
Polygenetic Partial Evaluation of Lazy Functional

Logic Programs

E. Albert M. Alpuente M. Falaschi P. Juli�an G. Vidal

Abstract

We have recently de�ned a framework for Narrowing-driven Partial Evaluation

(NPE) of functional logic programs. This method is as powerful as partial de-

duction of logic programs and positive supercompilation of functional programs.

Although it is possible to treat complex terms containing primitive functions (e.g.

conjunctions or equations) in the NPE framework, its basic control mechanisms do

not allow for e�ective polygenetic specialization of these complex expressions. We

introduce a sophisticated unfolding rule endowed with a dynamic narrowing strat-

egy which permits
exible scheduling of the elements (in conjunctions) which are

reduced during specialization. We also present a novel abstraction operator which

carefully considers primitive functions and is the key to achieving accurate poly-

genetic specialization. It adapts and extends some recent partitioning techniques

de�ned in the framework of conjunctive partial deduction. We provide experimental

results obtained from an implementation using the Indy system.

1 Introduction

Functional logic programming languages allow us to integrate some of the best features

of the classical declarative paradigms, namely functional and logic programming. Lazy,

e�cient, functional computations are combined with the expressivity of logic variables,

which allows for function inversion as well as logical search. The operational semantics

of functional logic languages is usually based on (some form of) narrowing, which is

a uni�cation-based, parameter-passing mechanism which extends functional evaluation

through goal solving capabilities as in logic programming. Narrowing provides complete-

ness in the sense of logic programming |computation of answers| as well as functional

programming |computation of normal forms| (see [14] for a survey). In order to avoid

unnecessary computations and to compute with in�nite data structures, most recent work

has concentrated on lazy narrowing strategies [15, 22, 24].

The aim of partial evaluation (PE) is to specialize a given program w.r.t. part of

its input data (hence, also called program specialization). PE techniques have been

widely applied to the optimization of functional (see [9, 16] and references therein) and

E. Albert, M. Alpuente, G. Vidal: DSIC, UPV, Camino de Vera s/n, 46022 Valencia, Spain.

M. Falaschi: DIMI, Via delle Scienze 206, 33100 Udine, Italy.

P. Juli�an: Dep. de Inform�atica, Ronda de Calatrava s/n, 13071 Ciudad Real, Spain.

This work has been partially supported by CICYT TIC 95-0433-C03-03, by HCM project CONSOLE

and by Acci�on Integrada HA1997-0073.

151

152 APPIA-GULP-PRODE'98

logic programs [11, 18, 21, 26]. These methods do not transfer easily to functional logic

languages, since logical variables in function calls place new technical demands.

Narrowing-driven PE [4] (NPE) provides a general scheme for the specialization of

functional logic languages. The method is formalized within the theoretical framework

established in [21, 23] for the PE of logic programs (also known as partial deduction, PD).

However, a number of concepts have been generalized for dealing with features such as

nested function calls, eager and lazy evaluation strategies and the standard optimization

based on deterministically reducing functions. Control issues are managed by using stan-

dard techniques as in [23, 27]. At the local level, (�nite) narrowing trees for (nested)

function calls are constructed. At the global level, the calls extracted from the leaves

of the local trees are considered for the next iteration of the algorithm, after a proper

abstraction (generalization) that guarantees that only a �nite number of calls is special-

ized. A close, automatic approach is that of positive supercompilation (PS) [28], whose

basic transformation operation is driving , a uni�cation-based transformation mechanism

which is similar to (lazy) narrowing.

Classical PD computes partial evaluations for separate atoms independently. Recently,

[12, 20] have introduced a technique for the PD of conjunctions of atoms. This technique

achieves a number of program optimizations such as (some form of) tupling and defor-

estation which are usually obtained through more expensive fold/unfold transformations.

The NPE method of [4] is able to produce polygenetic specializations, i.e. it is able to

extract specialized de�nitions which combine several function de�nitions of the original

program (see, e.g., [13]). That means that NPE has the same potential for specialization

as conjunctive PD or PS within the considered paradigm (a detailed comparison can

be found in [5, 6]). This is because the generic method of [4] may allow one to deal

with equations and conjunctions during specialization by considering the equality and

conjunction operators as primitive function symbols of the language. However, the use of

primitive functions such as conjunctions may encumber the nature of the specialization

problems and it often turns out that some form of tupling (as de�ned in [26] for logic

programs) is required for specializing expressions which contain conjunctive calls.

At the local level of control, the reduction of the elements in a conjunction can be made

don't care nondeterministically, and the order in which elements are chosen during the

construction of the local narrowing trees is crucial to achieving good specialization. As

we will see in Section 4, na��ve selection may lose all specialization. Some kind of dynamic

selection strategy which keeps track of the ancestors reduced in the same derivation is

necessary to signi�cantly speed-up execution. At the global level of control, enhancing

the general NPE algorithm requires particular techniques for carefully splitting complex

terms containing primitive symbols before checking whether they are covered by the set

of (already) specialized functions, to avoid an unsuitable generalization of the calls to be

partial evaluated that may result in monogenetic specializations in many interesting cases

(see Example 1). Inspired by the challenging results of conjunctive PD in [12], this paper

extends [4, 3] by formulating and experimentally testing concrete NPE control options

that e�ectively handle primitive function symbols in lazy functional logic languages.

Some of the original contributions of our paper are as follows: i) we introduce a well-

balanced dynamic unfolding rule and a novel abstraction operator that do not depend on

the narrowing strategy and which highly improve the specialization of the NPE method;

ii) these options allow us to tune the specialization algorithm to handle conjunctions (and

other expressions containing primitive functions) in a natural way, which provides for

polygenetic specialization without any ad-hoc arti�ce; and iii) our method is applicable

Polygenetic Partial Evaluation of Lazy Functional Logic Programs 153

to modern lazy functional logic languages such as Babel [24], Curry [15] and Toy [8], thus

giving a specialization method which subsumes both lazy functional and conventional

logic program specialization. We demonstrate the quality of these improvements by

specializing some examples which were not handled well by classical NPE. The control

strategies have been tested in the NPE prototype implementation Indy [2].

The structure of the paper is as follows. Section 2 contains basic de�nitions. Section

3 extends slightly the generic NPE algorithm of [3] to care for the appropriate handling

of primitive function symbols. In Section 4, the concrete control options are described

by formalizing some appropriate unfolding and abstraction operators. Preliminary per-

formance results, given in Section 5, show the practical importance of the proposed

strategies. Finally, Section 6 concludes the paper. An extended version of this paper

containing more details and proofs can be found in [1].

2 Preliminaries

We brie
y summarize some well-known results about rewrite systems and functional logic

programming [10, 14, 17]. The de�nitions below are given in the homogeneous case. The

extension to many-sorted signatures is straightforward [25].

Throughout this paper, X denotes a countably in�nite set of variables and F denotes

a set of function symbols (also called the signature), each of which has a �xed associated

arity. We assume that the signature F is partitioned into two sets F = C [D with

C \ D = �. Symbols in C are called constructors and symbols in D are called de�ned

functions. T (F ;X) denotes the set of terms or expressions built from F and X . T (F)

denotes the set of ground terms, while T (C;X) denotes the set of constructor terms. If

t 62 X , then Head(t) is the function symbol heading term t, also called the root symbol

of t. A pattern is a term of the form f(d

1

; : : : ; d

n

) where f=n 2 D and d

1

; : : : ; d

n

are

constructor terms. The identity of syntactic objects is denoted by �. Var(s) is the set

of variables occurring in the syntactic object s.

A substitution is a mapping from X to T (F ;X) such that its domain Dom(�) = fx 2

X j x� 6� xg is �nite. We frequently identify a substitution � with the set fx 7! x� j x 2

Dom(�)g. We denote the identity substitution by id, and �

jV

denotes the restriction of

a substitution � to a set V of variables. We consider the usual preorder on substitutions

�: � is more general than � (in symbols � � �) i� 9
: � � �
.

A term t ismore general than s (or s is an instance of t), in symbols t � s, if 9�: t� � s.

A uni�er of a pair of terms ft

1

; t

2

g is a substitution � such that t

1

� � t

2

�. A uni�er �

is called most general uni�er (mgu) if � � �

0

for every other uni�er �

0

. A generalization

of a set of terms ft

1

; : : : ; t

n

g is a pair ht; f�

1

; : : : ; �

n

gi such that t�

i

= t

i

, i = 1; : : : ; n.

A generalization ht;�i is the most speci�c generalization (msg) if t

0

� t for every other

generalization ht

0

;�

0

i.

Positions of a term t are represented by sequences (possibly empty) of natural numbers

used to address subterms of t, and they are ordered by the pre�x ordering p � q, if there

exists w such that pw = q. We let � denote the empty sequence. Pos(t) and FPos(t)

denote, respectively, the set of positions and the set of nonvariable positions of the term

t. tj

p

is the subterm of t at position p. t[s]

p

is the term t with the subterm at position p

replaced with s.

We �nd it useful to simplify our description by limiting the discussion to unconditional

term rewriting systems. A rewrite rule is pair l ! r with l; r 2 T (F ;X), l 62 X , and

Var(r) � Var(l). l and r are called the left-hand side (lhs) and right-hand side (rhs) of

154 APPIA-GULP-PRODE'98

the rewrite rule, respectively. A term rewriting system (TRS) R is a �nite set of rewrite

rules. A rewrite step is an application of a rewrite rule to a term, i.e. t!

p;l!r

s if there

exists a position p 2 Pos(t), a rewrite rule l! r, and a substitution � with tj

p

= l� and

s = t[r�]

p

. We say that tj

p

is a redex (reducible expression) of t. A term t is reducible

to term s if t !

�

s. A term t is irreducible or in normal form if there is no term s with

t ! s. A TRS R is called terminating (con
uent) if the induced rewrite relation ! is

terminating (con
uent).

Functional Logic Programming

In this section, we brie
y introduce a functional logic language whose syntax and demand-

driven reduction mechanism is essentially equivalent to that of (a subset of) Babel [22, 24],

Toy [8], and Curry [15], a modern integrated language which has been recently proposed

to become a standard in the area.

A TRS R is constructor-based (CB) if for each rule l ! r 2 R the lhs l is a pattern.

A CB TRS R is weakly-orthogonal if R is left-linear (i.e., for each rule l ! r 2 R, the

lhs l does not contain multiple occurrences of the same variable) and R contains only

trivial overlaps (i.e., if l ! r and l

0

! r

0

are variants of distinct rules in R and � is a

uni�er for l and l

0

, then r� � r

0

�). It is well-known that weakly-orthogonal TRS's are

con
uent. We henceforth consider CB weakly-orthogonal TRS's as programs. For this

class of programs, a term t is a head normal form if t is a variable or Head(t) 2 C.

The signature F is augmented with a set of primitive function symbols P = f�;^;)g

in order to handle complex expressions containing equations s � t, conjunctions b

1

^ b

2

,

and conditional (guarded) terms b) t, i.e. F = C[D[P. We assume that the following

prede�ned rules belong to any given program:

c � c ! true % c=0 2 C

c(x

1

; : : : ; x

n

) � c(y

1

; : : : ; y

n

) ! (x

1

� y

1

) ^ : : : ^ (x

n

� y

n

) % c=n 2 C

true ^ x ! x x ^ true ! x (true) x) ! x

These rules are weakly-orthogonal and de�ne the validity of an equation as a strict equality

between terms, which is common in functional languages when computations may not

terminate [15, 24]. A solution to an equation s � t is a substitution � such that (s � t)�

rewrites to true using the rules of the program.

Note that it is still adequate to support logic programs since conditional rewrite rules

l ! r (C can be encompassed by guarded unconditional rules l ! (C) r) [24]. For

reasons of simplicity, we assume the associativity of `^' and assume that `�' binds more

than `^' and `^' binds more than `)'.

We consider that programs are executed by lazy narrowing, which allows us to deal

with nonterminating functions [22, 24]. Roughly speaking, laziness means that a given

expression is only narrowed at inner positions if they are demanded (by the pattern in

the lhs of some rule) and this contributes to a later narrowing step at an outer position.

Formally, given a program R, we de�ne the one-step narrowing relation as follows. A

term s narrows to t in R, in symbols s ;

p;l!r;�

t (or simply s ;

�

t), i� there exists

a position p 2 '(s), a (standardized apart) rule l ! r 2 R, and a substitution �

such that � = mgu(fsj

p

; lg) and t = (s[r]

p

)�. The selection strategy '(t) is responsible

for computing the set of demanded positions of a given term t. A formal de�nition

of this strategy is shown in [1]. Lazy narrowing is strong complete w.r.t. constructor

substitutions in CB, weakly-orthogonal TRS's [24, 14]. This means that the interpreter

is free to disregard from '(t) all components of each conjunction which may occur in t

except one, even if all arguments are demanded by the prede�ned rules of `^' (that is,

Polygenetic Partial Evaluation of Lazy Functional Logic Programs 155

completeness holds for all scheduling policies). A formal de�nition can be found in [3].

This will be useful when de�ning the concrete unfolding rule of Section 4, where a fair

evaluation of redexes within conjunctions is crucial to achieving an e�ective specialization.

If s

0

;

�

1

s

1

;

�

2

: : : ;

�

n

s

n

(in symbols, s

0

;

�

�

s

n

, � = �

1

�

2

: : : �

n

), we speak of a

lazy narrowing derivation for the goal s

0

with (partial) result s

n

. A derivation s;

�

�

t is

successful i� t 2 T (C [X), where �

jVar(s)

is the computed answer substitution.

3 The Generalized Specialization Algorithm

In the original NPE framework, no distinction is made between primitive and de�ned

function symbols during specialization. For instance, a conjunction b

1

^ b

2

is considered

as a block when checking whether it is covered by the set of specialized calls. This

commonly implies a drastic generalization of the involved calls, which causes losing all

specialization. The following example illustrates this point.

Example 1 Let us consider the program excerpt:

sorted bits(x : []) ! true

sorted bits(x

1

:x

2

:xs) ! sorted bits(x

2

:xs) ^ x

1

� x

2

0 � 0 ! true 0 � 1 ! true 1 � 1 ! true

and the call \sorted bits(x : xs) ^ 1 � x". The following lazy narrowing tree

1

is built up

by using the nonembedding unfolding rule of [3], which expands derivations while new redexes

are not \greater" (with the homeomorphic embedding ordering, see e.g. [4, 27]) than previous,

comparable redexes in the branch (i.e., redexes with the same outermost function symbol).

. . .

true ^ 1 � x

sorted bits(x

0

:xs

0

) ^ x � x

0

^ 1 � x

(

(

(

(

(

(

(

(

(

(

(

Q

Q

Q

sorted bits(x :xs) ^ 1 � x

>From this tree, we can identify two main weaknesses of the plain NPE algorithm:

� The rightmost branch stops because the leftmost redex sorted bits(x

0

: xs

0

) of the leaf

\embeds" the previous redex sorted bits(x :xs), even if no reductions have been performed

on the other elements of the conjunction, which does not seem very equitable.

� According to the NPE algorithm in [3], since the call sorted bits(x

0

:xs

0

) ^ x � x

0

^ 1 � x

in the leaf of the tree embeds (but is not covered by) the specialized call sorted bits(x :

xs) ^ 1 � x (and they are comparable), the msg sorted bits(x : xs) ^ z is computed,

which gives up the intended specialization.

The �rst drawback pointed out in this example motivates the de�nition of more so-

phisticated unfolding rules which are able to achieve a balanced evaluation of the given

expression by narrowing appropriate redexes. The second drawback suggests the de�ni-

tion of a more
exible abstraction operator which is able to automatically split complex

terms before attempting folding or generalization. In the following, we slightly generalize

some basic concepts and techniques for the NPE of (lazy) functional logic programs (as

presented in [3]) in order to properly deal with primitive function symbols.

1

We assume a �xed left-to-right selection of components within conjunctions and underline the se-

lected redex at each step.

156 APPIA-GULP-PRODE'98

The PE of a term s is obtained by constructing a (partial) narrowing tree for s, and

then extracting the specialized de�nitions |the resultants| from the root-to-leaf paths

of the tree.

De�nition 3.1 (resultant) Let s be a term and R be a program. Given a lazy narrow-

ing derivation s;

�

�

t, its associated resultant is the rewrite rule s� ! t.

De�nition 3.2 (partial evaluation) Let R be a program and s be a term. Let � be

a �nite (possibly incomplete) narrowing tree for s in R such that no goal in the tree is

narrowed beyond its head normal form. Let ft

1

; : : : ; t

n

g be the terms in the leaves of � .

Then, the set of resultants for the narrowing sequences fs;

+

�

i

t

i

j i = 1; : : : ; ng is called

a partial evaluation of s in R. The partial evaluation of a set of terms S in R is de�ned

as the union of the partial evaluations for the terms in S.

Roughly speaking, the reason for requiring partial evaluations to not \surpass" head

normal forms is that, at run time, the evaluation of an expression C[t]

p

containing a

partially evaluated term t might not demand evaluating t beyond its head normal form.

Since this is not known at PE time, we avoid to interfering with the \lazy nature" of

computations in the specialized program by imposing this condition.

A recursive closedness condition is formalized by inductively checking that the di�erent

calls in the rules are su�ciently covered by the specialized functions.

De�nition 3.3 (closedness) Let S be a �nite set of terms and t a term. We say that

a term t is S-closed if closed(S; t) holds, where the predicate closed is de�ned as follows:

closed(S; t) ,

8

>

>

>

<

>

>

>

:

true if t 2 X

closed(S; t

1

) ^ : : : ^ closed(S; t

n

) if t � c(t

1

; : : : ; t

n

); c 2 C

9s 2 S

+

: s� = t ^

^

x=t

0

2�

closed(S; t

0

) if t � f(t

1

; : : : ; t

n

); f 2 (D [P)

where S

+

= S [fp(x; y) j p 2 Pg. A set of terms T is S-closed, written closed(S; T),

if closed(S; t) holds for all t 2 T , and a program R is S-closed if closed(S;R

calls

) holds.

Here we denote by R

calls

the set of terms in the rhs's of the rules in R.

Informally, a term t headed by a de�ned function symbol is closed w.r.t. a set of calls

S, if it is an instance of a term of S and the terms in the matching substitution are

recursively closed by S. The novelty w.r.t. [4, 3] is that a complex expression headed

by a primitive function symbol, such as a conjunction, is proved closed w.r.t. S either

by checking that it is an instance of a call in S (followed by an inductive test of the

subterms), or by splitting it into two conjuncts and then trying to match with \simpler"

terms in S (which happens when matching is �rst attempted w.r.t. one of the `
at' calls

p(x; y) in S

+

). This easy extension of the closedness condition allows us to formulate

re�ned abstraction operators in which terms containing primitive symbols are (possibly)

partitioned (cf. Section 4.2) before attempting folding or generalization.

The way in which concrete partial evaluations are constructed is given by an unfolding

rule, which determines the expressions to be narrowed (regarding the narrowing strategy

') and which decides how to stop the construction of lazy narrowing trees.

De�nition 3.4 (unfolding rule [3]) An unfolding rule U is a mapping which, when

given a program R and a term s, returns a concrete PE for s in R (a set of resultants).

By U(S;R) we denote the union of U(s;R) for all s 2 S.

Polygenetic Partial Evaluation of Lazy Functional Logic Programs 157

The abstraction operator guarantees the termination of the NPE process by ensuring

the �niteness of the set of terms for which partial evaluations are produced.

De�nition 3.5 (abstraction operator) Given a �nite set of terms T and a set of

terms S, an abstraction operator returns a �nite set of terms abstract(S; T) such that:

i) if s 2 abstract(S; T), then there exists t 2 T such that tj

p

= s� for some position p and

substitution �; ii) for all t 2 (S [T), t is closed w.r.t. the set of terms in abstract(S; T).

Intuitively, the �rst condition guarantees that the abstraction operator does not in-

troduce new function symbols not appearing in the input sets S and T , while the second

condition ensures that the resulting set of terms \covers" the calls previously specialized

and that closedness is preserved throughout successive abstractions.

The following basic algorithm for NPE is parameterized by the unfolding rule U and

the abstraction operator abstract in the style of [11].

Algorithm 3.6

Input: a program R and a set of terms T

Output: a set of terms S

Initialization: i := 0; T

0

:= T

Repeat

1. R

0

:= U(T

i

;R);

2. T

i+1

:= abstract(T

i

;R

0

calls

);

3. i := i + 1;

Until T

i

= T

i�1

(modulo renaming)

Return S := T

i

Similarly to [23], by applying abstract at every iteration of Algorithm 3.6 we can tune

the control of polyvariance (i.e. the ability to produce several specialized de�nitions for a

single original function) as much as needed. The output of the algorithm, given a program

R, is not a partial evaluation, but a set of terms S from which the partial evaluations

U(S;R) are automatically derived, as is usual. Note that, if the specialized call is not

a pattern, lhs's of resultants are not patterns either and hence resultants are not (CB)

program rules. In [3], we introduced a post-processing renaming transformation which is

useful for producing CB rules and guarantees the completeness of the transformation. In-

formally, for each term s in S, we de�ne the \independent renaming" s

0

= f

s

(x

1

; : : : ; x

n

),

where x

1

; : : : ; x

n

are the distinct variables in s in the order of their �rst occurrence and

the f

s

's are new fresh function symbols. Then, we fold each call t in the resultants which

derive from U(S;R) by replacing the old call t by a call to the corresponding term t

0

in

S

0

(details can be found in [3]). After the algorithm terminates, the specialized program

is obtained by applying this post-processing renaming to U(S;R).

The (partial) correctness of the NPE algorithm is stated as follows.

Theorem 3.7 Given a program R and a term t, if Algorithm 3.6 terminates by comput-

ing the set of terms S, then R

0

and t are S-closed, where R

0

= U(S;R).

The correctness of the generic algorithm is stated in the following theorem, which

generalizes Theorem 4.5 of [3].

Theorem 3.8 Let R be a program, t a term, and S a �nite set of terms. Let R

0

be a

PE of R w.r.t. S such that R

0

and t are S-closed. Let S

0

be an independent renaming of

S, and t

00

(resp. R

00

) be a renaming of t (resp. R

0

) w.r.t. S

0

. Then t computes in R the

result d with computed answer � i� t

00

computes in R

00

the result d with computed answer

�

0

and �

0

�

Var(t)

�.

158 APPIA-GULP-PRODE'98

.

.

.

app(xs

0

; y) � ws

0

^ app(w

0

: ws

0

; z) � r

true ^ app(xs

0

; y) � ws

0

^ app(w

0

: ws

0

; z) � r

x

0

� w

0

^ app(xs

0

; y) � ws

0

^ app(w

0

: ws

0

; z) � r

x

0

: app(xs

0

; y) � w ^ app(w; z) � r

a

a

app(x; y) � w ^ app(w; z) � r

Figure 1: Na��ve local control for app(x; y) � w ^ app(w; z) � r.

4 Improving Control of NPE

In the following subsection, we improve control in functional logic specialization by �xing

an unfolding strategy which is speci�cally designed for \conjunctive specialization". As

for global control, a speci�c treatment of the primitive function symbols `�', `^' and `)'

is introduced in subsection 4.2 which produces more e�ective and powerful, polygenetic

specializations, as compared to classical NPE.

4.1 Local Control

The unfolding rule introduced in [3] simply exploits the redexes selected by the lazy nar-

rowing strategy ' (using a �xed, static selection rule which determines the next conjunct

to be reduced) whenever none of them embed a previous (comparable) redex of the same

branch. The following example reveals that this strategy is not elaborated enough for

specializing calls which may contain primitive symbols like conjunctions.

Example 2 Consider the well-known program append:

app([]; y) ! y

app(x : xs; y) ! x : app(xs; y)

with the input goal \app(x; y) � w ^ app(w; z) � r". Using the nonembedding unfolding rule

of [3], we obtain the tree depicted in Figure 1 (using a �xed left-to-right selection rule for

conjunctions). From this tree, no appropriate specialized de�nition for the initial goal can

be obtained, since the leaf cannot be folded into the input call in the root of the tree and

generalization is required (which causes losing all specialization, as in Example 1).

Now we introduce a re�ned, dynamic lazy unfolding rule which attempts to achieve a

fair, balanced evaluation of the complete input term, rather than a deeper evaluation of

some given subterm. This novel concrete unfolding rule dynamically selects the positions

to be reduced by exploiting some dependency information between redexes gathered

along the derivation. The notion of dependent positions is used to trace the functional

dependencies between redexes of the local narrowing tree being constructed by PE.

De�nition 4.1 (dependent positions) Let D � (s ;

p;l!r;�

t) be a narrowing step.

The set of dependent positions of a position q of s by D, denoted qnnD, is:

qnnD =

8

>

<

>

:

fq:u j u 2 FPos(r) ^Head(rj

u

) 62 Cg if q = p

fqg if q 6� p

fp:u

0

:v j rj

u

0

= xg if q = p:u:v and lj

u

= x 2 X

This notion can be naturally lifted to narrowing derivations.

Polygenetic Partial Evaluation of Lazy Functional Logic Programs 159

Roughly speaking, a position q

0

of a term t in D depends on another position q in a

previous term s, if q

0

and q address subterms which are \descendants" (see, e.g., [17]) of

each other (second and third cases), or if the position q

0

has been introduced by the rhs of

a rule applied in the reduction of the former position q and it does not address a subterm

headed by a constructor symbol (�rst case). We also say that the term addressed by q is an

ancestor of the term addressed by q

0

in D. If s is an ancestor of t andHead(s) = Head(t),

we say that s is a comparable ancestor of t in D. Note that this notion is an extension of

the standard PD concept of (covering) ancestor to the functional logic framework.

Now we formalize the way in which the dynamic selection is performed.

De�nition 4.2 Let D � (t

0

; t

1

; : : : ; t

n

), n � 0, be a lazy narrowing deriva-

tion. We de�ne the dynamic selection rule '

dynamic

as: '

dynamic

(t

n

;D) = select(t

n

;�;D),

where the auxiliary function select is:

select(t; p;D) = if p 2 '(t) then if dependency clash(tj

p

;D) then f?g else fpg

else case Head(tj

p

) of

x 2 V: �

^: let O

i

= select(t; p:i;D), i 2 f1; 2g, in

[if 9i: (? 62 O

i

^ O

i

6� �) then O

i

else if (O

1

� O

2

� �) then � else f?g]

otherwise: let tj

p

= f(s

1

; : : : ; s

n

) and

O

args

=

S

n

i=1

select(t; p:i;D) in

[if ? 2 O

args

then f?g else O

args

]

where dependency clash(t;D) is a generic boolean function that looks at the ancestors of

t in D to determine whether there is a risk of nontermination.

For simplicity, in the remainder of this section we consider that dependency clash(t;D)

holds whenever there is a comparable ancestor of the selected redex t in D. Another

approach, that we investigate in the experiments, is to additionally test homeomorphic

embedding on comparable ancestors.

Informally, the dynamic selection strategy recurs over the structure of the goal and

determines the set of positions to be unfolded by a don't-care selection within each

conjunction of just one of the components (among those that do not inccur into a

dependency clash). This is safe since all scheduling policies are admissible for an in-

terpreter implementing lazy narrowing. We introduce a concrete, dynamic unfolding rule

U

dynamic

(t;R) which simply expands lazy narrowing trees according to the dynamic lazy

narrowing strategy '

dynamic

. The \mark" ? of De�nition 4.2 is used as a whistle to warn

us that the derivation must be cut o� because it runs into a dependency clash. That is,

each branch D of the tree is stopped whenever '

dynamic

(t;D) = f?g or the term t (of the

leaf) is in head normal form. U

dynamic

(t;R) produces a �nite lazy narrowing tree [1].

Example 3 Consider again the program and goal of Example 2. Using the dynamic un-

folding rule U

dynamic

, we get the tree depicted in Fig. 2. >From this tree, an optimal (re-

cursive) specialized de�nition for the initial call can be derived, provided there is a suitable

splitting mechanism to extract, from the leaf of the tree, an appropriate subconjunction such

as \app(xs

0

; y) � ws

0

^ app(ws

0

; z) � rs

0

", which is covered by the initial call (see Example 4).

160 APPIA-GULP-PRODE'98

.

.

.

x

0

� w

0

^ app(xs

0

; y) � ws

0

^ w

0

� r

0

^ app(ws

0

; z) � rs

0

x

0

� w

0

^ app(xs

0

; y) � ws

0

^ w

0

: app(ws

0

; z) � r

x

0

� w

0

^ app(xs

0

; y) � ws

0

^ app(w

0

: ws

0

; z) � r

x

0

: app(xs

0

; y) � w ^ app(w; z) � r

a

a

app(x; y) � w ^ app(w; z) � r

Figure 2: Improved local control for app(x; y) � w ^ app(w; z) � r.

4.2 Global Control

In the presence of primitive functions like `^' or `�', using an abstraction operator which

respects the structure of the terms (as in [3]) is not very e�ective, since the generalization

of two conjunctions (resp. equations) might be a term of the form x � y^z (resp. x � y)

in most cases. The drastical solution of decomposing the term into subterms containing

just one function call can avoid the problem, but has the negative consequence of losing

nearly all specialization. In this section, we introduce a more concerned abstraction

operator which is inspired by the partitioning techniques of conjunctive PD [12, 20], and

which uses the homeomorphic embedding relation \E" as de�ned in [27].

During the abstraction process, terms may require being split in order to �nd the

best way of continuing the specialization process without risking nontermination. The

following notion, which is aimed at avoiding loss of specialization due to generalization,

is a proper generalization of the notion of best matching conjunction in [12].

De�nition 4.3 (best matching terms) Given a set of terms S = fs

1

; : : : ; s

n

g and a

term t, consider the set of terms W = fw

i

j hw

i

; f�

i1

; �

i2

gi = msg(fs

i

; tg), i = 1; : : : ; ng.

The best matching terms BMT (S; t) for t in S are those terms s

j

2 S such that the

corresponding w

j

in W is a minimally general element.

The notion of BMT is used in the abstraction process at two stages: i) when selecting

the more appropriate term in S which covers a new call t, and ii) when determining

whether a call t headed by a primitive function symbol could be (safely) added to the

current set of specialized calls or should be split.

De�nition 4.4 Let S and T be sets of terms. Then, abstract

E

(S; T) =

8

>

>

>

>

>

<

>

>

>

>

>

:

S if T � � or T � ftg; t 2 X

abstract

E

(: : : abstract

E

(S; t

1

); : : : ; t

n

) if T � ft

1

; : : : ; t

n

g; n > 0

abstract

E

(S; ft

1

; : : : ; t

n

g) if T � ftg; t � c(t

1

; : : : ; t

n

); c 2 C

abs def(S; T

0

; t) if T � ftg; Head(t) 2 D

abs prim(S; T

0

; t) if T � ftg; Head(t) 2 P

where T

0

= fs 2 S j Head(s) = Head(t) ^ s E tg. The functions abs def and abs prim

are de�ned as follows:

abs def(S;�; t) = abs prim(S;�; t) = S [ftg

abs def(S; T; t) = abstract

E

(S n fsg; fwg [Ran(�

1

) [Ran(�

2

))

if hw; f�

1

; �

2

gi = msg(fs; tg), with s 2 BMT (T; t)

abs prim(S; T; t) =

(

abs def(S; T; t) if 9s 2 BMT (T; t) s.t. def(t) = def(s)

abstract

E

(S; T; ft

1

; t

2

g) otherwise, where t

^

= p(t

1

; t

2

)

Polygenetic Partial Evaluation of Lazy Functional Logic Programs 161

where def(t) denotes a sequence with the de�ned function symbols of t in lexicographical

order, and

^

= is equality up to reordering of elements in a conjunction.

Essentially, the way in which the abstraction operator proceeds is simple. We distin-

guish the cases when the considered term i) is a variable, ii) is headed by a constructor

symbol, iii) by a de�ned function symbol, or iv) by a primitive function symbol. The

actions that the abstraction operator takes, respectively, are: i) to ignore it, ii) to re-

cursively inspect the subterms, iii) to generalize the given term w.r.t. some of its best

matching terms (recursively inspecting the msg w and the subterms of �

1

; �

2

not covered

by the generalization), and iv) the same as in iii), but considering the possibility of split-

ting the given expression before generalizing it when def(t) 6= def(s) (which essentially

states that some de�ned function symbols would be lost due to the application of msg).

The function abstract

E

is an abstraction operator in the sense of De�nition 3.5 [1].

The following result establishes the termination of the global specialization process.

Theorem 4.5 Algorithm 3.6 terminates for the unfolding rule U

dynamic

and the abstrac-

tion operator abstract

E

.

Our �nal example witnesses that abstract

E

behaves well w.r.t. Example 3.

Example 4 Consider again the tree depicted in Figure 2. By applying Algorithm 3.6, the

following call to abstract

E

is undertaken:

abstract

E

(fapp(x; y) � w ^ app(w; z) � rg;

fx

0

� w

0

^ app(xs

0

; y) � ws

0

^ w

0

� r

0

^ app(ws

0

; z) � rs

0

g)

Following De�nition 4.4, by two recursive calls to abs prim, we get:

fapp(x; y) � w ^ app(w; z) � r; x

0

� w

0

; w

0

� r

0

g

By considering the independent renaming dapp(x; y; w; z; r) for the specialized call app(x; y) �

w ^ app(w; z) � r, the method derives a (recursive) rule of the form:

dapp(x :xs; y; w :ws; z; r :rs) ! x � w ^ w � r ^ dapp(xs; y; ws; z; rs)

which embodies the intended optimal specialization for this example.

5 Experiments

The re�nements presented so far have been incorporated into the NPE prototype imple-

mentation system Indy (Integrated Narrowing-Driven specialization system [2]). Indy

is written in SICStus Prolog v3.6 and is publicly available [2].

In order to assess the practicality of our approach, we have benchmarked the speed

and specialization achieved by the extended implementation. A detailed description of

the benchmarks used for the analysis can be found in [1]. Some of them are typical PD

benchmarks (see [19]) adapted to a functional logic syntax, while others come from the

literature of functional program transformations, such as positive supercompilation [28],

fold/unfold transformations [7], and deforestation [29].

We have considered the following settings to test the benchmarks:

{ Evaluation strategy: All benchmarks were executed by lazy narrowing.

{ Unfolding rule: We have three alternatives: a) emb goal: it expands derivations while

new goals do not embed a previous comparable goal in the same branch; b) emb redex:

the concrete unfolding rule of Section 4.1 which implements the dependency clash test

162 APPIA-GULP-PRODE'98

Original emb goal emb redex comp redex

Benchmarks Rw RT Rw Speedup Rw Speedup Rw Speedup

applast 10 90 13 1.32 28 2.20 13 1.10

double app 8 106 39 1.63 61 1.28 15 3.12

double flip 8 62 26 1.51 17 1.55 17 1.55

fibonacci 5 119 11 1.19 7 1.08 7 1.08

heads&legs 8 176 24 4.63 22 2.41 21 2.48

match-app 8 201 12 1.25 20 2.75 23 2.79

match-kmp 12 120 14 3.43 14 3.64 13 3.43

maxlength 14 94 51 1.17 20 1.27 18 1.25

palindrome 10 119 19 1.25 10 1.35 10 1.35

sorted bits 8 110 16 1.15 31 2.89 10 2.68

Average 9.1 119.7 22.5 1.85 23 2.04 14.7 2.08

TMix average 1881 7441 5788

Table 1: Benchmark results.

using homeomorphic embedding on comparable ancestors of selected redexes; and c)

comp redex: the concrete unfolding rule of Section 4.1 which uses the simpler de�nition

of dependency clash based on comparable ancestors of selected redexes as a whistle.

{ Abstraction operator: Abstraction is always done as explained in Def. 4.4.

Table 1 summarizes our benchmark results. The �rst two columns measure the number

of rewrite rules (Rw) and the absolute runtimes (RT) for each original program. The other

columns show the number of rewrite rules and the speedups achieved for the specialized

programs obtained by using the three considered unfolding rules. The row at the bottom

of the table (TMix) indicates the average specialization time for each considered unfolding

rule. Times are expressed in milliseconds and are the average of 10 executions. Speedups

were computed by running the original and specialized programs under the publicly

available lazy functional logic language Toy [8]. The complete code for benchmarks as

well as the specialized calls can be found in [1].

6 Discussion

In functional logic languages, expressions can be written by exploiting the nesting capa-

bility of the functional syntax, as in \append(append(x; y); z) � r", but in many cases it

can be appropriate (or necessary) to decompose nested expressions as in logic program-

ming, and write \append(x; y) � w ^ append(w; z) � r". The original Indy system

behaves well on programs written with the \pure" functional syntax [5]. However, Indy

is not able to produce good specialization on the benchmarks of Table 1 when they are

written as conjunctions of subgoals (and a slowdown is commonly produced). For this

we could not achieve some of the standard, di�cult transformations such as tupling [7]

within the classical NPE framework. As opposed to the classical PD framework (in which

only folding on single atoms can be done), the NPE algorithm is able to perform folding

on complex expressions (containing an arbitrary number of function calls). However, this

does not su�ce to achieve tupling in practice.

The results in this paper demonstrate that it is possible to supply the NPE general

framework with appropriate control options to specialize complex expressions contain-

ing primitive functions, thus providing a powerful polygenetic specialization framework

Polygenetic Partial Evaluation of Lazy Functional Logic Programs 163

with no ad-hoc setting. The �gures in Table 1 demonstrate that the control re�ne-

ments that we have incorporated into the Indy system provide satisfactory speedups on

all benchmarks. Our extensions are conservative in the sense that there is no penalty

w.r.t. the specialization achieved by the original system on programs written in a pure

functional style (although some specialization times are slightly higher due to the more

complex processing being done). Let us note that, from the speedup results in Table 1,

it can appear that there is no signi�cant di�erence between the strategies emb redex and

comp redex. However, although the speedups achieved by these strategies are somewhat

similar, emb redex is inherently more complex and it very often expands local narrowing

trees beyond the \optimal" point.

There is still room for further improvement in performance within our framework, such

as introducing more powerful abstraction operators based on better analyses to determine

the optimal way to split expressions (trying not to endanger the communication of data

structures with shared variables).

References

[1] E. Albert, M. Alpuente, M. Falaschi, P. Juli�an, and G. Vidal. Improving Control in

Functional Logic Program Specialization. Technical Report DSIC-II/2/97, UPV, 1998.

Available from URL: http://www.dsic.upv.es/users/elp/papers.html.

[2] E. Albert, M. Alpuente, M. Falaschi, and G. Vidal. Indy User's Manual. Technical Report

DSIC-II/12/98, UPV, 1998. Available from URL:

http://www.dsic.upv.es/users/elp/papers.html.

[3] M. Alpuente, M. Falaschi, P. Juli�an, and G. Vidal. Specialization of Lazy Functional Logic

Programs. In Proc. of PEPM'97, pages 151{162. ACM, New York, 1997.

[4] M. Alpuente, M. Falaschi, and G. Vidal. Narrowing-driven Partial Evaluation of Func-

tional Logic Programs. In H. Riis Nielson, editor, Proc. of the 6th European Symp. on

Programming, ESOP'96, pages 45{61. Springer LNCS 1058, 1996.

[5] M. Alpuente, M. Falaschi, and G. Vidal. Partial Evaluation of Functional Logic Programs.

Technical Report DSIC-II/11/98, UPV, 1998.

[6] M. Alpuente, M. Falaschi, and G. Vidal. A Unifying View of Functional and Logic Program

Specialization. ACM Computing Surveys, 1998. To appear.

[7] R.M. Burstall and J. Darlington. A Transformation System for Developing Recursive

Programs. Journal of the ACM, 24(1):44{67, 1977.

[8] R. Caballero-Rold�an, F.J. L�opez-Fraguas, and J. S�anchez-Hern�andez. User's manual for

Toy. Technical Report SIP-5797, UCM, Madrid (Spain), April 1997.

[9] C. Consel and O. Danvy. Tutorial notes on Partial Evaluation. In Proc. of 20th Annual

ACM Symp. on Principles of Programming Languages, pages 493{501. ACM, 1993.

[10] N. Dershowitz and J.-P. Jouannaud. Rewrite Systems. In J. van Leeuwen, editor, Handbook

of Theoretical Computer Science, volume B: Formal Models and Semantics, pages 243{320.

Elsevier, Amsterdam, 1990.

[11] J. Gallagher. Tutorial on Specialisation of Logic Programs. In Proc. of PEPM'93, pages

88{98. ACM, New York, 1993.

164 APPIA-GULP-PRODE'98

[12] R. Gl�uck, J. J�rgensen, B. Martens, and M.H. S�rensen. Controlling Conjunctive Partial

Deduction of De�nite Logic Programs. In Proc. of PLILP'96, pages 152{166. Springer

LNCS 1140, 1996.

[13] R. Gl�uck and M.H. S�rensen. A Roadmap to Metacomputation by Supercompilation. In

O. Danvy, R. Gl�uck, and P. Thiemann, editors, Partial Evaluation, Int'l Seminar, Dagstuhl

Castle, Germany, pages 137{160. Springer LNCS 1110, February 1996.

[14] M. Hanus. The Integration of Functions into Logic Programming: From Theory to Prac-

tice. Journal of Logic Programming, 19&20:583{628, 1994.

[15] M. Hanus, H. Kuchen, and J.J. Moreno-Navarro. Curry: A Truly Functional Logic Lan-

guage. In Proc. ILPS'95 Workshop on Visions for the Future of Logic Programming, pages

95{107, 1995.

[16] N.D. Jones, C.K. Gomard, and P. Sestoft. Partial Evaluation and Automatic Program

Generation. Prentice-Hall, Englewood Cli�s, NJ, 1993.

[17] J.W. Klop. Term Rewriting Systems. In S. Abramsky, D. Gabbay, and T. Maibaum,

editors, Handbook of Logic in Computer Science, volume I, pages 1{112. Oxford University

Press, 1992.

[18] J. Komorowski. An Introduction to Partial Deduction. In A. Pettorossi, editor, Meta-

Programming in Logic, Uppsala, Sweden, pages 49{69. Springer LNCS 649, 1992.

[19] M. Leuschel. The ecce partial deduction system and the dppd library of benchmarks.

Technical report, Accessible via http://www.cs.kuleuven.ac.be/~lpai, 1998.

[20] M. Leuschel, D. De Schreye, and A. de Waal. A Conceptual Embedding of Folding into Par-

tial Deduction: Towards a Maximal Integration. In M. Maher, editor, Proc. of JICSLP'96,

pages 319{332. The MIT Press, Cambridge, MA, 1996.

[21] J.W. Lloyd and J.C. Shepherdson. Partial Evaluation in Logic Programming. Journal of

Logic Programming, 11:217{242, 1991.

[22] R. Loogen, F. L�opez-Fraguas, and M. Rodr��guez-Artalejo. A Demand Driven Computation

Strategy for Lazy Narrowing. In J. Penjam andM. Bruynooghe, editors, Proc. of PLILP'93,

Tallinn (Estonia), pages 184{200. Springer LNCS 714, 1993.

[23] B. Martens and J. Gallagher. Ensuring Global Termination of Partial Deduction while

Allowing Flexible Polyvariance. In Proc. of ICLP'95, pages 597{611. MIT Press, 1995.

[24] J.J. Moreno-Navarro and M. Rodr��guez-Artalejo. Logic Programming with Functions and

Predicates: The language Babel. Journal of Logic Programming, 12(3):191{224, 1992.

[25] P. Padawitz. Computing in Horn Clause Theories, volume 16 of EATCS Monographs on

Theoretical Computer Science. Springer-Verlag, Berlin, 1988.

[26] A. Pettorossi and M. Proietti. Transformation of Logic Programs: Foundations and Tech-

niques. Journal of Logic Programming, 19,20:261{320, 1994.

[27] M.H. S�rensen and R. Gl�uck. An Algorithm of Generalization in Positive Supercompilation.

In J.W. Lloyd, editor, Proc. of ILPS'95, pages 465{479. The MIT Press, 1995.

[28] M.H. S�rensen, R. Gl�uck, and N.D. Jones. A Positive Supercompiler. Journal of Functional

Programming, 6(6):811{838, 1996.

[29] P.L. Wadler. Deforestation: Transforming programs to eliminate trees. Theoretical Com-

puter Science, 73:231{248, 1990.

