Constructive Logical Methods 131

ground instances of r(s) that are in I; 4 but they are not true in r™". Let I,.q
be the I g model of O reduced with the set Del(r, s), (Iyea = I1.6 — Del(r, s)),
then for all — prefixed relation:

L7 = ILeaU{ctj(t) |t ground and L4 = 7r(t) Arest(...)}
U
{=ct;(t) |t ground and L eq t/ r(t') A rest(...)}

Hence, all object 0 € O in a system begin its execution with a behaviour ct;
bounded to the interpretation of r in I ¢ but reducible to r — Del(r, s) in a
correct way. Any execution of ct;(t) where r(t) € Del(r, s) implies a dynamic
change in r to r — r(t).

If + and — prefixed relations and (possible) elementary transitions and (pos-
sible) not prefixed relations appear in the body of ct; (the more general sit-
uation) then the model is defined iff the following condition holds: either
the intersection between + and — prefixed relation symbols is empty or is not
empty but the implied relations do not have ground instances in common, (i.e.
+r(m) A ... AN —r(s) and At | tis a ground instance of m and s). If not, the
model of O is not defined.

For all + and — prefixed relation: I.,preq = 1.6 + Ins(r,m) — Del(r, s)

Lz = IapreaU{ct;(t) | t ground and Legpreq - 7() Arest(...)}
U
{=ct;j(t) |t ground and I.,preq i/ 7(t) Arest(...)}

For all (only) + prefixed relations we follow ¢) step and for all (only) — prefixed
relations we follow d) step.

The model construction is an iterative process, at each step, we expand the
model with a new complex transition relation ct;.

4 Extension Components

Eztension

components are components obtained from other components adding new ax-

ioms and, possibly, new symbols. An extension component inherits all the axioms and

definitions

that have been developed in original components.

Example of extension component:

Extension component £ Person;
EXTEND: Person;

RELATIONS:

rich(Person, Nat)

AXIOMS: p
rich(p) <
BEHAVIOR:

: Person, m : Nat
credit(p) > s(29°(0)

deposit : (Person)
deposit(p.oid, p.age, p.money) <>
(<p.oid, p.age, p.money>, <p.oid, p.age, p.money + p.money>)
ebuy : (Person, Nat)
ebuy(p, c) < Vi < ¢ (i < s19°(0) A +purch(p,i))

132 APPIA-GULP-PRODE’98

In this example, we show an extension of Person (rich person). If a person p is a rich
person then he/she must be interpreted as Person enriched with new structural proper-
ties, i.e. rich relation and new behavioural properties i.e. deposit and ebuy transitions.
The model of £ Person is defined iff Person + £ Person has model applying construction
method in previous section. In a + operation between object component specifications,
two object component specifications are put together (section by section). Like classes
(based on imperative programming), we can construct a hierarchy of components by
extension components.

5 Association Components

For us, a system is a set of related object-components. These relations are established
by association components. An association component does not exist per se, it need of
object components in its definition.

Example of association component:

Association component PersonCompany;

IMPORT: Person,Company;

SORTS: Person, Company, PersonCompany;

FUNCTION:

< Person, Company >= PersonCompany

RELATIONS:

invariant, : (Person, Company)

invariantsy : (Person)

invariants : (Person, Company)

AXIOMS:p : Person,c: Company

invariant (p, c) <> 3 <i, j>: PersonCompany (p.oid = i.0id A\ c.oid = j.oid)
p.age > s18(0) A p.age < 5(°(0) — invarianty(p) < Ic(invariant,(p,c))
invariants(p, c) « p.age > s (0) — =invariant, (p, c)

Association components do not have BEHAVIOUR sections. We consider association
components in a system as a set of invariants. These invariants govern which (ground)
instances of the association components are true and which are not true in the system.
Quantifications must be understood as bounded quantifications on (finite) populations of
object components. At execution time, changes in object components in the association
promote changes in association objects (dynamic insertion and deletion of association
instances). We can construct the intended model of association components following
our model construction method restricted to the 1..4 steps.

Finally, the system must be undestood as a collection ("put together”) component
specifications then, for us, the intended model of any software system results from the
composition of the models of its components. All of the type components, object com-
ponents and extension components in a system must have intended models. Association
components can be considered as the ”glue” between the previous components; any ob-
ject population must preserve invariant relations contained in association components.
Finally, each component in a system must be considered as a theory and the composition
of these theories represents the system. Hence, intended model of the system is defined
iff each component has intended model.

Object Oriented Software Systems defined by Constructive Logical Methods 133

6 Executable Components and Systems

In this section, we briefly show how declarative semantic of components can be intepreted
in operational terms. We will specify our operational semantic by the use of definitional
trees, a concept introduced by [Ant92] to define efficient normalization strategies. Tree
is called defintional tree with pattern [— r iff one of the following cases holds: Tree =
rule(l — r) where [— r is a variant of a rewrite rule in the component specification.

Tree = branch(m,p, Treey,.... Tree,) where 7 is a pattern, p is an ocurrence of a
variable in 7, ¢;...¢; are different constructors of the sort of 7 |, (argument in position p
of) (k > 0) and, for ¢ = 1, ...k, Tree; is a definitional tree with pattern 7[c;(x1,2)],
where n is the arity of ¢; and z, ..., x,, are new distinct variables. A definitional tree of
an n-ary defined function f is a definitional tree T'ree with pattern f(xy,...,z;) where
Z1, ..., T, are distinct variables such that for each rule [— r with | = f(¢y,...,t,) there is
a node rule (I' — r') in Tree with [variant of ['.

We define the validity of an equation as a strict equality on terms by the following
rules, where A is assumed to be a right-associative infix symbol.

c=c— true Ve/O e C
(21, ey @n) = (Y1, ey Yn) = (1 =) Ao Az =yn) Ve/n el
true N\o — x

(note: we write ¢/n for n-ary constructors)
Example of definitional tree:

O+y=y
s(z) +y=s(z+y)

its definitional tree is
branch(z + vy, 1, rule(0+y — y), rule(s(x) + y — s(z + y)))

Relations in O can be translated into a variant of definitional trees extended with and
and or nodes. Let D, be the set of axioms that defines ¢, for example,

elemi(L,0,z) <» 3B(L = z.B)
elemi(L, s(i),x) <> 3b, B(L = b.B A elemi(B, i, x))

1. Establish 7 as q(z1, ..., x,) with x1, ..., z, distinct variables (i.e. elemi(z,y, 2))

2. Construct T'ree for all p variable position in pattern 7, where existentially quantified
variables in the body are replace by or nodes and universally quantified variables
in the body are replace by and nodes.

Treeeem; = branch(elemi(z,y, z2),1,
branch(elemi(nil,y, z), 2,

or[rule(elemi(nil, 0, z) — nil = z.nil),
rule(elemi(nil, 0, z) — nil = z.x9.Ly)]),
or|rule(elemi(nil, s(i), z) — nil = 0.nil A elemi(nil, i, z)),
rule(elemi(nil, s(i), z) — nil = s(j).nil A elemi(nil, i, z)),
rule(elemi(nil, s(i), z) — nil = 0.29.Ly A elemi(xg.Lo, 1, 2)),
rule(elemi(nil, s(i), z) — nil = s(j).x2.Ly A elemi(xg.Lo, i, 2))])

134 APPIA-GULP-PRODE’98

branch(elemi(zy.Ly,y, 2), 2,
or|rule(elemi(xy.Ly,0, 2) = x1.Ly = z.nil),
rule(elemi(xy.Ly,0,2) = x1.Ly = 2.29.L5)]),
or(rule(elemi(xy.Ly, (i), 2) — x1.Ly = 0.nil A elemi(nil, i, z)),
rule(elemi(xy.Ly, s(i), 2) = x1.Ly = s(j).nil A elemi(nil, i, z)),
rule(elemi(xy.Ly, s(i), 2) = x1.Ly = 0.x9. Lo A elemi(zy.Lo, i, 2)),
rule(elemi(xy.Ly, s(i), 2) — x1.Ly = s(j).x2.La A elemi(xy.Ly, i, 2))]))

An example of execution for elemi(s(0).0.s(0).nil, s(0),0): Firstly, this goal unifies
with branch(elemi(x1.Lq,y,z) and then with second or node, we inspect each rule in
the or node. The fourth rule constructs the solution ¢rue in a recursive manner on the
subgoal elemi(0.s(0).nil,0,0).

Induction schemes can be translated into definitional trees in the following manner:

(H(nil) N\H(I) — H(a.I)) — Yz H(x)
is represented by
branch(ind(H, x), 2, and[rule(H (nil) — vy),rule(H(I) — true),rule(H (a.l) — v3)])

where H is bounded to relation symbols, vy, vs are distinct variables bounded to true or
false values resulting in the proofs of H(nil), H(I) and H(a.I) respectively.
For example, Vz(elemi(x,0,0)) — true:

branch(ind(elemi(z,0,0),x), 2,
and[rule(elemi(nil, 0,0) — vy),
(rule(elemi(1,0,0) — true), (rule(elemi(a.I,0,0) — vy)

rule(elemi(nil, 0,0) — nil = 0.nil —ryee,,,,.. false)
rule(elemi(Ly,0,0) — true)

rule(elemi(xy.Ly,0,0) — nil = 0.nil —=rree,,,,, false
rule(elemi(xy.Ly,0,0) = nil = 0.29.Ly =1y, false

(Hence, Vz(elemi(x.0.0)) — true is not true in ListNat).

Elementary transitions ety(l) <> (<I>,< f(l)>) can be represented as Tree., =
rule(l — f(l)). Complex transitions are represented as relations including elementary
transitions. Ins(r,m) and Del(r, s) sets can be computed at execution time: unification
algorithm proves if r(¢) is an instance of r(m) or r(s). + and — prefixed relations and
state changes can be simulated with an assert-retract Prolog mechanism. Extension and
association components are not distinct of object components then we proceed in a similar
way. Dynamic creation and destruction of links can be simulated by assert and retract’s.
Negative literals —r(¢) can be computed in the following manner: we inspect r(t) if it can
be rewrite as true then —r(t) is not true and if (¢) can not be rewrite as true, then —r(¢)
is true. This is possible because we treat only with decidable relations in component
specifications.

Finally, definitional trees, unification algorithms and assert/retract mechanisms are
necessary software elements in order to obtain executable system but not sufficient. How
govern object transitions? and how stimulate to the system in order to change its state?.
First question implies that OO systems need additional controller components that govern
transitions and preserve invariants. Second question implies the concept of event and link
to the previous question. These problems form our future work.

Object Oriented Software Systems defined by Constructive Logical Methods 135

7 Conclusions and Future Work

In this preliminary work, we have shown how constructive method can be used in the con-
struction of executable systems totally correct with respect to system specifications. Sys-
tem construction is automatic, provided type-components and object-components with
intended models. Reusability of systems have been increased due to it is achieved at
semantic level. Our systems are interpreted as theories, then adding new specifications
(in the way explained in our work) is equivalent to expand our systems. Synthesis of logic
programs, within the O-O context, is treated in [KO95]. Dr. Lau and Dr. Ornaghi show
how from frameworks it is possible to obtain programs. There are two difference wrt
our work: a) the kinds of specifications in [KO96] are intended for deductive synthesis,
however we have oriented our work for constructive synthesis and b) we treat dynamic
aspects of objects, however in [KO95] the authors are centered in static aspects mainly.

Our work is only at initial state and much effort is needed in order to define different
semantic characterizations of generalization and aggregations components and ezecutable
systems.

References

[Ant92] Antoy S., Definitional Trees. In Proc. of the Third Int. Conference on Algebraic
and Logic Programming. Springer 1992.

[CDY94] Cook S. Daniels J. Designing Object-Oriented Systems Prentice Hall 1994.

[Gal95] Galan Morillo F.J. and Toro M. Sintesis de Programas Logicos. In Proc. of Gulp-
Prode 1995. Marina di Vietri. Italy.

[KO95] Lau k.K. and Ornaghi M. Towards an Methodology for Deductive Synthesis of
Logic Programs. In 5th Int. Workshop LOPSTR’95. Springer 1995.

[KO96] K.K. Lau and M. Ornaghi. Forms of Logic Specifications: A preliminary Study.
In 6th Int. Workshop LOPSTR’96. Springer 1996.

[MMO94] Miglioli P., Moscato U., Ornaghi M. Abstract Parametric Classes and Abstract
Data Types defined by Classical and Constructive Logical Methods. J. Symbolic
Computation 1994.

[W95] Wieringa R.J. LCM and MCM. Specification of a control system using dynamic
logic and process algebra. Ed. Lewerentz y T. Linder. LNCS 891. Springer-Verlag
1995.

136

APPIA-GULP-PRODE’98

