
A First-Order Language for Expressing Aliasing and

Type Properties of Logic Programs

Paolo Volpe

Abstract

In this paper we study a �rst-order language that allows to express and prove

properties regarding the sharing of variables between non-ground terms and their

types. The class of true formulas is proved to be decidable through a procedure

of elimination of quanti�ers and the language, with its proof procedure, is shown

to have interesting applications in validation and debugging of logic programs. An

interesting parallel is pointed out between the language of aliasing properties and

the �rst order theories of Boolean algebras.

Keywords: Veri�cation of logic programs, languages of speci�cation, �rst-order

logic.

1 Introduction

In the methods proposed in [12][1][11][15], an assertional language is required that allows

to express the properties of programs one is interested in. Some veri�cation conditions

are provided that imply the partial correctness of the programs with respect to various

aspects of the computations. For example the method proposed in [11] and [5] allows

to prove properties of the correct answers of the programs, while in [15] a method is

provided to prove properties of the computed answers. The methods proposed in [12]

and [1] allow to prove, in addition, that predicates verify given speci�cations at call time.

In this paper we study a language that allows to express an interesting class of proper-

ties of non-ground terms, that is the data on which logic program operate. The language

is su�ciently expressive to capture sharing, freeness and types of non-ground terms. Two

or more terms are said to share, when they have at least one variable in common, while a

term is free when it is a simple variable. For types, we refer to term properties like being

a list, a tree, a list of ground terms, etc.

Fragments of this language have already been studied in [16] and [2] and shown to be

decidable, but in this paper we show that the full �rst-order theory is decidable. This al-

lows to use its full expressive power in existing proof methods and algorithmically decide

whether the veri�cation conditions are true or not. Indeed for many methods the veri�-

cation conditions are expressed by formulas of the language. If the veri�cation condition

is true, we show the partial correctness of logic programs with respect to a property be-

longing to the class of aliasing properties and type assertions. If the veri�cation condition

is false (and we stress that this can be checked in �nite time), obviously this does not

P. Volpe is with the Dipartimento di Informatica, Universit�a di Pisa. Corso Italia 40, 56125 Pisa,

Italy. e-mail: volpep@di.unipi.it. tel: +39-50-887248. fax: +39-50-887226.

293

294 APPIA-GULP-PRODE'98

mean that the program has necessarily an error. Anyway a \warning" can be raisen up,

signalling a possible wrong situation. The proof procedure shown in the paper can be

easily enriched so as to provide a counterexample in this case. This allows the user to

have more information about the warning and to decide whether to change the program

(the counterexample is actually a wrong computation of the program) or to re�ne the

speci�cation (the veri�cation condition is false because the speci�cation is too \loose"

and impossible computations are considered).

The proof of decidability is based on the method of elimination of quanti�ers and points

out an interesting set of formulas, which can be viewed as expressing constraints on the

cardinality of the sets of variables that can occur in terms. Our proof is based on the

parallel between the satis�ability of formulas of our language and the satis�ability of such

cardinality constraints, which can be proven decidable as a consequence of the decidabil-

ity of the theory of Boolean algebras. We think that such class of constraints, which

has a quite simple representation and operations of composition and cylindri�cation, can

be of interest in program analysis. For example, well known abstract domains such as

POS [8] and Sharing [13] can be naturally viewed as subdomain of the class of cardinality

constraints (cfr. also with [17]), with their composition and the cylindri�cation operator

obtained as instances of the general ones.

2 Regular term grammars

To specify families of types we will consider regular term grammars. There is, in litera-

ture, a large amount of papers on regular types. They have proved them to be a good

trade-o� between expressibility and decidability. In fact they are strictly more expres-

sive than regular languages, but strictly contained in context-free languages (which have

an undecidable subset relation). Our main references are the papers of Dart and Zobel

[9, 10] and Boye and Maluszynski [3, 2].

A regular term grammar is a tuple G = (�;V;T;R), where � is a set of function

symbols, V is an in�nite denumerable set of variables, T is a �nite set of type symbols,

including var and any, and R is a �nite set of rules l! r where

� l 2 (T=fvar; anyg)

� r 2 Terms(�;T)

For every T 2 T=fvar; anyg, we de�ne Def

G

(T) (also denoted by Def

R

(T)) as the set

fr j T ! r 2 Rg. Def

G

(var) is de�ned as the set of variable V, while Def

G

(any) as the

set Terms(�;V). We use the notation T

1

!

G

T

2

if T

2

is obtained from T

1

by replacing a

symbol T 2 T by a term in Def

G

(T). Let !!

G

be the transitive and ri
essive closure of

!

G

. Given the type symbol T 2 T, we de�ne the set of terms [T]

G

, the type T , as the

set fs 2 Terms(�;V) j T!!

G

sg. Notice that [var]

G

= V and [any]

G

= Terms(�;V). We

assume function symbols in � to contain at least a constant and a function of arity 2.

We will often omit the subscript when the grammar is clear from the context. Regular

term grammars enjoy several remarkable properties. In fact the emptiness and the subset

relation of regular types is decidable and for each symbol type T , the set [T]

G

is decidable

[9]. Moreover, given a grammar G and two type symbols T and S, there is an algorithm

which extends G into G

0

, with a new symbol S \ T and new rules in such a way that

[S \ T]

G

0

= [S]

G

\ [T]

G

.

A First-Order Language for Expressing Aliasing and Type Properties of Logic Programs 295

In this paper we will be mainly concerned with closed discriminative regular grammars

in normal form.

De�nition 1

A regular term grammar G = (�;V;T;R) is in normal form if each rule have the form

T ! var or

T ! f(T

1

; : : : ; T

n

)

with f

(n)

2 � , T 2 T=fvar; anygand T

1

; : : : ; T

n

2 T.

It can be easily shown that each type can be de�ned by a grammar in normal form.

De�nition 2

A regular term grammar G is discriminative if it is in normal form and, for each type

symbol T , the top functors in Def

G

(T) are pairwise distinct. It is closed if it is in normal

form and, for each type symbol T , the symbol var does not occur in any element of

Def

G

(T).

Notice that most of the types used in logic programming allow closed and discriminative

term grammars. It can be easily shown that regular types de�ned by a closed grammar

are indeed closed under substitution [2]. The types that can be de�ned by a discriminative

and closed grammar will be referred to as simple types.

Given a discriminative and closed regular term grammar G and two type symbols T

and S, we want to extend it to G

0

with a new symbol T=S and new rules in such a

way that [T=S]

G

0

= [T]

G

= [S]

G

, if it is not the case that [T]

G

� [S]

G

. We provide an

algorithm which computes the di�erence T=S, assuming that type S is simple. In general

the grammar G

0

need not to be nor closed nor discriminative in general. For example, the

di�erence type [any] = [inst] is equal to the set of variables V, which can not be de�ned

by any closed grammar.

Di�erence Algorithm

Input. Two type symbols T and S and the set R of rules de�ning T and S, with S simple.

Output. A pair (T=S;S), where T=S is de�ned by the rules in S, if S 6= ;; otherwise the

di�erence is empty ([T] � [S]).

Method. The algorithm is de�ned by the following recursive function. A set I of di�erence

symbols T=S is used to ensure termination.

di�erence(T; S;R) = di�erence(T; S;R; ;)

di�erence(T; S;R; I) =

� If T � S then return (T=S; ;);

� If the symbol T=S is in I then retun (T=S;R);

� Otherwise, let Def

R

(T) = fr

1

; : : : ; r

k

g. For each i 2 f1; : : : ; kg, let H

i

be de�ned as

follows:

{ if r

i

= var or (r

i

= f

i

(T

1

; : : : ; T

n

i

) and the functor f

i

does not occur in Def

R

(S))

then let H

i

= fT=S ! r

i

g;

{ If r

i

= f

i

(T

1

; : : : ; T

n

i

) and f

i

(S

1

; : : : ; S

n

i

) 2 Def

R

(S) then let (T

j

=S

j

;S

j

) =

di�erence(T

j

; S

j

;R; I[fT=Sg), for each j = f1; : : : ; n

i

g, and letH

i

=

S

S

j

6=;

fT=S !

f

i

(T

1

; : : : ; T

j

=S

j

; : : : ; T

n

i

)g [S

j

296 APPIA-GULP-PRODE'98

Return (T=S;R[

S

k

i=1

H

i

)

Lemma 2.1 Let T and S be two type terms de�ned by the rules of R, S simple. Then

di�erence(T; S;R) terminates and returns a pair (T=S;S) such that [T=S]

S

= [T]

R

= [S]

R

.

To carry on the elimination of quanti�ers in the next section, we need to know the

cardinalities of the sets of variables which may occur in a term of a given type. The

var-cardinality of T , written jT j, is de�ned as the set fjVars(t)j j t 2 [T]

G

g. In other

terms k 2 jT j if and only if there exists t 2 [T] such that jVars(t)j = k. We can prove in

a straightforward way the following lemma.

Lemma 2.2 Given a simple type T , then jT j is equal to f0g or to !.

For di�erence types (T

1

\ � � � \T

n

)=S

1

= � � � =S

k

, with T

1

; : : : ; T

n

and S

1

; : : : ; S

k

simple

types, we can show the following theorem.

Theorem 2.3 The var-cardinality of the type (T

1

\ � � � \T

n

)=S

1

= � � � =S

k

, with T

1

; : : : ; T

n

and S

1

; : : : ; S

k

simple types, is equal to S[[k; !], where S is a �nite set of natural number

and [k; !], with k = 1; : : : ; ! is the set of natural numbers greater or equal to k .

The proof provides an e�ective procedure to compute the var-cardinality of a di�erence

type.

3 A language of properties

We introduce a language that allows to express properties of terms used in static analysis

and veri�cation of logic programs: these include groundness, freeness, sharing, type as-

sertions. The language is parametric with respect to a family of types de�ned through a

regular term grammar. It is an extension of the language proposed by Marchiori in [16].

We assume a regular term grammar G = (�;V;T;R), discriminative and closed, de-

scribing the family of types we are interested in. As before, the set of function symbols

� is assumed to contain at least a constant and a function of arity 2. The �rst-order

language L

G

= h�;�;Vi will have the set of predicate symbols � consisting of the predi-

cates var

(1)

, share

(n)

, for each natural n, and a unary predicate p

(1)

T

for each symbol type

T 2 T=fanyg.

Like in [16], we give the semantics of formulas L by considering the non-ground Herbrand

interpretation H = hTerms(�;V);�;�i. Given a state �, the relation j=

�

is de�ned on

atoms as follows.

� H j=

�

var(t) i� �(t) 2 V;

� H j=

�

share(t

1

; : : : ; t

n

) i�

T

n

i=1

Vars(�(t

i

)) 6= ;;

� H j=

�

p

T

(t) i� �(t) 2 [T]

G

, with T 2 T=fanyg.

The semantics of the other formulas of L can be derived as usual. We will often

write j= ' (resp. j=

�

') for H j= ' (resp. H j=

�

'). Formulas expressible in L

G

are, for example, 8V var (V)) :share(V;X) which asserts the groundness of X; or

list(X) ^ 9V var(V) ^ share(V;X) ^ (8W var(W) ^ share(W;X)) share(V;W)) which

says that X is a list in which exactly one variable occurs.

A First-Order Language for Expressing Aliasing and Type Properties of Logic Programs 297

An important class of formulas of L

G

, which are often considered in analysis and veri-

�cation, is the class of monotone formulas, that is the formulas ' such that j=

�

' and

� � �

0

implies j=

�

0

'. For example, ground(X) and :var (X) are monotone properties,

while var(X) and share(X;Y) are not. Since the grammar G is closed each atom p

T

1

(X)

is monotone. An interesting subclass of monotone properties are the dependences like

8V var(V) ^ share(V; Y)) share(V;X), which could be read informally as saying that

if X is instantiated to a ground value then also Y is.

Notice that properties expressible in the language L

G

are invariant with respect to the

name of variables. That is, for each ', formula of L, if j=

�

' and �

0

is a variant of � then

j=

�

0

'.

4 A proof procedure for L

We are interested in characterizing the set of formulas Th

L

(H), that is the formulas of

the language L which are true in the interpretation H.

In [16], it is proposed a proof procedure to decide the validity of formulas 9('

1

^� � �^'

n

)

where each atom '

i

is an atom var(t), ground(t), share(t

1

; : : : ; t

n

), or its negation. It is

also known that the implication between regular types, that is formulas like 8(p

T

1

(t

1

) ^

� � � ^ p

T

n

(t

n

)) p

T

(t)) are decidable [2]). It is not clear whether considering the full �rst

order theory, such as in L, the language is still decidable. In this section we will show

that this is indeed the case and it is not such a trivial extension of those previous results.

To show that Th

L

(H) is recursive we will use the method of elimination of quanti�ers

[4, 14]. We single out a set
, the elimination set, of fomulas of L and show that each

formula of L is equivalent in H to a boolean combination of formulas of
. Once proved

the decidability of formulas in
, we end up with a complete decision procedure for

formulas of L:

We will use the abbreviation 9

�k

var (V) � to say that there exist at least k distinct

variables which verify formula �. To carry on the elimination of quanti�ers we will need

a particular class of formulas, which we call cardinality constraints.

De�nition 3

Let B be the class of boolean terms on V, that is the terms built from the signature

(f\

(2)

;[

(2)

;:

(1)

; 0

(0)

; 1

(0)

g;V). Fixed a natural k and a boolean term t, a simple cardinal-

ity constraint �

k

(t) is de�ned as the formula 9

�k

var(V) 	

t

(V), where 	

t

(V) is de�ned

inductively on the sintax of t.

� 	

0

(V) = false and 	

1

(V) = true;

� 	

X

(V) = share(V;X), with X 2 V;

� 	

t

1

\t

2

(V) = 	

t

1

(V) ^	

t

2

(V);

� 	

t

1

[t

2

(V) = 	

t

1

(V) _	

t

2

(V);

� 	

:t

(V) = :	

t

(V).

298 APPIA-GULP-PRODE'98

A simple cardinality constraint �

k

(t) asserts the membership of at least k elements to the

combination of variables in t, seen as subsets of V. Often the term :t will be written as t.

We will use the formula �

=k

(t), that is t contains exactly k elements, as an abbreviation

for the formula �

k

(t) ^ :�

k+1

(t). Conjunctions of cardinality constraints, are also called

cardinality constraints.

Example 4.1 Consider the simple cardinality constraint �

2

(X \ Y \ Z), that is, the

formula 9

�2

var(V) share(V;X) ^ share(V; Y) ^ :share(V;Z). This formula is true in H

under the state �, if there exist at least two variables sharing with �(X) and �(Y) and

not with �(Z), that is if the cardinality of Vars(�(X)) \Vars(�(Y)) \Vars(�(Z)), is at

least equal to 2.

The following lemma allows us to work with simple cardinality constraints just as if they

were assertions on set of variables.

Lemma 4.1 Let � : V ! Terms(�;V). Let t

�

�

be obtained by t by replacing each oc-

curence of variable X by Vars(�(X)), for each X 2 V. Then j=

�

�

k

(t) if and only if the

cardinality of t

�

�

is at least equal to k.

Let the elimination set
 be composed by the atomic formulas var(X), p

T

1

(X); : : : ; p

T

n

(X),

whereX 2 V, and by the set of simple cardinality costraints f�

k

(t) j k � 1; t is a boolean termg.

The idea is to exploit the striking similarity of the simple cardinality constraints in our

language with formulas of the �rst-order theory of the powerset of V seen as a Boolean al-

gebra. For such a theory the decidability has been shown by Skolem in 1919 just through

an argument based on elimination of quanti�er (see [14] for a slightly more general ac-

count). The main idea is to reduce satis�ability of a formula in L to satis�ability of

conjunctions of simple cardinality constraints (also called cardinality constraints). For

them the elimination of quanti�ers can be carried on for cardinality constraints in a long

but straightforward way.

Theorem 4.2 Let (X) be a cardinality constraint. Then 9X (X) is equivalent to a

disjunction of cardinality constraints.

Let us see how we can eliminate formulas di�erent from cardinality constraints under

existential quanti�ers. A formula is
at if it does not contain any functor. Notice that

each formula �

k

(t) is
at. Indeed we can consider only
at formulas since

� var(f(X)), false for each functor f 2 �;

� share(t

1

; : : : ; f(s

1

; : : : ; s

k

); : : : ; t

n

),

W

k

i=1

share(t

1

; : : : ; s

i

; : : : ; t

n

);

� p

T

(f(s

1

; : : : ; s

n

)) , p

T

1

(s

1

) ^ � � � ^ p

T

n

(s

n

) for each f(T

1

; : : : ; T

k

) 2 Def

G

(T) (re-

member that G is discriminative).

� p

T

(f(s

1

; : : : ; s

n

)), false if f(T

1

; : : : ; T

k

) 62 Def

G

(T) for any T

1

; : : : ; T

k

.

Type formulas, that is, conjunction of atomic
at formulas p

T

(X), possibly negated, can

be eliminated under existential quanti�er and replaced by cardinality constraints.

Lemma 4.3 Let (X) be a cardinality constraint and �(X) = p

T

1

(X) ^ � � � ^ p

T

n

(X) ^

:p

S

1

(X)^� � �^:p

S

k

(X) a type formula. Let S[[k; !] be the var-cardinality of (T

1

\ � � � \T

n

)=S

1

= � � � =S

k

.

Then the following are valid equivalences in H.

A First-Order Language for Expressing Aliasing and Type Properties of Logic Programs 299

� (9X �(X) ^ (X)), false if S is empty and k = !;

� (9X �(X) ^ (X)), (

W

h2S

9X �

=h

(X) ^ (X)) _ (9X �

k

(X) ^ (X)).

This can also be done for var(X) and for :var (X).

Lemma 4.4 Let (X) be a cardinality constraint. Then (9X :var(X) ^ (X)) ,

(9X (X)) and (9X var(X) ^ (X)), (9X �

=1

(X) ^ (X)).

There follows then the following theorem, which is at the base of the procedure of

elimination of quanti�ers.

Theorem 4.5 For each formula 	(X), conjunction of formulas of
, possibly negated,

there exists �, a boolean composition of formulas of
, such that j= (9X 	(X)), �.

At this point it is easy to show that for each �rst-order formula of L it can be computed

a Boolean composition of formulas of
 equivalent to it on H.

Theorem 4.6 Every formula 	 of L is equivalent in H to a Boolean composition of

formulas of
.

Finally the following theorem gives a constructive proof of decidability of formulas of
.

Theorem 4.7 There exists an algorithm which decides the satis�ability of formulas

V

'

i

,

where each '

i

is a formula of
, possibly negated.

Now for 	 a general combination of formulas of
, we have that 8	 , 8

VW

'

i

,

:9

WV

:'

i

, :

W

9(

V

:'

i

), with each '

i

a formula of
, possibly negated. Then 8	 is

true if and only if none of the conjunction

V

:'

i

is satis�able. Notice that if this is not

the case then a conjunction

V

:'

i

is satis�able and , a counterexample can be provided.

5 Applications

L can be employed as an assertional language to be used in inductive proof methods.

Indeed the veri�cation conditions of many such methods can be entirely expressed by a

formula of L and e�ectively be decided.

Assumed h�;�;Vi as a signature for logic programs, with � the set of predicate

symbols, an assertion � of L is a speci�cation for predicate p

(n)

2 �, if Vars(�) �

fX

1

; : : : ;X

n

g. Informally variable X

i

refers to the i-th argument of p: An atom

p(t

1

; : : : ; t

n

) satis�es the assertion �, written p(t

1

; : : : ; t

n

) j= �, i� H j=

�[X

1

;::: ;X

n

nt

1

;::: ;t

n

]

�. The notation � [Xnt] denotes the formula � in which the variables (X

1

; : : : ;X

n

) are

contemporary substituted by terms (t

1

; : : : ; t

n

).

Let us consider �rst the correct answers of a program and associate a speci�cation

�

p

to each predicate p 2 �. Program P in success-correct with respect to f�

p

g

p2Pred

i�

8p(t) 2 Atoms p(t)

�

 2 implies p(t)� j= �

p

. A su�cient condition for correctness can be

stated as follows. A program P in success-correct with respect to f�

p

g

p2Pred

if for each

clause p(t) p

1

(t

1

); : : : ; p

n

(t

n

) it is true that

H j=

n

^

i=1

�

p

i

[X

i

nt

i

]) �

p

[Xnt] : (1)

300 APPIA-GULP-PRODE'98

The method indeed has been proposed in [5] and [11]. In our case, condition (1) can be

decided using the procedure of Section (4). If the formula (1) is proved to be true for

each clause, then the program is partial correct. Obviously if the formula is false this

does not imply that the clause is necessarily wrong. Anyway it could be considered a

warning that something wrong can happen. It is possible to provide counterexamples in

such cases. The user then would have more information to decide whether the warning

can give raise to a real error or simply the speci�cation is too loose and behaviours are

considered that can never occur in practice.

If we are interested to check the Input/Output behaviour of logic programs, we can

associate to each predicate p 2 � a property pre

p

_ post

p

, where pre

p

and post

p

are

speci�cations for p. Program P is I/O-correct with respect the properties fpre

p

_

post

p

g

p2Pred

if

p(t) j= pre

p

and p(t)

�

 2 implies p(t)� j= post

p

:

If each formula pre

p

is monotone, a su�cient condition for P to be I/O-correct with

respect the properties fpre

p

_ post

p

g

p2Pred

is that

H j= (

n

^

i=1

(pre

p

i

[X

i

nt

i

]) post

p

i

[X

i

nt

i

]) ^ pre

p

[Xnt])) post

p

[Xnt] :

Finally, if we want to check the call correctness of predicates we can consider methods like

those proposed in [12][1]. To each predicate p 2 �, is associated a property pre

p

_ post

p

,

with pre

p

and post

p

speci�cations for p. In this case, anyway, the pre-condition is used

also as a speci�cation for the argument of a predicate at call-time. In fact a program P

is call-correct with respect the properties fpre

p

_ post

p

g

p2Pred

if

p(t) j= pre

p

and p(t)

�

 2 implies p(t)� j= post

p

and

p(t) j= pre

p

and p(t)

�

! hq(s);Gi implies q(s) j= pre

q

:

We are assuming a leftmost selection rule for SLD -derivations. In [1] it has been shown

that, in the case pre

p

and post

p

are monotone for each p, then a su�cient condition

for P to be correct with respect to fpre

p

_ post

p

g

p2Pred

is that for each clause p(t)

p

1

(t

1

); : : : ; p

n

(t

n

), it is true that for each 1 � k � n+ 1

H j= (pre

p

[Xnt] ^

k�1

^

i=1

post

p

i

[X

i

nt

i

]) pre

p

k

[X

k

nt

k

])

where pre

p

n+1

[X

n+1

nt

n+1

] � post

p

[Xnt].

A warning in this case can be raised because there may be a computation that calls a

predicate with arguments which violate the speci�cation. Again if a counterexample is

provided the user may decide whether the speci�cation is too loose or an actual error has

been discovered.

Notice that previous methods are restricted to monotone properties. The reason for not

considering all the expressible properties is that in those cases the veri�cation condititions

become much more complex and the mgu's have to be considered explicitly (see [15]).

Indeed, the veri�cation conditions are no more expressible as formulas of L. Anyway the

class of properties that can be mechanically checked is still quite large, including type

assertions, groundness, dependencies.

A First-Order Language for Expressing Aliasing and Type Properties of Logic Programs 301

6 Conclusions

In this paper we have studied a language that allows to express and decide aliasing

properties such as the sharing or freeness and is enriched with type assertions. Using

formulas of L, we may prove many properties of programs in inductive proof methods.

Morover since the logic is decidable, the corresponding veri�cation conditions can be

mechanically checked and a warning can be raised if a condition is false.

The set of true formulas is proved to be decidable through a procedure of elimination of

quanti�ers. This points out an interesting class of formulas, which express cardinality

constraints on the set of variables that can occur in a term. This can give an interesting

insight on domains used for the analysis of logic program. In fact domains such as POS

[8] and Sharing [13], used for aliasing analysis, can be seen as fragments of the domain

of formulas of cardinality constraints.

We are currently investigating two possibilities for augmenting the expressive power

of the logic L, obviously while retaining the decidability.

The �rst consists in adding a modal operator 2 de�ned as follows

j=

�

2' i� for each �

0

� � j=

�

0

'.

Such modality would allow, �rst of all, to characterize monotone properties of language L,

which would correspond to the formulas 	 such that 	, 2	 . Morover we could express

dependences between properties, like 2(list (X)) list(Y)), whose informal meaning is

that every state that instantiate X to a list will also bind Y to a list:

Another extension is given by Hoare-like triples f�g[[t; s]]f	g, already considered in [6]

and [7], where a formal calculus has been provided for a language of assertions slightly

di�erent from L. Their meaning is: if � is true under the state � and � = mgu(�(t); �(s)),

then 	 is true under the state ���. These formulas would allow to express the veri�cation

of general proof methods, like those in [12] and in [15], for the whole class of formulas of

L. At moment, it is still not known if, given a decidable logic such as L, it is possible to

decide the validity of such triples.

References

[1] A. Bossi and N. Cocco. Verifying Correctness of Logic Programs. In J. Diaz and F. Orejas,

editors, Proc. TAPSOFT'89, pages 96{110, 1989.

[2] J. Boye. Directional Types in Logic Programming. PhD thesis, University of Link�oping,

Computer Science Department, 1997.

[3] J. Boye and J. Maluszynski. Directional Types and the Annotation Method. Journal of

Logic Programming, 33(3):179{220, 1997.

[4] C. C. Chang and H. J. Kreisler. Model Theory. Elsevier Science Publ., 1990. Third edition.

[5] K. L. Clark. Predicate logic as a computational formalism. Res. Report DOC 79/59,

Imperial College, Dept. of Computing, London, 1979.

[6] L. Colussi and E. Marchiori. Proving Correctness of Logic Programs Using Axiomatic

Semantics. In Proc. of the Eight International Conference on Logic Programming, pages

629{644. The MIT Press, Cambridge, Mass., 1991.

[7] L. Colussi and E. Marchiori. Uni�cation as Predicate Transformer. In Proc. of the Joint

International Conference and Symposium on Logic Programming, pages 67{85. The MIT

Press, Cambridge, Mass., 1992.

302 APPIA-GULP-PRODE'98

[8] A. Cortesi, G. Fil�e, and W. Winsborough. Prop revisited: Propositional Formula as Ab-

stract Domain for Groundness Analysis. In Proc. Sixth IEEE Symp. on Logic In Computer

Science, pages 322{327. IEEE Computer Society Press, 1991.

[9] P. Dart and J. Zobel. E�cient run-time type checking of typed logic program. Journal of

Logic Programming, 14(1-2):31{70, 1992.

[10] P. Dart and J. Zobel. A regular type language for logic programs. In F. Pfenning, editor,

Types in logic programming, pages 157{187. The MIT Press, Cambridge, Mass., 1992.

[11] P. Deransart. Proof Methods of Declarative Properties of De�nite Programs. Theoretical

Computer Science, 118(2):99{166, 1993.

[12] W. Drabent and J. Maluszynski. Inductive Assertion Method for Logic Programs. Theo-

retical Computer Science, 59(1):133{155, 1988.

[13] D. Jacobs and A. Langen. Accurate and E�cient Approximation of Variable Aliasing in

Logic Programs. In E. Lusk and R. Overbeek, editors, Proc. North American Conf. on

Logic Programming'89, pages 154{165. The MIT Press, Cambridge, Mass., 1989.

[14] G. Kreisel and J. L. Krivine. Elements of Mathematical Logic (Model Theory). North-

Holland, Amsterdam, 1967.

[15] G. Levi and P. Volpe. Derivation of Proof Methods by Abstract Interpretation. (Submit-

ted). Available at http://www.di.unipi.it/�volpep/papers.html, 1998.

[16] E. Marchiori. A Logic for Variable Aliasing in Logic Programs. In G. Levi and

M. Rodriguez-Artalejo, editors, Proceedings of the 4th International Conference on Al-

gebraic and Logic Programming (ALP'94), number 850 in LNCS, pages 287{304. Springer

Verlag, 1994.

[17] E. Marchiori. Design of Abstract Domains using First-order Logic. In M. Hanus and

M. Rodriguez-Artalejo, editors, Proceedings of the 5th International Conference on Alge-

braic and Logic Programming (ALP'96), number 1139 in LNCS, pages 209{223. Springer

Verlag, 1996.

