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Abstract

In this paper, an integration of the functional language OBJECTIVE CAML and
the standard API for accesing to relational databases ODBC is presented. By using
this interface, the functional programmer can store values in a non-volatile storage
in order to recover them in future sessions using a client-server approach. In our
proposal, queries to the relational manager are encapsulated into structures quite
familiar to the functional programmer, such as lists or tuples. Hence, functional
programming is used to manipulate data retrieved from persistent storage while
efficient and mature data access is performed using a relational database.

Keywords:  Functional Programming, Relational Databases, Client-Server ar-
chitecture, Integration

1 Introduction

In this paper, an integration of the functional language OBJECTIVE CAML [7] and the
standard API for accesing to relational databases ODBC [5, 13, 6] is presented. The
proposed goal is to provide a mechanism to save functional values in persistent storage,
using as storage a relational database. Despite the fact that database access or even
persistence inside a functional language is not new [12, 10, 9, 8, 4, 11], research in this
field has been shadowed by other state-of-the-art subjects, such as semantics or efficient
functional code execution.

In our approach, queries to the relational manager are encapsulated into structures
quite familiar to the functional programmer, such as lists or tuples. A relationship be-
tween these concepts and those of the relational model must be established. As far as we
can, remote access to data is hidden by using functional programming idioms that are
translated into queries to a relational server (client/server approach). Hence, functional
programming is used to manipulate data retrieved from persistent storage while efficient
and mature data access is performed using a relational database.

The paper is structured as follows: the next section presents a brief introduction to
the standard ODBC interface. Section 3 deals with the integration methodology used.
Section 4 presents some useful primitives and how they can be used to implement func-
tional programs that perform database queries. Section 5 shows some benchmarks that
measure the overhead introduced by our interface. Section 6 presents a brief discussion
on persistence in functional languages. Finally, we conclude and present some future
work.
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2 The ODBC Interface

In the current database market, there are many different database managers and database
formats. It is quite important that all these formats and protocols can be understood by
program applications in order to access this information.

In small systems, applications are designed to access databases through a unique
DBMS, and hence, the usage of the permanent storage is straightforward. However, large
real-world applications often demand data from different sources: multiple databases,
multiple DBMS’s, different locations, etc., which can increase dramatically the devel-
opment and maintainance costs of a program. In this setting, a program has to host
different APIs (application program interfaces) for every DBMS that is (or may be) used.

As an alternative, a common interface has been proposed. This standard API, named
ODBC (Open DataBase Connectivity) allows us to create applications that can access
heterogeneous relational databases using the well-known client-server approach. Now,
the programmer does not care about the actual DBMS that is going to be used by the
final user.

ODBC - enabled ODBC - enabled ODBC - enabled

Application Application Application
ODBC API
— —
ODBC config file

Driver Manager

! } t !

{ f f
OoDBC ODBC ODBC ODBC
Driver Driver Driver Driver
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Figure 1: ODBC Architecture

Some of the advantages of using ODBC can be summarized as follows:

o Multidatabase and multiDBMS' access and the interconnection across different plat-
forms.

e Portable. Integration of any application with any DBMS, which allows new pro-
grams to use existent databases.

e Database transparency. The programmer is isolated from DBMS details.
e Location transparency. There is no need for knowing where data is located.
o Simplify development. The programmer only needs to know the ODBC API.

e Performance. Even though a new layer is added between program and data, ODBC
is designed to produce applications with performance similar to native DBMS calls.
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The ODBC architecture (figure 1) is composed by four basic components:

e The actual application. In order to use the database, it carries out calls to the
ODBC API, which generate SQL sentences and finally deliver their results.

e The driver manager. Its main goal is to coordinate the load of ODBC drivers to
access the associated DBMS on a demand basis. The application uses the ODBC
functions through the interface defined by the driver manager, which dynamically
loads the appropriate ODBC driver and sends the calls coming from the application
to the actual driver. The configuration of the drivers is hold in a separate file in
order to maintain independent the application from the DBMS’s. The following
example shows a fragment of an ODBC configuration file that specifies the driver
for a database managed by MYSQL [1] (in our tests, we have used MYSQL as

DBMS).
[sampledb]
Driver = /usr/local/lib/libmyodbc_mysql.so
DSN = sampledb
SERVER = picoro.dc.fi.udc.es
UID = mon
PWD =

where sampledb is the database identifier which is intended to be accessed using
the driver for MYSQL. DSN is the data source name, the server is the host where
the database is located, and the UID and PWD are the user and password to the
database, respectively.

o The specific DBMS driver. It takes the ODBC calls and traslates them to the
format expected by the specific DBMS which the driver is designed for, and then
translates the results to the standard ODBC format.

e The data source. Data which the applications need to access, in addition to the
DBMS, the operating system and the communication network.

3 Integration Methodology

In order to integrate ODBC access into a functional language, we use the same method-
ology proposed in [3]. In that work, our target was to integrate POSTGRES95 [14] access
to the O’CAML functional language using a multi-layer approach. Even though we were
successful in this approach, one of the main drawbacks was that we were not able to use
comercial databases nor heterogeneous database computing. With the ODBC interface,
we expect to bridge this gap.

Figure 2 shows the architecture of the proposed integration.

3.1 Low-level Interaction between ODBC and O’Caml

At the first stage, a consistent interface between ODBC and O’CAML should be provided.
An interface library is composed of a set of functions that can be used from another
programming language. A common interface between different products consists of using
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Figure 2: Components of the ODBC-Caml interface

a language like C. Both ODBC and O’CAML provides means to interact with other
software applications using the C language.

ODBC provides the driver manager, a static-linked C library that allows, among other
things, to establish a connection with the server and to carry out SQL requests. On the
other hand, O’CAML incorporates a C interface that allows to define C functions and to
use them in the same way as functions defined inside O’CAML.

Of course, things are not so easy. Data structures manipulated by different software
packages differ, so conversions must be carried out to exchange information. ODBC
establishes a cursor as a way of retrieving the result of a query from C. All the arguments
and results of the ODBC functions have C types (int, char *, pointers to low-level
structures). Giving that these types are different to that provided by the functional
language used in this experiment, suitable conversions must be performed.

3.1.1 Function Encapsulation

Every ODBC function needed by upper layers is encapsulated within a block of code
which performs suitable conversions from O’CAML arguments to ODBC arguments, calls
the actual entry point of the library function, and then performs a conversion of the result
back to O’CAML in order to be used in the functional world (figure 3).

3.1.2 Mapping C Structures to O’CaML Types

Conversion between basic types of both worlds is almost straightforward. There are basic
conversion functions provided by the O’CAML C interface. However translations between
more complex types, like those that require dynamic memory management, would require
a bit more of attention. Dynamic structures must be migrated from O’CAML heap, which
is automatically managed by O’CAML runtime system using a garbage collector to reclaim
the unused cells, to C heap which is manually managed by the programmer.
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Figure 3: Encapsulation of C functions to be used by O’CAML

C manipulation of ODBC capabilities is quite messy because the programmer must
deal with too much detail. For example, two kinds of pointers are allowed in C: generic
pointers, which can reference any kind of structure in memory, and concrete pointers,
which only can reference one data type. Moreover, being C a weakly typed language, it
permits the conversion between generic and concrete pointers freely. On the other hand,
O’CAML includes a variant of Hindley-Milner’s polymorphic type inference system, that
becomes helpful to the programmer giving that it performs a compile-time type checking
avoiding the execution of ill-typed programs.

To simplify programming with the low-level interface, we are going to map generic
pointers, used in C to handle different DB objects, to different types in O’CAML world,
so compile-time type checking will detect incorrect uses of DB objects. For example, it
will not be possible to mismatch a connection handler with a query-result handler.

In the ODBC interface there are functions that receive or return pointers to structures
such as the aforementioned handlers. For an O’CAML programmer that wants to use a
DB, it is not necessary to know the actual values stored in the structures associated with
those handlers, because such information is retrieved using additional methods. Given
that it is not necessary for O’CAML to know the value of any handler directly, they
can be represented using abstract data types. For example, a SQLHENV pointer (ODBC
environment handler) is hidden into the hEnv ADT:

struct SQLHENV* —- type hEnv;;
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4 ODBC-0O’Caml Interface Basics

4.1 Mapping RDB concepts to the FL Framework

The basic interface defined in section 3.1 establishes a direct link between ODBC and
O’CAML. In this second stage, many improvements are implemented, being the main aim
of this layer to establish a correspondence between the objects handled by the relational
manager and the objects handled by the functional language. In addition, some sim-
plifications are introduced such as default values for the most common arguments. The
obvious relationship between both worlds is to think of relational tuples as functional
tuples, and relations as lists of functional values. Lists are the most used data structures
in functional languages and compilers incorporate special syntactic sugaring as well as
library functions for manipulating them.

relational model tuple =- functional model tuple
table or relation = list

The most important result of this mapping is the supression of the notion of cursor.
Database acceses retrieve all the information in a list, and that list can be processed with
the powerful facilities of the language.

4.2 The ODBC Primitives

A set of higher-level functions have been defined in order to combine the ODBC access
with the powerful features of a functional language (table 1). These more abstract defi-
nitions isolate many of the tasks associated with the direct O’CAML-C interface and the
ODBC’s API. They provide the common functionality provided by the data manipula-
tion languages (DML’s).

dbOpen dbDatabase -> dbConnection

dbClose dbConnection -> unit

dbSelect | dbConnection -> dbField list -> dbTable list ->
dbCondition list list ->

dbType -> dbType list

dbInsert | dbConnection -> dbTable -> dbField list -> dbValue list ->
dbType -> unit

dbUpdate | dbConnection -> dbTable -> dbField list -> dbValue list ->
dbCondition list list -> dbType —-> unit
dbDelete | dbConnection -> dbTable -> dbCondition list list —-> unit

Table 1: High-level Interface

The first function needed is dbOpen, which given a valid database name, it delivers an
abstract data type dbConnection. This ADT represents a connection between the host,
the computer which carries out the functional program, and the DBMS, which manages
the desired database. As said, the programmer only have to specify the database name;
the ODBC driver manager is in charge of looking for more information in the ODBC
configuration file, for instance where is located the database. The abstract datatype
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‘ ident ‘ name qualif ‘ dept ‘

365 | Gary Baldi 17.3 acc

45 | Pepe Perez | 13.0 | exp | ident |  name place
9516 | Kurt Schfn | 14.3 mar acc Account Sebatopol
84 Al Fonso 24.6 cus cus Customers | Trondheim
47 Filemon Pi 21.5 exp sal Sales Kinshasa
34 Gong Li 19.1 cus imp Imports Setubal
43 Fran Cisco 19.5 acc exp Exports Kobe
49 Paco Feixo 16.2 sal mar | Marketing | Managua
3 John Kipur 18.3 imp

53 | Bill Bones | 11.2 | sal (b) depts table

(a) people table

Figure 4: Database sampledb

dbConnection isolates the programmer from many details that are only needed at lower
layers.

dbSelect retrieves tuples from the database once the connection has been established.
Each argument of the function represents the fields (dbField list), tables (dbTable
list), and conditions (dbCondition list list) of a SQL statement. The meaning of
the condition list is as follows:

[e1r; - s emls - s lems - semm]] = (i Voo Vem) Ao A Voo oV Cnn)

The rest of the functions, dbUpdate, dbInsert, and dbDelete, update, insert, and
delete data from the database, respectively. The exception DbError has been defined in
order to capture error conditions during the interaction between O’CAML programs and
the ODBC interface. The exception is parametrized with an string that indicates the
error that has been detected.

4.3 Dynamic and Static Typing

We use O’CAML static type system as much as possible. However, it is necessary to
introduce some dynamic runtime type checks in order to assure the correct interaction
between O’CAML and ODBC. The dbType annotation is just an example of the type
expected for every tuple in the result list. In order to make things easier, we have defined
some constants with the same names as the basic types. For instance, the annotation
(int,float,string) is a value of type (int * float * string). The goal of the
dbType annotation is two-fold. At compile time, the dbType annotation is used to force
that the values taken from the database match the proposed signature and, hence, they
can be freely manipulated by the rest of O’CAML.

Figure 4 shows a database (sampledb) with two tables (people and depts). The
following example shows a program which is rejected at compile time by the type checker:

# let q’ = dbSelect db ["name"] ["people"] [["qualif>=20"]] (string)
in
List.hd q’ + 3;;
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This expression has type string but is
here used with type int

The dbType annotation forces that local definition q’ to have type string list.
List.hd takes the first element (if any) of the result list q’, so List.hd q’ must have
type string: Type error raises because we are trying to add a string to an integer with
the predefined operator (+) : int -> int -> int.

On the other hand, the dbType annotation is used to test for consistency against the
database schema. The following program is rejected at run time because the proposed
type annotation does not match the database schema:

# let q’ = dbSelect db ["name";"ident"]
[llpeoplell]
(1 (int);;

Uncaught exception:
Failure("Type annotation does not match")

The problem occurs because annotation int does not match with the actual schema
of the query (string * int). Thus, any change in the database schema that affects to a
query is detected. The exception raised can be caught to perform proper recovery from
the error condition:

# let q’ = try (dbSelect db ["name";"ident"]
["people"]
(] (int))
with DbError -> [] ;;

q’ : int list = []

In the previous example, the exception is caught and a default value (empty list) is
returned if the query cannot be carried out.

4.4 Usage of the primitives

In this section, we introduce some examples using the proposed primitives and the
database presented on figure 4. Firstly, we use open a database, binding the delivered
database handler to db:

# let db = dbOpen "sampledb";;
val db : dbconnection = <abstr>

Now, we can select the name and the department of all the people who have a quali-
fication greater than 18.5.

# let q = dbSelect db ["name"; "dept"]
["people"]
[["qualif>=18.5"]; ["dept=’cus’"; "dept=’acc’"]]
(string, string);;

val q : (string * string) list =
[("Fran Cisco", "acc"); ("Gong Li", "cus"); ("Al Fomnso", "cus")]



An ODBC Intertace for Objective Caml 197

If the query is going to be used more than once, a function can be defined. For instance,
the following “procedure” retrieves the names and qualifications of all the people working
at the customers or account department with qualification greater than a given argument:

# let query q = dbSelect db ["name"; "qualif"]
[Ilpeoplell]
[ ["qualif > " ~ string_of_float ql;
["dept=’cus’"; "dept=’acc’"] ]
(string, float);;

val query : float -> (string * float) list

hence, query 18.5 will deliver [("Fran Cisco", 19.5); ("Gong Li", 19.1); ("Al

Fonso", 24.6)]. If we want to change the qualification of a concrete person, we can
define:

# let change_qualif the_name new_qualif =
dbUpdate db "people" ["qualif"]
[string_of_float qualif]
[["name=" ~ the_name]] (float);;

val change_qualif : string -> float -> unit = <fun>

thus we can change the qualification of ”Gary Baldi” to 12.4 by using update_qualif
"Gari Baldi" 12.4.

All the powerful features of functional languages, in particular higher-order functions,
can be used to implement complex queries. The following definition uses higher-order
functions on lists to upgrade the qualification of all the people in the account or the
customers department with qualification greater than a given qualification:

# let upgrade_qualif qualif amount =
let q = query qualif
in List.iter2 change_qualif
(List.map fst q)
(List.map ((+.) amount)
(List.map snd q));;

val upgrade_qualif : float -> float -> unit = <fun>

now we can upgrade by 0.5 the qualification of all the people with a current qualification
greater than 18.5 using:

# upgrade_qualif 18.5 0.5;;
- : unit = ()

+*

query 18.5;;
(string * float) list =
[("Fran Cisco", 20.0); ("Gong Li", 19.6); ("Al Fonso", 25.1)]
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5 Preliminary Results

Even though there are a lot of work in order to improve efficiency of this interface,
some measurements have been made in order to compare it with C code with embedded
ODBC calls and with mysQL [1] directly. The example chosen performs a query and
then calculates the number of tuples delivered (figure 5). Figure 6 presents the overhead
of a naive implementation of the interface with non-optimized definitions. In addition
to the overhead introduced by the ODBC interface, it seems that our interface is quite
expensive. One of the reasons is due to the inefficient non-tail recursion used to implement
the gathering of data from the low-level interface. Figure 7 shows the same benchmark
with a simple tail call optimization.

open Cdbc;;

let db = dbOpen '"sampledb";;

try
let 1 = dbSelect db ["ident"; "name']
["people"]
[01]

(int,string)
in print_int (List.length 1)
with DbError m -> print_endline m;
flush stdout;;

try dbClose db
with DbError m -> print_endline m;
flush stdout;;

Figure 5: ODBC-Caml example for measuring
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Figure 6: Overhead of a naive implementation of O’Caml-ODBC
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Figure 7: Overheads introduced by ODBC and O’Caml-ODBC

6 Persistence Issues

Persistent data manipulation may be incorporated to a functional language at different
levels, ranging from a raw interface with a file system or even a database manager (our
approch) to make the language fully persistent. We should notice that our approach
is far from orthogonal persistence as achieved in the persistent lazy functional language
STAPLE [2]. To point out the way to go, let us discuss some principles exposed in [8].
In persistent programming languages, programs may manipulate data values indepen-
dently of their persistence and need not refer to the persistence of the values they create
(principle of persistence independence). Our extension does not provide such capability,
being programmer’s responsability to store and to retrieve the values of interest. In ad-
dition, the only values stored in the database are tuples of O’CAML basic types (int,
string, float,...) which are the actual values supported by the database. In order to
permit storing any value, including closures and cyclic data structures, (principle of data
type completeness) some packing of the structures must be performed, similar to the one
exposed in [4].

7 Conclusions and Future Work

An extension of a functional language that allows to make queries to a relational manager
has been presented. To integrate both packages, an abstraction increasing approach has
been used. Our first aim was to get all the power and maturity of a relational manager
to server as non volatile storage for functional values, but the abstraction of functional
languages may play an interesting role to reduce the effort required to develop data-access
procedures. Moreover, it can help to build recursive queries, an interesting future line of
research.

Future guidelines must include the development of a real application, that will serve
as a real-world benchmark for this extension. In concrete, we are interested in knowing
the behaviour of the library with queries that involve dealing with big amounts of data.
The evaluation policy of O’CAML forces that results of the queries must be converted
completely to lists, which is not appropriate in some settings. A possible solution would
be the use of lazy lists constructed on demand. The garbage collector will reclaim the
list nodes that are no longer needed. In order to use this interface easily, a web interface
is being developed, using a CGI interface. We expect to develop real-world O’CAML
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applications using this www interface and the proposed interface with ODBC.

As a final research interest, we would like to include persistent capabilities in the
language and combine them with database storage, in the line commented in section 6,
as well as distributed processing.
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