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Abstract

We apply the methodology of domain re�nement to systematically derive do-

mains for type analysis. Domains are built by iterative application of the Heyting

completion operator to a given set of basic types. We give a condition on the

type system which assures that two steps of iteration are su�cient to reach the

�xpoint. Moreover, we provide a general representation for type domains through

trans�nite formulas. Finally, we show a subset of �nite formulas which can be used

as a computationally feasible implementation of the domains and we de�ne the

corresponding abstract operators.

Keywords: Abstract interpretation, abstract domains, static analysis, type

analysis, logic programming.

1 Introduction

Type analysis for untyped logic programs is useful both to the programmer (for debugging

and veri�cation) and to the compiler (for code optimization). This is the motivation of

many di�erent proposals for type analysis. It is hard to compare the various techniques

in terms of precision, e�ciency and generality, because they use di�erent methods and

are often based on di�erent assumptions.

There exist type inference techniques similar to those developed for (higher order)

functional languages (see, for example, [15, 16]) and techniques inspired by program

veri�cation methods [1]. Finally, there are plenty of type analysis techniques based on

abstract interpretation [8]. The most relevant feature of abstract interpretation is that

the analysis can systematically be derived from the (concrete) semantics and is guaran-

teed to be correct. The starting point is always the de�nition of an abstract domain

modeling a given type system. In principle, the theory would allow us to systematically

derive from the concrete semantics the optimal abstract operations and the correspond-

ing abstract semantics, which is by construction a correct approximation. However, in

practical type analysis systems, ad-hoc non-optimal abstract operations and abstract se-

mantics computation algorithms are often considered. The theory is then used to prove

the correctness of the construction.

The basic step in every abstract interpretation approach to type analysis is the choice

of the abstract domain, which de�nes how we assign types to terms. A ground type

language does not allow one to handle type dependencies [4]. This is the case of [14, 18].

Some type dependencies among di�erent arguments of a procedure can be expressed

using type variables in the type language. This is a standard solution, used for instance

in [3, 13, 19, 6]. The same solution is used in the framework of regular approximations of

the success set in [11]. However, the use of type variables does not allow one to express
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all type dependencies between argument positions. [5] is the only example of an analysis

which explicitly expresses type dependencies. However, the underlying type language

does not contain variables. Hence type dependencies arising from polymorphism can

not be handled without an in�nite set of dependencies. Moreover, [5] does not consider

dependencies between di�erent types, since the analysis is performed separately for every

type. Finally, there is no approach which is able to express negative information on

types. One of the contributions of this paper is to give a general technique for explicitly

expressing general type dependencies and negative information on types.

We achieve this result by pushing forward the systematic derivation view of abstract

interpretation by applying it to the design of the abstract domain. The systematic

derivation of abstract domains can be based on the theory of domain re�nement operators

[9]. One example of such an operator is the Heyting completion [12], which was recently

used to systematically reconstruct various domains for groundness analysis [17] and to

show that the domain POS [2, 7] is indeed optimal.

In this paper, we apply the same methodology to the derivation of new type domains.

We start by de�ning a basic domain of elementary polymorphic types (section 4). We

then de�ne a hierarchy of re�ned domains by iteratively applying the Heyting completion

operator (section 5). We prove (in section 6) that, for a large class of elementary types,

the re�nement procedure derives the optimal domain after two steps of re�nement only,

as was the case for the groundness domain. The optimal domain can then be viewed as

a version of POS for types, and is similar to the domains of type dependencies de�ned

in [5].

Once we have de�ned the abstract domain, we are left with the problems of de�ning

a domain representation, suitable for being implemented in an abstract analyzer, and of

giving a precise algorithmic de�nition of the abstract operators. We tackle the above

problems in two steps. In the �rst step we represent type domains by formulas in a

fragment of trans�nite logic (section 7) and we de�ne correct approximations for the

abstract operators (section 8). The results of the �rst step can e�ectively be used for

type analysis only if the set of types is �nite. In the more interesting case of elemen-

tary type domains containing in�nitely many types, trans�nite formulas are not �nitely

representable. Hence the representation by means of trans�nite formulas is introduced

essentially to establish some theoretical results to be used in the next step (section 9),

where we use a representation in terms of �nite formulas with type variables. The result-

ing domain turns out to be formed by logic programs. Using logic programs to represent

abstract domains for logic programs is not new (see, for example, [10]). However, in our

experiment, we succeed in providing a formal justi�cation of the construction.

2 Preliminaries

2.1 Terms and Substitutions

Given a set of variables V and a set of function symbols � with associated arity, we de�ne

terms(�; V ) as the set of terms built from V and � in the usual way. In the following

sections, we will consider di�erent signatures � for the set of terms built from the functor

symbols of a logic program and for the set of terms built from a type signature. To

distinguish these sets, the former will be denoted as U

V

, while the latter as terms(�; V ),

where � will be a type signature and V is a set of type variables. We will often abridge

V [ fxg as V [ x and V � fxg as V � x.

We de�ne �

V;U

W

as the set of idempotent substitutions � such that dom(�) � V and

�(x) 2 U

W

for every x 2 V . If � 2 �

V;Y

W

and V

0

� V , �j

V

0

(x) = �(x) if x 2 V

0

and

�j

V

0

(x) = x if x 62 V

0

. A substitution � 2 �

V;U

W

is called grounding for a set of variables
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G � V if and only if �(x) is ground for every x 2 G. For every set of variables V , a pre-

ordering is de�ned on substitutions �; �

0

2 �

V;U

W

as �

0

�

V

� if and only if there exists a

substitution � 2 �

W;U

W

such that �

0

= ���. When the set V is clear from the context, we

will often remove the subscript V . A set S � �

V;U

W

of substitutions is downward closed

if and only if � 2 S and �

0

� � entail �

0

2 S. We de�ne # fSg = f�j� � �

0

and �

0

2 Sg.

Given t

1

; t

2

2 U

V

, we de�ne t

1

�

V

t

2

if and only if t

1

= t

2

� for a suitable � 2 �

V;U

V

.

As usual, the subscript will be always removed. S � U

V

is called downward closed if and

only if t 2 S and t

0

� t entail t

0

2 S.

If S is a set endowed with a relation �, P(S) is the set of all the subsets of S, while

P # (S) is the set of all the downward closed (with respect to �) sets of S.

We will often de�ne types as solutions of recursive equations over sets of terms. In

such de�nitions, we will use classical �-notation as well as a least �xpoint operator �.

2.2 Abstract interpretation

Abstract interpretation [8] is a theory developed to reason about the abstraction relation

between two di�erent semantics. The theory requires these semantics to be de�ned on

domains which are posets. (C;�) (the concrete domain) is the domain of the concrete

semantics, while (A;�) (the abstract domain) is the domain of the abstract semantics.

The partial order relations re
ect an approximation relation. The two domains are re-

lated by a pair of functions � (abstraction) and 
 (concretization), which form a Galois

connection.

Let f : C

n

! C be an operator and assume that

~

f : A

n

!A is its abstract counterpart.

Then

~

f is (locally) correct with respect to f if and only if for all x

1

; : : : ; x

n

2 A we

have �(f(
(x

1

); : : : ; 
(x

n

))) �

~

f(x

1

; : : : ; x

n

). According to the theory, for each operator

f , there exists an optimal (most precise) locally correct abstract operator

~

f de�ned

as

~

f(y

1

; : : : ; y

n

) = �(f(
(y

1

); : : : ; 
(y

n

))), where � is extended to sets S 2 C de�ning

�(S) = ^

s2S

�(s).

We brie
y recall the equivalence between the Galois insertion and the closure operator

approach to the design of abstract domains. Let hL;�;^;_;>;?i be a complete lattice.

An upper closure operator on L is an operator � : L 7! L monotonic, idempotent and

extensive. Each closure operator � is uniquely determined by the set of its �xpoints,

which is its image �(L). A set X � L is the set of �xpoints of a closure operator if and

only if X is a Moore family, i.e., > 2 X and X is completely ^{closed. For any X � L,

we denote by f(X) the Moore{closure of X, i.e., the least subset of L containing X

which is a Moore family of L.

The complete lattice of all abstract interpretations (identi�ed up to isomorphism) of

a domain C is isomorphic to the complete lattice of upper closure operators on C.

A systematic approach to the development of abstract domains is based on the use

of domain re�nement operators. Intuitively, given an abstract domain A, a domain

re�nement operator R yields an abstract domain R(A) which is more precise than A.

Classical domain re�nement operations are reduced product and disjunctive completion

[9].

Heyting completion was proposed in [12] as a powerful domain re�nement operation. It

allows us to include in a domain the information related to the propagation of the abstract

property. Let L be a complete lattice and a; b 2 L. The relative pseudo{complement (or

intuitionistic implication) of a relative to b, if it exists, is the unique element a! b 2 L

such that for any x 2 L: a ^

L

x � b if and only if x �

L

a ! b. Relative pseudo{

complements, when they exist, are uniquely given by a ! b =

W

L

fcja ^

L

c �

L

bg. A

complete lattice A is a complete Heyting algebra if and only if it is relatively pseudo{
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complemented, i.e., a ! b exists for every a; b 2 A. An example of complete Heyting

algebra which will be used throughout this paper is hP # (�

V;U

V

);�;\;[;�

V;U

V

; ;i.

Given a; b 2 P # (�

V;U

V

), the intuitionistic implication a ! b =

S

fc 2 P # (�

V;U

V

)ja \

c � bg is also given by a! b = f� 2 �

V;U

V

jfor all � � � if � 2 a then � 2 bg. Note that

this corresponds exactly to the de�nition of the concretization of implication in the case

of the POS [2, 7] domain for groundness analysis. The concretization of x ) y is the

set of substitutions such that every instance which grounds x must also ground y. This

is not by chance, as shown in [17]. Roughly speaking, an arrow x! y represents the set

of substitutions such that the property of interest propagates from the variable x to the

variable y for every possible instance.

Given the domains D, D

1

V

and D

2

V

such that D

1

V

� D and D

2

V

� D, we de�ne

D

1

V

f

�! D

2

V

=

k

fd

1

! d

2

jd

1

2 D

1

V

and d

2

2 D

2

V

g :

This domain is called the Heyting completion of D

1

V

with respect to D

2

V

and contains all

possible dependencies between an element of D

1

V

and an element of D

2

V

.

3 The concrete domain

Since types are downward closed properties of substitutions, our concrete domain consists

of downward closed sets of substitutions. Given a substitution �, its downward closure

represents the set of substitutions which are compatible with �, i.e., which might be

obtained by re�ning � by further computation steps. For instance, if the computed

substitution at a program point is fy 7! f(x)g, then, as computation proceeds, the new

substitution might be fy 7! f(g(w)); x 7! g(w)g. With this interpretation in mind,

a downward closed set of substitutions contains exactly all the substitutions which are

compatible with the rest of the computation. For instance, if S

1

is the (downward closed)

set of substitutions which are consistent with a procedure call p

1

and S

2

is the (downward

closed) set of substitutions which are consistent with a procedure call p

2

, then S

1

\ S

2

is

the (downward closed) set of substitutions which are consistent with the calls p

1

; p

2

and

p

2

; p

1

.

We endow downward closed sets of substitutions with two operations:

uni�cation: if S

1

; S

2

� �

V;U

V

, then unify

V

(S

1

; S

2

) = S

1

\ S

2

;

cylindri�cation: if S � �

V;U

V

, its cylindri�cation with respect to a variable x 2 V is

cyl

V

(S; x) =

�

�

0

2 �

V;U

V

�

�

�

�

there exist �; � 2 �

V [fng;U

V [fng

such that �j

V

= �

0

; � �

V [fng

� and � 2 S[n=x]

�

;

(1)

where n is a new variable (n 62 V ), S[n=x] = f�[n=x]j� 2 Sg and �[n=x](n) = �(x),

�[n=x](x) = x and �[n=x](y) = �(y)[n=x] if y 6= x.

While the de�nition of uni�cation is the classical one for the case of downward closed

sets of substitutions (see for instance [17]), and is justi�ed by the above considerations, it

turns out that an explicit de�nition of concrete cylindri�cation on downward closed sets

of substitutions was never given.

De�nition (1) should be read as follows. In order to compute the cylindri�cation of

a set S of substitutions, we consider x as a new variable n. Then we instantiate all the

substitutions in S and we select those instantiations � such that �j

V

does not contain n.

We try now to get some insight on the meaning of this de�nition. Consider a procedure
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de�ned as p(y) : �y = f(x):. The set of substitutions which are consistent with the body

of the procedure is S = #f�g, where � = fy 7! f(x)g. Note that �

0

= fy 7! f(g(x))g 62 S,

as long as we consider idempotent substitutions (or, equivalently, logic programming

with occur{check). Consider now the set of substitutions which are consistent with the

procedure call p(y). We have to consider x in the body of the procedure as existentially

quanti�ed. Hence x in the body of the procedure is not the same x that we have outside

the procedure p. This means that �

0

is now consistent with the procedure call p. For

instance, if we make a procedure call p(y), with a partial computed substitution fy 7!

f(g(x))g, we obtain success, even when the occur{check is performed. De�nition (1)

should now be clear. We consider x as a new variable n, then we instantiate the new

variable in every possible way, including with terms which contain x.

The domain of downward closed sets of substitutions will be considered as our concrete

domain. We will show in the following sections how some elements of this domain can

be selected in order to get a hierarchy of type domains.

4 Basic domains for types

In this section we build a domain for type analysis which is able to model elementary

monomorphic as well as polymorphic types. We assume a given set of functor symbols �

(the type signature) and a �nite set of variables V = fx; y; z; : : : g (variables of interest).

Given �, we de�ne a related interpretation I

�;V

(denoted in the following simply by I).

The domain of I is P(U

V

) (U

V

could be the set of terms over V induced by the signature

of the program). Functors are interpreted in a \user{de�ned" way. For instance the user

can de�ne:

I(top) = U

V

I(int) = f0; 1; 2; : : :g

I(list) = ��:��:f[]g [ f[hjt]jh 2 � and t 2 �g

I(tree) = ��:�t:fvoidg [ ftree(x;l;r)jx 2 �; l 2 t and r 2 tg :

(2)

Note that in equations (2) list stands for the polymorphic list constructor, through

the use of the �-abstraction. Monomorphic lists can be de�ned as I(list

0

) = �l:f[]g [

f[hjt]jh 2 U

V

; t 2 lg. tree is the polymorphic tree constructor.

I allows us to evaluate a type t 2 terms(�; ;) into a set of terms:

[[c]]I = I(c) if c has arity 0

[[f(t

1

; : : : ; t

n

)]]I = [[f ]]I([[t

1

]]I; : : : ; [[t

n

]]I) if f has arity n.

According to the above de�nitions, tree(int) contains the terms void, tree(2,void,void)

and tree(3,tree(1,void,void),void). Moreover, I(list(top)) = I(list

0

).

A type system is a triple h�; V; Ii

1

. Given a variable x and a type t 2 terms(�; ;),

the set x 2

V;I

t = f� 2 �

V;U

V

j�(x) 2 [[t]]Ig is a basic type property. It represents the set

of substitutions which bind x to a term which belongs to the type t. The domain of basic

types on variables V , T YPE

0

�;V;I

(in the following simply T YPE

0

), is de�ned as follows:

T YPE

0

=

k

fx 2

V;I

t jx 2 V; t 2 terms(�; ;)g :

As already mentioned, the Moore family operator selects the least set of downward closed

sets of substitutions which contains top and all basic type properties and is closed with

1

Strictly speaking, we should include U

V

in a type system. This information will be left unspeci�ed,

in order to simplify the notation.
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respect to intersection. The selected set is ordered with respect to the original ordering

relation on downward closed sets of substitutions (set inclusion). Note that if I yields

downward closed sets for constants and downward closed sets transformers for symbols

with arity greater than zero, then T YPE

0

is a set of downward closed sets of substitutions.

In the following, we will assume this hypothesis to be satis�ed. An abstraction map from

the set of downward closed sets of substitutions into T YPE

0

can be de�ned in a standard

way.

T YPE

0

is able to model only conjunction of simple type properties, like for instance

\x is an integer and y is a list of integers". It is not able to model type dependencies

(directionality). This means that the set # f�g, where � = fx 7! [hjt]g is abstracted

into �

V;U

V

, the set of all the substitutions, in the type system de�ned by equations (2).

T YPE

0

is not able to model the directionality of �. Actually, if h is of type int and

t is of type list(int), then x is of type list(int), and vice versa. In the following

section we will introduce directionality, by systematically re�ning T YPE

0

by the Heyting

completion operator.

5 A hierarchy of domains for directional types

We want now to build a (possibly in�nite) hierarchy of type domains as follows:

T YPE

0

=

c

fx 2

V;I

t jx 2 V; t 2 terms(�; ;)g ;

T YPE

i

= T YPE

i�1

f

�! T YPE

i�1

for i � 1 :

(3)

Note that we do not know whether this re�nement chain is �nite or not. In the following,

we will show that under proper conditions on the type system this chain is �nite. Namely,

it converges at T YPE

2

.

Consider now a generic element of T YPE

1

. It has the form (b

1

1

! b

1

2

) \ : : : \ (b

n

1

!

b

n

2

)\ : : : where b

i

1

; b

i

2

2 T YPE

0

for i � 1. The intersection can be �nite as well as in�nite.

Moreover, every b

i

j

has the form b

i

j

= (x

i;j

1

2

V;I

t

i;j

1

) \ : : : \ (x

i;j

m

i;j

2

V;I

t

i;j

m

i;j

) \ : : : where,

again, the intersection can be �nite as well as in�nite. Hence T YPE

1

is able to model

directional types.

Assume the type system to contain two disjoint types t

1

and t

2

. Namely, we require

[[t

1

]]I \ [[t

2

]]I = ;. In such a case, T YPE

1

would contain the element (x 2

V;I

t

1

\ x 2

V;I

t

2

) y 2

V;I

t, where t is a type and x; y are two variables. The meaning of this element

is that y is not and will not be eventually bound to a term of type t. This is a form

of intuitionistic negation. Note that the variable x can be substituted with whatever

other variable. Its name is irrelevant. Hence we could simply write ?  y 2

V;I

t,

where ? means failure. Moreover, this argument can be applied even if there are not

disjoint types. We just need to add a distinguished type bot to the type system, whose

interpretation is I(top) = ;. In such a case, ? would be an abridged form for x 2

V;I

bot.

The introduction of negative information seems to be a distinguishing feature of our

approach. This information is essentially useless in the case of groundness analysis.

For instance, if we add the distinguished type bot to the basic domain for groundness

containing the unique property g such that I(g) = ft 2 U

V

j vars(t) = ;g, then an element

of the form ?  x 2

V;I

g is ? itself. This is because every term can always be made

ground.

Negative information is extremely powerful for generic type systems. In our concluding

example of analysis (section 10) we will show a case where it plays a key role.

It is worth noting that polymorphism is treated in a \ground fashion". For instance,

consider the type signature and the interpretation given by equations (2). In T YPE

1

we
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are able to say that if x is of type T then y is of type list(T ). However, the element

representing this information is an in�nite intersection of the form

(x 2

V;I

int ! y 2

V;I

list(int)) \

(x 2

V;I

list(int) ! y 2

V;I

list(list(int))) \

(x 2

V;I

list(list(int)) ! y 2

V;I

list(list(list(int)))) \ : : :

This observation means that the way elements are built in T YPE

i

can not be used directly

as a guide for devising a computationally e�ective representation for T YPE

i

. We have

to represent a possibly in�nite intersection in a �nite way. This can be accomplished

through the use of type variables in the representation, as it will be shown in section 9.

6 Well formed type systems

In this section we investigate a class of type systems which enjoy the property that

the re�nement chain (3) is �nite. Namely, for these type systems the re�nement chain

converges at the second re�nement step to a domain which contains, by construction, all

possible type dependencies.

De�nition 1. A type system h�; V; Ii is called well formed if and only if, for every

� 2 �

V;U

V

, there exists a grounding substitution � for V , such that for every type

t 2 terms(�; ;), �(x) 2 [[t]]I if and only if (�(x))� 2 [[t]]I.

Roughly speaking, well formed type systems are such that terms which do not belong

to types can be instantiated in such a way that they will de�nitively not belong to those

types. It turns out that all sensible type systems are well formed. For instance, the type

system int list top with � = fint; list; topg, I[int] = �i:i = f0g [ fs(j)jj 2 ig,

I[list] = �x:�l:l = f[]g [ f[hjt]jh 2 x; t 2 lg and I[top] = U

V

, is well formed.

Let b

i

; c

j

; d

k

be basic type properties for i 2 I, j 2 J and k 2 K, where I; J;K are

index sets. Let B =

T

i2I

b

i

, C =

S

j2J

c

j

and D =

S

k2K

d

k

. Assume the following condition

H1: (B ! C)! D = (B [D) \ (C ! D).

holds. Intuitively, hypothesis H1 means that deep arrows can be factorized into simpler

arrows. The following results can be proved by extending similar proofs done in [17] for

the groundness domains:

1. If h�; V; Ii satis�es condition H1, then T YPE

2

= T YPE

i

for every i � 2;

2. If h�; V; Ii satis�es condition H1, then T YPE

2

can be obtained as implication

between conjunctions of basic type properties and disjunctions of basic type prop-

erties. Formally, we have:

T YPE

2

=

k

�

a! o

�

�

a 2 T YPE

0

and o 2 OR

	

, where

OR =

(

[

i

fx

i

2

V;I

t

i

g

�

�

�

�

�

x

i

2 V; t

i

2 terms(�; ;)

and the union is not empty

)

:

OR is able to model disjunction of basic type properties, while T YPE

2

is able to model

propagation of type information from conjunctions of basic type properties to disjunctions

of basic type properties.

The importance of well formed type systems is that they satisfy condition H1:

Proposition 2. Let h�; V; Ii be a well formed type system. Then condition H1 holds.
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7 A hierarchy of intermediate representations

In this section we consider a hierarchy of representations for the above de�ned type do-

mains. They are intermediate because they are not adequate for a direct implementation

in an analysis tool. However, they will be used to obtain some theoretical results, and to

devise an e�ective representation for our type domains.

We start by de�ning a fragment of trans�nite logic which will be called LOG

�;V

(in the

following simply LOG). It is the least set such that false; true 2 LOG, (x 2 t) 2 LOG,

for x 2 V and t 2 terms(�; ;), if S is a (possibly in�nite) subset of LOG then ^(S) 2 LOG

and _(S) 2 LOG, if s

1

; s

2

2 LOG then s

1

) s

2

2 LOG and if s 2 LOG then :s 2 LOG.

Given a substitution � 2 �

V;U

V

and an interpretation I, we de�ne the interpretation

of a formula of LOG as follows:

[[false]]

I

�

= 0 and [[true]]

I

�

= 1

[[x 2 t]]

I

�

= 1 i� �(x) 2 [[t]]I ; for x 2 V and t 2 terms(�; ;);

[[^(S)]]

I

�

= 1 i� [[s]]

I

�

= 1 for every s 2 S,

[[_(S)]]

I

�

= 1 i� there exists s 2 S such that [[s]]

I

�

= 1 ;

[[s

1

) s

2

]]

I

�

= 1 i� if [[s

1

]]

I

�

= 1 then [[s

2

]]

I

�

= 1,

[[:s]]

I

�

= 1 i� [[s]]

I

�

= 0 :

An interpretation I induces an equivalence relation �

I

on formulas. Namely, �

1

�

I

�

2

if and only if for every � 2 �

V;U

V

, [[�

1

]]

I

�

= 1 entails [[�

2

]]

I

�

= 1 and vice versa. This

equivalence will be called logical equivalence in the following.

Given � 2 LOG and an interpretation I, we de�ne the map 


I

: LOG 7! P# (�

V;U

V

)

as 


I

(�) = f� 2 �

V;U

V

jfor all � � �; [[�]]

I

�

= 1g. 


I

induces an equivalence relation on

formulas de�ned as �

1

�




I

�

2

if and only if 


I

(�

1

) = 


I

(�

2

). This equivalence will be

called 
-equivalence in the following. Note that if �

1

and �

2

are logically equivalent then

they are 
-equivalent, by de�nition of 
. However, the converse, in general, does not

hold.

We de�ne now a hierarchy of representations as follows:

LOG

0

=

(

^(S)

�

�

�

�

�

S =

S

i

fx

i

2 t

i

g ;

x

i

2 V; t

i

2 terms(�; ;)

)

=

�

I

;

LOG

1

=

(

^(S)

�

�

�

�

�

S =

S

j

fs

1

j

) s

2

j

g ;

s

1

j

; s

2

j

2 LOG

0

)

=

�

I

;

LOG

2

=

8

<

:

^(S)

�

�

�

�

�

�

S = [

j

fa

j

) o

j

g ;

[a

j

]

�

I

2 LOG

0

;

[o

j

]

�

I

2 LOG

OR

9

=

;

=

�

I

;where

LOG

OR

=

(

_(S)

�

�

�

�

�

S =

S

i

fx

i

2 t

i

g is non empty,

x

i

2 V; t

i

2 terms(�; ;)

)

=

�

I

:

The following inclusions can easily be proved: LOG

0

� LOG

1

� LOG

2

.

We extend the concretization map on equivalence classes as 


I

([�]

�

I

) = 


I

(�). This

de�nition is well given because logical equivalence entails 
-equivalence. Note that 


I

is

monotonic. In the following, a formula will stand for its (logical) equivalence class.

It can be shown that every element of T YPE

0

is the image through 


I

of an element

of LOG

0

, that every element of T YPE

1

is the image through 


I

of an element of LOG

1

and that every element of T YPE

2

is the image through 


I

of an element of LOG

2

. Note
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that this last result holds only for the particular form of the elements of LOG

2

. Hence

in these three cases 


I

is onto. We have already shown that it is monotonic. However,

we know that it is not always one to one. If we make the assumption:

H2: 


I

is one to one, i.e., logical equivalence is 
-equivalence;

then we conclude that the following isomorphisms hold: T YPE

0

� LOG

0

, T YPE

1

�

LOG

1

and T YPE

2

� LOG

2

. The following result shows that well formed type systems

satisfy condition H2. Hence the representations of this section are isomorphic to the type

domains of section 5 for well formed type systems.

Proposition 3. Let h�; V; Ii be a well formed type system. Then condition H2 holds.

8 Abstract operators on trans�nite logic

In this section we give an explicit de�nition of correct abstract operators on the domains

of trans�nite logic formulas.

Let us �rst note that if S

1

is represented by �

1

and S

2

is represented by �

2

, then S

1

\S

2

is represented by �

1

^ �

2

. Moreover, this is the best possible approximation.

We consider now the approximation of the concrete cylindri�cation operator. Let

T =

c

f[[t]]Ijt 2 terms(�; ;)g be the least Moore family (with respect to set intersection)

which contains all the types. The substitution of a type t 2 T for a variable x in a

formula � is de�ned as follows:

false[t=x] = false

true[t=x] = true

(x 2 t

0

)[t=x] =

8

>

>

<

>

>

:

true

if t � [[t

0

]]I

false

otherwise

(y 2 t

0

)[t=x] = (y 2 t

0

)

if x 6= y

^(S)[t=x] = ^(fs[t=x]js 2 Sg)

_(S)[t=x] = _(fs[t=x]js 2 Sg)

(s

1

) s

2

)[t=x] = s

1

[t=x]) s

2

[t=x]

(:s)[t=x] = :(s[t=x]) :

We de�ne the abstract cylindri�cation operator on the logical domain as 9

x

� = _(f�[t=x]jt 2

T

0

g), where T

0

� T is the set of types which are the most speci�c type of some term.

Note that this subset is not empty because T is a Moore family. Hence every term has

a most speci�c type. This de�nition is similar to the Schr�oder elimination used in the

case of groundness analysis [2, 7]. Note that x does not occur in 9

x

�. For generic type

systems, 9

x

is not a correct cylindri�cation operator. However, it turns out that 9

x

is

a correct abstract operator with respect to concrete cylindri�cation in the case of well

formed type systems.

9 Logic programs as �nite representations of type domains

Trans�nite formulas can be used as a computationally e�ective representation domain

if the set of types is �nite. In such a case the set of trans�nite formulas is isomorphic

to a set of �nite formulas and the abstract operators on the domain can correctly be

approximated by e�ective algorithms. For instance, the operator 9

x

becomes an algorithm

for computing cylindri�cation. Even the equivalence test between two formulas becomes

e�ective, though very expensive, being a classical NP{complete problem.

A more interesting case is when we deal with an in�nite set of basic types, i.e., when

terms(�; ;) is in�nite. In such a case, trans�nite formulas are not �nitely representable.

However, the full power of trans�nite formulas is seldom useful for our purposes. For in-

stance, to express the relationship between the variables in the binding x = [hjt] we must
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write an in�nite conjunction:

V

t2terms(�;;)

(x 2 list(t) () h 2 t ^ t 2 list(t)). How-

ever, this could be expressed more compactly using type variables as x 2 list(T ) ()

h 2 T ^ t 2 list(T ).

In this section, we introduce a domain of �nite formulas with type variables and the

corresponding abstract operators.

Let V

0

= fX; Y; Z; : : :g be an in�nite set of type variables. Type variables are denoted

by uppercase letters to distinguish them from the variables of interest V = fx; y; z; : : :g.

REP

�;V;V

0

;I

(in the following, simplyREP) is the least set of �rst order formulas contain-

ing x

i

2 t

i

for x

i

2 V and t

i

2 terms(�; V

0

) and closed with respect to ^ and), modulo

the equivalence relation �

REP

de�ned as follows: �

1

�

REP

�

2

if and only if 


REP

(�

1

) �

I




REP

(�

2

), where 


REP

(�(X

1

; : : : ; X

2

)) =

V

t

1

;::: ;t

n

2terms(�;;)

�[t

1

=X

1

; : : : ; t

n

=X

n

] (where

�(X

1

; : : : ; X

n

) means that the type variables contained in � are exactly X

1

; : : : ; X

n

).

Intuitively, the last formula is the trans�nite formula represented by the �nite formula

�. Note that there exist trans�nite formulas which can not be represented this way.

Moreover, REP is not closed with respect to in�nite ^. This means that we are not

guaranteed to have optimal operators. Finally, in general REP is not �nite and not even

noetherian. For example, the instance of REP induced by the type system int list top

is not noetherian, because there exists an in�nite chain X 2 top, X 2 list(top),

X 2 list(list(top)), and so on.

In order to make REP �nite, we consider the approximate domain REP

k

, k 2 N ,

k > 0, whose formulas contain constraints of the form x

i

2 t

i

, such that t

i

2 terms(�; V

0

)

and the depth of t

i

is less than or equal to k. We de�ne 


REP

k = 


REP

and �

REP

k=�

REP

restricted to formulas in REP

k

.

Considering only constraints with bounded term depth does not boil down to the case

of a �nite set of types. In fact, type variables are free to assume any value, with arbitrary

depth. As the concluding example will show, this restriction on the constraints does not

introduce a big loss in precision, thanks to the use of type variables.

We give now algorithmic de�nitions for the two abstract operators and for the abstrac-

tion map.

Abstract uni�cation. It can be shown that ^ is correct with respect to intersection of

downward closed sets of substitutions. Given �

1

; �

2

2 REP

k

, we have 


I

(


REP

k(�

1

^

�

2

)) = 


I

(


REP

k(�

1

)) \ 


I

(


REP

k(�

2

)).

As a consequence, we have that (x 2 list(T )( y 2 T ) ^ (z 2 T ( w 2 T ) �

REP

k (x 2

list(T ) ( y 2 T ) ^ (z 2 D ( w 2 D). Actually, two occurrences of the same type

variable in two di�erent implications can be replaced by di�erent type variables.

This suggests an interesting interpretation for formulas in REP

k

. Since (A

1

^ : : : ^

A

n

) ( B can be equivalently rewritten as (A

1

( B) ^ : : : ^ (A

n

( B), the elements of

REP

k

can be viewed as de�nite Horn clauses. We only need to interpret a constraint

of the form x 2 t as an atom x(t), where the variables of interest become predicate

symbols. For instance, the abstract constraint (x 2 list(T )( (y 2 T ^ z 2 list(T )))^

(y 2 T ( x 2 list(T )) ^ z 2 list(T ) can be seen as the logic program

x(list(T)) : �y(T); z(list(T)):

y(T) : �x(list(T)):

z(list(T)):

(4)

The above remark is important when we look for a correct approximation of the cylindri-

�cation operator. We already have a non e�ective de�nition of the approximation: given

� and a variable x, we compute 


REP

k(�), then we apply Schr�oder elimination. This
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de�nition is not adequate because Schr�oder elimination destroys the clause structure of

the elements of REP

k

, which is extremely important for representing in a compact way a

possibly in�nite quanti�cation on types. If the elements of REP

k

are represented as logic

programs, cylindri�cation of an element P with respect to a variable x means comput-

ing a program P

0

which expresses the same dependencies among the predicate symbols

(variables of interest) di�erent from x in the same way as P does, but does not contain x

anymore. The simplest technique for removing a predicate from a program is unfolding.

Given two clauses H

1

( B

1

^ : : :^B

n

and H

2

( C

1

^ : : :^C

m

, if � = mgu(B

i

; H

2

) exists,

one of their unfoldings is (H

1

( B

1

^ : : : ^ B

i�1

^ C

1

^ : : : ^ C

m

^ B

i+1

^ : : : ^ B

n

)�. It

can be shown that the unfoldings of two clauses are logical consequences of them. Note,

however, that the unfolding of two clauses whose terms have depth less than or equal to

k can contain a term with depth greater than k.

Abstract cylindri�cation. We de�ne the operator 9

REP

k

x

through the unfolding op-

eration. Any element P 2 REP

k

is viewed as a set of clauses. In order to compute

9

REP

k

x

P , we perform the following three steps:

1. we add to P all the possible unfoldings of any clause containing x in the body

with any clause containing x in the head. Let P

0

be the resulting program;

2. we remove from P

0

all the clauses containing x thus obtaining P

00

;

3. we remove from P

00

all the clauses which contain terms with depth greater

than k, thus obtaining 9

REP

k

x

P .

For instance, the abstract cylindri�cation of program (4) with respect to the variable z

and for k = 2 is the program:

x(list(T)):-y(T).

y(T):-x(list(T)).

while the abstract cylindri�cation of the same program with respect to the variable x and

for k = 2 is the program:

y(T):-y(T),z(list(T)).

z(list(T)).

which is �

I

-equivalent to the program z(list(T))..

Note that the algorithm for computing the abstract cylindri�cation introduces a loss

in precision in the last two steps. In order to improve the precision, we can repeat the

�rst step to decrease the number of clauses which contain x in the body. However, the

loss in precision of the third step can not be avoided. It can be shown that 9

REP

k

x

is

indeed correct with respect to concrete cylindri�cation for well-formed type systems.

The algorithm for cylindri�cation uses concrete uni�cation between type terms. This

is not related to the uni�cation operator of the domain. It is simply a consequence of the

use of logic programs as abstract domains. However, since types are partially ordered with

respect to a subtyping relation (for instance: int � top), the uni�cation procedure used

in the unfolding step might be too coarse. For instance, if we have a clause whose head is

x 2 list(int) and we try to unfold it in the body of a clause containing x 2 list(top),

the uni�cation procedure fails. Actually, unfolding should be allowed because if x is a list

of integers then it is even a list of generic terms. Similarly, if we have a clause whose body

contains x 2 T , we can remove x 2 T from the body and instantiate the resulting clause

with the substitution fT 7! topg. This is correct because every term is always in top.

This means that we could improve the precision of the cylindri�cation operator using in

its algorithmic de�nition a uni�cation procedure which embeds subtyping information.
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Abstraction map. We de�ne now a correct approximation of the abstraction of # f�g.

We only need to �nd a formula � 2 REP

k

, such that # f�g � 


I




REP

k(�). Let �(�)

be one such a formula. Assume we have a procedure type, which, for every term u 2

U

V

with vars(u) = fx

1

; : : : ; x

n

g, behaves as u

type

;

�

ht

1

; t

1

x

1

; : : : ; t

1

x

n

i; : : : ; ht

m

; t

m

x

1

;

: : : ; t

m

x

n

i

	

, where t

i

and t

i

x

j

belong to terms(�; V

0

), i.e., they are types possibly

containing type variables. We require that, for every � 2 �

V;U

V

, u� 2 [[t

i

�

0

]]I for

a suitable �

0

2 �

V

0

;terms(�;;)

grounding for V

0

, if and only if, for all j = 1; : : : ; n,

x

j

� 2 [[t

i

x

j

�

0

]]I.

Roughly speaking, type(u) computes a �nite set of possible types for u, and, for

each possible type, it computes some necessary and su�cient conditions on the

variables of u in order for u to belong to the type. Note that a straightforward

de�nition of the type procedure can be automatically derived from the de�nition

of types and that this de�nition is compositional with respect to addition of new

types to the type system.

Given the procedure type and a substitution �, such that x 2 dom(�), we de-

�ne �

x

(�) =

V

m

i=1

�

x 2 t

i

()

�

x

1

2 t

i

x

1

^ : : : ^ x

n

2 t

i

x

n

��

, where vars(�(x)) =

fx

1

; : : : ; x

n

g and type(�(x)) =

�

ht

1

; t

1

x

1

; : : : ; t

1

x

n

i; : : : ; ht

m

; t

m

x

1

; : : : ; t

m

x

n

i

	

. Finally,

we de�ne �(�) =

V

x2dom(�)

�

x

(�). It can be proved that, for every substitution

� 2 �

V;U

V

, # f�g � 


I




REP

k (�(�)).

For instance, if we consider the top type, integers, and polymorphic lists, we can imple-

ment type as a Prolog procedure type(Term,Type) which enumerates all possible types

Term can take. Moreover, the variables of Term are bound to types to represent necessary

and su�cient conditions for Term to belong to Type. For instance, type([H|T],Type)

yields a computed answer substitution fType 7! list(S); H 7! S; T 7! list(S)g, meaning

that [H|T] has type list(S) if and only if H has type S and T has type list(S).

meta-clause

type(X,S):-var(X),!,X=S.

the whole universe U

V

type(X,top).

integers: �i:i = f0g [ fs(t)jt 2 ig

type(X; int) : �X = 0:

type(X; int) : �X = s(I); type(I; int):

polymorphic lists: �s:�l:l = f[]g [ f[hjt]jh 2 s and t 2 lg

type(X; list(S)) : �X = []:

type(X; list(S)) : �X = [HjT]; type(H; S); type(T; list(S)):

The above algorithmic de�nition of the abstraction map can be improved by extracting

from a substitution even the negative information that it contains. We just need to modify

type. We can assume that type(t) contains even pairs of the form ht

i

;?i, meaning

that the term t can never belong to the type t

i

. For instance, [HjT ] can never be

an integer, while s(X) can. As a consequence, we de�ne �

x

(�) =

V

m

i=1

�

x 2 t

i

()

�

x

1

2 t

i

x

1

^ : : :^ x

n

2 t

i

x

n

��

^

V

k

i=1

(? ( (t

0

)

i

), where vars(�(x)) = fx

1

; : : : ; x

n

g and

type(�(x)) = fht

1

; t

1

x

1

; : : : ; t

1

x

n

i; : : : ; ht

m

; t

m

x

1

; : : : ; t

m

x

n

i; h(t

0

)

1

;?i; : : : ; h(t

0

)

k

;?ig.

10 An example

We implemented in Prolog an abstract analyzer which uses the REP

k

abstract domain

and which is parametric with respect to a given set of types. In this section, we show



An Experiment in Domain Re�nement: Type Domains and Type Representations for Logic Programs 281

how it behaves on the following program which computes the derivative of an expression

involving the variable x:

int(0). der(-(X),-(DX)):-der(X,DX).

int(s(I)):-int(I). der(X-Y,DX-DY):-der(X,DX),der(Y,DY).

der(X^K,DK*K*(X^(K-s(0)))):-der(K,DK).

der(x,s(0)). der(exp(X),DX*exp(X)):-der(X,DX).

der(X,0):-int(X). der(sin(X),DX*cos(X)):-der(X,DX).

der(X*Y,(DX*Y)+(X*DY)):-der(X,DX),der(Y,DY). der(cos(X),-(DX*sin(X))):-der(X,DX).

der(X+Y,DX+DY):-der(X,DX),der(Y,DY).

The types used in the analysis are the top type, denoted by top, integers, denoted

by int, generic expressions on x, denoted by expr, and algebraic expressions on x, i.e.,

expressions on x which do not involve exponentiation or trigonometric functions, denoted

by algebraic. We compute the abstract �xpoint of the above program through our

analyzer. Then we evaluate the query (mode) der(algebraic,top) in the abstract

�xpoint. We get the following set of constraints, where var0 and var1 stand for the �rst

and for the second argument of the predicate der, respectively.

constraint 1: constraint 2: constraint 3: constraint 4: constraint 5:

bot:-var0(int). var0(algebraic). bot:-var0(algebraic). bot:-var0(int). bot:-var0(int).

var0(algebraic). var0(expr). bot:-var0(int). bot:-var1(int). bot:-var1(int).

var0(expr). var0(int). bot:-var1(algebraic). var0(algebraic). var0(algebraic).

var1(algebraic). var1(algebraic). bot:-var1(int). var0(expr). var0(expr).

var1(expr). var1(expr). var0(algebraic). var1(algebraic). var0(expr):-var1(expr).

var1(int). var1(int). var0(expr). var1(expr). var1(algebraic):-var0(algebraic).

var1(top). var1(top). var1(expr). var1(top). var1(expr):-var0(expr).

var1(top). var1(top).

constraint 6: constraint 7: constraint 8:

bot:-var0(algebraic). bot:-var0(algebraic). bot:-var0(algebraic).

bot:-var0(int). bot:-var0(int). bot:-var0(int).

bot:-var1(algebraic). bot:-var1(algebraic). bot:-var1(algebraic).

bot:-var1(int). bot:-var1(int). bot:-var1(int).

var0(algebraic). var0(algebraic). var0(algebraic).

var0(expr):-var1(expr). var0(expr):-var1(expr). var0(expr).

var1(expr):-var0(expr). var1(expr):-var0(expr). var1(expr).

var1(top). var1(top). var1(top).

Every constraint is a logic program. If the predicate bot is derivable from the logic

program, then the constraint can be dropped since it is not satis�able. In the case at hand,

constraints 3, 6, 7 and 8 are dropped. >From the remaining four constraints, we derive the

fact var1(expr). This means that the second argument is bound to an expression. More

interestingly, the same constraints allow us to derive the fact var1(algebraic), i.e., the

second argument is bound to an algebraic expression. Roughly speaking, our analyzer

concludes that the derivative of an algebraic expression is an algebraic expression too.

Note that this result was possible only through the use of negative information. Namely,

the dropped constraints do not allow to derive the fact var1(algebraic). Hence only if

we remove them we can obtain the desired result.

11 Conclusions

We presented a polymorphic type analysis scheme based on abstract interpretation. The

construction of the abstract domains is made through a formal methodology, namely

domain re�nement starting from a simple domain of elementary types. We have intro-

duced an isomorphic representation of the elements of the domain by means of trans�nite

formulas. We have given su�cient conditions on the type systems which assure that the

resulting type domains and type representations with trans�nite formulas enjoy some

desirable properties, namely factorization of deep type implications, identity between

logical equivalence on the representation and concretization equality and correctness of

the Schr�oder elimination procedure on the representation. Finally, we have shown how a

�nite domain of �nite formulas (represented by de�nite Horn clauses) with type variables

can be selected in order to make the analysis e�ective.

We are left with several important open problems. Some of the problems we are

currently investigating are:
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� the optimality of Schr�oder elimination;

� the automatic derivation and the use of subtyping information in the algorithm for

abstract cylindri�cation;

� the relation, in terms of precision, between the domain of �nite formulas with type

variables and the domain of trans�nite formulas;

� the de�nition of a better approximation of the abstraction map into formulas in

REP

k

;

� the de�nition of a generic implementation based on a type speci�cation language

(as we have shown, a type analyzer can be constructed from a type speci�cation in

an automatic way);

� the comparison of our technique to other existing techniques for type analysis based

on abstract interpretation. The domain re�nement methodology we use should be

useful to compare existing domains, as already shown in the case of groundness

analysis.
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