
Code Migration with First Order Continuations

Paul Tarau

Universit�e de Moncton

taraup@umoncton.ca

Veronica Dahl

Simon Fraser University

veronica@cs.sfu.ca

Abstract

We describe a scheme for moving living code between a set of distributed processes coordinated

with uni�cation based Linda operations. Mobile threads are implemented by capturing �rst order

continuations in a compact data structure sent over the network. Code is fetched lazily from its

original base turned into a server as the continuation executes at the remote site. Our techniques,

in combination with a dynamic recompilation scheme ensuring that heavily used code moves up

smoothly on a speed hierarchy are an e�ective means for implementing mobile agents.

Keywords: mobile computations, remote execution, metaprogramming, �rst order continuations,

Linda coordination, blackboard-based logic programming, mobile code, mobile agents

1 Introduction

Data mobility has been present since the beginning of networked computing, and is now used in numerous

applications { from remote consultation of a database, to Web browsing.

Code mobility followed, often made transparent to users as with network �les systems (i.e. Sun's NFS).

Java's ability to execute applets directly in client browsers, can be seen as its most recent incarnation.

Migrating the state of the computation from one machine or process to another, still requires a

separate set of tools. Java's remote method invocations (RMI) add control mobility and a (partially)

automated form of object mobility i.e. integrated code (class) and data (state) mobility. The Oz 2.0

distributed programming proposal of [21] makes object mobility more transparent, although the mobile

entity is still the state of the objects, not \live" code.

Mobility of \live code" is called computation mobility [4]. It requires interrupting execution, moving

the state of a runtime system (stacks, for instance) from one site to another and then resuming execution.

Clearly, for some languages, this can be hard or completely impossible to achieve.

Telescript and General Magic's new Odyssey [8] agent programming framework, IBM's Java based

aglets as well as Luca Cardelli's Oblique [2] have pioneered implementation technologies achieving com-

putation mobility.

Towards the same objective, this paper will show that we can achieve full computation mobility

through our mobile threads, without needing a specially designed new language. They are implemented

by a surprisingly small, source level modi�cation of the BinProlog system, taking advantage of the avail-

ability of �rst order continuations

1

as well as of BinProlog's high level networking primitives. Mobile

threads complete our Logic Programming based Internet programming infrastructure built in view of

creating Prolog components which can interoperate with mainstream languages and programming envi-

ronments. Mobile threads can be seen as a re�nement of mobile computations as corresponding to mobile

partial computations of any granularity. Mobile agents can be seen as a collection of synchronized mobile

threads sharing common state [15]. We achieve synchronization using a variant of the Linda coordination

protocol.

The paper is organized as follows:

� section 2 describes our networking infrastructure and Linda based client/server components

� Section 3 introduces code mobility primitives

� section 4 describes engines and threads

� section 5 explains how continuations are represented as data structures

1

I.e. continuations (representations of future computations) accessible as an ordinary data structure - a Prolog term in

this case.

215

216 APPIA-GULP-PRODE'98

� section 6 explains how we implement thread mobility by capturing continuations (subsection 6.1)

and moving them from their base to their target (subsection 6.2), how this can be emulated

with remote predicate calls (subsection 6.3) and how how mobile agents can be built within our

framework (subsection 6.4)

� section 7 discusses related work

� section 8 presents our conclusions and future work

The main \paradigm independent" novelties of our contribution are:

� use of �rst order continuations for implementing mobile computations

� expressing thread mobility in terms of client-server role alternation

� creating a powerful agent building infrastructure by putting together Linda coordination, logic

programming based knowledge processing and live code migration through mobile threads.

2 Basic Linda and Remote Execution Operations

We refer to [16] for the details of our high-level client-server programming primitives and security issues

and to [13] for the platform independent and Java-compatible socket-level primitives of BinProlog.

2.1 Linda based coordination

Our networking constructs are built on top of the popular Linda [5] coordination framework, enhanced

with uni�cation based pattern matching, remote execution and a set of simple client-server components

merged together into a scalable peer-to-peer layer, forming a `web of interconnected worlds':

out(X): puts X on the server

in(X): waits until it can take an object

matching X from the server

all(X,Xs): reads the list Xs matching X

currently on the server

The presence of the all/2 collector avoids the need for backtracking over multiple remote answers. Note

that the only blocking operation is in/1. Typically, distributed programming with Linda coordination

follows consumer-producer patterns (see Fig. 1) with added
exibility over message-passing communica-

tion through associative search. Blocking rd/1, which waits until a matchingn term becomes available,

without remiving it, is easily emulated in terms of in/1 and out/1, while non-blocking rd/1 is emulated

with all/2.

BLACKBOARD

PRODUCERS

X = 1

READER

all (a(X), Xs)

Xs = [a(1), a(2)]

INTERNET

CONSUMER

WORLD

a (1)

a (2)

out (a(1))

out (a(2))

in (a(X))

Figure 1: Basic Linda operations

Code Migration with First Order Continuations 217

The MOO

2

inspired `web of worlds' metaphor [18] implemented as a set of BinProlog and Java based

Linda blackboards storing state information on servers connected over the the Internet, allows a simple

and secure remote execution mechanism through specialized server-side interpreters.

A virtual place (world) is implemented as a server listening on a port

3

which can spawn clients in the

same or separate threads interacting with other servers through a simple question/answer protocol.

A master server on a `well-known' host/port is used to exchange identi�cation information among

peers composed of clients and a server, usually running as threads of the same process.

2.2 Remote Execution Mechanisms

Implementation of arbitrary remote execution is easy in a Linda + Prolog system, due to Prolog's

metaprogramming abilities. No complex serialization/remote object packages are needed. Our primitive

remote call operation is:

host(Other_machine)=>>

remote_run(Answer,RemoteGoal).

It implements deterministic remote predicate calls with (�rst)-answer or `no' returned to the calling

site.

For instance, to iterate over the set of servers forming the receiving end of our `Web of Worlds',

after retrieving the list from a `master server' which constantly monitors them making sure that the list

re
ects login/logout information, we simply override host/1 and port/1 with intuitionistic implication

=>> [13, 6]:

ask_all_servers(Channel,Servers,Query):-

member(server_id(Channel,H,P),Servers),

host(H)=>>port(P)=>>

ask_a_server(Query,_),

fail;true.

Note that a Channel pattern is used to select a subset of relevant servers, and in particular, when

Channel is a \match all" free logical variable, all of them. By using term subsumption this allows

building sophisticated "publish/subscribe" communication patterns hierarchies.

3 Mobile Code

3.1 Mobile threads { are they needed?

Advanced mobile object and mobile agents agent systems have been built on top of Java's dynamic class

loading and its new re
ection and remote method invocation classes. IBM Japan's Aglets or General

Magic's Odyssey provide comprehensive mobility of code and data. Moreover, data is encapsulated as

state of objects. This property allows protecting sensitive components of it more easily. Distributed Oz

2 provides fully transparent movement of objects over the network, giving the illusion that the same

program runs on all the computers.

So why do we need the apparently more powerful concept of mobile \live code" i.e. mobile execution

state?

Our answer to this question is that live mobile code is needed because is still semantically simpler

than mobile object schemes. Basically, all that a programmer needs to know is that his or her program

has moved to a new site and it is executing there. A unique (in our case move thread) primitive, with

an intuitive semantics, needs to be learned. When judging about how appropriate a language feature is,

we think that the way it looks to the end user is among the most important ones. For this reason, mobile

threads are competitive with sophisticated object mobility constructs on \end-user ergonomy" grounds,

while being fairly simple to implement, as we have shown, in languages in which continuations can be

easily represented as data structures.

And what if the host language does not o�er �rst order continuations? A simple way around this is to

implement in on top of a script interpreter (e.g. a subset of Scheme or Prolog) which does support them.

As it is a good idea to limit code migration to lightweight scripts anyway, this is a very practical solution

for either C/C++ or Java based mobile code solutions, not requiring complex serialization mechanisms.

2

Multi User Domains (MUDs), Object Oriented - venerable but still well doing ancestors of more recent multi-user

Virtual Worlds, which are usually 3D-animation (VRML) based

3

Ports are operating system level abstractions denoting client or server connections over the network.

218 APPIA-GULP-PRODE'98

3.2 Lazy code fetching

In BinProlog, code is fetched lazily over the network, one predicate at a time, as needed by the execution

ow.

Code is cached in a local database and then dynamically recompiled on the
y if usage statistics

indicate that it is not volatile and it is heavily used locally.

The following operations

host(Other_machine)=>>rload(File).

host(Other_machine)=>>code(File)=>>TopGoal.

allow fetching remote �les rload/1 or on-demand fetching of a predicate at a time from a remote host

during execution of TopGoal.

This is basically the same mechanism as the one implemented for Java applet code fetching, except

that we have also implemented a caching mechanism, at predicate level (predicates are cached as dynamic

code on the server to e�ciently serve multiple clients).

3.3 Dynamic recompilation

Dynamic recompilation is used on the client side to speed-up heavily used, relatively non-volatile predi-

cates. With dynamically recompiled consulted code, listing of sources and dynamic modi�cation to any

predicate is available, while average performance stays close to statically compiled code (usually within

a factor of 2-3).

Our implementation of dynamic recompilation for BinProlog is largely motivated by the di�culty/complexity

of relying on the programmer to specify execution methods for remote code.

The intuition behind the dynamic recompilation algorithm of BinProlog is that update vs. call based

statistics are associated to each predicate declared or detected as dynamic. Dynamic (re)compilation is

triggered for relatively non-volatile predicates, which are promoted on the `speed-hierarchy' to a faster

implementation method (interpreted -> bytecode -> native). The process is restarted from the `easier

to change' interpreted representation, kept in memory in a compact form, upon an update.

We can describe BinProlog's dynamic `recompilation triggering statistics' through a simple `ther-

mostat' metaphor. Updates (assert/retract) to a predicate have the e�ect of increasing its associated

`temperature', while Calls will decrease it. Non-volatile (`cool') predicates are dynamically recompiled,

while recompilation is avoided for volatile (`hot') predicates. A ratio based on cooling factors (number of

calls, compiled/interpreted execution speed-up etc.) and heating factors (recompilation time, number of

updates etc.) smoothly adjusts for optimal overall performance, usually within a factor of 2 from static

code.

4 Engines and Answer Threads

4.1 Engines

BinProlog allows launching multiple Prolog engines having their own stack groups (heap, local stack and

trail). An engine can be seen as an abstract data-type which produces a (possibly in�nite) stream of

solutions as needed. To create a new engine, we use:

create_engine(+HeapSize,+StackSize,

+TrailSize,-Handle)

or, by using default parameters for the stacks:

create_engine(-Handle)

The Handle is a unique integer denoting the engine for further processing. To `fuel' the engine with a

goal and an expected answer variable we use:

load_engine(+Handle,+Goal,

+AnswerVariable)

No processing, except the initialization of the engine takes place, and no answer is returned with this

operation.

To get an answer from the engine we use:

Code Migration with First Order Continuations 219

ask_engine(+Handle,-Answer)

Each engine has its own heap garbage collection process and backtracks independently using its choice-

point stack and trail during the computation of an answer. Once computed, an answer is copied from

an engine to its \master".

When the stream of answers reaches its end, ask_engine/2 will simply fail. The resolution process

in an engine can be discarded at any time by simply loading another goal with load engine/3. This

allows avoiding the cost of backtracking, for instance in the case when a single answer is needed, as well

as garbage collection costs.

If for some reason we are not interested in the engine any more, we can free the space allocated to

the engine and completely discard it with:

destroy_engine(+Handle)

The following example

4

in the BinProlog distribution [13] shows a sequence of the previously described

operations:

?-create_engine(E),

load_engine(E,append(As,Bs,[1,2]),As+Bs),

ask_engine(E,R1),write(R1),nl,

ask_engine(E,R2),write(R2),nl,

destroy_engine(E).

Multiple `orthogonal engines' as shown in Figure 2 enhance the expressiveness of Prolog by allowing an

AND-branch of an engine to collect answers from multiple OR-branches of another engine. They give

to the programmer the means to see as an abstract sequence and control, the answers produced by an

engine, in a way similar to Java's Enumeration interface.

Engine 1

Producer
 OR−TREE

Answer1 Answer2

Answer3

Answer4

Answer5

Engine 2

Consumer
 OR−TREE

Figure 2: Orthogonal Engines

4.2 Threads

Engines can be assigned to their own thread by using BinProlog's POSIX thread package. A unique

primitive is needed,

ask_thread(E,R)

which launches a new thread R to perform the computation of an answer of engine E. On top of this

facility each thread can implement a separate server, client or become the base of a mobile agent.

4

See more in �les library/engines.pl, progs/engtest.pl

220 APPIA-GULP-PRODE'98

5 First order Continuations through Binarization

We will shortly explain here BinProlog's continuation passing preprocessing technique, which results in

availability of continuations as data structures accessible to the programmer.

The binarization transformation Binary clauses have only one atom in the body (except for some

in-line `builtin' operations like arithmetics), and therefore they need no `return' after a call. A trans-

formation introduced in [14] allows to faithfully represent logic programs with operationally equivalent

binary programs.

To keep things simple, we will describe our transformations in the case of de�nite programs. We will

follow here the notations of [19].

Let us de�ne the composition operator � that combines clauses by unfolding the leftmost body-goal

of the �rst argument.

Let A

0

:-A

1

,A

2

,...,A

n

and B

0

:-B

1

,...,B

m

be two clauses (suppose n > 0;m � 0). We de�ne

(A

0

:-A

1

,A

2

,...,A

n

) � (B

0

:-B

1

,...,B

m

) = (A

0

:-B

1

,...,B

m

,A

2

,...,A

n

)�

with � = mgu(A

1

,B

0

). If the atoms A

1

and B

0

do not unify, the result of the composition is denoted as

?. Furthermore, as usual, we consider A

0

:-true,A

2

,...,A

n

to be equivalent to A

0

:-A

2

,...,A

n

, and

for any clause C, ? � C = C � ? = ?. We assume that at least one operand has been renamed to a

variant with variables standardized apart.

This Prolog-like inference rule is called LD-resolution and it has the advantage of giving a more

accurate description of Prolog's operational semantics than SLD-resolution. Before introducing the

binarization transformation, we describe two auxiliary transformations.

The �rst transformation converts facts into rules by giving them the atom true as body. E.g., the

fact p is transformed into the rule p :- true.

The second transformation, inspired by [23], eliminates the metavariables by wrapping them in a

call/1 goal. E.g., the rule and(X,Y):-X, Y is transformed into and(X,Y) :- call(X), call(Y).

The transformation of [14] (binarization) adds continuations as extra arguments of atoms in a way

that preserves also �rst argument indexing.

Let P be a de�nite program and Cont a new variable. Let T and E = p(T

1

; :::; T

n

) be two expressions.

5

We denote by (E; T) the expression p(T

1

; :::; T

n

; T). Starting with the clause

(C) A : �B

1

; B

2

; :::; B

n

:

we construct the clause

(C') (A;Cont) : � (B

1

; (B

2

; :::; (B

n

; Cont))):

The set P

0

of all clauses C' obtained from the clauses of P is called the binarization of P.

The following example shows the result of this transformation on the well-known `naive reverse'

program:

app([],Ys,Ys,Cont):-true(Cont).

app([A|Xs],Ys,[A|Zs],Cont):-

app(Xs,Ys,Zs,Cont).

nrev([],[],Cont):-true(Cont).

nrev([X|Xs],Zs,Cont):-

nrev(Xs,Ys,app(Ys,[X],Zs,Cont)).

The transformation preserves a strong operational equivalence with the original program with respect

to the LD resolution rule, which is rei�ed in the syntactical structure of the resulting program, i.e. each

resolution step of an LD derivation on a de�nite program P can be mapped to an SLD-resolution step

of the binarized program P

0

.

Clearly, continuations become explicit in the binary version of the program. We have devised a

technique to access and manipulate them in an intuitive way, by modifying BinProlog's binarization

preprocessor. Basically, the clauses constructed with ::- instead of :- are considered as being already

in binary form, and not subject therefore to further binarization. By explicitly accessing their arguments,

a programmer is able to access and modify the current continuation as a `�rst order object'. Note however

that code referring to the continuation is also part of it, so that some care should be taken in manipulating

the circular term representing the continuation from `inside'.

5

Atom or term.

Code Migration with First Order Continuations 221

6 Mobile threads: Take the Future and Run

As continuations (describing future computations to be performed at a given point) are �rst order objects

in BinProlog, it is easy to extract from them a conjunction of goals representing future computations

intended to be performed at another site, send it over the network and resume working on it at that

site. The natural unit of mobility is a thread moving to a server executing multiple local and remotely

originated threads. Threads communicate with their local and remote counterparts, listening on ports

through the Linda protocol, as described in [7]. This combination of Linda based coordination and thread

mobility is intended to make building complex, pattern based agent scripts fairly easy.

6.1 Capturing continuations

Before moving to another site, the current continuation needs to be captured in a data structure (see

Appendix I). For
exibility, a wrapper capture cont for/1 is used �rst to restrict the scope of the

continuation to a (deterministic) toplevel Goal. This avoids taking irrelevant parts of the continuation

(like prompting the user for the next query) to the remote site inadvertently.

A unique logical variable is used through a backtrackable linear assumption cont marker(End) to

mark the end of the scope of the continuation with end cont(End).

From inside the continuation, call with cont/1 is used to extract the relevant segment of the con-

tinuation. Towards this end, consume cont(Closure,Marker) extracts a conjunction of goals from the

current continuation until Marker is reached, and then it applies Closure to this conjunction (calls it

with the conjunction passed to Closure as an argument).

Extracting the continuation itself is easy, by using BinProlog's ability to accept user de�ned binarized

clauses (introduced with ::- instead of :-), accessing the continuation as a `�rst order' object:

get_cont(Cont,Cont)::-true(Cont).

6.2 The Continuation Moving Protocol

Our continuation moving protocol can be described easily in terms of synchronized source side

6

, and

target side operations.

Source side operations

� wrap a Goal with a unique terminator marking the end of the continuation to be captured, and

call it with the current continuation available to it through a linearly assumed fact

7

� reserve a free port P for the future code server

� schedule on the target server a sequence of actions which will lead to resuming the execution from

right after the move thread operation (see target side operations), return and become a code server

allowing the mobile thread to fetch required predicates one a time

Target side operations are scheduled as a sequence of goals extracted from the current continuation

at the source side , and received over the network together with a small set of synchronization commands:

� schedule as delayed task a sequence of goals received from the source side and return

� wait until the source side is in server mode

� set up the back links to the source side as assumptions

� execute the delayed operations representing the moved continuation

� fetch code from the source side as needed for execution of the goals of the moved continuations

and their subcalls

� shut down the code server on the source side

6

which will be also shortly called the base of the mobile thread

7

BinProlog's linear assumptions are backtrackable additions to the database, usable at most once.

222 APPIA-GULP-PRODE'98

Communication between the base and the target side is done with remote predicate calls protected

with dynamically generated passwords shared between the two sides before the migratory component

\takes o�".

Initially the target side waits in server mode. Once the continuation is received on the target side,

the source side switches in server mode ready to execute code fetching and persistent database update

requests from its mobile counterpart on the target side.

Fig. 3 shows the connections between a mobile thread and its base.

Note that when the base turns into a server, it o�ers its own code for remote use by the moved thread

- a kind of virtual \on demand" process cloning operation, one step at a time. As the server actually acts

as a code cache, multiple moving threads can bene�t from this operation. Note also that only predicates

needed for the migratory segment of the continuation are fetched. This ensures that migratory code is

kept lightweight for most mobile applications. Synchronized communication, using Linda operations can

occur between the mobile thread and its base server, and through the server, bitween multiple mobile

threads which have migrated to various places.

As our networking infrastructure, our mobile threads are platform independent. As Java, BinProlog

is a platform independent emulator based language. As a consequence, a thread can start on a Unix

machine and move transparently to a Windows NT system and back. Binaries for various Unix and

Windows platforms are freely available at http://clement.info.umoncton.ca/BinProlog . For faster, plat-

form speci�c execution, BinProlog provides compilation to C of static code using an original partial

translation technique described in [20].

Code Cache

Code File(s)

Mobile Thread Base

Mobile
thread

Mobile

thread
Mobile

thread

return

move_thread

lazy code fetch

Target server

Base server

Figure 3: Launching a mobile thread from its base

6.3 Emulating computation mobility through control mobility

As shown in [17], part of the functionality of mobile computations can be emulated in terms of remote

predicate calls combined with remote code fetching. An implicit virtual place (host+port) can be set as

the target of the remote calls. Then, it is enough to send the top-level goal to the remote side and have

it fetch the code as needed from a server at the site from where the code originates.

Note however that this is less e�cient in terms of network transactions and less reliable than sending

the full continuation at once as with our mobile threads.

6.4 Mobile Agents

Mobile agents can be seen as a collection of synchronized mobile threads sharing common state [15].

Mobile agents are implemented by iterating thread mobility over a set of servers

8

known to a given

master server. An e�cient pyramidal deployment strategy can be used to e�ciently implement, for

instance, push technology through mobile agents. Inter-agent communication can be achieved either by

rendez-vous of two mobile threads at a given site, by communicating through a local Prolog database, or

through the base server known to all the deployed agents. Communication with the base server is easily

achieved through remote predicate calls with remote run. Basic security of mobile agents is achieved

8

possibly �ltered down to a relevant subset using a `channel'-like pattern

Code Migration with First Order Continuations 223

with randomly generated passwords, required for remote run operations, and by running them on a

restricted BinProlog machine, without user-level �le write and external process spawn operations.

7 Related work

Remote execution and code migration techniques are pioneered by [1, 10, 12]. Support for remote

procedure calls (RPC) are part of major operating systems like Sun's Solaris and Microsoft's Windows

NT.

A very large number of research projects have recently started on mobile computations/mobile agent

programming. Among the pioneers, Kahn and Cerf's Knowbots [11]. Among the most promising recent

developments, Luca Cardelli's Oblique project at Digital and mobile agent applications [2] and IBM

Japan's aglets [9]. Mobile code technologies are pioneered by General Magic's Telescript (see [8] for their

last Java based mobile agent product). General Magic's upcoming Serengeti software combines mobile

code technologies and voice recognition based command language (MagicTalk) for a new generation

of PDAs. Another mobility framework, sharing some of our objectives towards transparent high level

distributed programming is built on top of Distributed Oz [21, 22], a multi-paradigm language, also in-

cluding a logic programming component. Although thread mobility is not implemented in Distributed Oz

2, some of this functionality can be emulated in terms of network transparent mobile objects. Achieving

the illusion of a unique application transparently running on multiple sites makes implementing shared

multi-user applications particularly easy. We can achieve similar results by implementing mobile agents

(e.g. avatars) as mobile threads with parts of the shared world visible to an agent represented as dynamic

facts, lazily replicated through our lazy code fetching scheme when the agent moves. Both Distributed

Oz 2 and our BinProlog based infrastructure need a full language processor (Oz 2 or BinProlog) to be

deployed at each node. However, assuming that a Java processor is already installed, our framework's

Java client (see [17, 16]) allows this functionality to be available through applets attached to a server

side BinProlog thread. A calculus of mobility dealing with containers, called ambients, is described in

[3]. The calculus covers at very high level of generality movement and permissions to move from one

ambient to another and show how fundamental computational mechanisms like Turing machines as well

as process calculi can be expressed within the formalism. Our coordination logic of [15] introduces simi-

lar concepts, based on programming mobile avatars in shared virtual worlds. Two classes of containers,

clonable and unique regulate creation of new instances (clones) and non-copiable (unique) entities (like

electronic money), as well as their movement.

8 Conclusion

We have described how mobile threads are implemented by capturing �rst order continuations in a data

structure sent over the network. Supported by lazy code fetching and dynamic recompilation, they have

been shown to be an e�ective framework for implementing mobile agents.

The techniques presented here are not (Bin)Prolog speci�c. The most obvious porting target of our

design is to functional languages featuring �rst order continuations and threads. Another porting target

is Java and similar OO languages having threads, re
ection classes and remote method invocation. We

are working on a Java based component using an embedded continuation passing Prolog interpreter

which is already able to interoperate with BinProlog (see prototype at http://www.latech.edu/ ta-

rau/netjinni/Jinni.html). An interesting application is using BinProlog as an accelerator for Java based

threads through migration to BinProlog, execution of a computationally intensive task and return to the

Java component.

Future work will focus on intelligent mobile agents integrating knowledge and controlled natural

language processing abilities, following our previous work described in [18].

Acknowledgment

We thank for support from NSERC (grants OGP0107411 and 611024), and from the FESR of the

Universit�e de Moncton.

224 APPIA-GULP-PRODE'98

References

[1] G. T. Almes, A. P. Black, E. D. Lazowska, and J. D. Noe. The Eden System: A Technical Review.

IEEE Transactions on Software Engineering, 11(1):43{59, January 1985.

[2] K. A. Bharat and L. Cardelli. Migratory applications. In Proceedings of the 8th Annual ACM

Symposium on User Interface Software and Technology, Nov. 1995. http://gatekeeper.dec.com/

pub/DEC/SRC/research-reports/ abstracts/src-rr-138.html.

[3] L. Cardelli. Mobile ambients. Technical report, Digital, 1997. http://www.research.digital.com/

SRC/personal/Luca Cardelli/Papers.html.

[4] L. Cardelli. Mobile Computation. In J. Vitek and C. Tschudin, editors, Mobile Object Systems -

Towards the Programmable Internet, pages 3{6. Springer-Verlag, LNCS 1228, 1997.

[5] N. Carriero and D. Gelernter. Linda in context. CACM, 32(4):444{458, 1989.

[6] V. Dahl, P. Tarau, and R. Li. Assumption Grammars for Processing Natural Language. In L. Naish,

editor, Proceedings of the Fourteenth International Conference on Logic Programming, pages 256{

270, MIT press, 1997.

[7] K. De Bosschere and P. Tarau. Blackboard-based Extensions in Prolog. Software | Practice and

Experience, 26(1):49{69, Jan. 1996.

[8] GeneralMagicInc. Odissey. 1997. available at http://www.genmagic.com/agents.

[9] IBM. Aglets. http://www.trl.ibm.co.jp/aglets.

[10] E. Jul, H. Levy, N. Hutchinson, and A. Black. Fine-Grained Mobility in the Emerald System. ACM

Transactions on Computer Systems, 6(1):109{133, February 1988.

[11] R. E. Kahn and V. G. Cerf. The digital library project, volume i: The world of knowbots. 1988.

Unpublished manuscript, Corporation for National Research Initiatives, Reston, Va., Mar.

[12] J. W. Stamos and D. K. Gi�ord. Remote Evaluation. ACM Transaction on Programming Languages

and Systems, 12(4):537{565, October 1990.

[13] P. Tarau. BinProlog 5.75 User Guide. Technical Report 97-1, D�epartement d'Informatique, Univer-

sit�e de Moncton, Apr. 1997. Available from http://clement.info.umoncton.ca/BinProlog.

[14] P. Tarau and M. Boyer. Elementary Logic Programs. In P. Deransart and J. Maluszy�nski, editors,

Proceedings of Programming Language Implementation and Logic Programming, number 456 in

Lecture Notes in Computer Science, pages 159{173. Springer, Aug. 1990.

[15] P. Tarau and V. Dahl. A Coordination Logic for Agent Programming in Virtual Worlds. In W. Conen

and G. Neumann, editors, Proceedings of Asian'96 Post-Conference Workshop on Coordination

Technology for Collaborative Applications, Singapore, Dec. 1996.

[16] P. Tarau, V. Dahl, and K. De Bosschere. A Logic Programming Infrastructure for Remote Execution,

Mobile Code and Agents. In Proceedings of WETICE'97.

[17] P. Tarau, V. Dahl, and K. De Bosschere. Logic Programming Tools for Remote Execution, Mobile

Code and Agents. In Proceedings of ICLP'97 Workshop on Logic Programming and Multi Agent

Systems, Leuven, Belgium, July 1997.

[18] P. Tarau, V. Dahl, S. Rochefort, and K. De Bosschere. LogiMOO: a Multi-User Virtual World with

Agents and Natural Language Programming. In S. Pemberton, editor, Proceedings of CHI'97, pages

323{324, Mar. 1997.

[19] P. Tarau and K. De Bosschere. Memoing with Abstract Answers and Delphi Lemmas. In Y. Deville,

editor, Logic Program Synthesis and Transformation, Springer-Verlag, pages 196{209, Louvain-la-

Neuve, July 1993.

[20] P. Tarau, K. De Bosschere, and B. Demoen. Partial Translation: Towards a Portable and E�cient

Prolog Implementation Technology. Journal of Logic Programming, 29(1{3):65{83, Nov. 1996.

Code Migration with First Order Continuations 225

[21] P. Van Roy, S. Haridi, and P. Brand. Using mobility to make transparent distribution practical.

1997. manuscript.

[22] P. Van Roy, S. Haridi, P. Brand, G. Smolka, M. Mehl, and R. Scheidhouer. Mobile Objects in

Distributed Oz. ACM TOPLAS, 1997. to appear.

[23] D. H. D. Warren. Higher-order extensions to Prolog { are they needed? In D. Michie, J. Hayes,

and Y. H. Pao, editors, Machine Intelligence 10. Ellis Horwood, 1981.

Appendix I: Capturing First Order Continuations in BinProlog

% calls Goal with current continuation available to its inner calls

capture_cont_for(Goal):-

assumeal(cont_marker(End)),

Goal,

end_cont(End).

% passes Closure to be called on accumulated continuation

call_with_cont(Closure):-

assumed(cont_marker(End)),

consume_cont(Closure,End).

% gathers in conjunction goals from the current continuation

% until Marker is reached when it calls Closure on it

consume_cont(Closure,Marker):-

get_cont(Cont),

consume_cont1(Marker,(_,_,_,Cs),Cont,NewCont), % first _

call(Closure,Cs), % second _

% sets current continuation to leftover NewCont

call_cont(NewCont). % third _

% gathers goals in Gs until Marker is hit in continuation Cont

% when leftover LastCont continuation (stripped of Gs) is returned

consume_cont1(Marker,Gs,Cont,LastCont):-

strip_cont(Cont,Goal,NextCont),

(NextCont==true-> !,errmes(in_consume_cont,expected_marker(Marker))

; arg(1,NextCont,X),Marker==X->

Gs=Goal,arg(2,NextCont,LastCont)

; Gs=(Goal,OtherGs),

consume_cont1(Marker,OtherGs,NextCont,LastCont)

).

% this `binarized clause' gets the current continuation

get_cont(Cont,Cont)::-true(Cont).

% sets calls NewCont as continuation to be called next

call_cont(NewCont,_) ::- true(NewCont).

226 APPIA-GULP-PRODE'98

Appendix II: Thread Mobility in BinProlog

% wraps continuation of current thread to be taken

% by inner move_thread goal to be executed remotely

wrap_thread(Goal):-

capture_cont_for(Goal).

% picks up wrapped continuation,

% jumps to default remote site and runs it there

move_thread:-

call_with_cont(move_with_cont).

% moves to remote site goals Gs in current continuation

move_with_cont(Gs):-

% gets info about this host

detect_host(BackHost),

get_free_port(BackPort),

default_password(BackPasswd),

default_code(BackCode),

% runs delayed remote command (assumes is with +/1)

remote_run(

+todo(

host(BackHost)=>>port(BackPort)=>>code(BackCode)=>>(

sleep(5), % waits until server on BackPort is up

% runs foals Gs picked up from current continuation

(Gs->true;true), % ignores failure

% stops server back on site of origin

stop_server(BackPasswd)

)

)

),

% becomes data and code server for mobile code until is

% stopped by mobile code possessing password

server_port(BackPort)=>>run_unrestricted_server.

