
Pro
essing temporal and atemporal de
larative

knowledge in metalogi
 programming

Gaetano A. Lanzarone and Alessandro Provetti

Abstra
t

This paper
on
erns the appli
ation of logi
 programming to temporal reason-

ing, seen as a relevant instan
e of M
Carthy's approa
h to
ontextual reasoning,

where
ontexts are treated as �rst-
lass obje
ts. We introdu
e re
e
tion as a suit-

able devi
e for this kind of reasoning; in parti
ular, it makes possible to de
ontex-

tualize atoms holds(f; t) and use f as an atomi
 formula in
ombination with other

non-temporal formulae of the outer
ontext. We show these features by applying

Re
e
tive Prolog, a metalogi
 language based on logi
al re
e
tion, to a simple form

of Sergot and Kowalski's Event Cal
ulus. This rede�nition results in more expres-

sive
al
uli with dynami

ontextualization/ de
ontextualization, a well-de�ned

semanti
s and an e�e
tive pro
edural
ounterpart. Therefore, we take re
e
tion

as a promising theoreti
al prin
iple for representing and
omputing
ontexts, and

show that its embodiment in Re
e
tive Prolog -an implemented system- is useful

for temporal reasoning appli
ations.

Keywords: Knowledge Representation, Meta and Higher-Order Logi
 Program-

ming.

1 Motivations

Several AI proje
ts are
on
erned with de�ning ontologies and building knowledge bases

that are large, general-purpose, sharable and reusable, i.e., presumably, some knowledge

bases of this sort des
ribe time-dependent information together with atemporal properties

of entities of the domain. The need may arise to
ombine temporal reasoning on time-

varying information and logi
al (i.e., atemporal) reasoning with pie
es of knowledge that,

for the purpose at hand,
an be viewed as always holding.

Relations have properties that depend on user's
on
eptualization of the world. For

instan
e, the relation above represents the transitive
losure of relation on be
ause of

language
onventions and of spa
e
on
eptualization. Also, time relations su
h as before

and after are antisymmetri
 and irre
exive. A
tions taking pla
e in
ertain lo
ations

may involve invariant properties of relations and lo
ations (e.g., in a house, whi
h is in

a
ity, whi
h is in a state...). It is desirable to represent both kinds of knowledge and

ombine both kinds of reasoning within a uniform language, proof pro
edures and model-

theoreti
al semanti
s. In addition, it may be useful to state axioms relating temporal to

atemporal properties:

Both authors are with D.S.I. - Universit�a di Milano. Via Comeli
o 39, Milan. I-20135 Italy.

flanzaron,provettig�dsi.unimi.it

201

202 APPIA-GULP-PRODE'98

� if a relation always holds, then it does so over any time interval/instant:

Kb j= �) Kb j= holds at(< � >; i);

� also, if a relation holds on an interval, then an equivalent relation should hold

thereof.

An example of hybrid reasoning is a set of queries posed regarding an industrial proje
t:

A person is assigned to a proje
t only if i) she is an expert of the topi
 (and this expertise

does not
hange in the lifetime of the proje
t) and ii) she is free from other proje
ts at

the moment. This is the type of queries we are trying to address in this paper.

The paper is organized as follows. Se
tion 2 is a survey on the issue of rei�
ation

in
ontextual and temporal reasoning. In Se
. 3 we re
all the Event
al
ulus. In Se
.

4 and 5, we �rst show how this language
an a

ommodate the de�nition of EC (and

ontextual reasoning in general) by exploiting its metalanguage features; we then dis
uss

other aspe
ts of temporal reasoning that are not expressible in EC at the same level of

generality a
hieved in RP; �nally, we give examples of reasoning with mixed
ontextual

and non-
ontextual propositions.

2 Contexts and rei�ed temporal formalisms

M
Carthy [M
C93℄ dis
usses the problem of introdu
ing and formalizing
ontexts as

�rst-
lass obje
ts. The basi
 formula is

ist(p;
)

where p is a proposition and
 is a
ontext. The goal is to lift axioms for stati
 situations

to
ontexts in whi
h situations
hange, and the motivation is that [ibid℄:

[...℄ this is ne
essary if the axioms are to be in
luded in general
ommon sense

databases that
an be used by any program needing to know about the phenomenon

overed but whi
h may be
on
erned with other matters as well.

The problem is that of introdu
ing a formalization whi
h, on the one hand, is suÆ
iently

expressive for knowledge representation and has useful mathemati
al properties, and, on

the other hand, is suitable for eÆ
ient pro
essing of knowledge. In this paper we
onsider

the metalogi
al language Re
e
tive Prolog, a logi
 programming Horn-
lause language

extended with rei�
ation and logi
al re
e
tion. It has a
omplete de
larative semanti
s

and is a fully implemented system. We argue that a language with su
h
apabilities is a

suitable tool for formalizing
ontextual reasoning.

Rei�
ation is a well-known representation tool whi
h allows higher-order senten
es

to be represented in �rst-order logi
 as metasenten
es. This means that
ontexts and

ontextual senten
es
an be de
laratively de�ned at the metalevel. Logi
al re
e
tion is a

mathemati
al tool whi
h
an be given a pro
edural import so as to allow both obje
t-level

and metalevel knowledge to be exploited in proofs.

Rei�
ation and logi
al re
e
tion are the key features for over
oming the diÆ
ulties of

representing both
ontextual and non-
ontextual senten
es in the same framework. The

ase study of this paper is temporal reasoning, a relevant form of
ontextual reasoning,

and we will fo
us on the temporal formalism Event Cal
ulus, proposed by Sergot and

Kowalski for reasoning about time, a
tion and
hange within logi
 programming.

Pro
essing temporal and atemporal de
larative knowledge in metalogi
 programming 203

Temporal reasoning
an by now be
onsidered a well-established sub�eld of AI (see

[ShoM
D87℄ for an introdu
tion and overview). Nevertheless, the debate is still open on

both the ontologi
al and the logi
al aspe
ts of representing temporal information. Here

we are only interested in the te
hni
al aspe
ts of representing and deriving temporal

information in logi
al form. In this respe
t, we will take our stan
e in the debate about

the rei�ed vs. non-rei�ed approa
h [Gal91, BTK91℄. We will argue that this dispute

disappears if a proper kind of rei�
ation is adopted, and even more so if re
e
tion is taken

into a

ount, as a powerful means for dynami
 rei�
ation/unrei�
ation of propositions.

In order to do so, let us �rst review the issues about rei�
ation as they appear in the

literature. As pointed out by several authors, temporal information
an be represented in

a logi
al formalism in several ways. The general problem is how to asso
iate a temporal

and atemporal expressions in assertions.

The simplest way is the `method of temporal arguments' of [Hau87℄ where one param-

eter for time is added to an ordinary logi
 predi
ate expressing a proposition type. As

Shoham
omments in [Sho87℄, there is nothing te
hni
ally wrong with this representa-

tion, but it a

ords no spe
ial status to time. Thus, it has been dismissed in favor of the

so-
alled rei�ed approa
h.

In the rei�ed approa
h, the symbols of both the temporal and the atemporal
ompo-

nent appear as arguments to some en
ompassing symbol, as in True(p; i) or Holds(p; i),

where p is a proposition type and i is a time point or time interval. Rei�ed propositions

were featured by the �rst and most in
uential approa
hes to temporal reasoning, i.e.

Allen's Interval Cal
ulus [All84℄ and M
Dermott's Temporal Logi
 [M
D82℄. The prob-

lem is what logi
al status to assign to these symbols: rei�ed propositions formally are

onsidered as terms (being arguments), but (semanti
ally) are thought of as representing

relations. As Shoham noti
ed [Sho87℄, both [All84℄ and [M
D82℄ su�er of semanti
al

problems, i.e. neither give their senten
es a
lear meaning.

In [Sho87℄ Shoham proposed another approa
h, aimed at giving a semanti
s to the

temporal formalism, i.e., expressions: TRUE(p; i), where TRUE is neither a relation

nor a modal operator, but a
ontext symbol a�e
ting the semanti
s: the interpretation

of a relation p is determined not only by the symbol itself but also by the interval i

1

.

The non-rei�ed proposal of Ba

hus et al. [BTK91℄ maintains that Shoham is right in

seeking a well-de�ned semanti
s, but being his model-theoreti
 semanti
s non standard, it

has no available proof theory, and thus there is no reasoning pro
edure. Therefore, a non-

rei�ed logi
 is advo
ated, resulting in a two-sorted �rst-order logi
, one sort for temporal

and one sort for atemporal arguments of predi
ates, without resorting to rei�
ation. The

bene�ts of this logi
 are that the
lassi
al semanti
s and proof theory are available [ibid℄.

Another quest for unrei�
ation is from Galton in [Gal91℄. He proposes a general

method for
onverting type-rei�
ation into token-rei�
ation, so as to regard terms o

ur-

ring in temporal
ontext as individuals, without stepping outside the bounds of �rst-order

logi
. In parti
ular, he applies this method to Kowalski and Sergot's Event Cal
ulus.

However, both [BTK91℄ and [Gal91℄ admit that some expressive power is lost in the

unrei�ed approa
h. As an instan
e, the assertion `e�e
ts pre
ede their
auses'
an be

expressed in rei�ed but not in unrei�ed logi
s, sin
e it requires quanti�
ation over propo-

sitions. This is parti
ularly important also for expressing frame axioms, whi
h are ne
-

essary for temporal proje
tion.

To summarize, rei�ed approa
hes su�er from insuÆ
ient semanti
 power, while non-

rei�ed or unrei�ed approa
hes su�er from insuÆ
ient expressive power.

1

See [Mon92℄ for a dis
ussion of this issue within EC proper.

204 APPIA-GULP-PRODE'98

In order to illustrate our proposal, aimed at over
oming both limitations, we
onsider

here a simple version of the Event Cal
ulus (EC), introdu
ed by Sergot and Kowalski

[KowSer86℄ and later dis
ussed -among others- by [ChiMon93, Kow92, KowSad97, Ser90℄.

Its de�nition shows some of the
hara
teristi
s usually present in the rei�ed approa
h.

Atomi
 formulae of the form Holds(f; i) are used to express that a
uent f Jholds over

an interval of time i. In the logi
 programming framework, where meta-programming

is a
ommon te
hnique, it
omes natural to re
ognize the higher-order nature of these

propositions, and to try to represent them at the meta-level. In fa
t, [Kow92℄ observes

on Situation Cal
ulus:

Thus we write

Holds(possess(Bob Book1) S0)

instead of the weaker but also adequate

Possess(Bob Book1 S0):

In the �rst formulation, possess(Bob Book1) is a term whi
h names a relation-

ship. In the se
ond, Possess(Bob Book1 S0) is an atomi
 formula. Both represen-

tations are expressed within the formalism of �rst-order
lassi
al logi
. However,

the �rst allows variables to range over relationships whereas the se
ond does not.

If we identify relationships with atomi
 variable-free senten
es, then we
an regard

a term su
h as possess(Bob Book1) as the name of a senten
e. In this
ase Holds

is a metalevel predi
ate, [...℄ .

This re
ognition, however, had not led to a full treatment of names as �rst-
lass obje
ts

in the representation of EC, whi
h instead relied on the ambiguity between symbols and

their names. In the following, we will introdu
e a representation of EC in Re
e
tive

Prolog (RP), that emphasizes the metalinguisti
 aspe
ts whi
h Kowalski points to. We

will try to highlight:

� the ability and the elegan
e of RP in
apturing the meta-level aspe
ts of a rei�ed

formalism, viz. EC;

� the desirable features resulting from using the full metalevel ar
hite
ture of RP

and, in parti
ular, how it is possible to separate the treatment of time (dates) from

the representation of the domain-relevant obje
ts;

� how it is possible to quantify over
uent names and have amalgamated proposi-

tions with EC-
omponents (the
uents) intermixed with
omponents of the outer

program (atoms of traditional logi
 programming).

3 The Event Cal
ulus

Event Cal
ulus (EC) assumes an ontology of events,
onsidered more primitive than time,

and of
uents, i.e., partial des
riptions of the world that are true during
ertain intervals

of time and
hange their truth value in response to the o

urren
e of events over time.

Maximal and
onvex intervals of validity are
alled periods. Given a period

2

for the
uent

2

In the following the notation is Prolog-like, i.e. predi
ates,
onstant fun
tions and
onstant symbols

begin with lower
ase letters while variable symbols are upper
ase. For the sake of simpli
ity, dates will

always be natural numbers and
ompared by means of the in�x predi
ate < with its standard meaning.

Pro
essing temporal and atemporal de
larative knowledge in metalogi
 programming 205

f , no super-interval of the period exists where f holds
ontinuously. A period is bounded

by events that make the
uent
onsidered true in the world -at the start- and false in

the world -at the end. Events, then, are asso
iated with the
uents that they a�e
t

by means of relations des
ribing initiation (making true in the world) and termination

(making false in the world). Synta
ti
ally, events are represented by means of
onstants

(e1; e2; : : :) and
uents by �rst-order terms (though they may be intended as relations).

In this respe
t, EC is �rst-order.

By an Event Cal
ulus system it is usually intended a logi
 program/dedu
tive database

made up of:

i) a database of re
ords of events;

ii) a set of
ontext-dependent predi
ate de�nitions that link types of events to
uents;

iii) a set of rules for deriving
uents and their periods. A form of temporal ordering

on events must be spe
i�ed, either using absolute dates, i.e. time-stamping events,

or using a relative ordering on events, e.g. instantiating fa
ts like before(e1; e2).

An EC system
an dedu
e periods of validity of
uents and whi
h
uents hold at a
ertain

time; in its simpler version, it works under the assumption that events are re
orded into

the database in the same order as they happened in the world. The general
ase (events

re
orded in any order) is dis
ussed in Se
tion 3.2.

3.1 The Axioms of Event Cal
ulus

In this se
tion we introdu
e the Event Cal
ulus axioms as a logi
 program. We will show

a small example of querying a database of events in order to present the general axioms

that are used in the rest of the paper

3

.

Suppose there is a departmental database whi
h
ontains re
ords of promotions, re-

tirements et
. In our terminology the
hanges in the department sta� modeled by the

database are
alled events. Events are unambiguously identi�ed by des
ribing the type

of
hange they bring about, their date et
. The usual representation of events in EC,

borrowed from
ase semanti
s, is a set of instan
es of binary predi
ates, where ea
h event

is labeled by a
onstant. This is a simple and easily modi�able form that allows for

partial des
riptions of events. Updates
an be seen as additive only, albeit the
ase of

deleting wrong information is still present. For example:

happens at(e1; 1985):

a
tor(e1;mario):

a
t(e1; promotion):

relation(e1; professor):

These events in the departmental database initiate and terminate periods of time

for whi
h a person has a
ertain rank. The fa
t that Mario is a professor, written

rank(mario; professor), is an example of a
uent: an assertions des
riptive of the world

whose truth-value is de�ned over time. The link between events and
uents is established

by the de�nition of initiates and terminates:

3

For a fuller dis
ussion of EC and its motivations refer to the original proposal in [KowSer86℄ and

later developments, e.g. in [Ser90, Kow92, KowSad97℄; relevant extension of the formalism are found in

[Mon92, CCM95℄; some database appli
ations are in [DiaPat97, Sri95℄.

206 APPIA-GULP-PRODE'98

initiates(E; rank(Name;NewRank)) : � a
tor(E;Name);

a
t(E; promotion);

relation(E;NewRank):

terminates(E; rank(Name;OldRank)) : � a
tor(E;Name);

a
t(E; demotion);

relation(E;OldRank):

The user's spe
i�
ation of the domain remains de�ned as the set of
uents mentioned in

the initiates/terminates relations. Let us pro
eed to de�ne predi
ate holds, needed for

querying the database about periods of validity of a
ertain
uent, e.g. for what period

one has been professor:

?� holds(rank(mario; professor); P):

Holds is the topmost predi
ate of Event Cal
ulus and is de�ned as follows (using [; ℄ as

a grouping fun
tion):

(EC1) holds(F; [Ts; Te℄) : � happens at(E1; T s);

initiates(E1; F);

happens at(E2; T s);

terminates(E2; F);

T s < Te;

not terminated(Ts; F; T e):

The predi
ate terminated is used to make sure that during the period (Ts; T e) there are

no other events that a�e
t F

4

.

(EC2) terminated(Ts; F; T) : � happens at(Ebet; T bet);

T s � Tbet;

T bet < T;

terminates(Ebet; F):

An alternative way for querying the database is to
he
k the holding of a
uent at

a spe
i�ed date t, with a query like: ? � holds at(rank(mario; professor); T s; t). The

se
ond parameter returns the date of the event that made the
uent true as an additional

information.

(EC3) holds at(F; Ts; T) : � happens at(E; Ts);

initiates(E;F);

T s < T;

not terminated(Ts; F; T):

3.2 Dealing with Mutually Ex
lusive Fluents

A further aspe
t of EC is the treatment of mutually ex
lusive
uents. For them, Kowalski

and Sergot propose to de
lare su
h ex
lusivity, and use it to stop in
orre
t derivations

based on default persisten
e. This is ne
essary when events are re
orded in an order

di�erent from their happening

5

. Suppose for instan
e that the two positions of resear
h

assistant and professor are in
ompatible, and suppose also that it is known only that:

4

Pro
edurally, in order to minimize the interpretations of terminates, happens at is used to generate

a
andidate event to be tested against the temporal bounds; the formulation of EC2 and EC3 takes

this aspe
t into a

ount. This and other issues on the eÆ
ien
y of query-answering are dis
ussed in

[ChiMon93℄.

5

See [Sri95℄ for a dis
ussion on EC for dealing with su
h updates in temporal dedu
tive databases.

Pro
essing temporal and atemporal de
larative knowledge in metalogi
 programming 207

(e1) Mario was appointed Professor in O
tober 1990

(e2) Mario was hired as a Resear
h Assistant, e�e
tive from August 1991

(e3) Mario resigned from Professor in November 1991

Then, EC should not derive (by abuse of notation) holds(rank(mario; professor); [aug91; nov91℄),

for otherwise it would result that Mario is holding a professor and a `RA' position at the

same time. To
ope with su
h situation, it is suÆ
ient to repla
e the predi
ate terminated

in rules EC1-EC3 with broken, de�ned as follows:

(EC4) broken(Ts; F; T) : � happens at(Ebet; T bet);

T s < Tbet;

T bet < T;

initiates(Ebet; F bet);

ex
lusive(F; Fbet):

(EC5) broken(Ts; F; T) : � happens at(Ebet; T bet);

T s < Tbet;

T bet < T;

terminates(Ebet; F bet);

ex
lusive(F; Fbet):

The �rst rule for broken looks for an event that initiates an in
ompatible
uent. In

su
h
ase the interpretation of broken su

eeds and therefore the holds
all fails. The

se
ond rule
he
ks whether there is eviden
e of an in
ompatible
uent started later than

the one under
onsideration, thus breaking default persisten
e. Along with initiates and

terminates, ex
lusive is dependent on the domain. Hen
e, de�ning ex
lusive is another

way to express domain knowledge. In our example:

ex
lusive(professor; res assistant):

(�) ex
lusive(res assistant; professor):

In the example, the interpretation of rule EC4 against (�) blo
ks the derivation of an

in
orre
t period for rank(mario; res assistant). For dealing with the
ase of
ontrasting

information on the same
uent we in
lude the rule:

(EC6) ex
lusive(F; F):

4 The rôle of rei�
ation

In this Se
tion we reformulate the example of Se
tion 2 in Re
e
tive Prolog; the
hanges

in the syntax are rather limited, even if they already yield advantages w.r.t. the original

version. In Se
tion 5 a substantial departure from standard EC is taken, in order to

a
hieve the signi�
ant improvements in expressivity. To begin with, this is an example

of an event des
ription in the new syntax:

happens at(e1; 1985):

a
tor(e1;mario):

a
t(e1; promotion):

relation(e1; < professor >):

The above senten
es may
oexist in the same theory with non-
ontextual senten
es, i.e.

those not depending on time (as quoted in [M
C93℄, Quine
alled them eternal senten
es),

for instan
e:

likes(mario; english literature):

italian(mario):

rank(< professor >):

208 APPIA-GULP-PRODE'98

Noti
e that the only
hange so far is in using names (angular bra
kets) for relation

symbols o

urring as arguments of other relations or
uents. The de�nition of initiates,

terminates, holds, and holds at are now given as metalevel senten
es

6

:

initiates(E;#F ("Q")) : � rank(#F);

a
tor(E;Q);

a
t(E; promotion);

relation(E;#F):

terminates(E;#F ("Q")) : � rank(#F);

a
tor(E;Q);

a
t(E; retire);

relation(E;#F):

>From the above rules it is possible for instan
e to derive initiates(e1; < professor >

("mario")) where < professor > ("mario") is the rei�
ation (i.e., a term whi
h a
ts as

the name) of the atomi
 formula professor(mario). The predi
ates holds and holds at

are now re-de�ned at the metalevel, exploiting the metalevel negation me
hanism. The

positive rules, given below, assume the persisten
e of every
uent for whi
h an initiating

event is re
orded.

holds(#F ($Args); T s; T e) : � happens at(E1; T s);

initiates(E1;#F ($Args));

happens at(E2; T e);

T s < Te;

terminates(E2;#F ($Args)):

holds at(#F ($Args); T s; T) : � happens at(E; Ts);

T s < T;

initiates(E;#F ($Args)):

Let us stress the possibility to quantify over meta-variables ranging over names of

uents (see in the example the quanti�
ation over
uents of the kind rank); we

an therefore de�ne rules for initiation/termination at a level of generality not found

in the literature on EC. The straightforward out
ome is the possibility of querying

about (the names of) relations an individual is involved into: ? � solve(< holds >

(#F ("mario"; $Args); "Ts"; "Te")), with answer, in the example, #F =< professor >.

Again, this kind of querying was not possible in standard EC. The negative part of the

de�nition (
onsisting of metarules de�ning solve not) spe
ify the parti
ular
ases in whi
h

persisten
e does not hold. As explained in Se
tion 3.1, this is the
ase whenever a
uent

is terminated or broken.

solve not(< holds > ("#F ($Args)"; "Ts"; "Te")) : � broken(#F ($Args); T s; T e):

solve not(< holds at > ("#F ($Args)"; "Ts"; "T")) : � broken(#F ($Args); T s; T):

6

To better understand the new axioms, please refer to the Appendix and the original de�nitions in

Se
tion 3.1.

Pro
essing temporal and atemporal de
larative knowledge in metalogi
 programming 209

broken(#F ($Args); T s; T e) : � happens at(E2; T�);

T s � T�;

T� < Te;

initiates(E2;#Q($A));

ex
lusive(#F ($Args);#Q($A)):

broken(#F ($Args); T s; T e) : � happens at(E2; T�);

T s < T�;

T� < Te;

terminates(E2;#Q($A));

ex
lusive(#F ($Args);#Q($A)):

Negative
onditions are automati
ally veri�ed on every atomi
 formula whi
h is deriv-

able from the positive part of the program; they play the role of integrity
onstraints

sin
e their su

ess for
es the given formula to fail. Noti
e that extra negative
ondi-

tions on holds and holds at
an be spe
i�ed by adding new negative metarules, without

modi�
ations of those already existing. The de�nition of ex
lusive is now given at the

meta-level,
oherently with the kind of knowledge (predi
ation of predi
ates) that this

relation formalizes :

general statements: domain dependent de�nitions:

ex
lusive($Q; $Q): ex
lusive(< professor > ($X); < res assistant > ($X)):

symmetri
(< ex
lusive >): rank(< professor >):

rank(< res assistant >)

The symmetry of ex
lusive may be de
laratively and
omputationally treated by the

following auxiliary rule:

solve(#P ($X; $Y)) : � symmetri
(#P); solve(#P ($Y; $X)):

This rule is automati
ally applied via re
e
tion, and has the e�e
t of ex
hanging

the arguments of the given atomi
 formula and retrying to prove it. For instan
e,

ex
lusive(< res assistant > ($X); < professor > ($X)) whi
h is not derivable from

the given database be
omes ex
lusive(< professor > ($X); < res assistant > ($X)),

whi
h instead su

eeds)

7

. In a similar way to holds and holds at, we may de�ne pred-

i
ates holds sin
e(F luent; T ime), and holds now(F luent), by exploiting the holds at

de�nition

8

:

holds sin
e($P; T) : � date(Tnow); holds at($P; T; Tnow):

solve not(< holds sin
e > ("$P"; "T")) : � broken($P; Ts; T):

holds now($P) : � date(Tnow); holds at($P; Ts; Tnow):

5 The rôle of re
e
tion

In the previous Se
tion we have stressed that RP is suÆ
iently
exible for de�ning eter-

nal senten
es without for
ing them into a temporal form

9

. We
an now show that RP

7

Here we have the
avor of how the metalevel
an treat not only EC, but also other kinds of properties

of relations. These may also take pla
e in
ombination, if ne
essary. The a
tual number of levels used

in the
omputation
an be dedu
ed only by the ground instantiation of the program

8

Here Date(T) is a prede�ned predi
ate whi
h instantiates T to the
urrent time unit.

9

In [Sri95℄, for instan
e, eternal senten
es are treated and represented in the form:

holds(eternal senten
e; �; �) where

0

�

0

stays for in�nite.

210 APPIA-GULP-PRODE'98

re
e
tion
apabilities also allow relatively eternal senten
es and relative de
ontextual-

ization in the sense of [M
C93℄; thus introdu
ing the possibility of taking a senten
e

out of its temporal
ontext. For instan
e, assume that we want to �nd all the profes-

sors, regardless of the time when they were promoted; of
ourse, we may use a query:

?� holds now(< Professor > ("X")): Relative de
ontextualization implies instead the

possibility of querying with ? � professor(X): This
an be a
hieved by means of the

straightforward RP rule:

solve(#P ($A)) : �holds now(#P ($A)):

Using this rule, professor(mario) is derived as follows:

?� professor(mario)) fails) logi
al re
e
tion) automati
 upward re
e
tion

?� solve(< professor > ("mario"))) resolution step

?� holds now(< professor > ("mario"))) su

eeds after some steps) yes.

A rule whi
h uses professor(X) as a relatively eternal senten
e is for instan
e:

salary(X; 3000) : �professor(X):

Vi
e versa, default
ontextualization
an also be de�ned. In temporal reasoning it may

be assumed that non-
ontextual senten
es hold over any interval of time:

solve(< holds > ("$P"; "T1"; "T2")) : �solve($P):

This rule allows for instan
e to derive holds(< likes > ("mario"; "english literature"); T1; T2)

for every T1 and T2.

5.1 Time as a
ontext (sket
h)

Another relevant appli
ation of the metalevel and re
e
tion
apabilities of RP is substi-

tutivity of
uents within
ontexts. The temporal
ontext is a parti
ular example of a

transparent
ontext [M
C93℄, and substitutivity may be easily de�ned as a property of

the
ontext as in the example below:

ontext(< holds >; temporal):
ontext(< holds at >; temporal):

ontext(< holds sin
e >; temporal):
ontext(< holds now >; temporal):

transparent
ontext(temporal):

equivalent(< professor >;< instru
tor >):

symmetri
(< substitutable >):

substitutable(#R;#S) : �equivalent(#R;#S):

solve(#P ("#Q($A)"; $Other args)) : �
ontext(#P;C);

transparent
ontext(C);

substitutable(#Q;#G);

solve(#P ("#G($A)"; $Other args)):

This solve rule is yet again an auxiliary inferen
e rule whi
h is automati
ally applied via

re
e
tion whenever needed. It is de�ned on predi
ates #P whi
h have an atomi
 formula

#Q($Args) among their arguments. It applies whenever #P is a relation
on
erning a

transparent
ontext. The e�e
t is that #P of #Q($A) is derivable whenever #P of

#G($A) is, and the two predi
ates #Q and #G are substitutable, e.g., holds now(<

instru
tor > ("mario"))
an be derived from our example program.

Pro
essing temporal and atemporal de
larative knowledge in metalogi
 programming 211

6 Final remarks

Logi
 programming is a more or less obvious vehi
le for representing temporally-s
oped

knowledge, witness to it the literature from logi
 programming
onferen
es and journals.

We have shown that Meta-logi
 programming is a useful te
hnique for these tasks, o�ering

a simple but powerful representation style, and eÆ
ient query-answering me
hanisms.

Stri
tly speaking, the Re
e
tive Prolog approa
h allows to express

i) queries quanti�ed over
uent relations, e.g. ?� holds(#P (a));

ii) time-independent properties of
uents (e.g., symmetry), and

iii) hybrid statements involving temporal and atemporal
onditions.

The next step in our resear
h will be the evaluation of our approa
h against realisti

examples, e.g. [DiaPat97℄ where several
ontextual aspe
ts are present, thus showing

how the metalogi
 approa
h allows: i)several
ontexts to
oexist in the same theory, and

ii) these
ontexts to be expli
itly de�ned as transparent or opaque. What is important,

in
on
lusion, is that rei�
ation plus logi
al re
e
tion provide a tool for designing and

experimenting various forms of
ontextual reasoning, within the same appli
ation domain.

Referen
es

[All84℄ J. Allen, 1984. Towards a General Theory of A
tion and Time. Arti�
ial

Intelligen
e 23:123{154.

[BTK91℄ F. Ba

hus, J. Tenenberg and J. Koomen, 1991. A Non-rei�ed Temporal

Logi
. Arti�
ial Intelligen
e 52:87{108.

[CCM95℄ I. Cervesato, L. Chittaro and A. Montanari, 1995. A Modal Cal
ulus of

Partially Ordered Events in a Logi
 Programming Framework. Pro
. of

ICLP'95, pp. 299{313.

[ChiMon93℄ L. Chittaro and A. Montanari, 1993. Reasoning about dis
rete pro
esses in

a logi
 programming framework. Pro
. of GULP'93, pp. 407{421, Mediter-

ranean Press.

[CosLan94a℄ S. Costantini and G.A. Lanzarone, 1994. A Metalogi
 Programming Ap-

proa
h: Language, Semanti
s and Appli
ations. Journal of Experimental

and Theoreti
al Arti�
ial Intellligen
e, 6:239{287.

[CosLan94℄ S. Costantini and G.A. Lanzarone, 1994. Metalevel Negation in Non-

monotoni
 Reasoning. Methods of Logi
 in Computer S
ien
e:1.

[DiaPat97℄ O. D��az and N. Paton, 1997. Stimuli and business poli
ies as modeling

onstru
ts: their de�nition and validation through the event
al
ulus. In

Pro
. of CAiSE'97, pp. 33{46.

[Gal91℄ A. Galton, 1991. Rei�ed Temporal Theories and How to Unreify Them.

Pro
s. of 12th IJCAI, pp. 1177{1182.

212 APPIA-GULP-PRODE'98

[Hau87℄ B. Haugh, 1987. Non-standard Semanti
s for the Method of Temporal Ar-

guments. In Pro
. of 10th IJCAI, pp. 449{455.

[Kow92℄ R. Kowalski, 1992. Database Updates in the Event Cal
ulus. Journal of

Logi
 Programming 12(1-2):121{146.

[KowSad97℄ R. Kowalski and F. Sadri, 1997. Re
on
iling the Event Cal
ulus with the

Situation Cal
ulus. Journal of Logi
 Programming 31(1-3):39{58.

[KowSer86℄ R. Kowalski and M. Sergot, 1986. A Logi
-Based Cal
ulus of Events. New

Generation Computing 4, Springer Verlag, pp 67{95.

[M
C93℄ J. M
Carthy, 1993. Notes on Formalizing Context. Pro
. of AAAI Sympo-

sium on Logi
al Formalizations of Commonsense Reasoning, pp 133{146.

See also pro
. of IJCAI '93.

[M
D82℄ D. M
Dermott, 1982. A Temporal Logi
 for Reasoning about Pro
esses and

Plans. Cognitive S
ien
e 6:101{155.

[Mon92℄ A. Montanari, E. Maim, E. Ciapessoni and E. Ratto, 1992. Dealing with

Time Granularity in the Event Cal
ulus. Pro
. of FGCS'92, pp. 702-712.

[Ser90℄ M. Sergot, 1990. (Some topi
s in) Logi
 Programming in AI. Le
ture Notes

of the GULP Advan
ed S
hool on Logi
 Programming. Unpublished.

[Sho87℄ Y. Shoham, 1987. Temporal Logi
s in AI: Semanti
al and Ontologi
al Con-

siderations. Arti�
ial Intelligen
e 33:89{104.

[ShoM
D87℄ Y. Shoham and D. M
Dermott, 1987. Reasoning, Temporal. In Shapiro

S.C. (ed.), En
y
lopedia of Arti�
ial Intelligen
e, pp. 870{875.

[Sri95℄ S. Sripada, 1995. EÆ
ient implementation of the event
al
ulus for temporal

database appli
ation. Pro
. of ICLP'95, pp. 99{113.

A Re
e
tive Prolog

The metalogi
 programming and knowledge representation language Re
e
tive Prolog

[CosLan94a, CosLan94℄ is an extension of the Horn-
lause language whi
h allows the

de
larative representation of knowledge and metaknowledge at distin
t but
onne
ted

levels, uniformly in the same language.

Knowledge and metaknowledge are integrated by the same inferen
e me
hanism, whi
h

provides an automati
 intera
tion between levels (i.e., it is not ne
essary to spe
ify
ontrol

information about when to
hange the level of the inferen
e pro
ess or what kind of

knowledge to exploit in a proof). Re
e
tive Prolog implements three innovative features:

� a full naming me
hanism for terms and atoms that allows the representation of

metaknowledge (in the following, the name of a term/atom A is indi
ated by A

0

);

� the possibility of spe
ifying metaevaluation
lauses (whi
h are the
lauses de�n-

ing the distinguished predi
ates solve and solve not) that allow to de
laratively

extend/restri
t the meaning of the other predi
ates;

Pro
essing temporal and atemporal de
larative knowledge in metalogi
 programming 213

� a form of logi
al re
e
tion whi
h makes these extensions/restri
tions e�e
tive

[CosLan94a℄ yet keeping the semanti
s very similar to that of standard Horn-
lause

language.

In fa
t, in order to exploit both obje
t-level knowledge and metaknowledge in proofs,

RP does not use new inferen
e rules, and does not rely on an expli
it representation of

provability. Instead, the RP has a
lear de
larative semanti
s that leaves the underlying

logi
 un
hanged, but on the one hand impli
itly extends the program with the re
e
tion

axiom

A : �solve(A

0

)

and on the other hand restri
ts the set of a

epted interpretations to those whi
h allow

level
ommuni
ation: if A belongs to the model then also solve(A

0

) does (see [CosLan94a℄

for a
onstru
tive
hara
terization of models).

Pro
edural semanti
s for positive RP programs is based on RSLD-Resolution, an ex-

tension of the well-known SLD-Resolution. Informally, a goal A
an be resolved by a

lause with
on
lusion A (as usual), but also by a
lause with
on
lusion solve(A

0

) (up-

ward re
e
tion); vi
e versa a goal solve(A

0

)
an be resolved by a
lause with
on
lusion

solve(A

0

) (as usual), but also by a
lause with
on
lusion A (downward re
e
tion), whi
h

indeed is sear
hed as �rst. The built-in predi
ate ref(A; "A") is used in programs to

extra
t the name of terms or
onversely to pass from a name to the obje
t it names,

whenever this is possible.

A novel form of negation, metalevel negation, is de�ned by extending RSLD-Resolution

to NRSLD-Resolution fro programs using the distinguished predi
ate solve not: if A

su

eeds, solve not(A

0

) is attempted; if it su

eeds, A is for
ed to failure, otherwise

su

ess of A is maintained. Among the minimal models the sele
ted one is the one that

never entails A if it entails solve not(A

0

) [CosLan94℄.

In order to present some examples, it is useful to summarize RP naming me
hanism and

pro
edural features. The name of a
onstant or variable
 is "
"; the name of a predi
ate

symbol p is < p >, of a fun
tion symbol f is ffg; the names of a term f(a1; :::; an) and

atom p(a1; :::; an) are the name terms f(a1

0

; :::; an

0

) and < p > (a1

0

; :::; an

0

) respe
tively.

The name of a
lause A : �Body is A

0

:�Body

0

. There are four kinds of variables: obje
t

variables (syntax V) to denote obje
t-level terms; predi
ate metavariables (syntax #V) to

denote names of predi
ate symbols; fun
tion metavariables (syntax %V) to denote names

of fun
tion symbols; general metavariables (syntax $V) to denote any metalevel term.

Negation as failure is allowed in RP programs, sin
e it
an be expli
itly implemented by

means of metalevel negation [CosLan94℄. For the sake of readability, let us adopt the

following
onvention; for rules of the kind:

P (: : : ; "V "; : : :) : � : : : ; Q(: : : ; V; : : :); : : : :

the
all ref("V "; V), needed for
asting the variable name "V " appearing in the head

into the obje
t variable V a
tually used in the body, is omitted.

214 APPIA-GULP-PRODE'98

