
Building Complete Abstract Interpretations

in a Linear Logic-based Setting

Roberto Giacobazzi

�

Francesco Ranzato

y

Francesca Scozzari

z

Abstract

Completeness is rather uncommon, although important, property of abstract

interpretations, which arises especially in comparative semantics. Recently, the

�rst two authors proved that in most cases, given any abstract domain A, there ex-

ists the most abstract domain, called least complete extension of A, which includes

A and provides a complete abstract interpretation. In this paper we distinguish

between the standard formulation of completeness, called full completeness, and a

novel and particularly interesting one, called observation completeness. In partic-

ular we consider the problem of full and observation completeness in the context

of quantales, i.e. models of linear logic, as concrete interpretations. We prove that

various types of least complete extensions exist and, more importantly, we show

that these extensions can all be speci�ed in terms of an elegant linear logic-based

formulation. As an application, we determine the least fully complete extension of

a generic abstract domain w.r.t. a standard bottom-up concrete semantics charac-

terizing computed answer substitutions. This general result is further instantiated

to the case of groundness analysis.

Keywords: Abstract interpretation, completeness, quantale, linear logic, logic pro-

gram analysis.

1 Introduction

It is widely held that the ideal goal of any semantic approximation methodology is to

�nd sound and complete representations of concrete (actual) computations. Abstract

interpretation is one such methodology, where soundness is always required, while com-

pleteness only rarely holds. Completeness issues in abstract interpretation have been

studied since the Cousot and Cousot seminal paper [6]. The intuition is that a complete

abstract interpretation induces an abstract semantics which is as precise as possible rel-

atively to the underlying abstract domains. More technically, let us denote by L

C

the

so-called lattice of abstract interpretations of a concrete domain C [5, 6], where, for all

A;B 2 L

C

, A v B means that A is more precise (i.e. concrete) than B. Then, let us

consider the simple case of an abstract interpretation f

]

: A! A of a semantic function

�

Dipartimento di Informatica, Universit�a di Pisa, Corso Italia 40, 56125 Pisa, Italy; Ph.: +39-050-

887283; E-mail: giaco@di:unipi:it

y

Dipartimento di Matematica Pura ed Applicata, Universit�a di Padova, Via Belzoni 7, 35131 Padova,

Italy; Ph.: +39-049-8275899; E-mail: franz@math:unipd:it

z

Dipartimento di Informatica, Universit�a di Pisa, Corso Italia 40, 56125 Pisa, Italy; Ph.: +39-050-

887248; E-mail: scozzari@di:unipi:it

241

242 APPIA-GULP-PRODE'98

f : C ! C, where the abstract domain A 2 L

C

is related with C by an adjoint pair of

abstraction and concretization maps � : C ! A and : A ! C. Then, f

]

is complete

if � � f = f

]

� �. It is not too hard to see that f

]

is complete if and only if the best

correct approximation f

b

of f in A, i.e. f

b

= ��f �, is complete, and, in such a case, f

]

indeed coincides with f

b

(cf. [10]). This key observation makes completeness an abstract

domain property, namely a characteristic of the abstract domain A.

Although completeness may be sacri�ced for e�ciency { this is often the case in static

program analysis { examples of complete abstract interpretations are very common in

comparative semantics. For instance, thirteen di�erent complete abstractions of algebraic

polynomial systems have been studied in [8], and other complete abstractions appear in

type systems [3] and comparative semantics [4, 7]. Moreover, complete abstract interpre-

tations that are more concrete than a certain property of interest represent an absolute

upper bound in precision for that property. These argumentations probably stimulated

the recent trend of research on completeness in abstract interpretation [10, 12, 14, 16, 17].

It should be clear that a key problem consists in devising systematic methodologies for

transforming abstract domains so that completeness is achieved and the resulting com-

plete domains are as close as possible to the initial noncomplete ones. This problem has

been �rst raised by Mycroft [12], who gave a methodology for deriving the most concrete

domain which is complete and included in a given domain of properties. More recently,

the �rst two authors proved in [10] that when the concrete semantic function f is con-

tinuous, for any given domain A, there always exists the most abstract domain, called

least complete extension of A, which includes A and is complete for f . Analogously, [10]

solved the aforementioned problem of Mycroft, by showing that, for any given domain

A, the most concrete domain which is complete and included in a given domain A { the

so-called complete kernel of A { exists for any monotone semantic function.

In this paper, we use quantales for solving a variety of completeness problems in ab-

stract interpretation. Our goal is to solve completeness problems for binary operations.

The solutions to these problems have interesting applications in static program analysis

and comparative semantics, for instance in logic programming, where binary operations

generalize uni�cation which is the key computation step in the semantics of a logic pro-

gram, or in functional programming by considering data constructors, such as cons for

lists. Generic concrete semantic functions
 of type
 : C

1

� C

2

! C are considered,

and our basic assumption consists of dealing with concrete interpretations which are

typed quantales hC;C

1

; C

2

;
i, which is an algebraic structure with one binary operation

which is additive on both arguments. Whenever C = C

1

= C

2

, the above structure boils

down to a quantale hC;
i. Quantales turn out to be the models of intuitionistic linear

logic [1, 15, 18], and this argument will be the key point for providing explicit and ele-

gant linear logic-based representations of our least complete extensions. The linear logic

setting helps us in characterizing the objects of complete abstract domains. The main

feature of (typed) quantales is that they always admit left and right linear implications

between domain's objects. This allows us to introduce corresponding operators of linear

implications between abstract domains, denoted by A

	

_D 2 L

C

2

and D

	

^B 2 L

C

1

, for

all abstractions A 2 L

C

1

, B 2 L

C

2

and D 2 L

C

. For instance, A

	

_D is de�ned to be the

least abstract domain of C

2

containing all the linear implications between the objects of

A and D, namely f a_ d 2 C

2

j a 2 A; d 2 D g.

Our �rst result characterizes the least fully complete extension of an abstract domain

A for a semantic operation
 in terms of suitable combination of linear implication be-

tween domains.

Building Complete Abstract Interpretations in a Linear Logic-based setting 243

More in general, we consider the following problem on typed quantales: Given a �xed

abstraction D 2 L

C

and hA;Bi 2 L

C

1

� L

C

2

, does there exist the most abstract pair

of domains hA

0

; B

0

i 2 L

C

1

� L

C

2

such that hA

0

; B

0

i v hA;Bi and the triple of abstract

domains hD;A

0

; B

0

i is fully complete for
? Here, an abstract domain of observation D

is considered as �xed, and we look for the most abstract pair of domains in L

C

1

� L

C

2

which is more concrete than an initial pair hA;Bi, yet inducing full completeness. We

call this an observation completeness problem. Again we construct the solutions to this

problem in terms of linear implication of domains.

To illustrate our results, we �rst consider a simple but meaningful example involving

abstract domains for detecting irredundant lists of natural numbers, where various (left

and right) observation completeness problems are solved. Our results are then applied

in the �eld of logic program analysis. We consider as concrete semantic function a T

P

-

like transformer, whose least �xpoint coincides with the s-semantics [9], i.e. characterizes

computed answer substitutions. The T

P

operator is shown to be de�ned in terms of

three basic operations on (idempotent) substitutions: uni�cation, union, and existential

quanti�cation over a set of variables. Of course, uni�cation turns out to be the key op-

eration. In fact, sets of substitutions and uni�cation give rise to a unital commutative

quantale, and it is shown how least fully complete extensions for this quantale naturally

induce least fully complete extensions for T

P

functions. We explicitly give, in terms of

simple linear implications, the least fully complete extension for any T

P

of a generic do-

main abstracting sets of substitutions. As an example, our result is applied to variable

groundness analysis in order to characterize the least fully complete extension for the

s-semantics.

2 Basic notions

Closure operators. Given any poset P , huco(P);vi denotes the poset of all (upper)

closure operators (shortly uco's or closures) on P , i.e., monotone, idempotent and exten-

sive operators on P , ordered pointwise. Let us recall that each � 2 uco(P) is uniquely

determined by the set of its �xpoints, which is its image, i.e. �(P) = fx 2 P j �(x) =

xg, and that � v � i� �(P) � �(P). When hC;�;_;^;>;?i is a complete lattice,

huco(C);v;t;u; �x:>; idi is a complete lattice as well (here, id = �x:x). A subset X � C

is the set of �xpoints of a uco i� X is meet-closed, i.e. X =

c

(X) = f^Y j Y � Xg (note

that > 2 X). Moreover, given � 2 uco(C), h�(C);�i is a complete meet subsemilattice

of C.

The lattice of abstract interpretations. In standard Cousot and Cousot's abstract

interpretation theory, abstract domains can be equivalently speci�ed either by Galois

connections (GCs), i.e. adjunctions, or by closure operators (see [6]). In the �rst case,

the concrete domain C and the abstract domain A (both assumed to be complete lattices)

are related by a pair of adjoint functions of a GC (�;C;A;). Also, it is generally assumed

that (�;C;A;) is a Galois insertion (GI), i.e. � is onto or, equivalently, is 1{1. In the

second case instead, an abstract domain is speci�ed as an uco on the concrete domain

C. These two approaches are equivalent, modulo isomorphic representation of domain's

objects. Hence, we will identify uco(C) with the lattice L

C

of abstract interpretations

of C, i.e. the complete lattice of all possible abstract domains of the concrete domain

C. For an abstract domain A 2 L

C

, �

A

2 uco(C) will denote the corresponding uco

on C, and whenever A is speci�ed by a GI (�;C;A;) then � = � �. Often, we will

244 APPIA-GULP-PRODE'98

identify closures with their sets of �xpoints, in this case sometimes denoted by capital

Latin letters instead of lowercase Greek letters. This does not give rise to ambiguity, since

one can distinguish their use as functions or sets according to the context. The ordering

on uco(C) corresponds precisely to the standard order used to compare abstract domains

with regard to their precision: A

1

is more precise than A

2

(i.e., A

1

is more concrete than

A

2

or A

2

is more abstract than A

1

) i� A

1

v A

2

in uco(C). The lub and glb on uco(C) have

therefore the following meaning as operators on domains. Suppose fA

i

g

i2I

� uco(C):

(i) t

i2I

A

i

is the most concrete among the domains which are abstractions of all the

A

i

's, i.e. it is their least common abstraction; (ii) u

i2I

A

i

is the most abstract among

the domains (abstracting C) which are more concrete than every A

i

; this domain is also

known as reduced product of all the A

i

's.

Quantales and linear logic. Quantales have been introduced for studying the foun-

dations of the so-called quantum logic. More recently, they have been considered for

the algebraic semantics of Girard's linear logic (see [15] for an introduction). A typed

quantale is a multisorted algebra hC;C

1

; C

2

;
i, where: C;C

1

; C

2

are complete lattices,

 : C

1

�C

2

! C is a function such that c

1

W

x

i

=

W

(c

1

x

i

) and

W

y

i

c

2

=

W

(y

i

c

2

).

In other terms, a typed quantale is a 3-sorted algebra endowed with a \product"
 which

distributes on both sides over arbitrary lub's. Thus, both functions c

1

 and
 c

2

have

right adjoints denoted, resp., by c

1

_ and ^ c

2

. Hence: a
 c � b, c � a_ b, and,

dually, c
a � b, c � b^ a. Thus, two functions_: C

1

�C ! C

2

and^: C�C

2

! C

1

can be explicitly de�ned as:

a_ b =

_

f c 2 C

2

j a
 c � b g; b^ a =

_

f c 2 C

1

j c
 a � b g:

When C = C

1

= C

2

and
 is associative, a typed quantale is called quantale. It is

well-known that quantales turn out to be models of noncommutative intuitionistic linear

logic [18]. A quantale hC;
i is called commutative when
 is commutative, and this is

equivalent to require that, for all a; b 2 C, a _ b = b ^ a. Moreover, a commutative

quantale hC;
i is called unitary if there exists an object 1 2 C such that 1
a = a
1 = a

for all a 2 C. Any typed quantale hC;C

1

; C

2

;
i enjoys the following main properties:

For all c

1

; a; b 2 C

1

, c

2

; d; e 2 C

2

, l 2 C and fx

i

g

i2I

� C:

1: c

1

 (c

1

_ l) � l 2: (l ^ c

2

)
 c

2

� l

3: c

1

_

^

i2I

x

i

=

^

i2I

(c

1

_ x

i

) 4: (

^

i2I

x

i

)^ c

2

=

^

i2I

(x

i

^ c

2

)

5: (a _ b)_ l = (a_ l) ^ (b_ l) 6: l ^ (d _ e) = (l ^ d) ^ (l ^ e)

For a quantale hC;
i the following additional properties hold for all a; b; c 2 C:

1: a_ (c^ b) = (a_ c)^ b

2: b_ (a_ c) = (a
 b)_ c

3: (c^ b)^ a = c^ (a
 b)

3 Completeness problems in abstract interpretations

Let hC;C

1

; C

2

;
i be a concrete interpretation, i.e. C;C

1

; C

2

are concrete semantic do-

mains provided with an operation
 : C

1

� C

2

! C.

1

When C = C

1

= C

2

, we simply

1

The extension to generic n-ary semantic operations would be straightforward.

Building Complete Abstract Interpretations in a Linear Logic-based setting 245

use the notation hC;
i. Given the abstractions A

1

2 L

C

1

, A

2

2 L

C

2

and A 2 L

C

,

recall [6] that the best correct approximation

b

: A

1

� A

2

! A of
 is de�ned as

b

= �

C;A

�
 � h

A

1

;C

1

;

A

2

;C

2

i. It has been shown in [10] that completeness for an ab-

stract interpretation is a property depending only on the underlying abstract domains.

This means that an abstract interpretation hA;A

1

; A

2

;

]

i is complete for hC;C

1

; C

2

;
i

i� hA;A

1

; A

2

;

b

i is complete and

]

=

b

. In other terms, the best correct approx-

imation induced by the underlying abstract domains determines the property of being

complete. Because of this it is more convenient and elegant, and, of course, completely

equivalent, to reason using the closure operator approach.

Full completeness. Giacobazzi and Ranzato [10] stated the following full completeness

problem: Given a concrete interpretation hC;
i and an abstraction A 2 L

C

, does the

following system with variable � admit a most abstract solution?

�

� v A

� �
 � h�; �i = � �

(3.1)

It is shown in [10] that if
 is continuous, then the full completeness problem admits

solution for any A 2 L

C

, i.e. there exists the least fully complete extension ofA. This most

abstract solution represents the optimal domain which is complete for
 and contains a

given domain of basic properties A.

Observation completeness. The problem of full completeness clearly makes sense

only in quantales. Whenever we deal with typed quantales having di�erent concrete

domains we have to change the above notion of full completeness. We study three di�erent

problems arising from this generalization. All these problems can still be de�ned in terms

of the best correct approximation of
, namely completeness is again an abstract domain

property. An observation domain is any abstraction of the range of
. Observation

completeness problems arise when an observation domain is �xed. Given hC;C

1

; C

2

;
i,

we consider a �xed observation abstraction D 2 L

C

. Thus, the observation completeness

problem for the pair hA

1

; A

2

i 2 L

C

1

� L

C

2

admits solution when there exists the most

abstract solution in L

C

1

� L

C

2

of the system below:

�

h�; �i v hA

1

; A

2

i

�

D

�
 � h�; �i = �

D

�

(3.2)

When in addition to the observation domain we also �x any of the abstractions in the

argument domains, we obtain di�erent completeness problems. Let us consider for in-

stance the following left observation completeness problem. In this case, D 2 L

C

and

A

2

2 L

C

2

are �xed, and the solution to this problem for a given A

1

2 L

C

1

exists when

the following system admits a most abstract solution

2

:

�

� v A

1

�

D

�
 � h�; �

A

2

i = �

D

�
 � hid; �

A

2

i

(3.3)

2

By using adjunctions, the left observation completeness equation is equivalent to the following state-

ment:

8x 2 C

1

:8y 2 A

2

: �

C

1

;�

(x)

b

y = �

C;D

(x

A

2

;C

2

(y)):

246 APPIA-GULP-PRODE'98

Of course, a dual formulation can be easily given for right observation completeness.

Observation completeness characterizes those abstractions which, when applied to the

arguments of
, leave unchanged the result of a computation with respect to a given

observable property �

D

. This means that, with respect to �

D

, complete abstractions

behave like identity. This is particularly interesting when looking for the most precise

abstract interpretation with respect to a given �xed property of interest.

4 Quantales and solutions to completeness problems

Quantales and typed quantales will be here the concrete semantic structures we deal with.

With this assumption, solutions to the above completeness problems can be obtained

explicitly and elegantly in terms of linear implications. This way, such complete abstract

domains can be obtained with ease in static program analysis and comparative semantics.

Let hC;C

1

; C

2

;
i be a typed quantale playing the role of concrete interpretation. To

get the solutions, we will exploit two basic abstract domain transformers

	

_ : uco(C

1

)�

uco(C)! uco(C

2

) and

	

^ : uco(C)� uco(C

2

)! uco(C

1

), de�ned by lifting left and right

linear implications _ and ^ to domains as follows:

A

	

_D =

c

(f a_ d 2 C

2

j a 2 A; d 2 D g);

D

	

^B =

c

(f d^ b 2 C

1

j d 2 D; b 2 B g):

From the logic properties of linear implication, it is easy to derive the following distrib-

utivity laws for

	

_ and

	

^ over reduced product of abstract domains:

� A

	

_(

d

i2I

B

i

) =

d

i2I

(A

	

_B

i

)

� (

d

i2I

B

i

)

	

^A =

d

i2I

(B

i

	

^A)

Solutions to full completeness problems. The following result characterizes the

solution to full completeness problems in terms of linear implications among domain's

objects.

Theorem 4.1 A u (C

	

_A) u (A

	

^C) u ((C

	

_A)

	

^C) is the most abstract solution of

the system (3.1).

Solutions to observation completeness problems. Let us �rst consider left ob-

servation completeness problems. The next result characterizes when a left observation

completeness equation holds. We follow the notation introduced in the previous section.

Theorem 4.2 �

D

�
 � h�; �

A

2

i = �

D

�
 � hid; �

A

2

i , � v D

	

^A

2

.

Therefore, as an immediate consequence, we get the solution to the left observation

completeness problem.

Corollary 4.3 A

1

u (D

	

^A

2

) is the most abstract solution of the system (3.3).

Of course, dual results hold for solving right observation completeness problems: In

this case, the most abstract solution therefore is A

2

u (A

1

	

_D).

Let us now turn to observation completeness problems. In this case we have the

following results.

Building Complete Abstract Interpretations in a Linear Logic-based setting 247

Theorem 4.4 �

D

�
 � h�; �i = �

D

�
 � hid; idi , h�; �i v hD

	

^C

2

; C

1

	

_Di.

Corollary 4.5 hA

1

u D

	

^C

2

; A

2

u C

1

	

_Di is the most abstract solution of the sys-

tem (3.2).

4.1 The case of unital commutative quantales

When dealing with unital and commutative quantales { the models of intuitionistic linear

logic [1, 18, 15] { the solutions to full completeness problems can be simpli�ed by exploit-

ing their logical properties. The following are well-known properties of linear implication

in a unital commutative quantale hC;
i. For all a; b; c 2 C:

1: a_ (b_ c) = b_ (a_ c) 2: 1_ a = a

3: c � (c_ a)_ a 4: ((c_ a)_ a)_ a = c_ a

In particular, from the above properties, it is not hard to check that for all a 2 C,

�c:(c _ a) _ a 2 uco(C). By exploiting these remarkable properties, solutions to full

completeness problems have the following more compact form.

Theorem 4.6 If hC;
i is a unital commutative quantale then C

	

_A is the most abstract

solution of the system (3.1).

Also, next result further simpli�es such solution, by providing the following helpful

characterization of the uco C

	

_A.

Theorem 4.7 If � 2 uco(C) is the uco associated with C

	

_A, then, for all c 2 C,

�(c) =

^

a2A

(c_ a)_ a:

5 An application in data structure completeness

In this section we consider completeness problems in abstract interpretation of list data

structures. We consider the case of lists of natural numbers, even if a similar construction

can be applied in the analysis of lists of arbitrary objects.

Consider the typed quantale h}(list(N)); }(N); }(list(N)); ::i, where list(N) is the set

of all �nite lists of natural numbers and :: : }(N) � }(list(N)) ! }(list(N)) is de�ned

as:

N :: L = f [njl] j n 2 N and l 2 L g:

where ; :: L = N :: ; = ;. A list is irredundant if it does not contain twice the

same element. Let us de�ne an abstract domain for detecting irredundant lists. Let

� 2 uco(}(list(N))) be de�ned as � = f list(N); Irr g, where Irr � list(N) is the set of

irredundant lists over N . We consider � as an abstract domain of observation and look

for the most abstract solution hX; Y i 2 uco(}(N)) � uco(}(list(N))) to the observation

completeness problem:

� � :: � h�

X

; �

Y

i = � � ::

248 APPIA-GULP-PRODE'98

By Theorem 4.5, we get the following solutions:

X = �

	

^}(list(N))

=

c

(fL^M j L 2 �;M 2 }(list(N)) g)

=

c

(f Irr ^M jM 2 }(list(N)) g)

= }(N)

Y = }(N)

	

_�

=

c

(fN _ L j N 2 }(N); L 2 � g)

=

c

(fN _ Irr j N 2 }(N) g)

=

S

N�N

fL 2 }(list(N)) j l 2 L , (l 2 Irr and 8n 2 N: n is not in l) g

Thus, in order to be complete when observing irredundance, we need to consider all sets

of natural numbers and only sets of (irreduntant) lists which do not contain a given set

of natural numbers. Note that Y is the set of all irredundant lists closed by permutation

of their objects.

Let us now consider a standard abstraction � 2 uco(}(N)) like parity analysis given by

� = fN; even; odd; ; g. Here, we look for the most abstract domains X 2 uco(}(N))

and Y 2 uco(}(list(N))), which are, respectively, solutions of the following left and right

observation completeness problems:

(i) � � :: � h�

X

; �i = � � :: hid; �i (ii) � � :: � h�; �

Y

i = � � :: h�; idi

By Corollary 4.3 (and its dual), we get the following solutions:

X = �

	

^�

=

c

(f list(N) ^ list(N); list(N) ^ Irr; Irr^ list(N); Irr ^ Irr g)

= fN ; ; g

Y = �

	

_�

=

c

(fN _ Irr; even_ Irr; odd_ Irr; ;_ Irr g)

= f f [] g; Irr

even

; Irr

odd

; list(N) g

where Irr

even

= f l 2 list(N) j l 2 Irr and l does not contain even numbers g and Irr

odd

= f l 2 list(N) j l 2 Irr and l does not contain odd numbers g. Thus, for problem (i), in

order to obtain completeness it is enough to check whether a given set of numbers is empty

or not, while, for problem (ii), we only need to consider sets of irreduntant lists which do

not contain any even number (and, dually, any odd number).

6 Complete semantics for logic program analysis

In this section we characterize the optimal, i.e. most abstract, semantics for any logic pro-

gram property abstracting computed answer substitutions. The idea is that the standard

semantics of computed answer substitutions can be far too concrete for a given property

of interest. We prove that \optimal" semantics for logic programs (i.e. semantics which

are neither too concrete nor too abstract) for a given property can be obtained by solving

a completeness problem relatively to the basic operation of uni�cation.

6.1 Notation

Let V be an in�nite, recursively enumerable (r.e.) set of variables, � be a set of function

symbols and � be a set of predicate symbols, that together determine a r.e. �rst-order

Building Complete Abstract Interpretations in a Linear Logic-based setting 249

language L. Term denotes the set of terms of L. For any syntactic object s, vars(s)

denotes the set of variables occurring in s. The set of idempotent substitutions modulo

renaming on L is denoted by Sub. If �; � 2 Sub then � � � denotes the usual composition

of substitutions and dom(�) = f v 2 V j �(v) 6= v g. Objects in Sub are partially ordered

by instantiation, denoted by �. By adding to Sub an extra object � as least element,

one gets a complete lattice hSub

�

;�;_;^; �; �i, where _ is most general anti-instance,

^ is standard uni�cation and � is the empty substitution [13]. The set of most general

atoms is as usual de�ned by GAtom = f p(

�

X) j p 2 � g. We consider logic programs in

normalized form, that is, a generic Horn clause is p(

�

X) : �c; q

1

(

�

X

1

); : : : ; q

n

(

�

X

n

), where

all the tuples of variables are distinct and c 2 Sub is the idempotent substitution binding

variables to terms.

6.2 T

P

-completeness

The basic semantic structure is the unital commutative quantale h}(Sub);
i, where

}(Sub) is a complete lattice w.r.t. set-inclusion,
 : }(Sub) � }(Sub) ! }(Sub) is the

obvious lifting of uni�cation to sets of substitutions: X
 Y = f x ^ y j x 2 X; y 2 Y g,

and 1 = f�g 2 }(Sub) is the unit. It is immediate to note that, being \collecting",

h}(Sub);
i actually is a unital commutative quantale [15, Example 10, p. 18].

We consider a least �xpoint semantics for logic programs characterizing computed

answer substitutions, as usual resembling the s-semantics [2], and whose basic building

blocks are given by the operations of uni�cation, existential quanti�cation (projection)

over set of variables, and set-union. Our concrete semantic domain CInt is the set of

functions (as usual, called interpretations) which map most general atoms to sets of

substitutions, that is CInt = GAtom ! }(Sub), which ordered pointwise is trivially a

complete lattice. Often, we will �nd convenient to denote an interpretation I 2 CInt by

the set fp(

�

X); I(p(

�

X)) j p 2 �g. The semantics [[P]] of a program P is a function mapping

each most general atom into the set of its computed answer substitutions, closed by

existential quanti�cation. The result is a semantics which is more abstract than standard

s-semantics and more concrete than Clark semantics (also known as c-semantics [9]). It

is not a di�cult task to prove that this semantics can be obtained as the least �xpoint

of a continuous operator T

P

: CInt! CInt de�ned as follows: For any I 2 CInt,

T

P

(I)(p(

�

Y)) = 9

�

�

Y

[

CnP

(c

O

i=1::n

c

i

 (

�

Y =

�

X));

where C = p(

�

X) : �c; q

1

(

�

X

1

); : : : ; q

n

(

�

X

n

) { by a slight abuse of notation, c is also

thought of as a singleton set { and, for all i 2 [1::n], hq

i

(

�

X

i

); c

i

i 2 I. Here, 9

�

�

X

denotes

the existential quanti�cation of all variables but those in

�

X, C n P denotes that the

clause C of P is renamed apart with fresh variables, and hp(

�

X); ci 2 I is intended modulo

renaming.

Given an abstract domain on sets of substitutions � 2 uco(}(Sub)), a corresponding

abstraction on interpretations H�I 2 uco(CInt) can be easily de�ned as follows: For any

I 2 CInt, H�I(I) = f hp(

�

X); �(c)i j hp(

�

X); ci 2 I g. Note that for all �; � 2 uco(}(Sub))

such that � v � it trivially holds H�I v H�I.

Given a basic domain of properties of interest � 2 uco(}(Sub)), our goal is therefore

to �nd the most abstract domain containing � (more precisely, H�I) and fully complete

for any T

P

function. The idea is that of designing a domain which is complete for the

250 APPIA-GULP-PRODE'98

basic operations involved in the T

P

de�nition, and then to prove that, under weak hy-

pothesis, this domain turns out to be the right one. Since every abstract domain is

trivially fully complete for union, we only need to concentrate on uni�cation and existen-

tial quanti�cation. We �rst show that, when computing the semantics of a program, we

can move existential quanti�cation outside the �xpoint computation. De�ne the operator

9 : CInt! CInt as follows:

9(I) = f hp(

�

X); 9

�

�

X

ci j hp(

�

X); ci 2 I g:

Since 9 turns out to be a completely additive (i.e., preserving all lub's) closure operator

on CInt, one easily gets that for any continuous function f : CInt! CInt, 9(lfp(f)) =

lfp(9 � f). Following the notation above, if we de�ne T

@

P

: CInt! CInt as follows:

T

@

P

(I)(p(

�

Y)) =

[

CnP

(c

O

i=1::n

c

i

 (

�

Y =

�

X));

we get that [[P]] = 9(lfp(T

@

P

)), i.e. the standard semantics of a program can be de�ned

as an abstraction of a more concrete semantics

3

not involving existential quanti�cation.

As usual, all clauses are renamed apart, so that variables clashes are avoided. Obviously,

by de�nition, T

P

= 9 � T

@

P

holds.

A reasonable assumption for a basic abstraction � 2 uco(CInt) is that it is strictly

stronger than existential quanti�cation, i.e. that � � 9 = � holds. This means that

T

P

= 9 � T

@

P

is a semantics concrete enough to represent the properties of �, and

therefore it can be rightfully considered as a concrete semantics for �.

Proposition 6.1 Let � 2 uco(CInt) such that ��9 = �. Then, for any P , �(lfp(T

P

)) =

�(lfp(T

@

P

)).

Next result shows that any abstract domain which is fully complete for uni�cation
 and

includes the basic domain �, is fully complete for T

@

P

as well.

Theorem 6.2 Let � 2 uco(}(Sub)). If � is fully complete for
 then, for any P , H�I �

T

@

P

= H�I � T

@

P

� H�I.

As announced, the following key result shows that the least fully complete extension

of a basic domain � for T

@

P

can always be obtained, by means of the transformer H�I,

from the corresponding least fully complete extension }(Sub)

	

_� of � in the quantale

h}(Sub);
i, as characterized by Theorem 4.6. Roughly, the idea of the proof is that, for

any strict abstraction of }(Sub)

	

_�, it is possible to build a program P for which this

domain is not fully complete. This can be done when � is a decidable abstract domain,

in the following natural sense.

De�nition 6.3 � 2 uco(}(Sub)) is decidable if any x 2 � is a r.e. set.

It should be clear that decidability is a reasonable requirement for most abstract domains

used in program analysis: When dealing with a decidable abstraction, an e�ective pro-

cedure for checking whether a substitution belongs to (is approximated by) an abstract

object is available.

3

Being existential quanti�cation 9 a uco, it can be viewed as an abstraction of CInt.

Building Complete Abstract Interpretations in a Linear Logic-based setting 251

Theorem 6.4 Let � 2 uco(}(Sub)) be decidable. Then, H}(Sub)

	

_�I is the least fully

complete extension of � for any T

@

P

.

Thus, as a consequence, we readily gets the following main result which states that, for

a wide family of analyses, the most abstract domains which are complete for the semantics

of logic programs can be systematically derived by looking for the most abstract domains

complete for uni�cation.

Corollary 6.5 Let � 2 uco(}(Sub)) be decidable and 9 v H�I. Then, H}(Sub)

	

_�I is

the least fully complete extension of H�I for any T

P

.

6.3 Complete semantics for groundness analysis

Logic program groundness analysis aims to statically detecting whether variables will be

bound to ground terms in successful derivations. Groundness analysis is arguably one of

the most important analysis for logic-based languages. By exploiting the results above,

if G denotes the basic abstract domain representing groundness information, we are here

able to characterize the least fully complete extension of G for any �xpoint transformer

T

P

.

If V � V is a �nite set of variables of interest, the simplest abstract domain for

representing groundness information of variables in V is G

V

= h}(V);�i, as �rst put

forward by Jones and S�ndergaard [11]. The intuition is that each W 2 G

V

represents

the set of substitutions which ground every variable in W . G

V

is related to the concrete

domain }(Sub) by the following concretization function: For each W 2 G,

G

V

(W) =

f � 2 Sub j 8v 2 W: vars(�(v)) = ; g. As usual, we shall abuse of notation and G

V

will

also denote the corresponding isomorphic image

G

V

(G

V

).

A variable independent abstract domain G 2 uco(CInt) for representing groundness

information can be de�ned by:

G(I) = f hp(

�

X);G

�

X

(c)i j hp(

�

X); ci 2 I g:

It is easily seen that G is an uco on our concrete semantic domain CInt. Moreover,

existential quanti�cation turns out to be more concrete than G and G is clearly decidable.

Proposition 6.6 G � 9 = G and G is decidable.

Thus, as an easy consequence of Theorem 6.4, we can prove the following result, where

V �

f

V means that V is a �nite subset of V.

Theorem 6.7

d

V�

f

V

H}(Sub)

	

_G

V

I is the least fully complete extension of G for any

T

P

.

Example 6.8 Consider the language L = f a=0; f=1 g [V [�, where � = f p=1 g and

V = fX

i

g

i2N

. Then, let us consider the following program P built over L:

p(X

0

) : �X

0

= a:

p(X

0

) : �X

0

= f(X

1

):

252 APPIA-GULP-PRODE'98

Recall that the Clark semantics [[P]]

c

(also known as c-semantics [9]) of a program P

characterizes the correct answer substitutions for P , and can be obtained from the s-

semantics [[P]]

s

by the closure under instantiation �X: # X: Thus, in our notation, for

any predicate symbol p, [[P]]

c

(p(

�

X)) = # ([[P]]

s

(p(

�

X))) = # ([[P]](p(

�

X))). It is then an

easy task to check that, for any variable X

i

2 V,

[[P]]

s

(p(X

i

)) = f fX

i

 a g g [f fX

i

 f(X

j

) g j X

j

2 V; X

i

6= X

j

g

[[P]](p(X

i

)) = f fX

i

 a g g [f fX

i

 f(t) g j t 2 Term;X

i

62 vars(t) g

[[P]]

c

(p(X

i

)) = f � 2 Sub j 8X

j

:�(X

i

) 6= X

j

g:

In this case, the least fully complete extension of Theorem 6.7, when applied to the

s-semantics [[P]] 2 CInt, acts as follows:

((

d

V�

f

V

H}(Sub)

	

_G

V

I)([[P]]))(p(X

i

)) = Sub:

Before proving this last equality, let us informally justify it. Intuitively, a fully complete

semantics including groundness information should be able to observe both groundness

and failures: Groundness, of course, because it is as concrete as the domain of observation,

i.e. the groundness domain; failures because, being fully complete for uni�cation, it is able

to discriminate between succeeded and failed computations. Therefore, when considering

a predicate whose computed answers include all possible ground substitutions and some

nonground substitutions, this ensures us that we can have neither groundness nor failures,

since for all possible goals, we have at least one answer for that goal. Thus, the most

abstract fully complete semantics including groundness information does not need to

distinguish between such a program and one whose computed answers are all possible

substitutions, since both such programs have the same (negative) result for groundness

analysis and do not fail for any goal.

Let us now prove the equality above by proving that, for all V �

f

V and g 2 G

V

,

[[P]](p(X

i

)) _ g = g. It su�ces to show that [[P]](p(X

i

)) _ ; = ;, and, for any v 2 V,

[[P]](p(X

i

)) _ f v g = f v g. � 2 [[P]](p(X

i

)) _ ; i� for all � 2 [[P]](p(X

i

)) it holds

� ^ � = � . But note that, given any substitution �, there always exists a � 2 [[P]](p(X

i

))

which uni�es with �, and therefore [[P]](p(X

i

)) _ ; = ;. On the other hand, for each

v 2 V, � 2 [[P]](p(X

i

))_ f v g i� 8� 2 [[P]](p(X

i

)) such that �^� 6= � it holds �^� 2 f v g.

We have the following cases, where Z is a fresh variable not in �:

�(X

i

) = a) � ^ fX

i

 a g = �) � 2 v;

�(X

i

) = f(t)) � ^ fX

i

 f(t) g = �) � 2 v;

�(X

i

) = X

j

) � ^ fX

i

 f(Z) g 2 v i� � 2 v) � 2 v:

Hence, by Theorem 4.7,

(

d

V�

f

V

H}(Sub)

	

_G

V

I)([[P]])(p(X

i

))

=

V

V�

f

V

V

g2G

V

([[P]](p(X

i

))_ g)_ g

=

V

V�

f

V

V

g2G

V

g _ g

= Sub:

It is also worth noting that if we consider the equivalence relation on programs induced

by the semantics (

d

V�

f

V

H}(Sub)

	

_G

V

I)([[P]]), the program P is in the same equivalence

class of the program f p(X

0

): g.

Building Complete Abstract Interpretations in a Linear Logic-based setting 253

7 Conclusion

Few applications are known of algebraic semantics of linear logic. We believe that the

strong connection here given between completeness in abstract interpretation and linear

implication might be a source for a number of applications of linear logic in static program

analysis, and, more in general, in abstract interpretation.

References

[1] V.M. Abrusci. Non-commutative intuitionistic linear propositional logic. Z. Math. Logik

Grundlag. Math., 36:297-318, 1990.

[2] A. Bossi, M. Gabbrielli, G. Levi, and M. Martelli. The s-semantics approach: theory and

applications. J. Logic Program., 19-20:149{197, 1994.

[3] P. Cousot. Types as abstract interpretations (Invited Paper). In Proc. 24th ACM POPL,

pages 316{331, 1997.

[4] P. Cousot. Constructive design of a hierarchy of semantics of a transition system by

abstract interpretation (Invited Paper). In Proc. of the 13th Int. Symp. on Math. Found.

of Programming Semantics (MFPS'97), Electronic Notes in Theor. Comput. Sci., 1997.

[5] P. Cousot and R. Cousot. Abstract interpretation: a uni�ed lattice model for static analysis

of programs by construction or approximation of �xpoints. In Proc. 4th ACM POPL, pages

238{252, 1977.

[6] P. Cousot and R. Cousot. Systematic design of program analysis frameworks. In Proc. 6th

ACM POPL, pages 269{282, 1979.

[7] P. Cousot and R. Cousot. Inductive de�nitions, semantics and abstract interpretation. In

Proc. 19th ACM POPL, pages 83{94. ACM Press, 1992.

[8] P. Cousot and R. Cousot. Abstract interpretation of algebraic polynomial systems. In

Proc. 6th Int. Conf. on Algebraic Methodology and Software Technology (AMAST'97),

LNCS 1349, pages 138{154, 1997.

[9] M. Falaschi, G. Levi, M. Martelli, and C. Palamidessi. Declarative modeling of the opera-

tional behavior of logic languages. Theor. Comput. Sci., 69(3):289{318, 1989.

[10] R. Giacobazzi and F. Ranzato. Completeness in abstract interpretation: a domain per-

spective. In Proc. 6th Int. Conf. on Algebraic Methodology and Software Technology

(AMAST'97), LNCS 1349, pages 231{245, 1997.

[11] N.D. Jones and H. S�ndergaard. A semantics-based framework for the abstract inter-

pretation of Prolog. In S. Abramsky and C. Hankin, editors, Abstract Interpretation of

Declarative Languages, pages 123{142. Ellis Horwood Ltd, 1987.

[12] A. Mycroft. Completeness and predicate-based abstract interpretation. In Proc. ACM

Conf. on Partial Evaluation and Program Manipulation (PEPM'93), pages 179{185, 1993.

[13] C. Palamidessi. Algebraic properties of idempotent substitutions. In Proc. 17th Int. Colloq.

on Automata, Languages and Programming (ICALP'90), LNCS 443, pages 386{399, 1990.

[14] U.S. Reddy and S.N. Kamin. On the power of abstract interpretation. Computer Languages,

19(2):79{89, 1993.

[15] K.I Rosenthal. Quantales and their Applications. Longman Scienti�c & Technical, 1990.

[16] R.C. Sekar, P. Mishra, and I.V. Ramakrishnan. On the power and limitation of strictness

analysis. J. ACM, 44(3):505{525, 1997.

[17] B. Ste�en. Optimal data ow analysis via observational equivalence. In Proc. 14th Int.

Symp. on Math. Found. of Comp. Sci. (MFCS'89), LNCS 379, pages 492{502, 1989.

[18] D. Yetter. Quantales and (noncommutative) linear logic. J. Symbolic Logic, 55(1):41{64,

1990.

254 APPIA-GULP-PRODE'98

