
Derivation of Proof Methods by Abstract

Interpretation

Giorgio Levi and Paolo Volpe

Abstract

We study the application of abstract interpretation to the design of inductive

methods for verifying properties of logic programs.

We give a uni�ed view of inductive assertion-based proof methods for logic pro-

grams, by systematically deriving them in a uniform way. The resulting veri�cation

framework allows us to reconstruct several existing veri�cation methods, to under-

stand the relation among them in terms of abstractions and to tackle the problem

of establishing the completeness of a method.

Keywords: Inductive proof methods, abstract interpretation, abstract do-

mains.

1 Introduction

Abstract interpretation theory [15] has been used recently in the framework of debug-

ging, diagnosis and validation [12, 11, 7] and to derive proof methods [14]. In fact, the

problem of veri�cation of logic programs can be very naturally approached by abstract

interpretation, since it is a typical semantics-based task.

In this paper we use abstract interpretation as a tool for systematically deriving su�-

cient partial correctness conditions for logic programs. The speci�cations can simply be

viewed as a suitable intended abstract semantics and the existing notions of correctness

and related veri�cation methods [18, 5, 17, 3, 1] be explained as di�erent abstractions.

Abstract interpretation allows to compare di�erent semantics by reasoning in terms of

abstraction. In the case of logic programs veri�cation, this makes easier to compare the

di�erent techniques and to show the essential di�erences. Moreover we can systematically

derive the (optimal) abstract semantics from the concrete one and from the abstraction.

The resulting abstract semantics is a correct approximation of the concrete semantics

by construction and no additional \correctness" theorems need to be proved. Thus,

given a speci�c property (abstraction), the corresponding veri�cation conditions are sys-

tematically derived from the framework and guaranteed to be indeed su�cient partial

correctness conditions. In addition the veri�cation method is guaranteed to be complete,

if the abstraction is precise (also called complete in [15]).

Properties we deal with in this paper are abstractions of SLD-trees. The veri�cation

framework is based on a hierarchy of semantics [10, 9], whose collecting semantics is

de�ned in a concrete domain of SLD-derivations. A generic (abstract) semantics in the

G. Levi and P. Volpe are with the Dipartimento di Informatica, Universit�a di Pisa, Corso Italia 40,

56125 Pisa, Italy. e-mail: flevi, volpepg@di.unipi.it. Phone: +39-50-887248. Fax: +39-50-887226.

283

284 APPIA-GULP-PRODE'98

hierarchy, corresponding to the asbtraction �, is the least �xpoint of an operator T

�

P

,

systematically derived from the corresponding operator of the collecting semantics. In

Section (2), we show the general results about su�cient partial correctness conditions and

completeness of the veri�cation methods. In the next Sections, we show some instances of

the veri�cation framework, with the aim of reconstructing existing veri�cation methods.

We start with more abstract properties, moving from the success behaviour (Section (3)),

to the Input-Output behaviour and to the call behaviour (Section (4)). In particular we

reconstruct the Drabent and Maluszynski's method [18], the Bossi and Cocco's method

[5], and various veri�cation methods reviewed in [3]. Finally in Section (5), we consider

the case of intensional speci�cations given in a formal speci�cation language.

We assume familiarity with the standard notions of lattice theory [4], abstract interpre-

tation [15], logic programming [2] and veri�cation methods [1, 13].

2 Description of the framework

Like in [10, 9], the concrete domain is given by the set of pure collections, D = (Pred !

e}(SLD);�), where a pure collection is a function from the set Pred = fp(x) j p predicate

symbol and x a tuple of distinct variablesg of pure atoms to an element of e}(SLD), that

is the su�x-closed sets of SLD -derivations. The order � is the pointwise extension of

the subset order of e}(SLD).

Given a program P , we associate to it a continuous function T

P

: D ! D (also de�ned in

[10]). The semantics [[P]] of P is de�ned as lfp(T

P

) = T

!

P

= �p(x):f� 2 SLD j �rst(�) =

p(x); clauses(�) � Pg.

The main idea of this paper is to view (extensional or intensional) speci�cations as an

abstract domain (A;v). Under reasonable hypotheses, this relationship can be formalized

through a Galois connection between (D ;�) and (A;v). Then each element d of D is

correct with respect to speci�cations S such that �(d) v S. In this paper, (abstract)

domains of speci�cations are structure (Pred ! S;v), whose elements 	 can be thought

as a set f	

p

g

p2Pred

, where each 	

p

is a speci�cation for what we observe in the set

of derivations started by predicate p: In fact the generic correctness condition can be

expressed as 8� 2 [[P]](p(x)) � veri�es 	

p

, which can be rewritten, for a suitable observable

� [10], as

8� 2 [[P]](p(x))�(�) v 	

p

: (1)

We can study then the veri�cation problem using methods and results of abstract inter-

pretation. In fact the problem of checking whether a program P veri�es a speci�cation

S in A, can be rephrased in abstract interpretation terms as

[[P]] � (S) or, equivalently, �([[P]]) v S. (2)

Since [[P]] is de�ned as the least �xpoint of the operator T

P

, a su�cient condition for (2)

to hold is

T

P

((S)) � (S) or, equivalently, T

�

P

(S) v S, (3)

where T

�

P

= ��T

P

�, is the best abstraction of T

P

in A. In fact T

�

P

(S) v S implies

lfp(T

�

P

) v S and, since �(lfp(T

P

)) v lfp(T

�

P

) (because � is correct), the condition

�([[P]]) v S can be derived.

Derivation of Proof Methods by Abstract Interpretation 285

Condition (3) can often be unfolded and transformed into a veri�cation condition for

P and S, which may be the base for an inductive proof method. Obviously how to do

it depends on the abstract domain and the abstraction. In this paper we show how the

veri�cation conditions of several well known methods can be derived.

If an inductive proof method is complete, then, when the program P is correct with

respect to speci�cation S, there exists a property R, stronger than S, which veri�es the

veri�cation condition. We have proved that, for veri�cation conditions which have the

form of condition (3) for a suitable �, the derived method is complete if and only if the

abstraction is precise with respect to T

P

, that is if �(lfp(T

P

)) = lfp(T

�

P

), as follows from

next lemma.

Lemma 2.1 Let (C;A;�;) be a Galois connection between the complete lattices C and

A: Let F : C ! C be a monotonic operator on C and F

�

= ��F� : A ! A be its best

abstraction on A: Then

�(lfp(F)) v ' implies 9 v ' F

�

() v

if and only if (C;A;�;) is precise with respect to F .

A su�cient condition for precision, generally easier to check, is full precision, that is

��T

P

= T

�

P

��. In this paper we always show the completeness of some methods by

showing the full precision of the underlying abstraction.

3 Success behaviour of programs

Let us focus on the program behaviour with respect to the success of non-ground atoms.

Let us suppose a set '

p

of atoms (the extensional speci�cation of a property) associated

to each predicate p: The program P is success-correct with respect to success-properties

f'

p

g

p2Pred

i�

8p(t) 2 Atoms p(t)

�

 2 implies p(t)� 2 '

p

:

Now a set f'

p

g

p2Pred

is just a function ' : Pred ! }(Atoms). Then, the domain

C = (Pred ! }(Atoms);�), ordered by the pointwise extension of subset order, can

be viewed as the domain of speci�cations of the success behaviour of programs. The

abstraction from the basic domain D is given by the function

�(D) = �p(x):fp(x)� j � 2 D(p(x)); @

�

(�) successfulg; (4)

where @

�

(�) is the instantiation of derivation � with �. � is indeed additive (�(D

1

_D

2

) =

�(D

1

) _ �(D

2

)), hence there exists an adjoint function : C ! D , giving a Galois

connection between D and C. Success-correctness can be rephrased as �([[P]]) � '.

The best abstraction T

C

P

= ��T

P

� in C of the concrete function T

P

can explicitly be

de�ned as

T

C

P

(I) = �p(x): fp(t)� j p(t) p

1

(t

1

); : : : ; p

n

(t

n

) 2 P;

8i 2 f1; : : : ; ng p

i

(t

i

)� 2 I(p

i

(x))g:

and the abstract interpretation is shown to be full precise.

286 APPIA-GULP-PRODE'98

Lemma 3.1 Let � : D ! C be de�ned as in (4). Then there exists a function : C ! D

such that (D ; C; �;) is a Galois connection and is full precise with respect to T

P

.

As a consequence of lemma (3.1), the least �xpoint of T

C

P

exists and lfp(T

C

P

) = �([[P]]).

Indeed the semantics (C; T

C

P

) is just a reformulation of the C-semantics [8, 19].

Recalling Section (2), a su�cient condition for success-correctness is T

C

P

(') � '; from

which a veri�cation condition can be constructively derived by unfolding T

C

P

.

Theorem 3.2 Let P be a logic program and f'

p

g

p2Pred

be a success property. P is

success-correct with respect to f'

p

g

p2Pred

if for each clause p(t) p

1

(t

1

); : : : ; p

n

(t

n

) of

P it is true that

8�

n

^

i=1

p

i

(t

i

)� 2 '

p

i

implies p(t)� 2 '

p

: (5)

Example 3.1 Let P be the program

app([],Y,Y).

app([X:Xs],Ys,[X:Zs]) app(Xs,Ys,Zs).

Let '

app

= fapp(t

1

; t

2

; t

3

) j t

3

ground implies t

1

and t

2

groundg. It can easily be

checked that for each �, app([]; Y; Y)� 2 '

app

and, if app(Xs;Ys;Zs)� 2 '

app

, then

app([X : Xs] ;Ys; [X : Zs])� 2 '

app

. By theorem (3.2), if app(t

1

; t

2

; t

3

)

�

 2 and t

3

� is

ground, then t

1

� and t

2

� are ground.

By lemmas (2.1) and (3.1), it follows that the method is complete, that is if P is success-

correct with respect to f'

p

g

p2Pred

, then there exists a success property f

p

g

p2Pred

with

8p

p

� '

p

, which veri�es condition (5) for each clause of P .

4 Input/Output behaviour and call behaviour

The input/output behaviour, i.e., the relation between the arguments of a predicate at call

time and their instantiation in case of success, can be speci�ed by a set �

q

� Atoms�Subst

associated to each predicate q: The set of properties f�

q

g

q2Pred

can be viewed then as a

speci�cation of I/O patterns for logic programs. A program is I/O-correct with respect

to I/O properties f�

q

g

q2Pred

i�

8p(t) 2 Atoms p(t)

�

 2 implies (p(t); �) 2 �

p

:

To capture these observations we can take the domain S = (Pred ! }(Atoms�Subst);�

). If (p(t); �) 2 �

p

, the intended meaning is that the predicate p computes substitution

� if called with argument t: The order is obtained again by pointwise extension of the

subset order on }(Atoms�Subst). There exists a Galois connection from D to S. The

abstraction is de�ned as

�(D) = �p(x): f(p(t); �) j p(t) 2 Atoms; � 2 D(p(x)) successful;

� = res(�); 9� = mgu(p(x)�; p(t))g

(6)

Program P is I/O-correct with respect to f�

q

g

q2Pred

i� �([[P]]) � �. The best abstraction

T

S

P

of T

P

in S can be explicitly de�ned, and indeed the semantics (S; T

S

P

) is an isomorphic

version of S-semantics [19]. As before the su�cient condition T

S

P

(�) � � can be unfolded

and a veri�cation condition for I/O-correctness be obtained.

Derivation of Proof Methods by Abstract Interpretation 287

Theorem 4.1 Let P be a logic program and f�

p

g

p2Pred

be an I/O property. P is I/O-

correct with respect to f�

p

g

p2Pred

if for each clause p(t) p

1

(t

1

); : : : ; p

n

(t

n

) and for each

p(s) 2 Atoms it is true that

� = mgu(p(t); p(s)) and

n

^

i=1

(p

i

(t

i

)�; �

i

) 2 �

p

i

implies (p(s); ���) 2 �

p

; (7)

where � = mgu((p

1

(t

1

); : : : ; p

n

(t

n

))�; (p

1

(t

1

)��

1

; : : : ; p

n

(t

n

)��

n

)).

The abstraction is precise and then by lemma (2.1), the proof method is complete.

Some veri�cation conditions proposed in the literature (see, for example, [18], [5], [3],

[6]), in addition to I/O correctness, take into account a property which is stronger than

I/O correctness, i.e. call correctness, that is each predicate is called accordingly to a

given speci�cation. Since it depends on the selection rule, we assume a leftmost selection

rule for SLD derivations.

The call and I/O behaviour can be speci�ed by a set �

q

� Atoms�(Atoms [Subst)

associated to each predicate q. The idea is that, if the pair (p(t); �) 2 �

p

, then if p is

called with argument t, it computes the substitution �. If (p(t); q(s)) 2 �

p

then a call

q(s) is generated in the derivation for p(t) with a leftmost selection rule. A program P

is call-correct with respect to call-properties f�

q

g

q2Pred

of Call i� for each predicate p

p(t)

�

 2 implies (p(t); �) 2 �

p

and

p(t)

�

L

hq(s);Gi implies (p(t); q(s)) 2 �

p

:

A suitable domain is given by Call = (Pred ! }(Atoms�(Atoms [Subst));�). The

abstraction is

�(D) = �p(x): f(p(t); q(s)) j � 2 D(p(x)); �

0

= @

�

(�); �rst(�

0

) = p(t);

last(�

0

) = hq(s);Gig

S

f(p(t); �) j � 2 D(p(x)); �

0

= @

�

(�) successful;

�rst(�

0

) = p(t); res(�

0

) = �g:

(8)

With some e�ort the corresponding best abstract operator T

Call

P

can be de�ned explicitly.

No information about calls and successes is lost in the computation of abstract iterates.

Lemma 4.2 Let � : D ! Call be de�ned as in (8). Then there exists a function :

Call ! D such that (D ;Call ; �;) is a Galois connection and is full precise with respect

to T

P

.

The usual su�cient veri�cation condition is T

Call

P

(�) � �, and because of lemma (4.2),

the method is complete.

Theorem 4.3 Let P be a logic program and f�

p

g

p2Pred

be a call-property. P is call-

correct with respect to f�

p

g

p2Pred

if for each clause p(t) p

1

(t

1

); : : : ; p

n

(t

n

) of P it is

true that

8p(s) 2 Atoms; �

0

= mgu(p(s); p(t)); 8�

1

; : : : ; �

n

8k � n if 8i < k (p

i

(t

i

)�

0

� � � �

i�1

; �

i

) 2 �

p

i

and (p

k

(t

k

)�

0

� � � �

k�1

; q(r)) 2 �

p

k

then (p(s); q(r)) 2 �

p

and

if 8i � n (p

i

(t

i

)�

0

� � � �

i�1

; �

i

) 2 �

p

i

then (p(s); �

0

� � � �

n

) 2 �

p

:

288 APPIA-GULP-PRODE'98

4.1 The method of Drabent and Maluszynski

The method of Drabent and Maluszynski [18] can be derived by considering as speci�-

cations DM pre-post properties fpre

i

_ post

i

g

i2I

, where, for each i 2 I, pre

i

_ post

i

is a basic pre-post speci�cation fpre

i

p

_ post

i

p

g

p2Pred

, with pre

p

� Atoms and each

post

p

� Atoms�Atoms. A program P is DM-correct with respect to fpre

i

_ post

i

g

i2I

i� for each i 2 I and each predicate p

8p(t) 2 pre

i

p

p(t)

�

 2 implies (p(t); p(t)�) 2 post

i

p

and

8p(t) 2 pre

i

p

p(t)

�

L

hq(s);Gi implies q(s) 2 pre

i

q

:

The domain of such speci�cations can be de�ned as DM = (}(Pred !

}(Atoms)�}(Atoms�Atoms));�) and each element pre _ post = fpre

i

_ post

i

g

i2I

is concretizable into an element of Call

(pre _ post) = �p(x): f(p(t); �) j 8i 2 I p(t) 2 pre

i

p

) (p(t); p(t)�) 2 post

i

p

g

S

f(p(t); q(s)) j 8i 2 I p(t) 2 pre

i

p

) q(s) 2 pre

i

q

g:

It can be checked that has a left adjoint �, hence there is a Galois connection between

Call and DM. By composing with the Galois connections between D and Call , we soon

obtain a Galois connection between D and DM.

As usual, the veri�cation condition can be extracted from the pre�xpoint relation of

T

DM

P

, the best abstraction of T

P

. It can be checked that when the property to verify

is a single basic pre-post speci�cation, that is a DM property fpre

i

_ post

i

g

i2I

with

I a singleton, then the veri�cation condition is exactly (an extensional version of) the

veri�cation condition of the method of Drabent and Maluszynski.

Theorem 4.4 Let P be a logic program and fpre

p

_ post

p

g

p2Pred

be a basic pre-

post property. Then P veri�es the veri�cation condition of the method of Drabent and

Maluszynski with respect to fpre

p

_ post

p

g

p2Pred

if and only if T

DM

P

(pre ! post) �

pre ! post.

The abstraction is precise (it su�ces to prove the precision of the abstraction from Call

and DM with respect to T

Call

P

), hence, the derived method is complete.

Notice that this is weaker property than the completeness of the method of Drabent

and Maluszynski. In the latter case, the stronger property to be found must be again a

pre-post property fpre

i

_ post

i

g

i2I

with I singleton.

4.2 The method of Bossi and Cocco, types and modes

The method of Bossi and Cocco [5] is obtained by considering as basic pre-post speci�-

cations a pair pre

p

_ post

p

for each predicate p, where pre

p

and post

p

are substitution

closed subsets of atoms. A program P is BC-correct with respect to BC�properties

fpre

i

_ post

i

g

i2I

i� for each i 2 I and each predicate p

8p(t) 2 pre

i

p

p(t)

�

 2 implies p(t)� 2 post

i

p

and

8p(t) 2 pre

i

p

p(t)

�

L

hq(s);Gi implies q(s) 2 pre

i

q

:

Derivation of Proof Methods by Abstract Interpretation 289

We can consider as a domain

BC = (}(Pred ! }

"

(Atoms)�}

"

(Atoms));�);

where }

"

(Atoms) is the set of substitution closed sets of Atoms. Following [3], an element

pre _ post of BC can be viewed as an element of DM through the function (pre _

post) = f�p(x):pre

i

p

_ (Atoms�post

i

p

) j i 2 I; (pre

i

_ post

i

) 2 (pre _ post)g. It gives

raise to a Galois connection betweenDM and BC. Then a Galois connection (D ;BC; �;)

is obtained. Like in the previous cases a su�cient condition for correctness can be derived

from the relation on T

BC

P

. The condition obtained in the case of singleton BC�properties,

is exactly (an extensional version of) the veri�cation condition of the method of Bossi

and Cocco [5].

Theorem 4.5 Let P be a logic program and fpre

p

_ post

p

g

p2Pred

be a basic

BC�property. Then P veri�es the veri�cation condition of the method of Bossi and

Cocco if and only if T

BC

P

(pre ! post) � pre ! post.

Also in this case completeness of the method can be shown by proving precision of the

abstraction from DM and BC. The same proviso applies about the di�erence between

the completeness of the derived method derived and the method of Bossi and Cocco.

For what concerns types and modes, we can view the set of type assignments and mode

assignments to predicates as further abstractions with respect to BC and can use the

same techniques used to go from DM to BC. The result is that we completely recon-

struct the hierarchy of [3], by reducing the relationships between proof methods to Galois

connections between the corresponding domains.

5 Intensional speci�cations

Speci�cation can also be expressed in a formal speci�cation language. Our idea is that

this case corresponds to a further level of abstraction. We will consider the case of

success-correctness only. Similar constructions can be given for the other notions of

correctness.

Fixed a �rst order language L = h�;�; V i and a set F of formulas (also called as-

sertions) of L, we de�ne an atom p(t

1

; : : : ; t

n

) to satisfy a property � [x

1

; : : : ; x

n

] of F ,

if, �xed a term-interpretation I = hTerms(�; V);�

I

;�

I

i, that is the set of non-ground

terms seen as an L structure, for each �

I j=

�[x

1

;::: ;x

n

nt

1

;::: ;t

n

]

� [x

1

; : : : ; x

n

] :

Example 5.1 For example app([a] ; [] ; d) satis�es the formula gr(x

3

)) gr(x

1

)^gr (x

2

).

In fact it is true that d 2 gr

I

implies [a] 2 gr

I

and [] 2 gr

I

, where gr

I

= Terms(�; ;) is

the interpretation of gr .

A program P veri�es a set of assertions f�

p

g

p2Pred

, if 8p(t) 2 Atoms p(t)

�

 2 implies

p(t)� satis�es �

p

. F can be preordered by � �

I

� i� I j= �) �. We can take the

induced equivalence and consider the partial order A

I

= (Pred ! F=

�

I

;�

I

), whose

elements are sets f�

p

g

p2Pred

, where each �

p

is a formula of F with free variables corre-

sponding to arguments of p: The order is given by the pointwise extension of the order

290 APPIA-GULP-PRODE'98

between formulas of F (modulo �

I

).

Consider the following function from A

I

to C:

I

(�) = �p(x):fp(t) 2 Atoms j p(t) satis�es �

p

g;

If (F=

�

I

;�

I

) is a complete lattice, it can easily be checked that A

I

is a complete lattice

and the function

I

is meet-additive. Hence

I

determines a Galois connection with C.

We can de�ne the best abstraction of T

C

P

on A

I

as

T

I

P

(�) = �p(x):

_

p(t) p

1

(t

1

);::: ;p

n

(t

n

)2P

^

f� j I j=

n

^

i=1

�

p

i

[x

i

nt

i

]) �

p

[xnt]g:

It can be checked that P veri�es assertions f�

p

g

p2Pred

i� �

I

(lfp(T

C

P

)) � �, where �

I

is

the adjoint function of

I

. A veri�cation condition can be derived from T

I

P

(�) � �.

Theorem 5.1 Let P be a logic program and f�

p

g

p2Pred

be assertions of F . A su�cient

condition for P to be I-success-correct with respect to f�

p

g

p2Pred

is that for each clause

p(t) p

1

(t

1

); : : : ; p

n

(t

n

) of P it is true that

I j=

n

^

i=1

�

p

i

[x

i

nt

i

]) �

p

[xnt] (9)

This is essentially the veri�cation method proposed by Clark[8] and Deransart[17].

Example 5.2 Let us consider the program of example (3.1) and the assertion �

app

=

gr(x

app

3

)) gr(x

app

1

) ^ gr(x

app

2

). For the clause app([]; Y; Y), it can easily be checked

that I j= gr(Y)) gr ([]) ^ gr (Y). For the clause app([X : Xs] ;Ys ; [X : Zs])

app(Xs;Ys;Zs) it can be showed that I j= (gr (Zs)) gr(Xs) ^ gr(Ys)))

(gr([X : Zs])) gr ([X : Xs]) ^ gr(Ys)).

By the above theorems, we conclude that the program of example (3.1) veri�es the as-

sertion gr(x

app

3

)) gr (x

app

1

) ^ gr (x

app

2

).

A similar treatment can be given when the satisfaction for atoms is given with respect to

a notion of derivability in a theory, which axiomatizes the properties of interest. Notice

that if the relation j= is decidable, we have an e�ective test to check the conditions. As

an example, we could consider the decidable language of properties by Marchiori [20, 21],

which allows us to express groundness, freeness and sharing of terms.

As for the completeness of the method, since it is equivalent to the precision of abstrac-

tion, it strongly depends on the choice of the language.

6 Conclusion

As already advocated by the Cousots [16, 14], abstract interpretation can be very helpful

to understand, organize and synthesize proof methods for program veri�cation. We have

shown this in practice, by de�ning various proof methods, each obtained in a uniform

way by unfolding pre-�xpoint relations on domains obtained by abstracting a concrete

semantics of derivations. We have derived new more general methods, provided a uni�ed

view of a class of proof methods and made clear their mutual relationship.

It is worth noting, that, by using abstract interpretation theory, the de�nition of a new

Derivation of Proof Methods by Abstract Interpretation 291

veri�cation method simply requires the formalization of the property we are interested in

as an abstraction of SLD-derivations. Once we have the abstraction, we systematically

derive the speci�c su�cient correctness conditions.

Our results can be applied to abstract diagnosis [11]. The veri�cation condition on the

abstract operator is essentially the same as the notion of partial correctness used there.

Our conditions might then be used in a similar way to �nd potential errors. The new

relevant features, to be added to abstract diagnosis, are intensional speci�cations and

speci�cations given as pre- and post-conditions.

There are some interesting open problems related to intensional speci�cations and their

relation to traditional abstract domains used in program analysis, developed to model

speci�c properties (such as modes, types, groundness, etc.). Indeed we think that the

logical domains derived for veri�cation might be useful in this area.

References

[1] K. Apt. From Logic Programming to Prolog. Prentice Hall, 1997.

[2] K. R. Apt. Introduction to Logic Programming. In J. van Leeuwen, editor, Handbook of

Theoretical Computer Science, volume B: Formal Models and Semantics, pages 495{574.

Elsevier, Amsterdam and The MIT Press, Cambridge, 1990.

[3] K. R. Apt and E. Marchiori. Reasoning about Prolog Programs: from Modes through

Types to Assertions. Formal Aspects of Computing, 3, 1994.

[4] G. Birkho�. Lattice Theory. In AMS Colloquium Publication, third ed., 1967.

[5] A. Bossi and N. Cocco. Verifying Correctness of Logic Programs. In J. Diaz and F. Orejas,

editors, Proc. TAPSOFT'89, pages 96{110, 1989.

[6] J. Boye and J. Maluszynski. Directional Types and the Annotation Method. Journal of

Logic Programming, 33(3):179{220, 1997.

[7] F. Bueno, P. Deransart, W. Drabent, G. Ferrand, M. Hermenegildo, J. Maluszynski, and

G. Puebla. On the Role of Semantic Approximations in Validation and Diagnosis of

Constraint Logic Programs. In Proc. of the 3rd. Int'l Workshop on Automated Debugging{

AADEBUG'97, pages 155{170, Linkoping, Sweden, May 1997. U. of Linkoping Press.

[8] K. L. Clark. Predicate logic as a computational formalism. Res. Report DOC 79/59,

Imperial College, Dept. of Computing, London, 1979.

[9] M. Comini. An abstract interpretation framework for Semantics and Diagnosis of logic

programs. PhD thesis, Dipartimento di Informatica, Universit�a di Pisa, 1998.

[10] M. Comini, G. Levi, and M. C. Meo. Compositionality of SLD-derivations and their

abstractions. In J. Lloyd, editor, Proceedings of the 1995 Int'l Symposium on Logic Pro-

gramming, pages 561{575. The MIT Press, 1995.

[11] M. Comini, G. Levi, M. C. Meo, and G. Vitiello. Abstract Diagnosis. Submitted for

publication, 1996.

[12] M. Comini, G. Levi, M. C. Meo, and G. Vitiello. Proving properties of logic programs

by abstract diagnosis. In M. Dams, editor, Analysis and Veri�cation of Multiple-Agent

Languages, 5th LOMAPS Workshop, number 1192 in Lecture Notes in Computer Science,

pages 22{50. Springer-Verlag, 1996.

292 APPIA-GULP-PRODE'98

[13] P. Cousot. Methods and Logics for Proving Programs. In J. V. Leeuwen, editor, Formal

Methods and Semantics, volume B of Handbook of Theoretical Computer Science, pages

843{993. Elsevier Science Publishers B.V. (North-Holland), 1990.

[14] P. Cousot. Constructive Design of a Hierarchy of Semantics of a Transition system

by Abstract Interpretation. Electronic Notes in Theoretical Computer Science, 6, 1997.

URL:http://www.elsevier.nl/locate/entcs/volume6.html.

[15] P. Cousot and R. Cousot. Abstract Interpretation: A Uni�ed Lattice Model for Static

Analysis of Programs by Construction or Approximation of Fixpoints. In Proc. Fourth

ACM Symp. Principles of Programming Languages, pages 238{252, 1977.

[16] P. Cousot and R. Cousot. Inductive De�nitions, Semantics and Abstract Interpretation.

In Proc. Nineteenth Annual ACM Symp. on Principles of Programming Languages, pages

83{94. ACM Press, 1992.

[17] P. Deransart. Proof Methods of Declarative Properties of De�nite Programs. Theoretical

Computer Science, 118(2):99{166, 1993.

[18] W. Drabent and J. Maluszynski. Inductive Assertion Method for Logic Programs. Theo-

retical Computer Science, 59(1):133{155, 1988.

[19] M. Falaschi, G. Levi, M. Martelli, and C. Palamidessi. Declarative Modeling of the Oper-

ational Behavior of Logic Languages. Theoretical Computer Science, 69(3):289{318, 1989.

[20] E. Marchiori. A Logic for Variable Aliasing in Logic Programs. In G. Levi and

M. Rodriguez-Artalejo, editors, Proceedings of the 4th International Conference on Al-

gebraic and Logic Programming (ALP'94), number 850 in LNCS, pages 287{304. Springer

Verlag, 1994.

[21] E. Marchiori. Design of Abstract Domains using First-order Logic. In M. Hanus and

M. Rodriguez-Artalejo, editors, Proceedings of the 5th International Conference on Alge-

braic and Logic Programming (ALP'96), number 1139 in LNCS, pages 209{223. Springer

Verlag, 1996.

