
Obje
t Oriented Software Systems de�ned by

Constru
tive Logi
al Methods

Gal�an F.J. and Toro M.

Abstra
t

There exist many formal and semiformal notations for spe
ifying obje
t orien-

ted software systems and many programming te
hniques that support obje
t ori-

ented
on
epts. However,
orre
t, extensible and reusable software is diÆ
ult to

a
hieve. We are interested in translating non exe
utable system spe
i�
ations into

exe
utable ones and how
onstru
tive methods
an be used in formal OO software

system development.

Keywords: OO system,
omponent, adt, isoinitial models,
onstru
tive proofs.

1 Introdu
tion

A widely used te
hnique in modern software engineering is to model a system by a

ombination of di�erent, but semanti
ally
ompatible "views" of the system [CD94℄.

The primary bene�t of su
h approa
h is to keep very
omplex systems manageable and

to dete
t mis
on
eptions or in
onsisten
ies at an early stage. Normally, software systems

are divided into three models: stru
tural, behavioural and fun
tional models. Stru
tural

model des
ribes the relationship between the
lasses of
omponents used in the system as

well as the a
tual
on�guration of the system
omponents themselves. Behavioural model

des
ribes the life-
y
le of
omponents, i.e. the di�erent
on�gurations of
omponents in

the time and fun
tional model
omprises data transformations and data invariants. In an

obje
t-oriented system (based on imperative programming), the basi

omponent is
alled

lass, whi
h des
ribes an implementation of an abstra
t data type (ADT), in
luding a

set of methods that implement operations on the ADT. A
lass
an be
omposed with

others to de�ne new larger (and
omplex)
lasses (generalizations, aggregations,...). At

exe
ution time, instan
es of a
lass are
reated dynami
ally. Su
h instan
es are
alled

obje
ts. An obje
t
ontains a
tual data (of the type of its ADT). Its method, when

invoked by messages sent by other obje
ts, are used to manipulate its data.

Reusability arises through inheritan
e. Inheritan
e allows
ode reuse, sin
e the
ode

for the methods in a
lass is generated only on
e and "shared" by all the obje
ts of any

sub
lass. Extensibility results from the ability to obtain new
lasses adding new
hara
-

teristi
s to existing ones. Reliability results from the ability to monitor assertions and

invariants
ontained in
lasses. Current obje
t-oriented programming te
hnology support

these
on
epts but does not support formal system development. A �rst requirement to

Dep. Lenguajes y Sistemas Inform�ati
os, Fa
ultad de Inform�ati
a. Avenida Reina Mer
edes s/n

.p.: 41012-SEVILLA. Fax: +34 5 4557139 e-mail: galanm�arturo.lsi.us.es

125

126 APPIA-GULP-PRODE'98

a
hieve this obje
tive is to de�ne a system spe
i�
ation language with a pre
ise notation

and semanti
. Our starting point is a well-de�ned unit
alled
omponent.

A
omponent is a theory that embodies our knowledge of an element in a system.

Within this theory we de�ne semanti
ally notions similar to
lasses, asso
iations, gener-

alizations, aggregations,... et
.

Corre
tness of exe
utable systems is established at two levels. Firstly, at
omponent

level, models of exe
utable
omponents are isomorphi
 to models of
omponent spe
i-

�
ations. At system level, models of software systems are
onstru
ted from models of

omponents in a
ompositional way.

The paper is organised as follows. Firstly, we introdu
e preliminary de�nitions and

des
ribe the basi
 units in the system, the
omponents. In the next there se
tions, we

show how
onstru
tive methods
an be used to obtain
orre
t, extensible and reusable

exe
utable systems and �nally, we present
on
lusions and future tasks of our preliminary

work.

2 De�nitions

De�nition 1: A Type-Component Spe
i�
ation T
ould be regarded as an enri
hed

axiomatisation of a
olle
tion of ADT's. However, it has more than the usual ADT's

sin
e it
an also
ontain axioms for reasoning about the domain (domain axioms) and

reasoning about adt's (indu
tion s
hemes).

In general, a type-
omponent de�nes a new abstra
t data type T starting from pre-

de�ned type-
omponents. The syntax of a type-
omponent T is similar to that used in

algebrai
 abstra
t data types. T has fun
tion symbols and relation symbols. We
onsider

the partition of the set of fun
tion symbols into a set C of
onstru
tors and a set D of

de�ned fun
tions. Constru
tors are used to build data types, whereas de�ned fun
tions

operate on these data types. Let R be a set of relation symbols in
luding the binary

equality relation =. A literal r(t

1

; :::; t

n

) is a n-ary relation symbol applied to n terms.

An equation is a literal with = as relation symbol. Conditional equations are equations of

the form
! l = r. Un
onditional equations are equations of the form l = r. Equations

will be used only from left to right, we
all them rewrite rules. An extension operation

introdu
es a new de�ned symbol q in a type-
omponent T through a set D

q

of axioms,

that we
all a de�nition of q. We
onsider re
ursive de�nitions and expli
it de�nitions.

De�nition 2: A Re
ursive De�nition of a fun
tion or relation is like a primitive

re
ursive de�nition. If q is a fun
tion symbol then D

q

is a set of
on
uent and terminating

rewrite rules and it de�nes a total fun
tion. If q is a relation symbol then D

q

de�nes a

de
idable relation.

De�nition 3: An Expli
it De�nition of a (new) relation q has the form 8x(q(x) $

R(x)), where R is a formula of the old language, that we
all de�ning formula. R(x)

is quanti�er free or
ontains only bounded quanti�ers. For example, let x and y be

natural variables, in 8x; y(q(x; y) $ y = x + 1), y = x + 1 is quanti�er free and in

8x; y(q(x; y)$ 8i < x(y = i+ 1)), 8i < x(y = i + 1) is bounded quanti�ed.

De�nition 4: An isoinitial model I of T is a rea
hable model su
h that for any

relation r de�ned in T , ground instan
es r(t) or :r(t) are true in I i� they are true in

all models of T . A rea
hable model is one where ea
h element of the domain
an be

represented by a ground term.

The intended model of type
omponent spe
i�
ation T is an isoinitial model.

Obje
t Oriented Software Systems de�ned by Constru
tive Logi
al Methods 127

The existen
e of isoinitial models is of
ourse not guaranteed but following the work of

[MMO94℄, we
an
onstru
t type-
omponents with isoinitial models. A brief explanation

of the method is: Firstly, we start with a small
omponent T

0

with an obvious isoinitial

model I

0

. If the freeness axioms hold in T , then T

0

onsists of just the
onstru
tor

symbols in T together with their freeness axioms. Then we su
essivelly extends T

i

into

T

i+1

by adding a new fun
tion or relation symbol q, together with their axioms D

q

(in

a expli
it or re
ursive manner) in su
h a way that I

i

an be expanded into an isoinitial

model I

i+1

of T

i+1

. For example, if q is a fun
tion symbol and D

q

is its de�nition then

T

i+1

= T

i

[D

q

[f:t = t

0

g su
h that t and t

0

are ground terms and T

i

[D

q

6` t = t

0

.

Noti
e that T

i+1

is a re
ursive axiomatisation i� equality on ground terms is de
idable.

Example of obje
t-
omponent and type-
omponent:

Obje
t-
omponent Person; Type-
omponent ListNat;

IMPORT: Oid;Nat; IMPORT: Nat

SORTS: Oid;Nat; Person SORTS: Nat; ListNat

FUNCTIONS: FUNCTIONS:

for all oid : Oid; age : Nat;money : Nat nil :) ListNat

<oid; age;money>) Person : : (Nat; ListNat)) ListNat

redit : (Person)) Nat no

 : (Nat; ListNat)) Nat

RELATIONS: RELATIONS:

pur
h : (Person;Nat) (possible pur
hase) elemi : (ListNat;Nat;Nat)

AXIOMS: for all p : Person;
 : Nat AXIOMS:

p:age � s

(17

(0)!
redit(p) = 0 :nil = a:B

:p:age � s

(17

(0)!
redit(p) = 2 � p:money a:B =
:D! a =
 ^ B = D

p:age � s

(17

(0)! pur
h(p; y)$ H(nil) ^ 8a; J(H(J)! H(a:J))

8i � p:money(y = i) ! 8L(H(L))

BEHAVIOUR: no

(x; nil) = 0

birthday : (Person) a = b! no

(a; b:L) = no

(a; L)+1

birhtday(p:oid; p:age; p:money)$:a = b! no

(a; b:L) = no

(a; L)

(<p:oid; p:age; p:money>;<p:oid; s(p:age); p:money>) elemi(L; 0; x)$ 9B(L = x:B)

buy : (Person;Nat) elemi(L; s(i); x)

buy(p;
)$
 �
redit(p) ^+pur
h(p;
) $ 9b; B(L = b:B ^ elemi(B; i; x))

De�nition 5: An Obje
t-Component Spe
i�
ation O
ould be regarded as a type-

omponent spe
i�
ation T with the following di�eren
es: terms in O (obje
ts) have

unique identity. Identity is represented by ground terms of the sort Oid (de�ned in

the type
omponent spe
i�
ation Oid). We
onsider < v

Oid

; v

T

1

; :::; v

T

k

> as the unique

obje
t
onstru
tor where v

Oid

; v

T

1

; :::; v

T

k

are variables of sorts Oid; T

1

; :::; T

k

respe
tive-

ly. Oid; T

1

; :::; T

k

sorts are de�ned in Oid; T

1

; :::; T

k

type-
omponent spe
i�
ations and

in
luded in the IMPORT se
tion of O. (Total) fun
tions and relations in O have pro�les

f

i

(S

j

; :::; S

k

)) S

m

and r

j

(O; S

j

; :::; S

k

) respe
tively where for all m, j and k, S

r

; S

j

; S

k

are in
luded in se
tion SORT of O. We
onsider a new se
tion
alled BEHAVIOUR where

we de�ne behaviour relations of the obje
ts in O.

If-and-only-if de�nitions are often too restri
tive and in
exible, and we would prefer

weaker forms of spe
i�
ations that admit multiple interpretations,
orresponding to dif-

ferent program behaviours that are all
orre
t for the problem at hand. To this end, we

a

ept
onditional de�nitions (i.e. 8x(
(x)! r(x)$ d(x))).

The state of any obje
t o of O is represented by ground instan
es of its obje
t
onstru
-

tor and the meaning of its relations. Obje
t
onstru
tors
hange in the time, preserving

128 APPIA-GULP-PRODE'98

oid values, (i.e. from <oidvalue; v

1

; :::; v

k

> to <oidvalue; v

0

1

; :::; v

0

k

>). The meaning of

equality relation is �xed (totally de�ned fun
tions). The rest of relations, the meaning of

"i�" relations is �xed (
onstant) in all the life-
y
le of o and the meaning of
onditional

relations is variable in the following sense: 8x(
(x) ! r

1

(x) $ r

2

(x)),
an always be

given as a pair of impli
ations:

8x(r

min

1

(x)! r

1

(x))

8x(r

1

(x)! r

max

1

(x))

where r

min

1

(x) $
(x) ^ r

2

(x) and r

max

1

(x) $:
(x) _ r

2

(x). At ea
h moment in the

life-
y
le of o, we
an a

ept any de�nition for r

1

su
h that r

min

1

� r

1

� r

max

1

.

De�nition 6: Following de�nition 4, the Intended model I of an obje
t
omponent

spe
i�
ation O is a rea
hable model su
h that for any relation r de�ned in O, ground

instan
es r(t) or :r(t) are true in I i� they are true in all models of O. We
onsider obje
t

omponents O as aggregates of type
omponents (Oid,T

1

,...,T

k

). If type
omponents have

isoinitial models then ea
h obje
t
an be represented by a ground term (rea
hability).

Fun
tions and relations in O are de�ned as expli
it de�nitions (quanti�er free or bounded

quanti�
ation) in the language fT

1

[:::[T

k

g hen
e for any relation r de�ned in O, ground

instan
es r(t) or :r(t) are true in I i� they are true in all models of O. Conditional

spe
i�
ations in O
an have many interpretations then there are many expansions of the

intended model of O, we will
all Models(O) to the set of all expansions of the intended

model of O. BEHAVIOUR se
tion in O de�nes:

1. Elementary Transitions, et

k

, are expli
it de�nitions of the form:

et

k

(l)$ (<l>;<f(l)>)

where l is an obje
t
onstru
tor pattern and f is an aggregate of fun
tions (type

omponents fun
tions) applied to elements of <l>. Elementary transitions preserve

obje
t identi�
ations (Oid). Left and right
omponents in et

k

represent the initial

and �nal state of the transition respe
tively. If et

k

(l) is an elementary transition

de�ned in O and <
> is the (ground) obje
t
onstru
tor of any obje
t o of O and

there exists a ground substitution � su
h that <
>= � <l> then transition et

k

on

o
an be de�ned as:

o

new

= o

old

j

<f(
)>

<
>

where o

old

is the obje
t at the initial state of et

k

and o

new

is the same obje
t

repla
ing its
onstru
tor <
> by <f(
)>.

2. Complex Transitions,
t

j

, built from relations, r

i

, de�ned in RELATIONS se
tion and

from elementary transitions, et

k

, de�ned in BEHAVIOUR se
tion.

Complex transition patterns are of the form:

(*) 8x(
t

j

(x)$ r

i

(x) ^ et

k

(:::) ^ :::)

In (*), if r

i

is de�ned by a
onditional spe
i�
ation then r

i

an be pre�xed with

either a "+" symbol or a "�" symbol. Roughly, a "+" pre�x in r

i

means that if the

intended model of O, I 6` r

i

(t), (t ground), and if there exists an intended model

I

new

2Models(O) su
h that I

new

` r

i

(t) then o "
hanges its model" from I to I

new

.

In a similar way, a "�" pre�x in r

i

means that if I ` r

i

(t), (t ground), and if there

exists an intended model I

new

2Models(O) su
h that I

new

6` r

i

(t) then o "
hanges

its model" from I to I

new

.

Obje
t Oriented Software Systems de�ned by Constru
tive Logi
al Methods 129

De�nition 7: the life
y
le of an obje
t o 2 O is represented by a sequen
e of obje
t

onstru
tors, intended models of O and elementary and
omplex transitions that are true

in I.

life
y
le = f<
 >; I; fet

k

;
t

j

gg

i

for i = 1::1

We must pro
eed with spe
ial
are in the
onstru
tion of the intended model I of O

with BEHAVIOUR se
tion. The behaviour of an obje
t in O (fet

k

;
t

j

g) depends on its

state (<
> and I). Hen
e, the
onstru
tion of intended models I is fundamental in order

to prevent bizarre behaviours.

3 Model Constru
tion Method

The intended model of type and asso
iation
omponent spe
i�
ations is an isoinitial

model. We
onstru
t it following the ideas of [MMO94℄ (De�nition 4).

We present the following algorithm in order to
onstru
t the intended models of the

rest of
omponents (obje
t and extension
omponents, we will refer them as O):

1. IMPORT se
tions in O must in
lude only type-
omponents with isoinitial models.

2. Only ground
onstru
tor terms are allowed for obje
ts in O.

3. Ea
h fun
tion f in O is de�ned by a set of
on
uent and terminating equations D

f

.

4. Ea
h relation r

i

in O is de�ned by expli
it or re
ursive de�nitions. In a in
remental

onstru
tion of the intended model, (
onsider I

1::3

as the intended model of any

omponent, (in
rementally
onstru
ted from 1)-3) previous steps), if we want to

expand O with a relation r

i

de�ned by a
onditional spe
i�
ation then there exist

many expansions of I

1::3

. For example, I

1::4

may be any intended model where r

i

is

interpreted as r

max

i

or may be an isoinitial model where r

i

is interpreted as r

min

i

,...

et
.

5. Let I

1::4

be the isoinitial (in
rementally
onstru
ted forO) from 1)-4) previons steps.

Let E be the set of elementary transitions in O. At this point, we are interested in

the expasion of I

1::4

with E. If for all pair of elementary transitions et

i

, et

k

in E,

left-hand sides are not uni�able (non-ambiquity) and pattern variables in right-hand

sides are in
luded in pattern variables in left-hand sides (et

k

(l) $ (<l>;<f(l)>))

then the expansion of I

1::4

with E is de�ned as:

I

1::5

= I

1::4

[fet

k

(t) j for all t ground and t = �lg

[

f:et

k

(t

0

) j for all t

0

ground and not uni�able with lg

else the expansion is not de�ned.

6. Let I

1::5

be the model of O (in
rementally
onstru
ted from 1)-5) previous steps).

At this point, we expand I

1::5

adding the axioms whi
h de�ne
omplex transitions

t

j

.

Cases:

130 APPIA-GULP-PRODE'98

(a) If only an elementary transition et

k

(m) with m as an instan
e of l (et

k

(l) !

(<l>;<f(l)>) and not pre�xed relations are present in the body of
t

j

(i.e.

t

j

(x)$ et

k

(m) ^Rest(x))

then

I

1::6

= I

1::5

[f
t

j

(t) j t ground and I

1::5

` et

k

(:::) ^ rest(t)g

[

f:
t

j

(t

0

) j t

0

ground and I

1::5

6` et

k

(:::) ^ rest(t

0

)g

(b) If only elementary transitions and not pre�xed relations are present in the body

of
t

j

(
t

j

(x) $ et

1

(m) ^ et

2

(n) ^ ::: ^ et

n

(s) ^ rest(x)) then the expansion

is de�ned if elementary transitions in the body of
t

j

form a
hain Ch. The

omplex transition
t

j

an be repla
e by
t

j

(x) $ Ch ^ rest(x) and then

the expansion pro
eed as in 1) with this new de�nition else the model is not

de�ned.

A set of elementary transitions St is
onsidered as a
hain if there exists a

permutation of St: perm(St) = fet

1

(m) $ (<m>;<f

1

(m)>; et

2

(n) $ (<

n>;<f

2

(n)>); :::; et

n

(s) $ (<s>;<f

n

(s)>)g su
h that m is an instan
e

of the obje
t
onstru
tor pattern in et

1

de�nition, n is an instan
e of the

obje
t
onstru
tor pattern in et

2

de�nition,..., s is an instan
e of the obje
t

onstru
tor pattern in et

n

de�nition and for all t

1

= �

1

m ground, f

1

(t

1

) is an

instan
e of n and, ..., and f

n�1

(t

n�2

) is an instan
e of r and for all t

n�1

= �

n�1

r,

ground, f

n

(t

n�1

) is an instan
e of f

1

(m) then perm(St)
an be
onsidered as

a new elementary transition

Ch(m)$ (<m>;<f

n

(f

n�1

(::::f

1

(m)):::)>)

(
) If only + pre�xed and not pre�xed relations are present in the body of
t

j

(i.e.
t

j

(x) $ +r(m) ^ rest(x)) where r is a relation de�ned by a
onditional

spe
i�
ation and m is a term pattern. The model I of O
an
ontain any of

the ground instan
es of r(m), r(t), su
h that r(t) is not true in the (initial)

interpretation of r (I

1::4

) and r(t) 2 r

max

. Let Ins(r;m) be the set of all

the ground instan
es of r(m) that are in r

max

but they are not true in I

1::4

.

Let I

exp

be the I

1::6

model of O expanded with the set Ins(r;m), (I

exp

=

I

1::6

[Ins(r;m)), then for all + pre�xed relation:

I

1::7

= I

exp

[f
t

j

(t) j t ground and I

exp

` r(t) ^ rest(:::)g

[

f:
t

j

(t

0

) j t

0

ground and I

exp

6` r(t

0

) ^ rest(:::)g

Hen
e, all obje
t o 2 O in a system begin its exe
ution with a behaviour
t

j

bounded to the interpretation of r in I

1::6

but extensible to r [Ins(r;m) in a

orre
t way. Any exe
ution of
t

j

(t) where r(t) 2 Ins(r;m) implies a dynami

hange in r to r [r(t).

(d) If only � pre�xed and not pre�xed relations are present in the body of
t

j

(i.e.
t

j

(x) $ �r(s) ^ rest(x)) where r is a relation de�ned by a
onditional

spe
i�
ation and s is a term pattern. The model I of O
an not
ontain any

of the ground instan
es of r(s), r(t), su
h that r(t) is true in the (initial)

interpretation of r (I

1::4

) and r(t) 62 r

min

. Let Del(r; s) be the set of all the

Obje
t Oriented Software Systems de�ned by Constru
tive Logi
al Methods 131

ground instan
es of r(s) that are in I

1::4

but they are not true in r

min

. Let I

red

be the I

1::6

model of O redu
ed with the set Del(r; s), (I

red

= I

1::6

�Del(r; s)),

then for all � pre�xed relation:

I

1::7

= I

red

[f
t

j

(t) j t ground and I

red

` r(t) ^ rest(:::)g

[

f:
t

j

(t

0

) j t

0

ground and I

red

6` r(t

0

) ^ rest(:::)g

Hen
e, all obje
t o 2 O in a system begin its exe
ution with a behaviour
t

j

bounded to the interpretation of r in I

1::6

but redu
ible to r � Del(r; s) in a

orre
t way. Any exe
ution of
t

j

(t) where r(t) 2 Del(r; s) implies a dynami

hange in r to r � r(t).

(e) If + and � pre�xed relations and (possible) elementary transitions and (pos-

sible) not pre�xed relations appear in the body of
t

j

(the more general sit-

uation) then the model is de�ned i� the following
ondition holds: either

the interse
tion between + and � pre�xed relation symbols is empty or is not

empty but the implied relations do not have ground instan
es in
ommon, (i.e.

+r(m) ^ :::: ^ �r(s) and 6 9t j t is a ground instan
e of m and s). If not, the

model of O is not de�ned.

For all + and � pre�xed relation: I

expred

= I

1::6

+ Ins(r;m)�Del(r; s)

I

1::7

= I

expred

[f
t

j

(t) j t ground and I

expred

` r(t) ^ rest(:::)g

[

f:
t

j

(t

0

) j t

0

ground and I

expred

6` r(t

0

) ^ rest(:::)g

For all (only) + pre�xed relations we follow
) step and for all (only)� pre�xed

relations we follow d) step.

The model
onstru
tion is an iterative pro
ess, at ea
h step, we expand the

model with a new
omplex transition relation
t

j

.

4 Extension Components

Extension
omponents are
omponents obtained from other
omponents adding new ax-

ioms and, possibly, new symbols. An extension
omponent inherits all the axioms and

de�nitions that have been developed in original
omponents.

Example of extension
omponent:

Extension
omponent EPerson;

EXTEND: Person;

RELATIONS:

ri
h(Person;Nat)

AXIOMS: p : Person;m : Nat

ri
h(p)$
redit(p) � s

(200

(0)

BEHAVIOR:

deposit : (Person)

deposit(p:oid; p:age; p:money)$

(<p:oid; p:age; p:money>;<p:oid; p:age; p:money + p:money>)

ebuy : (Person;Nat)

ebuy(p;
)$ 8i �
 (i � s

(100

(0) ^ +pur
h(p; i))

132 APPIA-GULP-PRODE'98

In this example, we show an extension of Person (ri
h person). If a person p is a ri
h

person then he/she must be interpreted as Person enri
hed with new stru
tural proper-

ties, i.e. ri
h relation and new behavioural properties i.e. deposit and ebuy transitions.

The model of EPerson is de�ned i� Person+EPerson has model applying
onstru
tion

method in previous se
tion. In a + operation between obje
t
omponent spe
i�
ations,

two obje
t
omponent spe
i�
ations are put together (se
tion by se
tion). Like
lasses

(based on imperative programming), we
an
onstru
t a hierar
hy of
omponents by

extension
omponents.

5 Asso
iation Components

For us, a system is a set of related obje
t-
omponents. These relations are established

by asso
iation
omponents. An asso
iation
omponent does not exist per se, it need of

obje
t
omponents in its de�nition.

Example of asso
iation
omponent:

Asso
iation
omponent PersonCompany;

IMPORT: Person; Company;

SORTS: Person; Company; PersonCompany;

FUNCTION:

<Person; Company>) PersonCompany

RELATIONS:

invariant

1

: (Person; Company)

invariant

2

: (Person)

invariant

3

: (Person; Company)

AXIOMS:p : Person;
 : Company

invariant

1

(p;
)$ 9 <i; j>: PersonCompany (p:oid = i:oid ^
:oid = j:oid)

p:age � s

(18

(0) ^ p:age � s

(65

(0)! invariant

2

(p)$ 9
(invariant

1

(p;
))

invariant

3

(p;
)$ p:age > s

(65

(0)! :invariant

1

(p;
)

Asso
iation
omponents do not have BEHAVIOUR se
tions. We
onsider asso
iation

omponents in a system as a set of invariants. These invariants govern whi
h (ground)

instan
es of the asso
iation
omponents are true and whi
h are not true in the system.

Quanti�
ations must be understood as bounded quanti�
ations on (�nite) populations of

obje
t
omponents. At exe
ution time,
hanges in obje
t
omponents in the asso
iation

promote
hanges in asso
iation obje
ts (dynami
 insertion and deletion of asso
iation

instan
es). We
an
onstru
t the intended model of asso
iation
omponents following

our model
onstru
tion method restri
ted to the 1..4 steps.

Finally, the system must be undestood as a
olle
tion ("put together")
omponent

spe
i�
ations then, for us, the intended model of any software system results from the

omposition of the models of its
omponents. All of the type
omponents, obje
t
om-

ponents and extension
omponents in a system must have intended models. Asso
iation

omponents
an be
onsidered as the "glue" between the previous
omponents; any ob-

je
t population must preserve invariant relations
ontained in asso
iation
omponents.

Finally, ea
h
omponent in a system must be
onsidered as a theory and the
omposition

of these theories represents the system. Hen
e, intended model of the system is de�ned

i� ea
h
omponent has intended model.

Obje
t Oriented Software Systems de�ned by Constru
tive Logi
al Methods 133

6 Exe
utable Components and Systems

In this se
tion, we brie
y show how de
larative semanti
 of
omponents
an be intepreted

in operational terms. We will spe
ify our operational semanti
 by the use of de�nitional

trees, a
on
ept introdu
ed by [Ant92℄ to de�ne eÆ
ient normalization strategies. Tree

is
alled de�ntional tree with pattern l ! r i� one of the following
ases holds: Tree =

rule(l ! r) where l ! r is a variant of a rewrite rule in the
omponent spe
i�
ation.

Tree = bran
h(�; p; T ree

1

; ::::T ree

k

) where � is a pattern, p is an o
urren
e of a

variable in �,

1

:::

k

are di�erent
onstru
tors of the sort of � j

p

(argument in position p

of �) (k > 0) and, for i = 1; :::k, Tree

i

is a de�nitional tree with pattern �[

i

(x

1

; ::::x

n

)℄

p

where n is the arity of

i

and x

1

; :::; x

n

are new distin
t variables. A de�nitional tree of

an n-ary de�ned fun
tion f is a de�nitional tree Tree with pattern f(x

1

; :::; x

k

) where

x

1

; :::; x

n

are distin
t variables su
h that for ea
h rule l ! r with l = f(t

1

; :::; t

n

) there is

a node rule (l

0

! r

0

) in Tree with l variant of l

0

.

We de�ne the validity of an equation as a stri
t equality on terms by the following

rules, where ^ is assumed to be a right-asso
iative in�x symbol.

 =
! true 8
=0 2 C

(x

1

; :::; x

n

) =
(y

1

; :::; y

n

)! (x

1

= y

1

) ^ ::: ^ (x

n

= y

n

) 8
=n 2 C

true ^ x! x

(note: we write
=n for n-ary
onstru
tors)

Example of de�nitional tree:

0 + y = y

s(x) + y = s(x+ y)

its de�nitional tree is

bran
h(x + y; 1; rule(0 + y ! y); rule(s(x) + y ! s(x + y)))

Relations in O
an be translated into a variant of de�nitional trees extended with and

and or nodes. Let D

q

be the set of axioms that de�nes q, for example,

elemi(L; 0; x)$ 9B(L = x:B)

elemi(L; s(i); x)$ 9b; B(L = b:B ^ elemi(B; i; x))

1. Establish � as q(x

1

; :::; x

n

) with x

1

; :::; x

n

distin
t variables (i.e. elemi(x; y; z))

2. Constru
t Tree for all p variable position in pattern �, where existentially quanti�ed

variables in the body are repla
e by or nodes and universally quanti�ed variables

in the body are repla
e by and nodes.

Tree

elemi

= bran
h(elemi(x; y; z); 1;

bran
h(elemi(nil; y; z); 2;

or[rule(elemi(nil; 0; z)! nil = z:nil),

rule(elemi(nil; 0; z)! nil = z:x

2

:L

2

)℄);

or[rule(elemi(nil; s(i); z)! nil = 0:nil ^ elemi(nil; i; z)),

rule(elemi(nil; s(i); z)! nil = s(j):nil ^ elemi(nil; i; z)),

rule(elemi(nil; s(i); z)! nil = 0:x

2

:L

2

^ elemi(x

2

:L

2

; i; z));

rule(elemi(nil; s(i); z)! nil = s(j):x

2

:L

2

^ elemi(x

2

:L

2

; i; z))℄)

134 APPIA-GULP-PRODE'98

bran
h(elemi(x

1

:L

1

; y; z); 2;

or[rule(elemi(x

1

:L

1

; 0; z)! x

1

:L

1

= z:nil),

rule(elemi(x

1

:L

1

; 0; z)! x

1

:L

1

= z:x

2

:L

2

)℄);

or[rule(elemi(x

1

:L

1

; s(i); z)! x

1

:L

1

= 0:nil ^ elemi(nil; i; z)),

rule(elemi(x

1

:L

1

; s(i); z)! x

1

:L

1

= s(j):nil ^ elemi(nil; i; z)),

rule(elemi(x

1

:L

1

; s(i); z)! x

1

:L

1

= 0:x

2

:L

2

^ elemi(x

2

:L

2

; i; z));

rule(elemi(x

1

:L

1

; s(i); z)! x

1

:L

1

= s(j):x

2

:L

2

^ elemi(x

2

:L

2

; i; z))℄))

An example of exe
ution for elemi(s(0):0:s(0):nil; s(0); 0): Firstly, this goal uni�es

with bran
h(elemi(x

1

:L

1

; y; z) and then with se
ond or node, we inspe
t ea
h rule in

the or node. The fourth rule
onstru
ts the solution true in a re
ursive manner on the

subgoal elemi(0:s(0):nil; 0; 0).

Indu
tion s
hemes
an be translated into de�nitional trees in the following manner:

(H(nil) ^H(I)! H(a:I))! 8xH(x)

is represented by

bran
h(ind(H; x); 2; and[rule(H(nil)! v

1

); rule(H(I)! true); rule(H(a:I)! v

2

)℄)

where H is bounded to relation symbols, v

1

; v

2

are distin
t variables bounded to true or

false values resulting in the proofs of H(nil), H(I) and H(a:I) respe
tively.

For example, 8x(elemi(x; 0; 0))! true:

bran
h(ind(elemi(x; 0; 0); x); 2;

and[rule(elemi(nil; 0; 0)! v

1

);

(rule(elemi(I; 0; 0)! true); (rule(elemi(a:I; 0; 0)! v

2

)

rule(elemi(nil; 0; 0)! nil = 0:nil !

Tree

elemi

false)

rule(elemi(L

1

; 0; 0)! true)

rule(elemi(x

1

:L

1

; 0; 0)! nil = 0:nil !

Tree

elemi

false

rule(elemi(x

1

:L

1

; 0; 0)! nil = 0:x

2

:L

2

!

Tree

elemi

false

(Hen
e, 8x(elemi(x:0:0))! true is not true in ListNat).

Elementary transitions et

k

(l) $ (< l>;< f(l)>)
an be represented as Tree

et

k

=

rule(l ! f(l)). Complex transitions are represented as relations in
luding elementary

transitions. Ins(r;m) and Del(r; s) sets
an be
omputed at exe
ution time: uni�
ation

algorithm proves if r(t) is an instan
e of r(m) or r(s). + and � pre�xed relations and

state
hanges
an be simulated with an assert-retra
t Prolog me
hanism. Extension and

asso
iation
omponents are not distin
t of obje
t
omponents then we pro
eed in a similar

way. Dynami

reation and destru
tion of links
an be simulated by assert and retra
t's.

Negative literals :r(t)
an be
omputed in the following manner: we inspe
t r(t) if it
an

be rewrite as true then :r(t) is not true and if r(t)
an not be rewrite as true, then :r(t)

is true. This is possible be
ause we treat only with de
idable relations in
omponent

spe
i�
ations.

Finally, de�nitional trees, uni�
ation algorithms and assert/retra
t me
hanisms are

ne
essary software elements in order to obtain exe
utable system but not suÆ
ient. How

govern obje
t transitions? and how stimulate to the system in order to
hange its state?.

First question implies that OO systems need additional
ontroller
omponents that govern

transitions and preserve invariants. Se
ond question implies the
on
ept of event and link

to the previous question. These problems form our future work.

Obje
t Oriented Software Systems de�ned by Constru
tive Logi
al Methods 135

7 Con
lusions and Future Work

In this preliminary work, we have shown how
onstru
tive method
an be used in the
on-

stru
tion of exe
utable systems totally
orre
t with respe
t to system spe
i�
ations. Sys-

tem
onstru
tion is automati
, provided type-
omponents and obje
t-
omponents with

intended models. Reusability of systems have been in
reased due to it is a
hieved at

semanti
 level. Our systems are interpreted as theories, then adding new spe
i�
ations

(in the way explained in our work) is equivalent to expand our systems. Synthesis of logi

programs, within the O-O
ontext, is treated in [KO95℄. Dr. Lau and Dr. Ornaghi show

how from frameworks it is possible to obtain programs. There are two di�eren
e wrt

our work: a) the kinds of spe
i�
ations in [KO96℄ are intended for dedu
tive synthesis,

however we have oriented our work for
onstru
tive synthesis and b) we treat dynami

aspe
ts of obje
ts, however in [KO95℄ the authors are
entered in stati
 aspe
ts mainly.

Our work is only at initial state and mu
h e�ort is needed in order to de�ne di�erent

semanti

hara
terizations of generalization and aggregations
omponents and exe
utable

systems.

Referen
es

[Ant92℄ Antoy S., De�nitional Trees. In Pro
. of the Third Int. Conferen
e on Algebrai

and Logi
 Programming. Springer 1992.

[CD94℄ Cook S. Daniels J. Designing Obje
t-Oriented Systems Prenti
e Hall 1994.

[Gal95℄ Galan Morillo F.J. and Toro M. Sintesis de Programas Logi
os. In Pro
. of Gulp-

Prode 1995. Marina di Vietri. Italy.

[KO95℄ Lau k.K. and Ornaghi M. Towards an Methodology for Dedu
tive Synthesis of

Logi
 Programs. In 5th Int. Workshop LOPSTR'95. Springer 1995.

[KO96℄ K.K. Lau and M. Ornaghi. Forms of Logi
 Spe
i�
ations: A preliminary Study.

In 6th Int. Workshop LOPSTR'96. Springer 1996.

[MMO94℄ Miglioli P., Mos
ato U., Ornaghi M. Abstra
t Parametri
 Classes and Abstra
t

Data Types de�ned by Classi
al and Constru
tive Logi
al Methods. J. Symboli

Computation 1994.

[W95℄ Wieringa R.J. LCM and MCM. Spe
i�
ation of a
ontrol system using dynami

logi
 and pro
ess algebra. Ed. Lewerentz y T. Linder. LNCS 891. Springer-Verlag

1995.

136 APPIA-GULP-PRODE'98

