
An ODBC Interfa
e for Obje
tive Caml

R. Castro, X.M. L�opez, V.M. Gul��as

Abstra
t

In this paper, an integration of the fun
tional language Obje
tive Caml and

the standard API for a

esing to relational databasesODBC is presented. By using

this interfa
e, the fun
tional programmer
an store values in a non-volatile storage

in order to re
over them in future sessions using a
lient-server approa
h. In our

proposal, queries to the relational manager are en
apsulated into stru
tures quite

familiar to the fun
tional programmer, su
h as lists or tuples. Hen
e, fun
tional

programming is used to manipulate data retrieved from persistent storage while

eÆ
ient and mature data a

ess is performed using a relational database.

Keywords: Fun
tional Programming, Relational Databases, Client-Server ar-

hite
ture, Integration

1 Introdu
tion

In this paper, an integration of the fun
tional language Obje
tive Caml [7℄ and the

standard API for a

esing to relational databases ODBC [5, 13, 6℄ is presented. The

proposed goal is to provide a me
hanism to save fun
tional values in persistent storage,

using as storage a relational database. Despite the fa
t that database a

ess or even

persisten
e inside a fun
tional language is not new [12, 10, 9, 8, 4, 11℄, resear
h in this

�eld has been shadowed by other state-of-the-art subje
ts, su
h as semanti
s or eÆ
ient

fun
tional
ode exe
ution.

In our approa
h, queries to the relational manager are en
apsulated into stru
tures

quite familiar to the fun
tional programmer, su
h as lists or tuples. A relationship be-

tween these
on
epts and those of the relational model must be established. As far as we

an, remote a

ess to data is hidden by using fun
tional programming idioms that are

translated into queries to a relational server (
lient/server approa
h). Hen
e, fun
tional

programming is used to manipulate data retrieved from persistent storage while eÆ
ient

and mature data a

ess is performed using a relational database.

The paper is stru
tured as follows: the next se
tion presents a brief introdu
tion to

the standard ODBC interfa
e. Se
tion 3 deals with the integration methodology used.

Se
tion 4 presents some useful primitives and how they
an be used to implement fun
-

tional programs that perform database queries. Se
tion 5 shows some ben
hmarks that

measure the overhead introdu
ed by our interfa
e. Se
tion 6 presents a brief dis
ussion

on persisten
e in fun
tional languages. Finally, we
on
lude and present some future

work.

Authors are with the Lf
ia, Department of Computer S
ien
e, University La Coru~na, SPAIN

fax: (+34) (81) 167160. e-mail: fmon,xesus,guliasg�d
.fi.ud
.es

Work partially supported by Xunta de Gali
ia XUGA10504B96

189

190 APPIA-GULP-PRODE'98

2 The ODBC Interfa
e

In the
urrent database market, there are many di�erent database managers and database

formats. It is quite important that all these formats and proto
ols
an be understood by

program appli
ations in order to a

ess this information.

In small systems, appli
ations are designed to a

ess databases through a unique

DBMS, and hen
e, the usage of the permanent storage is straightforward. However, large

real-world appli
ations often demand data from di�erent sour
es: multiple databases,

multiple DBMS's, di�erent lo
ations, et
., whi
h
an in
rease dramati
ally the devel-

opment and maintainan
e
osts of a program. In this setting, a program has to host

di�erent APIs (appli
ation program interfa
es) for every DBMS that is (or may be) used.

As an alternative, a
ommon interfa
e has been proposed. This standard API, named

ODBC (Open DataBase Conne
tivity) allows us to
reate appli
ations that
an a

ess

heterogeneous relational databases using the well-known
lient-server approa
h. Now,

the programmer does not
are about the a
tual DBMS that is going to be used by the

�nal user.

ODBC - enabled
Application

ODBC - enabled
Application

ODBC
Driver Manager

ODBC - enabled
Application

config file

ODBC API

ODBC
Driver

ODBC
Driver

ODBC
Driver

ODBC
Driver

Data
Source

Data
Source

Data
Source

Data
Source

Data
Source

Figure 1: ODBC Ar
hite
ture

Some of the advantages of using ODBC
an be summarized as follows:

� Multidatabase and multiDBMS a

ess and the inter
onne
tion a
ross di�erent plat-

forms.

� Portable. Integration of any appli
ation with any DBMS, whi
h allows new pro-

grams to use existent databases.

� Database transparen
y. The programmer is isolated from DBMS details.

� Lo
ation transparen
y. There is no need for knowing where data is lo
ated.

� Simplify development. The programmer only needs to know the ODBC API.

� Performan
e. Even though a new layer is added between program and data, ODBC

is designed to produ
e appli
ations with performan
e similar to native DBMS
alls.

An ODBC Interfa
e for Obje
tive Caml 191

The ODBC ar
hite
ture (�gure 1) is
omposed by four basi

omponents:

� The a
tual appli
ation. In order to use the database, it
arries out
alls to the

ODBC API, whi
h generate SQL senten
es and �nally deliver their results.

� The driver manager. Its main goal is to
oordinate the load of ODBC drivers to

a

ess the asso
iated DBMS on a demand basis. The appli
ation uses the ODBC

fun
tions through the interfa
e de�ned by the driver manager, whi
h dynami
ally

loads the appropriate ODBC driver and sends the
alls
oming from the appli
ation

to the a
tual driver. The
on�guration of the drivers is hold in a separate �le in

order to maintain independent the appli
ation from the DBMS's. The following

example shows a fragment of an ODBC
on�guration �le that spe
i�es the driver

for a database managed by MySQL [1℄ (in our tests, we have used MySQL as

DBMS).

[sampledb℄

Driver = /usr/lo
al/lib/libmyodb
_mysql.so

DSN = sampledb

SERVER = pi
oro.d
.fi.ud
.es

UID = mon

PWD =

where sampledb is the database identi�er whi
h is intended to be a

essed using

the driver for MySql. DSN is the data sour
e name, the server is the host where

the database is lo
ated, and the UID and PWD are the user and password to the

database, respe
tively.

� The spe
i�
 DBMS driver. It takes the ODBC
alls and traslates them to the

format expe
ted by the spe
i�
 DBMS whi
h the driver is designed for, and then

translates the results to the standard ODBC format.

� The data sour
e. Data whi
h the appli
ations need to a

ess, in addition to the

DBMS, the operating system and the
ommuni
ation network.

3 Integration Methodology

In order to integrate ODBC a

ess into a fun
tional language, we use the same method-

ology proposed in [3℄. In that work, our target was to integrate Postgres95 [14℄ a

ess

to the O'Caml fun
tional language using a multi-layer approa
h. Even though we were

su

essful in this approa
h, one of the main drawba
ks was that we were not able to use

omer
ial databases nor heterogeneous database
omputing. With the ODBC interfa
e,

we expe
t to bridge this gap.

Figure 2 shows the ar
hite
ture of the proposed integration.

3.1 Low-level Intera
tion between ODBC and O'Caml

At the �rst stage, a
onsistent interfa
e betweenODBC andO'Caml should be provided.

An interfa
e library is
omposed of a set of fun
tions that
an be used from another

programming language. A
ommon interfa
e between di�erent produ
ts
onsists of using

192 APPIA-GULP-PRODE'98

User functions

High order functions

O’Caml - C stub functions

C - ODBC API functions

Driver manager

Driver DBMS

Database

cliente/server access

Figure 2: Components of the ODBC-Caml interfa
e

a language like C. Both ODBC and O'Caml provides means to intera
t with other

software appli
ations using the C language.

ODBC provides the driver manager, a stati
-linkedC library that allows, among other

things, to establish a
onne
tion with the server and to
arry out SQL requests. On the

other hand, O'Caml in
orporates a C interfa
e that allows to de�ne C fun
tions and to

use them in the same way as fun
tions de�ned inside O'Caml.

Of
ourse, things are not so easy. Data stru
tures manipulated by di�erent software

pa
kages di�er, so
onversions must be
arried out to ex
hange information. ODBC

establishes a
ursor as a way of retrieving the result of a query from C. All the arguments

and results of the ODBC fun
tions have C types (int,
har *, pointers to low-level

stru
tures). Giving that these types are di�erent to that provided by the fun
tional

language used in this experiment, suitable
onversions must be performed.

3.1.1 Fun
tion En
apsulation

Every ODBC fun
tion needed by upper layers is en
apsulated within a blo
k of
ode

whi
h performs suitable
onversions fromO'Caml arguments toODBC arguments,
alls

the a
tual entry point of the library fun
tion, and then performs a
onversion of the result

ba
k to O'Caml in order to be used in the fun
tional world (�gure 3).

3.1.2 Mapping C Stru
tures to O'Caml Types

Conversion between basi
 types of both worlds is almost straightforward. There are basi

onversion fun
tions provided by the O'Caml C interfa
e. However translations between

more
omplex types, like those that require dynami
 memory management, would require

a bit more of attention. Dynami
 stru
tures must be migrated fromO'Caml heap, whi
h

is automati
allymanaged byO'Caml runtime system using a garbage
olle
tor to re
laim

the unused
ells, to C heap whi
h is manually managed by the programmer.

An ODBC Interfa
e for Obje
tive Caml 193

C World

value stub_myfunction (param1...)
value param1...
{

C-O’Caml stub

Code to convert parameters

Code to convert results

<result> = myfunction(....);

}

return <result_as_value>

external myfunction:

 paramtype -> paramtype ...

 -> resulttype
 = "stub_myfunction"

...

... myfunction

...

C function

<type> myfunction(...)

{ ... }

O’Caml World

 from O’Caml to C

 from C to O’Caml

O’Caml declaration

O’Caml programs

Figure 3: En
apsulation of C fun
tions to be used by O'Caml

C manipulation of ODBC
apabilities is quite messy be
ause the programmer must

deal with too mu
h detail. For example, two kinds of pointers are allowed in C: generi

pointers, whi
h
an referen
e any kind of stru
ture in memory, and
on
rete pointers,

whi
h only
an referen
e one data type. Moreover, being C a weakly typed language, it

permits the
onversion between generi
 and
on
rete pointers freely. On the other hand,

O'Caml in
ludes a variant of Hindley-Milner's polymorphi
 type inferen
e system, that

be
omes helpful to the programmer giving that it performs a
ompile-time type
he
king

avoiding the exe
ution of ill-typed programs.

To simplify programming with the low-level interfa
e, we are going to map generi

pointers, used in C to handle di�erent DB obje
ts, to di�erent types in O'Caml world,

so
ompile-time type
he
king will dete
t in
orre
t uses of DB obje
ts. For example, it

will not be possible to mismat
h a
onne
tion handler with a query-result handler.

In theODBC interfa
e there are fun
tions that re
eive or return pointers to stru
tures

su
h as the aforementioned handlers. For an O'Caml programmer that wants to use a

DB, it is not ne
essary to know the a
tual values stored in the stru
tures asso
iated with

those handlers, be
ause su
h information is retrieved using additional methods. Given

that it is not ne
essary for O'Caml to know the value of any handler dire
tly, they

an be represented using abstra
t data types. For example, a SQLHENV pointer (ODBC

environment handler) is hidden into the hEnv ADT:

stru
t SQLHENV*) type hEnv;;

194 APPIA-GULP-PRODE'98

4 ODBC-O'Caml Interfa
e Basi
s

4.1 Mapping RDB
on
epts to the FL Framework

The basi
 interfa
e de�ned in se
tion 3.1 establishes a dire
t link between ODBC and

O'Caml. In this se
ond stage, many improvements are implemented, being the main aim

of this layer to establish a
orresponden
e between the obje
ts handled by the relational

manager and the obje
ts handled by the fun
tional language. In addition, some sim-

pli�
ations are introdu
ed su
h as default values for the most
ommon arguments. The

obvious relationship between both worlds is to think of relational tuples as fun
tional

tuples, and relations as lists of fun
tional values. Lists are the most used data stru
tures

in fun
tional languages and
ompilers in
orporate spe
ial synta
ti
 sugaring as well as

library fun
tions for manipulating them.

relational model tuple) fun
tional model tuple

table or relation) list

The most important result of this mapping is the supression of the notion of
ursor.

Database a

eses retrieve all the information in a list, and that list
an be pro
essed with

the powerful fa
ilities of the language.

4.2 The ODBC Primitives

A set of higher-level fun
tions have been de�ned in order to
ombine the ODBC a

ess

with the powerful features of a fun
tional language (table 1). These more abstra
t de�-

nitions isolate many of the tasks asso
iated with the dire
t O'Caml-C interfa
e and the

ODBC's API. They provide the
ommon fun
tionality provided by the data manipula-

tion languages (DML's).

dbOpen dbDatabase -> dbConne
tion

dbClose dbConne
tion -> unit

dbSele
t dbConne
tion -> dbField list -> dbTable list ->

dbCondition list list ->

dbType -> dbType list

dbInsert dbConne
tion -> dbTable -> dbField list -> dbValue list ->

dbType -> unit

dbUpdate dbConne
tion -> dbTable -> dbField list -> dbValue list ->

dbCondition list list -> dbType -> unit

dbDelete dbConne
tion -> dbTable -> dbCondition list list -> unit

Table 1: High-level Interfa
e

The �rst fun
tion needed is dbOpen, whi
h given a valid database name, it delivers an

abstra
t data type dbConne
tion. This ADT represents a
onne
tion between the host,

the
omputer whi
h
arries out the fun
tional program, and the DBMS, whi
h manages

the desired database. As said, the programmer only have to spe
ify the database name;

the ODBC driver manager is in
harge of looking for more information in the ODBC

on�guration �le, for instan
e where is lo
ated the database. The abstra
t datatype

An ODBC Interfa
e for Obje
tive Caml 195

ident name qualif dept

365 Gary Baldi 17.3 a

45 Pepe Perez 13.0 exp

9516 Kurt S
hfn 14.3 mar

84 Al Fonso 24.6
us

47 Filemon Pi 21.5 exp

34 Gong Li 19.1
us

43 Fran Cis
o 19.5 a

49 Pa
o Feixo 16.2 sal

3 John Kipur 18.3 imp

53 Bill Bones 11.2 sal

(a) people table

ident name pla
e

a

 A

ount Sebatopol

us Customers Trondheim

sal Sales Kinshasa

imp Imports Setubal

exp Exports Kobe

mar Marketing Managua

(b) depts table

Figure 4: Database sampledb

dbConne
tion isolates the programmer from many details that are only needed at lower

layers.

dbSele
t retrieves tuples from the database on
e the
onne
tion has been established.

Ea
h argument of the fun
tion represents the �elds (dbField list), tables (dbTable

list), and
onditions (dbCondition list list) of a SQL statement. The meaning of

the
ondition list is as follows:

[[

11

; : : : ;

1n

℄; : : : ; [

m1

; : : : ;

mn

℄℄ � (

11

_ : : : _

1n

) ^ : : : ^ (

m1

_ : : : _

mn

)

The rest of the fun
tions, dbUpdate, dbInsert, and dbDelete, update, insert, and

delete data from the database, respe
tively. The ex
eption DbError has been de�ned in

order to
apture error
onditions during the intera
tion between O'Caml programs and

the ODBC interfa
e. The ex
eption is parametrized with an string that indi
ates the

error that has been dete
ted.

4.3 Dynami
 and Stati
 Typing

We use O'Caml stati
 type system as mu
h as possible. However, it is ne
essary to

introdu
e some dynami
 runtime type
he
ks in order to assure the
orre
t intera
tion

between O'Caml and ODBC. The dbType annotation is just an example of the type

expe
ted for every tuple in the result list. In order to make things easier, we have de�ned

some
onstants with the same names as the basi
 types. For instan
e, the annotation

(int,float,string) is a value of type (int * float * string). The goal of the

dbType annotation is two-fold. At
ompile time, the dbType annotation is used to for
e

that the values taken from the database mat
h the proposed signature and, hen
e, they

an be freely manipulated by the rest of O'Caml.

Figure 4 shows a database (sampledb) with two tables (people and depts). The

following example shows a program whi
h is reje
ted at
ompile time by the type
he
ker:

let q' = dbSele
t db ["name"℄ ["people"℄ [["qualif>=20"℄℄ (string)

in

List.hd q' + 3;;

196 APPIA-GULP-PRODE'98

This expression has type string but is

here used with type int

The dbType annotation for
es that lo
al de�nition q' to have type string list.

List.hd takes the �rst element (if any) of the result list q', so List.hd q' must have

type string: Type error raises be
ause we are trying to add a string to an integer with

the prede�ned operator (+) : int -> int -> int.

On the other hand, the dbType annotation is used to test for
onsisten
y against the

database s
hema. The following program is reje
ted at run time be
ause the proposed

type annotation does not mat
h the database s
hema:

let q' = dbSele
t db ["name";"ident"℄

["people"℄

[℄ (int);;

Un
aught ex
eption:

Failure("Type annotation does not mat
h")

The problem o

urs be
ause annotation int does not mat
h with the a
tual s
hema

of the query (string * int). Thus, any
hange in the database s
hema that a�e
ts to a

query is dete
ted. The ex
eption raised
an be
aught to perform proper re
overy from

the error
ondition:

let q' = try (dbSele
t db ["name";"ident"℄

["people"℄

[℄ (int))

with DbError -> [℄ ;;

q' : int list = [℄

In the previous example, the ex
eption is
aught and a default value (empty list) is

returned if the query
annot be
arried out.

4.4 Usage of the primitives

In this se
tion, we introdu
e some examples using the proposed primitives and the

database presented on �gure 4. Firstly, we use open a database, binding the delivered

database handler to db:

let db = dbOpen "sampledb";;

val db : db
onne
tion = <abstr>

Now, we
an sele
t the name and the department of all the people who have a quali-

�
ation greater than 18.5.

let q = dbSele
t db ["name"; "dept"℄

["people"℄

[["qualif>=18.5"℄; ["dept='
us'"; "dept='a

'"℄℄

(string, string);;

val q : (string * string) list =

[("Fran Cis
o", "a

"); ("Gong Li", "
us"); ("Al Fonso", "
us")℄

An ODBC Interfa
e for Obje
tive Caml 197

If the query is going to be used more than on
e, a fun
tion
an be de�ned. For instan
e,

the following \pro
edure" retrieves the names and quali�
ations of all the people working

at the
ustomers or a

ount department with quali�
ation greater than a given argument:

let query q = dbSele
t db ["name"; "qualif"℄

["people"℄

[["qualif > " ^ string_of_float q℄;

["dept='
us'"; "dept='a

'"℄ ℄

(string, float);;

val query : float -> (string * float) list

hen
e, query 18.5 will deliver [("Fran Cis
o", 19.5); ("Gong Li", 19.1); ("Al

Fonso", 24.6)℄. If we want to
hange the quali�
ation of a
on
rete person, we
an

de�ne:

let
hange_qualif the_name new_qualif =

dbUpdate db "people" ["qualif"℄

[string_of_float qualif℄

[["name=" ^ the_name℄℄ (float);;

val
hange_qualif : string -> float -> unit = <fun>

thus we
an
hange the quali�
ation of "Gary Baldi" to 12.4 by using update qualif

"Gari Baldi" 12.4.

All the powerful features of fun
tional languages, in parti
ular higher-order fun
tions,

an be used to implement
omplex queries. The following de�nition uses higher-order

fun
tions on lists to upgrade the quali�
ation of all the people in the a

ount or the

ustomers department with quali�
ation greater than a given quali�
ation:

let upgrade_qualif qualif amount =

let q = query qualif

in List.iter2
hange_qualif

(List.map fst q)

(List.map ((+.) amount)

(List.map snd q));;

val upgrade_qualif : float -> float -> unit = <fun>

now we
an upgrade by 0.5 the quali�
ation of all the people with a
urrent quali�
ation

greater than 18.5 using:

upgrade_qualif 18.5 0.5;;

- : unit = ()

query 18.5;;

- : (string * float) list =

[("Fran Cis
o", 20.0); ("Gong Li", 19.6); ("Al Fonso", 25.1)℄

198 APPIA-GULP-PRODE'98

5 Preliminary Results

Even though there are a lot of work in order to improve eÆ
ien
y of this interfa
e,

some measurements have been made in order to
ompare it with C
ode with embedded

ODBC
alls and with mysql [1℄ dire
tly. The example
hosen performs a query and

then
al
ulates the number of tuples delivered (�gure 5). Figure 6 presents the overhead

of a naive implementation of the interfa
e with non-optimized de�nitions. In addition

to the overhead introdu
ed by the ODBC interfa
e, it seems that our interfa
e is quite

expensive. One of the reasons is due to the ineÆ
ient non-tail re
ursion used to implement

the gathering of data from the low-level interfa
e. Figure 7 shows the same ben
hmark

with a simple tail
all optimization.

open Cdb
;;

let db = dbOpen "sampledb";;

try

let l = dbSele
t db ["ident"; "name"℄

["people"℄

[[℄℄

(int,string)

in print_int (List.length l)

with DbError m -> print_endline m;

flush stdout;;

try dbClose db

with DbError m -> print_endline m;

flush stdout;;

Figure 5: ODBC-Caml example for measuring

2
4
6
8

10
12
14
16
18
20

1024 4096 8192 16384 32768

tim
e(

s)

tuples

ODBC

mySql

O’Caml

Figure 6: Overhead of a naive implementation of O'Caml-ODBC

An ODBC Interfa
e for Obje
tive Caml 199

2
4
6
8

10
12
14
16
18
20

1024 4096 8192 16384 32768

tim
e(

s)

tuples

O’Caml

ODBC
mySql

Figure 7: Overheads introdu
ed by ODBC and O'Caml-ODBC

6 Persisten
e Issues

Persistent data manipulation may be in
orporated to a fun
tional language at di�erent

levels, ranging from a raw interfa
e with a �le system or even a database manager (our

appro
h) to make the language fully persistent. We should noti
e that our approa
h

is far from orthogonal persisten
e as a
hieved in the persistent lazy fun
tional language

Staple [2℄. To point out the way to go, let us dis
uss some prin
iples exposed in [8℄.

In persistent programming languages, programs may manipulate data values indepen-

dently of their persisten
e and need not refer to the persisten
e of the values they
reate

(prin
iple of persisten
e independen
e). Our extension does not provide su
h
apability,

being programmer's responsability to store and to retrieve the values of interest. In ad-

dition, the only values stored in the database are tuples of O'Caml basi
 types (int,

string, float,...) whi
h are the a
tual values supported by the database. In order to

permit storing any value, in
luding
losures and
y
li
 data stru
tures, (prin
iple of data

type
ompleteness) some pa
king of the stru
tures must be performed, similar to the one

exposed in [4℄.

7 Con
lusions and Future Work

An extension of a fun
tional language that allows to make queries to a relational manager

has been presented. To integrate both pa
kages, an abstra
tion in
reasing approa
h has

been used. Our �rst aim was to get all the power and maturity of a relational manager

to server as non volatile storage for fun
tional values, but the abstra
tion of fun
tional

languages may play an interesting role to redu
e the e�ort required to develop data-a

ess

pro
edures. Moreover, it
an help to build re
ursive queries, an interesting future line of

resear
h.

Future guidelines must in
lude the development of a real appli
ation, that will serve

as a real-world ben
hmark for this extension. In
on
rete, we are interested in knowing

the behaviour of the library with queries that involve dealing with big amounts of data.

The evaluation poli
y of O'Caml for
es that results of the queries must be
onverted

ompletely to lists, whi
h is not appropriate in some settings. A possible solution would

be the use of lazy lists
onstru
ted on demand. The garbage
olle
tor will re
laim the

list nodes that are no longer needed. In order to use this interfa
e easily, a web interfa
e

is being developed, using a CGI interfa
e. We expe
t to develop real-world O'Caml

200 APPIA-GULP-PRODE'98

appli
ations using this www interfa
e and the proposed interfa
e with ODBC.

As a �nal resear
h interest, we would like to in
lude persistent
apabilities in the

language and
ombine them with database storage, in the line
ommented in se
tion 6,

as well as distributed pro
essing.

Referen
es

[1℄ D. Axmark, M. Widenius, and K. Aldale. MySQL Referen
e Manual for version

3.21.19-beta. T.
.X. DataKonsulAB.

[2℄ A. J. T. Davie and D. J. M
Nally. Stati
ally typed appli
ative persistent language

environment (STAPLE) referen
e manual. Resear
h Report CS/90/14, Department

of Mathemati
al and Computational S
ien
es, University of St. Andrews, St. An-

drews, 1990.

[3℄ J.L. Freire, V.M. Gul��as, and X.M. L�opez. On the Fun
tional Approa
h to RDBMS.

In Data Management Systems, Pro
. of the 3rd Int. Workshop on Information Te
h-

nology, BIWIT'97, July 2{4, 1997, Biarritz, Fran
e, pages 169{177, Los Alamitos,

CA, 1997. IEEE Computer So
iety Press.

[4℄ K. Hammond, P. Trinder, P. Sansom, and D. M
Nally. Improving Persistent Data

Manipulation for Fun
tional Languages. Springer-Verlag, New York, NY, 1992.

Springer-Verlag Workshops in Computing.

[5℄ B. Jepson. The FreeODBC Pages. http://users.ids.net/ bjepson/freeODBC/.

[6℄ T. Johnston and M. Osborne. ODBC Developers Guide. Howard W. Sams & Com-

pany, 1994.

[7℄ X. Leroy. The Obje
tive Caml System, release 1.05. INRIA, 1997.

[8℄ A. J. T. M
Nally and Davie D. J. Two models for integrating persisten
e and lazy

fun
tional languages. SIGPLAN Noti
es, 26(5):43{52, [5℄ 1991.

[9℄ D. J. M
Nally, S. Joosten, and A. J. T. Davie. Persistent fun
tional programming.

In Fourth Int'l Workshop on Persistent Obje
t Sys., page 59, Martha's Vineyard,

MA, September 1990.

[10℄ R.S. Ni
khil. Fun
tional Databases, Fun
tional Languages. Atkinson, M.P., Bune-

man, P. & Morrison, R., Springer, 1988.

[11℄ A. Poulovassilis and P. King. Extending the fun
tional data model to
omputational

ompleteness. Le
ture Notes in CS, 416:75, Mar
h 1990.

[12℄ D. W. Shipman. The Fun
tional Data Model and the Data Language DAPLEX.

ACM Transa
tions on Database Systems, 6:140{173, 1981.

[13℄ M. Stegman, R. Signore, and J. Creamer. The ODBC Solution, Open Database

Conne
tivity in Distributed Environments. M
Graw-Hill, 1995.

[14℄ A. Yu and J. Chen. The Postgres95 user manual. Dept. of EECS, University of

California at Berkeley, 1995.

