
The Correctness of Set-Sharing

Patricia M. Hill, Roberto Bagnara, and Enea Za�anella

Abstract

It is important that practical data
ow analysers are backed by reliably proven

theoretical results. Sharing is an abstract domain that is a standard choice for

sharing analysis for both practical work and further theoretical study. In spite

of this, we found that there are no satisfactory proofs for the key properties of

commutativity and idempotence that are essential for Sharing to be well-de�ned

and that published statements of the safeness property assumed the occur-check.

This paper provides a generalisation of the abstraction function for Sharing that

can be applied to any language, with or without the occur-check. The results

for safeness, idempotence and commutativity for abstract uni�cation using this

abstraction function are given.

1 Introduction

Today, talking about sharing analysis for logic programs is almost the same as talking

about the set-sharing domain Sharing of Jacobs and Langen [6, 7]. Key properties such

as commutativity and soundness of this domain and its associated abstract operations

are normally assumed to hold. The main reason for this is that [7] not only includes a

proof of the soundness but also refers the reader to the thesis of Langen [11] for proofs

of commutativity and idempotence.

In abstract interpretation, the concrete semantics of a program is approximated by an

abstract semantics. In particular, the concrete domain is replaced by an abstract domain

and each elementary operation on the concrete domain is replaced by a corresponding

abstract operation on the abstract domain. Thus, assuming the global abstract procedure

mimics the concrete execution procedure, each operation on elements in the abstract

domain must produce an approximation of the corresponding operation on corresponding

elements in the concrete domain. The key operation in a logic programming derivation

is uni�cation (unify) and the corresponding operation for an abstract domain is aunify.

An important step in standard uni�cation algorithms is the occur-check which avoids

the generation of in�nite data structures. However, in computational terms, it is ex-

pensive and it is well known that Prolog implementations by default omit this check.

Although standard uni�cation algorithms that include the occur-check produce a sub-

stitution that is idempotent, the resulting substitution when the occur-check is omitted,

Patricia M. Hill is with the School of Computer Studies, University of Leeds, Leeds, LS2 9JT, U.K.

E-mail: hill@scs.leeds.ac.uk.

Roberto Bagnara is with the Dipartimento di Matematica, Universit�a di Parma, Via M. D'Azeglio

85/A, Parma, Italy. E-mail: bagnara@prmat.math.unipr.it. Much of his work was supported by

EPSRC grant GR/L19515.

Enea Za�anella is with the Servizio IX Automazione, Universit�a degli Studi di Modena, Italy. E-mail:

zaffanella@elektra.casa.unimo.it

255

256 APPIA-GULP-PRODE'98

may not be idempotent. In spite of this, most theoretical work on data-
ow analysis

of logic programming assume the result of unify is always idempotent. In particular

both [7] and [11] assume in their proofs of soundness that the concrete substitutions are

idempotent. Thus their results do not apply to the analysis of all Prolog programs.

If two terms in the concrete domain are uni�able, then unify computes the most general

uni�er (mgu). Up to renaming of variables, an mgu is unique. Moreover a substitution

is de�ned as a set of bindings or equations between variables and other terms. Thus,

for the concrete domain, the order and multiplicity of elements are irrelevant in both

the computation and semantics of unify. It is therefore useful that the abstraction of

the uni�cation procedure should be una�ected by the order and multiplicity in which it

abstracts the bindings that are present in the substitution. Furthermore, from a practical

perspective, it is useful if the global abstract procedure can proceed in a di�erent order

to the concrete one without a�ecting the accuracy of the analysis results. Hence, it

is extremely desirable that aunify is also commutative and idempotent. However, as

discussed later in this paper, only a weak form of idempotence has ever been proved

while the only previous proof of commutativity [11] is seriously
awed.

As sharing is normally combined with linearity and freeness domains which are not

idempotent or commutative, [2, 10] it may be asked why these properties are important

for sharing. In answer to this, we observe that the order and multiplicity in which the

bindings in a substitution are analysed a�ects the accuracy of the linearity and freeness

domains. It is therefore a real advantage to be able to ignore these aspects as far as the

sharing domain is concerned.

This paper provides a generalisation of the abstraction function for Sharing that can

be applied to any language, with or without the occur-check. The results for safeness,

idempotence and commutativity for abstract uni�cation using this abstraction function

are given. Detailed proofs of the results stated in this paper are available in [8].

In the next section, the notation and de�nitions needed for equality and substitutions

in the concrete domain are given. In Section 3, we introduce a new concept called variable-

idempotence which generalises idempotence to allow for rational trees. In Section 4, we

recall the de�nition of Sharing and de�ne its abstraction function, generalised to allow

for non-idempotent substitutions. We conclude in Section 5.

2 Equations and Substitutions

2.1 Notation

For a set S, #S is the cardinality of S, }(S) is the powerset of S, whereas }

f

(S) is the

set of all the �nite subsets of S. The symbol Vars denotes a denumerable set of variables,

whereas T

Vars

denotes the set of �rst-order terms over Vars for some given set of function

symbols. The set of variables occurring in a syntactic object o is denoted by vars(o).

2.2 Substitutions

If x 2 Vars; s 2 T

Vars

, then x 7! s is called a binding. A substitution is a total function

� : Vars ! T

Vars

that is the identity almost everywhere; in other words, the domain of �,

dom(�)

def

=

�

x 2 Vars

�

�

�(x) 6= x

	

is �nite. If t 2 T

Vars

, we write t� to denote �(t).

The Correctness of Set-Sharing 257

Substitutions are denoted by the set of their bindings, thus � is identi�ed with the

set

�

x 7! �(x)

�

�

x 2 dom(�)

	

. The composition of substitutions is de�ned in the usual

way. Thus � � � is the substitution such that, for all terms t, (� � �)(t) = �(�(t)). A

substitution � is idempotent if, for all t 2 T

Vars

, t�� = t�. A substitution is circular if

it has the form fx

1

7! x

2

; : : : ; x

n�1

7! x

n

; x

n

7! x

1

g. A substitution is in rational solved

form if it has no circular subset. The set of all substitutions in rational solved form is

denoted by Subst .

2.3 Equations

An equation is of the form s = t where s; t 2 T

Vars

. Eqs denotes the set of all equations.

We are concerned in this paper to keep the results on sharing as general as possible.

In particular, we do not want to restrict ourselves to a speci�c equality theory. Thus we

allow for any equality theory T over T

Vars

that includes the basic axioms denoted by the

following schemata.

s = s (1)

s = t () t = s (2)

r = s ^ s = t =) r = t (3)

f(s

1

; : : : ; s

n

) = f(t

1

; : : : ; t

n

) () s

1

= t

1

; : : : ; s

n

= t

n

(4)

:f(s

1

; : : : ; s

n

) = g(t

1

; : : : ; t

m

): (5)

Of course, T can include other axioms. For example, it is usual in logic programming and

most implementations of Prolog to assume an equality theory based on syntactic identity

and characterised by the axiom schemata given by Clark [3]. However, an alternative

approach used in some implementations of Prolog, does not require these occur-check

axioms. This is based on the theory of rational trees [4, 5]. These state that each

equation in rational solved form uniquely de�nes a set of trees. The basic axioms de�ned

by schemata 1, 2, 3, 4, and 5, which are all that are required for the results in this paper,

are included in both these theories.

A substitution � may be regarded as a set of equations f x = t j x 7! t 2 � g. A set of

equations e 2 }

f

(Eqs) is uni�able if there is � 2 Subst such that T ` (� =) e). � is

called a uni�er for e. � is said to be a relevant uni�er of e if vars(�) � vars(e). That

is, � does not introduce any new variables. � is a most general uni�er for e if, for every

uni�er �

0

of e, T ` (�

0

=) �). An mgu, if it exists, is unique up to the renaming of

variables. In this paper, mgu(e) always denotes a relevant uni�er of e.

3 Variable-Idempotence

It is usual in papers on sharing analysis to assume that all the substitutions are idempo-

tent. Note that a substitution � is idempotent if, for all t 2 T

Vars

, t�� = t�. However,

the sharing domain is just concerned with the variables. So, to allow for substitutions

representing rational trees, we generalise idempotence to variable-idempotence.

De�nition 1 A substitution � is variable-idempotent if

8t 2 T

Vars

: vars(t��) = vars(t�):

The set of all variable-idempotent substitutions is denoted by VSubst.

258 APPIA-GULP-PRODE'98

It is convenient to use the following alternative characterisation of variable-idempotence:

A substitution � is variable-idempotent if and only if,

8(x 7! t) 2 � : vars(t�) = vars(t):

Thus any substitution consisting of a single binding is variable-idempotent. Clearly all

idempotent substitutions are also variable-idempotent.

We de�ne the transformation

S

7�! � Subst�Subst , called S-transformation, as follows:

(x 7! t) 2 � (y 7! s) 2 � x 6= y

�

S

7�! � n

�

fy 7! sg [fy 7! s[x=t]g

�

Any substitution � can be transformed to a variable-idempotent substitution �

0

for �

by a �nite sequence of S-transformations. Furthermore, if the substitutions � and �

0

are regarded as equations, then they are equivalent with respect to any equality theory

that includes the basic equality axioms. These two statements are direct consequences

of Lemmas 2 and 3, respectively.

Lemma 2 Let T be an equality theory that satis�es the basic equality axioms and � and

�

0

be substitutions. Suppose that (x 7! t); (y 7! s) 2 � where x 6= y and suppose also

�

0

= � n

�

fy 7! sg [fy 7! s[x=t]g

�

. Then (regarding � and �

0

as sets of equations)

T ` (� () �

0

).

PROOF. We �rst show by induction on the depth of the term s that

x = t =) s = s[x=t]:

Suppose s has depth 1. If s is x, then s[x=t] = t and the result is trivial. If s is a variable

distinct from x or a constant, then s[x=t] = s and the result follows from equality Axiom 1.

Suppose now that s = f(s

1

; : : : ; s

n

) and the result holds for all terms of depth less than

that of s. Then, by the inductive hypothesis, for each i = 1, : : : , n,

x = t =) s

i

= s

i

[x=t]

Hence, by Axiom 4,

x = t =) f(s

1

; : : : ; s

n

) = f

�

s

1

[x=t]; : : : ; s

n

[x=t]

�

and hence

x = t =) f(s

1

; : : : ; s

n

) = f(s

1

; : : : ; s

n

)[x=t]:

Thus, combining this result with Axiom 3, we have

fx = t; y = sg =)

�

x = t; y = s; s = s[x=t]

	

=)

�

x = t; y = s[x=t]

	

:

Similarly, combining this result with Axioms 2 and 3,

�

x = t; y = s[x=t]

	

=)

�

x = t; y = s[x=t]; s = s[x=t]

	

=) fx = t; y = sg:

2

The Correctness of Set-Sharing 259

Lemma 3 Suppose that, for each j = 0, : : : , n:

�

j

= fx

1

7! t

1;j

; : : : ; x

n

7! t

n;j

g;

where t

j;j

= t

j;j�1

and if j > 0, for each i = 1, : : : , n, where i 6= j, t

i;j

= t

i;j�1

[x

j

=t

j;j�1

].

Then, for each j = 0, : : : , n,

�

j

= fx

1

7! t

1;j

; : : : ; x

j

7! t

j;j

g

is variable-idempotent and, if j > 0, �

j

can be obtained from �

j�1

by a sequence of

S-transformations.

PROOF. The proof is by induction on j. Since �

0

is empty, the base case when j = 0 is

trivial. Suppose, therefore that 1 � j � n and the hypothesis holds for �

j�1

and �

j�1

. By

the de�nition of �

j

, we have �

j

= fx

j

7! t

j;j�1

g��

j�1

. Consider an arbitrary i, 1 � i � j.

We will show that vars(t

i;j

�

j

) = vars(t

i;j

).

Suppose �rst that i = j. Then since t

j;j

= t

j;j�1

, t

j;j�1

= t

j;0

�

j�1

and, by the inductive

hypothesis, vars(t

j;0

�

j�1

�

j�1

) = vars(t

j;0

�

j�1

), we have

vars(t

j;j

�

j

) = vars

�

t

j;0

�

j�1

�

j�1

fx

j

7! t

j;j

g

�

= vars

�

t

j;0

�

j�1

fx

j

7! t

j;j

g

�

= vars

�

t

j;j

fx

j

7! t

j;j

g

�

= vars(t

j;j

):

Suppose now that i 6= j. Then,

vars(t

i;j

) = vars

�

t

i;j�1

fx

j

7! t

j;j�1

g

�

:

and, by the inductive hypothesis, vars(t

i;j�1

�

j�1

) = vars(t

i;j�1

).

If x

j

=2 vars(t

i;j�1

), then

vars(t

i;j

�

j�1

) = vars

�

t

i;j�1

fx

j

7! t

j;j�1

g�

j�1

�

= vars(t

i;j�1

�

j�1

)

= vars(t

i;j

):

On the other hand, if x

j

2 vars(t

i;j�1

), then

vars(t

i;j

�

j�1

) = vars

�

t

i;j�1

fx

j

7! t

j;j�1

g�

j�1

�

= vars(t

i;j�1

�

j�1

) n fx

j

g [vars(t

j;j�1

�

j�1

)

= vars(t

i;j�1

) n fx

j

g [vars(t

j;j�1

)

= vars

�

t

i;j�1

fx

j

7! t

j;j�1

g

�

= vars(t

i;j

):

Thus, in both cases,

vars(t

i;j

�

j

) = vars

�

t

i;j

�

j�1

fx

j

7! t

j;j�1

g

�

= vars

�

t

i;j

fx

j

7! t

j;j�1

g

�

= vars(t

i;j�1

fx

j

7! t

j;j�1

gfx

j

7! t

j;j�1

g

�

:

260 APPIA-GULP-PRODE'98

However, a substitution consisting of a single binding is variable-idempotent. Thus

vars(t

i;j

�

j

) = vars

�

t

i;j�1

fx

j

7! t

j;j�1

g

�

= vars(t

i;j

):

Therefore, for each i = 1, : : : , j, vars(t

i;j

�

j

) = vars(t

i;j

). It then follows (using the

alternative characterisation of variable-idempotence) that �

j

is variable-idempotent. 2

4 Set-Sharing

4.1 The Sharing Domain

The Sharing domain is due to Jacobs and Langen [6]. However, we use the de�nition as

presented in [1].

De�nition 4 (The set-sharing lattice.) Let

SG

def

=

�

S 2 }

f

(Vars)

�

�

S 6= ?

	

and let SH

def

= }(SG). The set-sharing lattice is given by the set

SS

def

=

�

(sh; U)

�

�

sh 2 SH ; U 2 }

f

(Vars); 8S 2 sh : S � U

	

[f?;>g

ordered by �

SS

de�ned as follows, for each d; (sh

1

; U

1

); (sh

2

; U

2

) 2 SS:

? �

SS

d;

d �

SS

>;

(sh

1

; U

1

) �

SS

(sh

2

; U

2

) () (U

1

= U

2

) ^ (sh

1

� sh

2

):

It is straightforward to see that every subset of SS has a least upper bound with respect

to �

SS

. Hence SS is a complete lattice.

1

An element sh of SH abstracts the property of sharing in a substitution �. That is, if

� is idempotent, two variables x; y must be in the same set in sh if some variable, say v

occurs in both x� and y�. In fact, this is also true for variable-idempotent substitutions

although it is shown below that this needs to be generalised for substitutions that are

not variable-idempotent. Thus, the de�nition of the abstraction function � for sharing,

requires an ancillary de�nition for the notion of occurrence.

De�nition 5 (Occurrence.)

For each n 2 N, occ

i

: Subst � Vars ! }

f

(Vars) is de�ned for each � 2 Subst and each

v 2 Vars:

occ

0

(�; v)

def

= fvg; if v = v�;

occ

0

(�; v)

def

= ?; if v 6= v�;

occ

n

(�; v)

def

=

�

y 2 Vars

�

�

x 2 vars(y�) \ occ

n�1

(�; v)

	

; if n > 0.

1

Notice that the only reason we have > 2 SS is in order to turn SS into a lattice rather than a CPO.

The Correctness of Set-Sharing 261

It follows that, for �xed values of � and v, occ

n

(�; v) is monotonic and extensive with

respect to the index n. Hence, as the range of occ

n

(�; v) is restricted to the �nite set of

variables in �, there is an ` = `(�; v) 2 N such that occ

`

(�; v) = occ

n

(�; v)) for all n � `.

Let

occ!(�; v)

def

= occ

`

(�; v):

Note that if � is variable-idempotent, then occ!(�; v) = occ

1

(�; v). Note also that if

v 6= v�, then occ!(�; v) = ?. Previous de�nitions for an occurrence operator such as

that for sg in [6] have all been for idempotent substitutions. However, when � is an

idempotent substitution, occ!(�; v) and sg(�; v) are the same for all v 2 Vars.

We base the de�nition of abstraction on the occurrence operator, occ!.

De�nition 6 (Abstraction.) The concrete domain Subst is related to SS by means of

the abstraction function � : }(Subst)�}

f

(Vars)! SS. For each � 2 }(Subst) and each

U 2 }

f

(Vars),

�(�; U)

def

=

G

�2�

�(�; U);

where � : Subst � }

f

(Vars)! SS is de�ned, for each � 2 Subst and each U 2 }

f

(Vars),

by

�(�; U)

def

=

�

�

occ!(�; v) \ U

�

�

v 2 Vars

	

n f?g; U

�

:

The following result states that the abstraction for a substitution � is the same as the

abstraction for a variable-idempotent substitution for �.

Lemma 7 Let � be a substitution, �

0

a substitution obtained from � by a sequence of

S-transformations, U a set of variables and v 2 Vars. Then

v = v� () v = v�

0

; occ!(�; v) = occ!(�

0

; v); �(�; U) = �(�

0

; U):

PROOF. Suppose �rst that �

0

is obtained from � by a single S-transformation. Thus

we can assume that x 7! t and y 7! s are in � where x 2 vars(s) and that

�

0

=

�

� n fy 7! sg

�

[

�

y 7! s[x=t]

	

:

It follows that, since � is in rational solved form, � has no circular subset and hence

v = v� () v = v�

0

. Thus, if v 6= v�, then v 6= v�

0

and occ!(�; v) = occ!(�

0

; v) = ?.

We now assume that v = v� = v�

0

and prove that

occ

m

(�; v) � occ!(�

0

; v):

The proof is by induction on m. By De�nition 5, occ

0

(�; v) = occ

0

(�

0

; v) = fvg, so that

the result holds for m = 0. Suppose then that m > 0 and that v

m

2 occ

m

(�; v). By

De�nition 5, there exists v

m�1

2 vars(v

m

�) where v

m�1

2 occ

m�1

(�; v). Hence, by the

inductive hypothesis, v

m�1

2 occ!(�

0

; v). If v

m�1

2 vars(v

m

�

0

), then, by De�nition 5,

v

m

2 occ!(�

0

; v)

�

. On the other hand, if v

m�1

=2 vars(v

m

�

0

), then v

m

= y, v

m�1

= x, and

x 2 vars(s) (so that vars(t) � vars(s[x=t])). However, by hypothesis, v = v�, so that

262 APPIA-GULP-PRODE'98

x 6= v and m > 1. Thus, by De�nition 5, there exists v

m�2

2 vars(t) such that v

m�2

2

occ

m�2

(�; v). By the inductive hypothesis, v

m�2

2 occ!(�

0

; v). Since y 7! s[x=t] 2 �

0

, and

v

m�2

2 vars(s[x=t]), v

m�2

2 vars(y�

0

). Thus, by De�nition 5, y 2 occ!(�

0

; v).

Conversely, we now prove that, for all m,

occ

m

(�

0

; v) � occ!(�; v)

The proof is again by induction on m. As in the previous case, occ

0

(�

0

; v) = occ

0

(�; v) =

fvg, so that the result holds for m = 0. Suppose then that m > 0 and that v

m

2

occ

m

(�

0

; v). By De�nition 5, there exists v

m�1

2 vars(v

m

�

0

) where v

m�1

2 occ

m�1

(�

0

; v).

Hence, by the inductive hypothesis, v

m�1

2 occ!(�; v). If v

m

2 occ(�; v

m�1

), then, by

De�nition 5, v

m

2 occ!(�; v). On the other hand, if v

m�1

=2 vars(v

m

�), then v

m

= y,

v

m�1

2 vars(t) and x 2 vars(s). Thus, as y 7! s 2 �, y 2 vars(x�). However, since

x 7! t 2 �, v

m�1

2 vars(x�) so that, by De�nition 5, x 2 occ!(�; v). Thus, again by

De�nition 5, y 2 occ!(�; v).

Thus, if �

0

is obtained from � by a single S-transformation, we have the required

results: v = v� () v = v�

0

, occ!(�; v) = occ!(�

0

; v), and �(�; U) = �(�

0

; U).

Suppose now that there is a sequence � = �

1

, : : : , �

n

= �

0

such that, for i = 2, : : : , n,

�

i

is obtained from �

i�1

by a single S-step. If n = 1, then � = �

0

. If n > 1, we have by

the �rst part that, for each i = 2, : : : , n,

v = v�

i�1

() v = v�

i

;

occ!(�

i�1

; v) = occ!(�

i

; v);

�(�

i�1

; U) = �(�

i

; U):

and hence the required results. 2

4.2 Abstract Operations for Sharing Sets

We are concerned in this paper in establishing results for the abstract operation aunify

which is de�ned for arbitrary sets of equations. However, by building the de�nition of

aunify in three steps via the de�nitions of amgu (for sharing sets) and Amgu (for sharing

domains) and stating corresponding results for each of them, we provide an outline for

the overall method of proof for the aunify results. Details of all proofs are available in [8].

In order to de�ne the abstract operation amgu we need some ancillary de�nitions.

De�nition 8 (Auxiliary functions.) The closure under union function (also called

star-union), (�)

?

: SH ! SH , is, for each sh 2 SH ,

sh

?

def

=

�

S 2 SG

�

�

9n � 1 : 9T

1

; : : : ; T

n

2 sh : S = T

1

[� � � [T

n

	

:

For each sh 2 SH and each T 2 }

f

(Vars), the extraction of the relevant component of

sh with respect to T is encoded by the function rel : }

f

(Vars)� SH ! SH de�ned as

rel(T; sh)

def

= fS 2 sh j S \ T 6= ? g:

For each sh

1

; sh

2

2 SH , the binary union function bin: SH � SH ! SH is given by

bin(sh

1

; sh

2

)

def

= fS

1

[S

2

j S

1

2 sh

1

; S

2

2 sh

2

g:

The function proj : SH�}

f

(Vars)! SH projects an element of SH onto a set of variables

of interest: if sh 2 SH and V 2 }

f

(Vars), then

proj(sh; V)

def

= fS \ V j S 2 sh; S \ V 6= ? g:

The Correctness of Set-Sharing 263

De�nition 9 (amgu.) The function amgu captures the e�ects of a binding x 7! t on an

SH element. Let x be a variable and t a term. Let also sh 2 SH and

A

def

= rel

�

fxg; sh

�

;

B

def

= rel

�

vars(t); sh

�

:

Then

amgu(sh; x 7! t)

def

=

�

sh n (A [B)

�

[bin(A

?

; B

?

):

Then we have the following soundness result for amgu.

Lemma 10 Let (sh; U) 2 SS and fx 7! tg; �; � 2 Subst such that � is a relevant uni�er

of fx� = t�g and vars(x); vars(t); vars(�) � U . Then

�(�; U) �

SS

(sh; U) =) �(� � �; U) �

SS

(amgu(sh; x 7! t); U):

To prove this, observe that, by Lemmas 3 and 7, if � is not variable-idempotent, it

can be transformed to a variable-idempotent substitution �

0

where �(�; U) = �(�

0

; U).

Therefore, the proof which is given in [8], deals primarily with the case when � is variable-

idempotent.

Since a relevant uni�er of e is a relevant uni�er of any other set e

0

equivalent to e wrt

to the equality theory T , this lemma shows that it is safe for the analyse to perform part

or all of the concrete uni�cation algorithm before computing amgu.

The following lemmas, proved in [8], show that amgu is commutative and idempotent.

Lemma 11 Let sh 2 SH and fx 7! rg 2 Subst. Then

amgu(sh; x 7! r) = amgu

�

amgu(sh; x 7! r); x 7! r

�

:

Lemma 12 Let sh 2 SH and fx 7! rg; fy 7! tg 2 Subst. Then

amgu

�

amgu(sh; x 7! r); y 7! t

�

= amgu

�

amgu(sh; y 7! t); x 7! r

�

:

4.3 Abstract Operations for Sharing Domains

The de�nitions and results of Subsection 4.2 can be lifted to apply to sharing domains.

De�nition 13 (Amgu.) The operation Amgu: SS � Subst ! SS extends the SS de-

scription it takes as an argument, to the set of variables occurring in the binding it is

given as the second argument. Then it applies amgu:

Amgu

�

(sh; U); x 7! t

�

def

=

�

amgu

�

sh [

�

fug

�

�

u 2 vars(x 7! t) n U

	

; x 7! t

�

; U [vars(x 7! t)

�

:

The results for amgu can easily be extended to apply to Amgu.

264 APPIA-GULP-PRODE'98

De�nition 14 (aunify.) The function aunify : SS � Eqs ! SS generalises Amgu to

a set of equations e: If (sh; U) 2 SS, x is a variable, r is a term, s = f(s

1

; : : : ; s

n

)

and t = f(t

1

; : : : ; t

n

) are non-variable terms, and s = t denote the set of equations

fs

1

= t

1

; : : : ; s

n

= t

n

g, then

aunify((sh; U);?)

def

= (sh; U);

if e 2 }

f

(Eqs) is uni�able,

aunify

�

(sh; U); e [fx = rg

�

def

= aunify

�

Amgu(sh; U); x 7! r); e n fx = rg

�

;

aunify

�

(sh; U); e [fs = xg

�

def

= aunify

�

(sh; U); (e n fs = xg) [fx = sg

�

;

aunify

�

(sh; U); e [fs = tg

�

def

= aunify

�

(sh; U); (e n fs = tg) [s = t

�

;

and, if e is not uni�able,

aunify((sh; U); e)

def

= ?:

For the distinguished elements ? and > of SS

aunify

�

?; e

�

def

= ?; aunify

�

>; e

�

def

= >:

As a consequence of this and the generalisation of Lemmas 10, 11 and 12 to Amgu, we

have the following soundness, commutativity and idempotence results required for aunify

to be sound and well-de�ned. As before, the proofs of these results are in [8].

Theorem 15 Let (sh; U) 2 SS, �; � 2 Subst, and e 2 }

f

(Eqs) such that vars(�) � U

and � a relevant uni�er of e. Then

�(�; U) �

SS

(sh; U) =) �(� � �; U) �

SS

aunify((sh; U); e):

Theorem 16 Let (sh; U) 2 SS and e 2 }

f

(Eqs). Then

aunify

�

(sh; U); e

�

= aunify

�

aunify

�

(sh; U); e

�

; e

�

:

Theorem 17 Let (sh; U) 2 SS and e

1

; e

2

2 }

f

(Eqs). Then

aunify

�

aunify

�

(sh; U); e

1

�

; e

2

�

= aunify

�

aunify

�

(sh; U); e

2

�

; e

1

�

:

5 Discussion

The SS domain which was �rst de�ned by Langen [11] and published by Jacobs and

Langen [6] is an important domain for sharing analysis. In this paper, we have provided

a framework for analysing non-idempotent substitutions and presented results for sound-

ness, idempotence and commutativity of aunify. In fact, most researchers concerned with

analysing sharing and related properties using the SS domain, assume these properties

hold. Why therefore are the results in this paper necessary? Let us consider each of the

above properties one at a time.

The Correctness of Set-Sharing 265

5.1 Soundness

We have shown that, for any substitution � over a set of variables U , the abstraction

�(�; U) = (sh; U) is unique (Lemma 7) and the aunify operation is sound (Theorem 15).

Note that, in Theorem 15, there are no restrictions on �; it can be non-idempotent,

possibly including cyclic bindings (that is, bindings where the domain variable occurs in

its co-domain). Thus this result is widely applicable.

Previous results on sharing have assumed that substitutions are idempotent. This is

true if equality is syntactic identity and the implementation uses a uni�cation algorithm

based on that of Robinson [12] which includes the occur-check. With such algorithms,

the resulting uni�er is both unique and idempotent. Unfortunately, this is not what is

implemented by most Prolog systems.

In particular, if the algorithm is as described in [9] and used in Prolog III [4], then

the resulting uni�er is in rational solved form. This algorithm does not generate idem-

potent or even variable-idempotent substitutions even when the occur-check would never

have succeeded. However, it has been shown that the substitution obtained in this way

uniquely de�nes a system of rational trees [4]. Thus our results show that its abstraction

using �, as de�ned in this paper, is also unique and that aunify is sound.

Alternatively, if, as in most commercial Prolog systems, the uni�cation algorithm is

based on the Martelli-Montanari algorithm, but omits the occur check step, then the

resulting substitution may not be idempotent. Consider the following example.

Suppose we are given as input the equation p(z; f(x; y)) = p(f(z; y); z) with an initial

substitution that is empty. We apply the steps in Martelli-Montanari procedure but

without the occur-check:

equations substitution

1 p(z; f(x; y)) = p(f(z; y); z) ?

2 z = f(z; y); f(x; y) = z ?

3 f(x; y) = f(z; y) fz 7! f(z; y)g

4 x = z; y = y fz 7! f(z; y)g

5 y = y fz 7! f(z; y); x 7! zg

6 ? fz 7! f(z; y); x 7! zg

Note that we have used three kinds of steps here. In lines 1 and 3, neither argument of

the selected equation is a variable. In this case, the outer non-variable symbols (when, as

in this example, they are the same) are removed and new equations are formed between

the corresponding arguments. In lines 2 and 4, the selected equation has the form v = t,

where v is a variable and t is not identical to v, then every occurrence of v is replaced by

t in all the remaining equations and the range of the substitution. v 7! t is then added

to the substitution. In line 5, the identity is removed.

Let � = fz 7! f(z; y); x 7! zg, be the computed substitution. Then, we have

vars(x�) = vars(z) = fzg;

vars(x�

2

) = vars(f(z; y)) = fy; zg:

Hence � is not variable-idempotent.

We conjecture that the resulting substitution is still unique (up to variable renaming).

In this case our results can be applied so that its abstraction using �, as de�ned in this

paper, is also unique and aunify is sound.

266 APPIA-GULP-PRODE'98

5.2 Idempotence

De�nition 14 de�nes aunify inductively over a set of equations, so that it is important

for this de�nition that aunify is both idempotent and commutative.

The only previous result concerning the idempotence of aunify is given in thesis of

Langen [11, Theorem 32]. However, the de�nition of aunify in [11] includes the renaming

and projection operations and, in this case, only a weak form of idempotence holds. In

fact, for the basic aunify operation as de�ned here and without projection and renaming,

idempotence has never before been proven.

5.3 Commutativity

In the thesis of Langen the \proof" of commutativity of amguhas a number of omissions

and errors [11, Lemma 30]. We highlight here, one error which we were unable to correct

in the context of the given proof.

To make it easier to compare, we adapt our notation and, de�ne amge only in the case

that a is a variable:

amge(a; b; sh)

def

= amgu(sh; a 7! b):

To prove the lemma, it has to show that:

amge(a

2

; b

2

amge(a

1

; b

1

; sh)) = amge(a

1

; b

1

; amge(a

2

; b

2

; sh)):

holds when a

1

and a

2

are variables. This corresponds to \the second base case" of the

proof. We use Langen's terminology:

� A set of variables X is at a term t i� var(t) \X 6= ?.

� A set of variables X is at i i� X is at a

i

or b

i

.

� A union X [

i

Y is of Type i i� X is at a

i

and Y is at b

i

.

Let lhs

def

= amge(a

2

; b

2

; amge(a

1

; b

1

; S)), and rhs

def

= amge(a

1

; b

1

; amge(a

2

; b

2

; S)). Let also

Z 2 lhs and T

def

= aunify(a

1

; b

1

; S). Consider the case when

Z = X [

2

Y where X 2 rel(a

2

; T); Y 2 rel(b

2

; T);

X = U [

1

V where U 2 rel(a

1

; sh); V 2 rel(b

1

; sh)

and U \ (vars(a

2

)[vars(b

2

)) = ? (that is, U is not at 2). Then the following quote [11,

page 53, line 23] applies:

In this case (U [

1

V) [

2

Y = U [

1

(V [

2

Y). By the inductive assumption

V [

2

Y is in the rhs and therefore so is Z.

We give a counter-example to the statement \V [

2

Y is in the rhs".

Suppose a

1

; b

1

; a

2

; b

2

are variables. We let each of a

1

; b

1

; a

2

; b

2

denote both the actual

variable and the singleton set containing that variable. Suppose sh = fa

1

; b

1

a

2

; b

2

g: Then,

from the de�nition of amge,

lhs = fa

1

b

1

a

2

b

2

g; rhs = fa

1

b

1

a

2

b

2

g; T = fa

1

b

1

a

2

; b

2

g:

Let Z = a

1

b

1

a

2

b

2

; X = a

1

b

1

a

2

; Y = b

2

; U = a

1

; V = b

1

a

2

: It can be seen that these

match all the above conditions. However V [

2

Y = b

1

a

2

b

2

and this is not in fa

1

b

1

a

2

b

2

g.

The Correctness of Set-Sharing 267

References

[1] R. Bagnara, P. M. Hill, and E. Za�anella. Set-sharing is redundant for pair-sharing.

In P. Van Hentenryck, editor, Static Analysis: Proceedings of the 4th International

Symposium, volume 1302 of Lecture Notes in Computer Science, pages 53{67, Paris,

France, 1997. Springer-Verlag, Berlin.

[2] M. Bruynooghe and M. Codish. Freeness, sharing, linearity and correctness | All

at once. In P. Cousot, M. Falaschi, G. Fil�e, and A. Rauzy, editors, Static Analysis,

Proceedings of the Third International Workshop, volume 724 of Lecture Notes in

Computer Science, pages 153{164, Padova, Italy, 1993. Springer-Verlag, Berlin. An

extended version is available as Technical Report CW 179, Department of Computer

Science, K.U. Leuven, September 1993.

[3] K. L. Clark. Negation as failure. In H. Gallaire and J. Minker, editors, Logic and

Databases, pages 293{322, Toulouse, France, 1978. Plenum Press.

[4] A. Colmerauer. Prolog and In�nite Trees. In K. L. Clark and S.

�

A. T�arnlund,

editors, Logic Programming, APIC Studies in Data Processing, volume 16, pages

231{251. Academic Press, New York, 1982.

[5] A. Colmerauer. Equations and inequations on �nite and in�nite trees. In Proceedings

of the International Conference on Fifth Generation Computer Systems (FGCS'84),

pages 85{99, Tokyo, Japan, 1984. ICOT.

[6] D. Jacobs and A. Langen. Accurate and e�cient approximation of variable aliasing

in logic programs. In E. L. Lusk and R. A. Overbeek, editors, Logic Programming:

Proceedings of the North American Conference, MIT Press Series in Logic Program-

ming, pages 154{165, Cleveland, Ohio, USA, 1989. The MIT Press.

[7] D. Jacobs and A. Langen. Static analysis of logic programs for independent AND

parallelism. Journal of Logic Programming, 13(2&3):291{314, 1992.

[8] P. M. Hill, R. Bagnara, and E. Za�anella. The correctness of set-sharing. Technical

Report 98.03, School of Computer Studies, University of Leeds, 1998.

[9] T. Keisu. Tree Constraints. PhD thesis, The Royal Institute of Technology, Stock-

holm, Sweden, May 1994. Also available in the SICS Dissertation Series: SICS/D{

16{SE.

[10] A. King. A synergistic analysis for sharing and groundness which traces linearity. In

D. Sannella, editor, Proceedings of the Fifth European Symposium on Programming,

volume 788 of Lecture Notes in Computer Science, pages 363{378, Edinburgh, UK,

1994. Springer-Verlag, Berlin.

[11] A. Langen. Static Analysis for Independent And-Parallelism in Logic Programs.

PhD thesis, Computer Science Department, University of Southern California, 1990.

Printed as Report TR 91-05.

[12] J. A. Robinson. A machine-oriented logic based on the resolution principle. Journal

of the ACM, 12(1):23{41, 1965.

268 APPIA-GULP-PRODE'98

