
Operational and Abstract Semantics of a Query

Language for Semi-Structured Information

Agostino Cortesi, Agostino Dovier, Elisa Quintarelli, and Letizia Tanca

Abstract

The paper revisits the semantics of G-log, a graph-oriented query language for

semi-structured data. An operational semantics based on the notion of bisimulation

is given both at the concrete level (instances) and at the abstract level (schemata).

In this setting, some subtle ambiguities in the semantics of G-log queries can be

successfully addressed.
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1 Introduction

The increasing amount of information currently accessible through the Web presents

new challenges to academic and industrial research on Data Bases. In this context,

data are either structured, when coming from relational or object-oriented databases, or

completely unstructured, when they consist of simple collections of text or image �les.

A number of research projects are currently addressing the problem of accessing in a

uniform way this kind of semi-strucured data. Among these, we can cite LOREL [14],

UnQL [4], WebSQL [15], WebOQL [2], StruQL [9], ADOOD [11].

Our contribution is part of the WG-log project [8, 5], which addresses the problem by

extending the graph-based data-model G-log [18, 17], a query language based on a data

model for complex objects with identity [1].

The expressive power of a query language is a measure of the number of queries that

can be expressed by a program in that language. The modeling power is a perhaps more

intuitive criterion and indicates how easily a query can be expressed in the language:

it depends, of course, on the degree of correspondence between the objects of the real

world and their representations in the database. The development of the language G-log

aimed at increasing both these parameters for representing and querying complex data.

Its recent extension WG-log [8] is particularly suited for semistructured data distributed

over the Web.

The use of graphs for representing database schemata is common in the history of

Database theory: recall, for instance, the entity-relationship model [3], the semantic
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networks, the various graphical representations of object-oriented schemata like Good

[12], and Graphlog [6], just to name a few.

Most of the models and languages for the representation and querying of semistruc-

tured information cited so far share an analytical approach to data representation, lacking

a synthetic notion of schema. Conversely, both G{Log and WG{Log focus on a concept

very close to that of database schema in order to model semistructured information.

The main aim of this paper is to revisit the semantics of G-log in order to clarify

some subtle ambiguities in the semantics of G-log queries. An operational semantics

based on the notion of bisimulation [16, 13] is given both at the concrete level (instances)

and at the abstract level (schemata). The relation between instances and schemata

is clari�ed using Abstract Interpretation [7], that provides a systematic approach to

guarantee the correctness of operating on schemata with respect to the corresponding

concrete computations on instances. A re�nement of the concrete semantics is introduced

in order to deal with queries expressing negative constraints.

The results presented here for G{log can be easily estended to WG{log as well. As

schemata can evolve gracefully with the evolution of their instances, in the extended

setting of WG{log this will allow to trace the dynamical evolution of Web sites by keeping

trace of the history of their schemata.

Similarities can be found between our approach and previous works on UnQL [4],

where the notion of simulation is used for investigating query decomposition. However,

di�erences between G-Log and UnQL are quite deep. For instance, at a syntactical level,

we allow information to be located in nodes, and, more importantly, G-log queries are

written directly in the graph formalism. Moreover, G-log allows to express cyclic queries

and information, too.

The structure of the paper is as follows. Section 2 introduces the language G{log by

means of intuitive examples. The syntax and the concrete semantics of the language are

discussed in Section 3. Section 4 introduces abstract graphs (corresponding to schemata)

and studies how they represent sets of concrete graphs (instances). Re�nements of the

concrete semantics are presented in Section 5 in order to deal with negation. Finally,

Section 6 contains our Conclusions.

2 The language G-log: an informal presentation

In this section we introduce some intuitive examples of queries in the language G-log, in

order to appreciate its expressive power and to point out some ambiguities that outline

the importance of semantic characterizations.

Consider the graph depicted in Fig. 1 (a). It represents the query `collect all the people

that are fathers of someone'. Intuitively, the boldface part of the graph (also called the

`green part') is what you try to get from the DB, while you match the rest of the graph

(also called the `red part') with a graph representing the DB instance.

The query (b) of Fig. 1 can be read as `collect all the workers having (at least) one son

that works in some town'.

Also negative requirements can be introduced in a query by means of dashed edges and

nodes. This is depicted by query (c) of Fig. 1 whose meaning is `collect all the workers

having (at least) one son that works in a town di�erent from that where his father works'.

The translation of queries (a); (b); (c) into logic formulas is almost straightforward, as

illustrated in Fig. 1. As observed in [18], G-log o�ers the expressive power of logic, the
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Figure 1: Sample queries

modelling power of object-oriented DBs, and the representation power of graphs.

However, the modelling power of G-log is heavily constrained by some arguable choices

in its semantics [18]. Consider, for instance, query (d) of Fig. 2: it can be intuitively

interpreted in three di�erent ways:

� collect the people having two children, not necessarily distinct;

� collect the people having exactly two (distinct) children;

� collect the people having at least two (distinct) children.

The semantics of G-log uniquely selects the �rst option. As a consequence, queries (a)

and (d) become equivalent, so there is no way to express `collect the people that have

more than one child' without making use of negative information (negated equality edges

in G-log [18]).

An even deeper problem arises when considering query (e). The semantics of G-log

inteprets it exactly as query (b). In other words, it is not possible to express a query

like `collect the people that work in the same town as (at least) one of their children'

in a natural fashion. Actually, such a query can be expressed in G-log, but not in a

straightforward way.

Of course, these problems are further emphasized when combined with negation.

In order to address this kind of ambiguities, in the following sections we revisit the

semantics of G-log taking advantage of the use of the well-known concept of bisimulation.

Furthermore, we apply the abstract interpretation approach to the operational semantics
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de�ned in this way, in order to clarify the relationship between concrete (instances) and

abstract (schemata) data representations.

3 Syntax and Concrete Semantics

In this section we introduce the basic aspects of the syntax of the G-log language.

De�nitions are based on the concept of directed labelled multigraph, and, di�erently

from [18, 17], rules, programs, and queries are de�ned independently of the context in

which they are used. This simpli�es the notation and allows the study of algebraic prop-

erties of programs. However, the semantics (cf. Sect. 3.1) will be given in such a way

that the practical use is coherent with that of [18, 17].

De�nition 3.1 A G-log graph is a directed labelled (multi)graph hN;E; `i, where N is

a set of nodes, E is a set of labelled edges of the form hm; label ; ni, where m;n 2 N and

label is a pair of C � (L[f?g), while ` : N �! (T [ f?g)�C � (L[ f?g)� (S [f?g).

? means `unde�ned', and:

� T = f entity; slot g is a set of types for nodes;

� C = f red; green; red dashed; black g is a set of colors;

� L is a set of labels to be used as entity, slot, and relation names;

� S is a set of strings to be used as concrete values.

` is the composition of four single-valued functions `

T

; `

C

; `

L

; `

S

. Moreover, when the

context is clear, if e = hm; hc; ki; ni, with abuse of notation we say that `

C

(e) = c and

`

L

(e) = k. Moreover, we require that:

� (8x 2 N)(`

T

(x) 6= slot ! `

S

(x) = ?) (i.e., values are associated to slot nodes

only),

� (8hm; label ; ni 2 E)(`

T

(m) 6= slot) (i.e., slot nodes are leaves).

Observe that it is allowed that more edges connect two nodes, provided that their

labels be di�erent. Thus, it is not correct to view E simply as a subset of N

2

and ` as a

function from N [ E into the domain of 4-tuples de�ned. Removing labels, E is in fact

a multiset.

Red (RS) and black edges and nodes are graphically represented by thin lines (this

does not originate confusion, since there cannot be red and black nodes and edges in the

same graph), green (GS) by thick lines, and red dashed (RD) by dashed (dotted) thin

lines. Red and green nodes are used together in queries.

Colors red and green are chosen to remind tra�c lights. Red edges and nodes add

constraints to a query (= stop!), while green nodes and edges correspond to the data we

wish to derive (= walk!).

Result nodes play a particular role in queries: they have the intuitive meaning of

requiring the collection of all objects ful�lling a particular property. Moreover, result

nodes can occur in (instances of) web-like databases to simulate web pages connecting

links.

1

If an entity node is labelled by result , it will be simply represented by small

1

[8] uses entry point nodes for this purpose.
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squares, and its oucoming edges implicitly labelled by `connects'. In general, an entity

(slot) node n will be represented by a rectangle (oval) containing the label `

L

(n).

As an instance, consider the graph (d) of Figure 2. Let 1 be the topmost node, 2 the

center node, 3 the leftmost, and 4 the rightmost node. Then

G = h N = f1; 2; 3; 4g;

E = fh1; hGS; connects i; 2i;

h2; hRS; father i; 3i;

h2; hGS; father i; 4ig;

` = f1 7! hentity ; GS; result ;?i;

2 7! hentity ; RS;Person;?i;

3 7! hentity ; RS;Person;?i;

4 7! hentity ; RS;Person;?ig

i

De�nition 3.2 A G-log graph G = hN;E; `i is a labelled subgraph of a G-log graph

G

0

= hN

0

; E

0

; `

0

i , denoted G v G

0

, if N � N

0

, E � E

0

, and ` = `

0

j

N

.

With " we denote the (empty) G-log graph h;; ;; ;i. It is immediate to see that given

a G-log graph G, then

hfG

0

is a G-log graph : G

0

v Gg;vi

is a complete lattice, where > � G, ? � ". Moreover, given two G-log graphs G

1

=

hN

1

; E

1

; `

1

i v G and G

2

= hN

2

; E

2

; `

2

i v G, their l.u.b. and g.l.b. can be simply

computed as follows:

2

G

1

tG

2

= hN

1

[N

2

; E

1

[ E

2

; `

1

[ `

2

i

G

1

uG

2

= hN

1

\N

2

; E

1

\ E

2

; `

1

\ `

2

i

De�nition 3.3 Given a G-log graph G = hN;E; `i, if C � fRS;RD;GSg, let N

0

=

N \ `

�1

C

(C) and E

0

= fhm; hc; ki; ni 2 E : c 2 Cg. We de�ne Gj

C

= hN

0

; E

0

; `j

N

0

i.

We de�ne the notion of concrete graph (which will take in particular the role of instance

of a DB or a WWW site), of (concrete) rule and program.

De�nition 3.4 A G-log concrete graph is a G-log graph such that:

1. (8x 2 N [ E)(`

C

(x) = black), and

2. (8n 2 N)(`

T

(n) = slot! `

S

(n) 6= ?).

With G

c

we denote the set of G-log concrete graphs.

De�nition 3.5 A G-log rule R = hN;E; `i is a G-log graph such that:

1. (8x 2 N [ E)(`

C

(x) 6= black), and

2

As a side remark, notice that, if G is the (complete) graph hN;N � f?g �N; `i and n = jN j, then

the lattice contains:

P

n

i=0

�

n

i

�

2

i

2

= O(n2

n

2

) subgraphs. If G is not of this form, it is di�cult to �nd

the exact number; however, if jEj = O(jN j

2

), then the upper bound remains the same as the complete

case.
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Figure 3: Examples of bisimulations

2. Rj

fGSg

6= ;.

De�nition 3.6 A G-log program (or query) is a �nite list of sets of G-log rules.

We adapt the well-known concept of bisimulation [19, 16] to our aims:

De�nition 3.7 Given two G-log graphs G

0

= hN

0

; E

0

; `

0

i and G

1

= hN

1

; E

1

; `

1

i, b�

N

0

�N

1

is said to be a bisimulation between G

0

and G

1

i�:

1. for i = 0; 1, (8n

i

2 N

i

)(9n

1�i

2 N

1�i

)n

0

b n

1

,

2. (8n

0

2 N

0

)(8n

1

2 N

1

)(n

0

b n

1

! `

0

T

(n

0

) = `

1

T

(n

1

) ^ `

0

L

(n

0

) = `

1

L

(n

1

) ^ `

0

S

(n

0

)

:

=

`

1

S

(n

1

)) (where

:

= means that if both labels are de�ned|i.e., di�erent from ?|they

must be equal), and

3. for i = 0; 1, (8n 2 N

i

), let M

i

(n) =

def

fhm; label i : hn; hcolor ; label i;mi 2 E

i

g.

Then, (8n

0

2 N

0

)(8n

1

2 N

1

) such that n

0

b n

1

, for i = 0; 1 it holds that

(8hm

i

; `

i

i 2M

i

(n

i

))(9hm

1�i

; `

1�i

i 2M

1�i

(n

1�i

))(m

0

b m

1

^ `

i

= `

1�i

i) :

We write G

b

� G

0

(G 6

b

� G

0

) if b is (not) a bisimulation between G and G

0

. We write

G � G

0

(G 6� G

0

) if there is (not) a bisimulation between G and G

0

.

It is easy to see that � is an equivalence relation. Thus, it makes sense to deal with

G

c

= �.

Notice that colors (`

C

) are not taken into account in the bisimulation search, whilst

the value �elds of the label are considered only when they are de�ned. This last feature

will allow to �nd bisimulations between schemata and instances.

As an instance, consider the graphs in Fig. 3: it holds that G

0

� G

1

, while G

i

6� G

2

,

for i = 0; 1.

3.1 Concrete Semantics

We use the concept of bisimulation to reformulate the semantics of G-log programs, given

in [18] using the ad hoc concept of embedding of a graph. Initially, we assume that no

red dashed edges and nodes occur in rules (no negation). The extension to graphs with

negation is the subject of Sect. 5.
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De�nition 3.8 Let G be a concrete graph and R a rule. R is applicable in G i� (9G

1

v

G)(G

1

�R

fRSg

). G veri�es R (G j= R) i�

(8G

1

v G)

0

B

@

(G

1

� R

fRSg

)!

(9G

2

v G)

 

G

1

v G

2

^ G

2

� R

fRS;GSg

^

(8G

3

v G

2

)(G

1

v G

3

^G

3

� R

fRSg

! G

3

= G

1

)

!

1

C

A

:

Intuitively,G veri�esR if for any subgraph G

1

of Gmatching (w.r.t. bisimulation) with

the red (pre-condition) part of the rule, there is a way to `complete'G

1

in a graph G

2

v G

such that the whole rule R matches with G

2

. The further requirement: (8G

3

v G

2

) : : :

is necessary to avoid the possibility of using other parts of G, matching with R

fRSg

independently, to extend G

1

(see the example after Def. 3.9).

The notion of applicability is a sort of pre-condition for an e�ective application of a

rule to a concrete graph, whose precise semantics is given below:

De�nition 3.9 Let R be a rule. Its operational semantics [[R ]] � G

c

� G

c

is de�ned as

follows: hG;G

0

i 2 [[R ]] if and only if:

1. G v G

0

, G

0

j= R, and

2. G

0

is minimal w.r.t. property (1), namely there is no graph G

00

such that G v G

00

,

G

00

< G

0

, G

00

j= R.

Intuitively, a rule, if applicable, extendsG in such a way that G veri�esR. Moreover, it

is required that the extension is minimal. If R is not applicable in G, then hG;Gi 2 [[R ]],

i.e. there is no `e�ect'.

3

For example, consider graphs (R), (G), (G

3

), and (G

4

) of Fig. 4 and (G

1

) of Fig. 3. It

holds that hG;G

1

i and hG;G

3

i belong to [[R ]]. hG;G

4

i =2 [[R ]] since G

4

6j= R: this is due

to the condition (8G

3

v : : :) in the De�nition 3.8. Notice that G

1

� G

3

� G

4

.

Moreover, observe that the e�ect of a rule (viewed as a `query') is to �nd all possible

solutions: in other words, the semantics is set-oriented.

In general, [[ � ]] is not a function, not even modulo bisimulation (apply the rule R to

the concrete schema G deprived of the slot node labelled by Tino and its entering edge).

The problem here is the generation of more than one node to collect objects having a

di�erent degree of speci�cation. This corresponds to the problem of invented values in

complex object databases with identity [1]. It can be easily proved that:

3

The injective embedding used in [17] to give a semantics of G-log is a particular case of bisimulation.

It is possible to check that viewing G as `source graph' and G

0

as `target graph', the two de�nitions are

comparable.
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Theorem 3.10 Let R be a rule having green edges but no green nodes, and G a concrete

graph. Then, [[R ]] applied to G returns graphs all equivalent in G

c

= �.

The e�ect of a rule of the form above is that of \adding" edges having the same types

and labels of those in the green part of R to the graph G. To extend the result of

Theorem 3.10 to all rules, a viable approach is to make the further assumption in the

semantics of a rule that for each green node of R at most one corresponding node is

introduced in G

0

.

Rules can be combined to build programs as shown in Def. 3.6. Their semantics are

the following:

De�nition 3.11 Let S be a set of rules fR

1

; : : : ; R

n

g. Then hG;G

0

i 2 [[S ]] if

1. G v G

0

, G

0

j= R

i

, for i = 1; : : : ; n, and

2. G

0

is minimal w.r.t. property (1).

Let P be a program hS

1

; : : : ; S

n

i. hG

0

; G

n

i 2 [[P ]] i� there are G

1

; : : : ; G

n�1

such that

hG

i

; G

i+1

i 2 [[S

i+1

]], for i = 0; : : : ; n� 1.

Due to lack of space, the programs analyzed in this paper are simply formed by a

single rule. The full power of programming with graphs is well explained in [17].

4 Abstract graphs and semantics

In order to represent sets of instances sharing the same structure, we introduce now the

notion of abstract graph. Following the Abstract Interpretation approach [7, 10], we

see that abstract graphs can be used as a domain to abstract the computation of G-log

programs over concrete graphs.

This can also be seen as an alternative view of reasoning on schemata and instances

of a database or a WWW site.

De�nition 4.1 A (G-log) abstract graph is a G-log graph such that:

1. (8x 2 N [ E)(`

C

(x) = black),

2. (8x 2 N [ E)(`

S

(x) = ?), i.e., an abstract graph has no values.

With G

A

we denote the set of G-log abstract graphs.

Let us use once more the notion of bisimulation to re-formulate the G-log concepts of

instance and schema.

De�nition 4.2 A concrete graph I is an instance of an abstract graph G (G represents

I) i� (9I

0

w I)(G � I

0

) : In this case G is said to be a schema for I. I

0

is said to be a

witness of the relation schema-instance.

In Fig. 5 there is an example of application of the de�nition above. (S) represents

(I). To build the witness (I

0

), add to (I) an edge labelled by works linking the entity

node Person of Bob with the entity node Town. Moreover, add edges labelled by lives

from the two nodes labelled Person to the node labelled Town. It is easy to check that

a bisimulation from S to I

0

is uniquely determined.

The notions of applicability and veri�ability for abstract graphs are the same as in

Def. 3.8. This also holds for the operational semantics de�nitions for rules and programs.

The following properties can be easily derived from the de�nitions above.
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Figure 5: A schema, and instance, and a rule

Lemma 4.3 (a) If I is an instance of G with witness I

0

, then forall I

00

s.t. I v I

00

v I

0

it holds that I

00

is an instance of G.

(b) If I is a concrete graph, G is an abstract graph, with I � G, then I is an instance

of G.

(c) If I is a concrete graph, G;G

0

are abstract graphs, with G � G

0

, then I is an

instance of G if and only if I is an instance of G

0

.

The next theorem states that given a set of instances there is always a schema that

represents all of them and is minimal (modulo bisimulation).

Theorem 4.4 (Abstraction) Let S be a set of concrete graphs. Then there is an abstract

graph G such that I is an instance of G for all I 2 S and for any G

0

ful�lling such a

property there is G

00

w G such that G

00

� G

0

.

Given a set S of concrete graphs, let � be the abstraction function giving G as in

Theorem 4.4 (modulo bisimulation).

Observe that if S is a singleton, i.e. S = fIg, then I is an instance of the abstract

graph �(fIg) obtained from I by turning every value (i.e., results of `

S

) associated to its

nodes and its edges to ?. In general, through the function � we get the best schema for

a family of instances.

A Galois insertion ([7]) between G

A

and }(G

C

) can be obtained by considering the

abstraction function � de�ned above and the adjoint concretization function  : G

A

=�

�!

}(G

C

) :

(G) = fI : I is an instance of Gg:

Lemma 4.5 Function  is monotonic, i.e. for any pair of abstract graphs G;G

0

, G v G

0

implies (G) � (G

0

).

Lemma 4.6 Function  is injective, i.e. for any pair of abstract graphs G;G

0

, G 6� G

0

implies (G) 6= (G

0

).

Theorem 4.7 (Correctness) Let G;G

0

be abstract graphs and R a rule such that hG;G

0

i 2

[[R ]]. If I 2 (G) and hI; I

0

i 2 [[R ]], then I

0

2 (G

0

), i.e., the following diagram com-

mutes:

G

R

! G

0

#  # 

I

R

! I

0
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Theorem 4.7 guarantees the correctness of abstract computations: the application of

a rule to an abstract graph safely represents the application of the same rule to any

of its instances. The practical impact of this result is quite interesting. Consider the

abstract graph (S) and the rule (R

0

) in Fig. 5. Since (R

0

) is not applicable to (S), we

can immediately conclude that the same rule is not applicable to any instance of (S).

Therefore, we may apply rules to abstract graphs in order to build complex queries, and

then, once checked that they are applicable to the abstract graph we can turn to the

concrete cases to get the desired answer.

Moreover, suppose we use G-log rules to specify site instance evolution during the site

life. Then, the application of the same rule to the site schema returns automatically the

schema corresponding to the new site instance.

4

5 Negation

Let us turn to extend the semantics in order to deal with rules and programs with nega-

tion (i.e., containing red dashed nodes and edges). We assume the following syntactical

restriction on rules with negation: if an egde hm; hRD; lab i; ni 2 Rj

fRDg

, then

� `

C

(m) = `

C

(n) = RS, or

� `

C

(m) = RS, `

C

(n) = RD, and any G

1

v G rooted by n is a subgraph of Rj

fRDg

.

We start by giving the notion of applicability of a rule containing negation, thus

completing the Def. 3.8:

De�nition 5.1 Let G be a concrete graph and R a rule such that Rj

fRDg

6= ; (i.e., R

has a red dashed part). G

1

v G meets R in G i� the following conditions hold:

(a) G

1

�Rj

fRSg

(b) (8G

2

v G)(G

1

< G

2

6� Rj

fRS;RDg

)

(c) (8G

3

< G

1

)(G

3

� Rj

fRSg

) G

3

meets R in G)

Observe that, since G

3

is strictly included in G

1

, then the notion is well-de�ned. More-

over, R is applicable in G i� (9G

1

v G) s.t. G

1

v G meets R in G.

Some words are needed to justify the complexity of the formula above. As for the case

of absence of negation, the notion of applicability is aimed at identifying the possibility

of a meaningful application of a rule R on a concrete schema. This concept has been

de�ned here by using an auxiliary concept (meet). In order to meet a rule, a subgraph

G

1

of G must match the red solid part of the rule (this is expressed by condition (a)).

Moreover, condition (b) guarantees that G

1

cannot be `extended' inside G to match with

the negative part of the query. Unfortunately, this is not su�cient. The third (inductive)

requirement is introduced to avoid situations of the form:

G

C

A B

Assume that:

G

1

= A [B;G

1

� R

fRSg

; A � R

fRSg

; B � R

fRSg

;

A [ C � R

fRS;RDg

; and A [B [ C 6� R

fRS;RDg

:

4

Of course, in this context we are interested in those site updates that would a�ect the schema, since

schema-invariant updates do not need to be traced.
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Figure 6: Negation as failure

Although G

1

= A[B seems to meet the rule, it hides a subgraph, A, that can be extended

to C in order to falsify the preconditions (positive and negative) given by R.

Let us see how to use this concepts to complete the notion of verify (Def. 3.8) in the

presence of negation.

De�nition 5.2 Let G be a concrete graph and R a rule such that Rj

fRDg

6= ;. G veri�es

R (G j= R) i�

� (8G

1

v G)(G

1

6� Rj

fRS;RD;GSg

), and

� (8G

1

v G) s.t. G

1

meets R in G:

(9G

2

v G) (G

1

v G

2

^G

2

� Rj

fRS;GSg

^

(8G

3

v G

2

)(G

1

v G

3

^ G

3

� Rj

fRS;GSg

! G

3

= G

1

)

The �rst requirement ensures that there is no subgraph of G in contradiction with the

negative request of the rule. The second is, in fact, the same as that used in the Def. 3.8

for the simplest case of absence of negation.

The semantics of the application of a rule R to a concrete graph G is, intuitively,

that of �nding the least G

0

w G s.t. G

0

veri�es R. The presence of negation requires

further considerations. Let R and G be as in Fig. 6. The graphs G and G

0

both verify

R. However,

� G

0

can be obtained from G by using a sort of failure rule or, almost equivalently, by

applying the Closed World Assumption: we infer that `Ago does not live in Verona'

from the fact that we can't derive that this fact is true.

� G

00

is obtained by adding the hypothesis `Ago lives in Verona' that ensures that no

subset of G meets R.

The choice of G-log is the �rst one, and it is reected in the condition 2 of the following

de�nition:

De�nition 5.3 Let R be a rule. Then hG;G

0

i 2 [[R ]] if and only if:

1. G v G

0

, G

0

j= R,

2. for all G

1

v G: G

1

meets R in G i� G

1

meets R in G

0

;

3. G

0

is minimal w.r.t. properties (1) and (2).

The extension of the abstract semantics to deal with negation is currently under devel-

opment.
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6 Conclusions

The contribution of this paper to the semantics of G-log is part of a larger project, where

computational and logical aspects ask to be integrated in order to result in a solid and

usable query-language for semi-structured data. As already said in the Introduction, our

contribution is expected to have a positive impact on WG-log as well. This is object of

our current (and future) e�orts. Moreover, we plan to get through further re�nements of

our semantics in order to relax some restrictions and thus increase the expressive power

of the language.
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