
Set Based-Analysis of Logic Programs via Abstract Interpretation

Giorgio Levi Walter Volpi

Dipartimento di Informatica, Universit�a di Pisa,

Corso Italia 40, 56125 Pisa, Italy.

EMAIL:levi@di.unipi.it TEL: +39-50-887246 FAX: +39-50-887226

Abstract: Abstract Interpretation and Set-Based Analysis are static analysis techniques. We show

that, in the case of logic programs, Set-Based Analysis can be reconstructed as an instance of Abstract

Interpretation.

Namely, we prove that if P is a logic program, then the least solution of the system of equations

extracted from P by the Set-Based Analysis can be expressed in terms of an abstract semantics de�nable

using the Abstract Interpretation technique.

Keywords: Logic Programming, Abstract Interpretation, Set-Based Analysis.

1 Introduction

Abstract Interpretation [1, 2] and Set-Based Analysis [5] are static analysis techniques.

The basic idea of Abstract Interpretation is to replace the domain of computation by an abstract

domain and perform the computation over the latter. If the abstract domain is noetherian, the abstract

semantics can be computed in a �nite number of steps.

In the case of logic programs [6], Set-Based Analysis can roughly be described as follows:

� extract from the logic program P a set of equations S

0

,

� perform on the equations set a �nite sequence of transformations S

0

! S

1

! : : :! S

n

,

� return the set of equations S

n

.

All the transformations preserve the least solution of S

0

. The main properties of S

n

are:

� the semantics of the least solution of S

n

is a conservative approximation of the least model of P,

� S

n

can be used as a basis for logic program analysis because it is decidable whether an atom

belongs to the least solution of S

n

.

Set-Based Analysis was claimed by the authors of [5] not to be an instance of abstract interpretation.

Patrick and Radhia Cousot have later shown [3] that Abstract Interpretation can be used to build a

�nite syntactic expression whose meaning is the semantics of the least solution of the set of equations

extracted by the Set-Based Analysis. In the case of logic programs, we show a more direct result, using

much simpler techniques. Namely we show that: the least solution of the system of equations extracted

from a logic program by the Set-Based Analysis can be expressed in terms of an abstract semantics.

2 Preliminary de�nitions

Let �

def

= (Cos(�); V ar(�); Fun(�); P re(�)) a signature where Cos(�) is a �nite set of constant symbols,

V ar(�) is a denumerable set of variable symbols, Fun(�) is a �nite set of function symbols and Pre(�)

is a �nite set of predicate symbols. We assume that Cos(�) , V ar(�) , Fun(�) and Pre(�) are pairwise

disjoint and that exist a function arity : Fun(�)[Pre(�)! !:f 2 Fun(�)) arity(f) � 1.

303

304 APPIA-GULP-PRODE'98

Ter(�) (GroTer(�)) is the set of (ground) terms buit over the signature �. Ato(�) (GroAto(�))

is the set of (ground) atoms built over the signature �. Exp(�)

def

= Ter(�) [Ato(�). GroExp(�)

def

=

GroTer(�) [GroAto(�). Body(�)

def

= f(b

1

; b

2

; : : : ; b

n

) : b

1

; b

2

; : : : ; b

n

2 Ato(�)g. Cla(�)

def

= fh B: :

h 2 Ato(�); B 2 Body(�)g. Pro(�)

def

= }(Cla(�)) is the set of logic programs built over the signature

�.

If e 2 Exp(�), var(e) is the set of variable symbols that occours in e and Gro

�

(e) is the set of ground

instances of e in �.

If X and Y are sets then a partial function from X to Y is a set f � X�Y for which 8x; y; y

0

:(x; y) 2

f; (x; y

0

) 2 f) y = y

0

. We write X * Y for the set of all partial functions from X to Y . Moreover, if

f 2 X * Y then dom(f)

def

= fx : 9y 2 Y:(x; y) 2 fg and � is the partial function whose domain is empty.

Finally, Sub(�)

def

= f� : � 2 V ar(�) * Ter(�) : x 2 dom(�) ! �(x) 6= xg is the set of substitution

built over the signature �.

3 Set-Based Analysis for logic programs

In this section we describe a re-elaboration of concepts concerning Set-Based Analysis taken from [5].

If P 2 Pro(�), the meaning of the least solution of the system of equations extracted from P by the

Set-Based Analysis is �

P

" !. The de�nition of �

P

is based on the concept of set-substitution. A set-

substitution is like an ordinary substitution except that variables are mapped onto sets of ground terms

rather than to terms. We write Sub

�

(�) for the set of all set-substitutions built over the signature �.

De�nition 1 Sub

�

(�)

def

= V ar(�)* }(GroTer(�))

(Sub

�

(�);�

�

) is a complete lattice where �

�

is de�ned as follows.

De�nition 2 8

1

;

2

2 Sub

�

(�):

1

�

�

2

def

, 8 < x; T

1

>2

1

:9 < x; T

2

>2

2

:T

1

� T

2

Let (Sub

�

(�)

?

;�

�

?

) be the lifting [8] of (Sub

�

(�);�

�

). Now we de�ne a function 	 which takes as input

a collection S of variables and a collection � of substitutions and returns a single set-substitution or ?.

De�nition 3 The function 	 : }(V ar(�))� }(Sub(�)) ! Sub

�

(�)

?

is de�ned as

8S � V ar(�); 8� � Sub(�): 	(S;�)

def

=

�

? if � = ;

 otherwise

where:

dom()

def

= S \ fx : 9� 2 �:x 2 dom(�)g, 8x 2 dom(): (x)

def

=

S

�2�; x2dom(�)

�(x).

A set-substitution can be applied to expressions. The result of the application j E j of the set-

substitution to an expressions E 2 Exp(�) is a set of ground instances of E as shown by the following

de�nition.

De�nition 4 The function j:j : Exp(�)� Sub

�

(�)! }(GroExp(�)) is de�ned as

� 8 2 Sub

�

(�); 8x 2 V ar(�): jxj

def

=

�

 (x) if x 2 dom()

GroTer(�) otherwise

� 8 2 Sub

�

(�); 8c 2 Const(�): jcj

def

= fcg

� 8 2 Sub

�

(�); 8f 2 Fun(�): arity (f)=n, 8t

1

; t

2

; : : : ; t

n

2 Ter(�):

jf(t

1

; t

2

; : : : ; t

n

)j

def

= ff(s

1

; s

2

; : : : ; s

n

) : 8i = 1; 2; : : : ; n:s

i

2 jt

i

j g

� 8 2 Sub

�

(�); 8p 2 Pre(�): arity (p)=n, 8t

1

; t

2

; : : : ; t

n

2 Ter(�):

jp(t

1

; t

2

; : : : ; t

n

)j

def

= fp(s

1

; s

2

; : : : ; s

n

) : 8i = 1; 2; : : : ; n:s

i

2 jt

i

j g.

Finally we de�ne the approximate immediate consequences operator �

P

.

De�nition 5 If P 2 Pro(�) the operator �

P

: }(GroAto(�))! }(GroAto(�)) is de�ned as

8J � GroAto(�):

a 2 �

P

(J)

def

, 9h B: 2 P:(= 	(var(h); f� 2 Sos

�

(�) : [B]� � Jg) 6= ?) ^ (a 2j h j):

Set Based-Analysis of Logic Programs via Abstract Interpretation 305

An example of computation of �

P

" ! is the following.

Example 1 Let P = fp(f(a; b)):; p(f(b; a)):; r(X) p(f(X;X)):; s(f(Y; Z)) p(f(Y; Z)):g:

� �

P

" 0 = ;

� �

P

" 1 = fp(f(a; b)); p(f(b; a))g

� �

P

" 2 = fp(f(a; b)); p(f(b; a)); s(f(a; a)); s(f(a; b)); s(f(b; a)); s(f(b; b))g

� �

P

" 3 = �

P

" 2 = �

P

" !.

4 Denotational semantics

This section provides a denotational semantics for logic programs and a family of semantics obtained by

using Abstract Interpretation.

4.1 Denotational Semantics of logic programs

In this subsection we de�ne the denotational semantics of logic programs.

De�nition 6 The concrete domain is the complete lattice (C;�

C

) where:

� C

def

= ff 2 Cla(�)* }(GroAto(�)) :< h B:;A >2 f) A � Gro

�

(h)g

� 8f

1

; f

2

2 C:f

1

�

C

f

2

def

, 8 < c;A

1

>2 f

1

:9 < c;A

2

>2 f

2

:A

1

� A

2

.

Every element of C is a partial function from clauses to sets of ground atoms. If f is an element of the

set C and c = h B: is an element of the f 's domain, then f(c) is a set of ground instances of h.

The denotational semantics of the logic program P , Den[P], is de�ned as the least �xpoint of the

operator Y

P

, de�ned as follows.

De�nition 7 If P 2 Pro(�), then Y

P

: C ! C is de�ned as

8f 2 C:Y

P

(f)

def

= Lub

C

fc / f : c 2 Pg ,

where / : Cla(�)�C ! C is de�ned as

8c = h B: 2 Cla(�); 8f 2 C:c / f

def

= Inst

�

(c; Unif

�

(B; f))

and

1. Unif

�

: Body(�) � C ! }(Sub(�)) is de�ned as

8(b

1

; b

2

; : : : ; b

n

) 2 Body(�); 8f 2 C: Unif

�

((b

1

; b

2

; : : : ; b

n

); f)

def

=

�

f�g if n=0

� otherwise

where

� �

def

= f� 2 Sub(�) : 8i = 1; 2; : : : ; n:9c

i

2 dom(f):[b

i

]� 2 f(c

i

)g.

2. Inst

�

: Cla(�)� }(Sub(�)) ! C is de�ned as:

8c = h B: 2 Cla(�); 8� 2 }(Sub(�)): Inst

�

(c;�)

def

= f< c; f[h]� : � 2 �g >g

Y

P

is a continuous function. Hence Den[P]

def

= Y

P

" !. An example of Den[P] is the following.

Example 2 If P is the logic program in example 1, then:

Den[P] = f < p(f(a; b)):; fp(f(a; b))g >; < p(f(b; a)):; fp(f(b; a))g >;

< r(X) p(f(X;X)):; ; >; < s(f(Y; Z)) p(f(Y; Z)):; fs(f(a; b)); s(f(b; a))g > g.

Den[P] is related to the least Herbrand model T

P

" ! by the following equation.

T

P

" !

th

= �(Den[P]), where � : C ! }(GroAto(�)) is de�ned as 8f 2 C:�(f)

def

=

S

c2dom(f)

f(c).

306 APPIA-GULP-PRODE'98

4.2 A family of abstract denotational semantics

If (�;
) is a Galois insertion of (A;�

A

) in (C;�

C

) (c.f.,e.g. [1, 2]) then the abstract denotational

semantics, Den

a

[P], of the logic program P is de�ned as the least �xpoint of the operator Y

a

P

, formally

de�ned as follows.

De�nition 8 If P 2 Pro(�), then Y

a

P

: A! A is de�ned as

8g 2 A:Y

a

P

(g)

def

= Lub

A

fc /

a

g : c 2 dom(g)g,

where /

a

: Cla(�)�A! A is de�ned as

8c 2 Cla(�); 8g 2 A:c /

a

g

def

= �(c /
(g)).

We can prove that if � and
 are continuous functions, then Y

a

P

is a continuous function. Hence

Den

a

[P]

th

= Y

a

P

" !.

A particular class of Galois insertions is the class of observables. An observable (�;
) of (A;�

A

) in

(C;�

C

) is a Galois insertion of (A;�

A

) in (C;�

C

) such that:

� (A;�

A

) satis�es the following properties:

{ A � Cla(�)* L,

{ (L;�

L

) is a complete lattice,

{ 8g

1

; g

2

2 A:g

1

�

A

g

2

def

, 8 < c; l

1

>2 g

1

:9 < c; l

2

>2 g

2

:l

1

�

L

l

2

.

� (�;
) : (C;�

C

)

*

)
(A;�

A

) satis�es the following properties:

{ 8f 2 C:dom(�(f)) = dom(f),

{ 9abs : ff 2 C : card(dom(f)) = 1g ! L: 8c 2 dom(f):�(f)c = abs(f< c; f(c) >g).

An observable (�;
) of (A;�

A

) in (C;�

C

) de�ne an abstraction relation between the concrete domain

(C;�

C

) and the abstract domain (A;�

A

). Note that if f 2 C and c 2 dom(f), then �(f)c depend on

f(c) and on the syntactic structure of the clause c. Moreover, if (�;
) is an observable of (A;�

A

) in

(C;�

C

), then 8g 2 A:Y

a

P

(g)

th

= �(Y

P

(g)).

5 The observable for the Set-Based Analysis

In this section we describe the relation between Set-Based Analysis and Abstract Interpretation for the

logic programming paradigm.

De�nition 9 The abstract domain is the complete lattice (A;�

A

) where:

� A

def

= fg 2 Cla(�)* Sub

�

(�)

?

: 8 < h B:; � >2 g:(� = ?) _ (dom(�) = var(h))g ,

� 8g

1

; g

2

2 A:g

1

�

A

g

2

def

, 8 < c; �

1

>2 g

1

:9 < c; �

2

>2 g

2

:�

1

�

�

?

�

2

.

If g is an element of the set A and c is an element of g's domain, then g(c) is the symbol ? or a

set-substitution . The 's domain is the set of variables that occur in the head of c.

The abstraction function from the concrete domain (C;�

C

) to the abstract domain (A;�

A

) is de�ned

as follows.

De�nition 10 The function � : C ! A is de�ned as

1. 8f 2 C: dom(�(f))

def

= dom(f),

2. 8f 2 C; 8c = h B: 2 dom(f): �(f)c

def

=

�

? if f(c) = ;

� otherwise

where:

� dom(�)

def

= var(h), 8x 2 dom(�):�(x)

def

= f�(x) : 9� 2 Sub(�):[h]� 2 f(c)g.

Set Based-Analysis of Logic Programs via Abstract Interpretation 307

Note that, if f 2 C, h B: 2 dom(f) and h is a ground atom, then �(f)c = �.

An example of abstraction is the following.

Example 3 If f 2 C, f(p(f(X;X)) r(X):) = fp(f(a; a)); p(f(b; b))g, and g = �(f)

then g(p(f(X;X)) r(X):) = f< X; fa; bg >g:

The concretization function
 is introduced in the following.

De�nition 11 The function
 : A! C is de�ned as

1. 8g 2 A: dom(
(g))

def

= dom(g),

2. 8g 2 A; 8c = h B: 2 dom(g):
(g)c

def

=

�

; if g(c) = ?

j h j g(c) otherwise.

An example of
's application is the following.

Example 4 If g 2 A, g(p(f(X;X) r(X):) = f< X; fa; bg >g, and f =
(g)

then f(p(f(X;X)) r(X):) = fp(f(a; a)); p(f(a; b)); p(f(b; a)); p(f(b; b))g:

The functions � and
 satisfy the following properties:

1. � and
 are continuous functions. Hence Den

a

[P] = Y

a

P

" !.

2. (�;
) is an observable. Hence 8g 2 A:Y

a

P

(g) = �(Y

P

(g)).

An example of abstract denotation is the following.

Example 5 If P is the program in the example 1, then

� Y

a

P

" 0 = � (� is the abstract function whose domain is empty)

� Y

a

P

" 1 = �(Y

P

(Y

a

P

" 0)) = f < p(f(a; b)):; � >; < p(f(b; a)):; � >; < r(X) p(f(X;X)):;? >;

< s(f(Y; Z)) p(f(Y; Z)):;? > g

� Y

a

P

" 2 = �(Y

P

(Y

a

P

" 1)) = f < p(f(a; b)):; � >; < p(f(b; a)):; � >; < r(X) p(f(X;X)):;? >;

< s(f(Y; Z)) p(f(Y; Z)):; f< Y; fa; bg >;< Z; fa; bg >g > g

� Y

a

P

" 3 = �(Y

P

(Y

a

P

" 2)) = Y

a

P

" 2 = Den

a

[P].

Finally we can prove the following equality �

P

" ! = �(
(Den

a

[P])). (1)

The main theorem needed to prove (1) is the following.

Theorem 1

If

f 2 C, c = h B: 2 dom(f), U

�

(B; f) 6= ;,

var(h) \ var(B) = fx

1

; : : : ; x

h

g, var(h) n var(B) = fy

1

; : : : ; y

k

g,

then

(�(c / f))c is the set of ground instances of h obtained by replacing the j-th occurrence of the

variable:

� x

i

with a term t

i;j

= �(x

i

), for some � 2 U

�

(B; f),

� y

i

with a term t

i;j

2 GroTer(�).

Hence, ifW

P

def

= �f 2 C:
(�(Y

P

f)) , then 8f 2 C:�

P

(�(f))

th

= �(W

P

f). Therefore we can prove that

8n 2 !:�

P

" n

th

= �(W

P

" n).

Finally, 8n 2 !:
(Y

a

P

" n)

th

=W

P

" n so 8n 2 !:�(
(Y

a

P

" n))

th

= �

P

" n. Hence, by continuity of �,

and Y

a

P

, equality (1) holds.

Therefore the semantics of the system of equations extracted by the Set-Based Analysis from P, i.e.

�

P

" !, can be expressed in terms of an abstract semantics, i.e. Den

a

[P], de�nable using Abstract

Interpretation.

An example of (1) is the following.

308 APPIA-GULP-PRODE'98

Example 6 Consider the abstract semantics of the example 5. Then

�
(Den

a

[P]) =

f < p(f(a; b)):; fp(f(a; b))g >; < p(f(b; a)):; fp(f(b; a))g >; < r(X) p(f(X;X)):; ; >;

< s(f(Y; Z)) p(f(Y; Z)):; fs(f(a; a)); s(f(a; b)); s(f(b; a)) ; s(f(b; b))g > g.

� �(
(Den

a

[P])) = fp(f(a; b)); p(f(b; a)); s(f(a; a)); s(f(a; b)); s(f(b; a)); s(f(b; b))g hence, for the

result shown in example 1, the equality (1) holds.

6 Abstract semantics and logic programs

If P is a logic program, �

P

" ! can be expressed in terms of \standard" semantics of an approximate

logic program P

type

[4]. P

type

is obtained by applying a syntactic transformation. In this section, we

show a di�erent syntactic transformation Tr. Let Tr : Cla(�)! Cla(�) be de�ned as

8c = h B: 2 Cla(�):T r(c)

def

= h

0

 B

0

:

where:

� h

0

is an atom obtained by replacing in h the j-th occurrence of the variable x

i

by the new variable

y

i;j

,

� B

0

is the sequence of atoms B

1;1

; : : : ; B

1;n

1

; : : : ; B

m;1

; : : : ; B

m;n

m

, where, for each y

i;j

variable in

h

0

, the body B

i;j

is obtained by replacing in B each variable by a new variable except for x

i

(if x

i

occurs in B), which is replaced by y

i;j

.

An example of the clause tranformation by Tr is the following.

Example 7 Tr(p(X

1

; X

1

) p(X

1

; X

1

):) = p(Y

1;1

; Y

1;2

) p(Y

1;1

; Y

1;1

); p(Y

1;2

; Y

1;2

):

If P 2 Pro(�), we de�ne P

def

=

S

c2P

Tr(c). An example of P is the following.

Example 8 If P is the program in the example 1, then P =f p(f(a; b)): , p(f(b; a)): , r(Y)

p(f(Y; Y)): , s(f(Y

1;1

; Y

2;1

)) p(f(Y

1;1

; N

1

)); p(f(N

2

; Y

2;1

)): g.

We can show that 8n 2 !; 8c 2 P:Y

P

" n(Tr(c))

th

=
(Y

a

P

" n)(c) so 8n 2 !:�(Y

P

" n)

th

= �(
(Y

a

P

"

n)). Therefore T

P

" !

th

= �(Den[P])

th

= �(
(Den

a

[P])).

So we can say that the semantics of P , i.e. T

P

" !, is justi�ed in terms of an abstract semantics

obtained using Abstract Interpretation, i.e. Den

a

[P] .

7 Conclusion

We have described a Galois insertion which captures the abstraction made by Set-Based Analysis in

the logic programming case. The Galois insertion de�nes an abstract semantics which can be related

with the semantics of a logic program P . P is a �nite syntactic expression which satis�es the following

properties.

� the least model of P is the semantics of the least solution of the system of equations extracted

from P by Set-Based Analysis.

� if a is an atom, then it is decidable the problem of establishing whether a is an element of the least

model of P [4].

� the least model of P can be expressed using a tree automaton [7].

Set Based-Analysis of Logic Programs via Abstract Interpretation 309

References

[1] P. Cousot and R. Cousot, Abstract interpretation: A Uni�ed Lattice Model for Static Analysis of

Programs by Construction or Approximation of Fixpoints. In Proc. Fourth ACM Symp. Principles

of Programming Languages, pages 238-252, 1977.

[2] P. Cousot and R. Cousot, Systematic Design of Program Analysis Frameworks. In Proc. Sixth

ACM Symp. Principles of Programming Languages, pages 269-282, 1979.

[3] P. Cousot and R. Cousot, Formal language, Grammar and Set-Constraint-Based Program Analysis

by Abstract Interpretation. In Conference Record of FPCA'95 - Conference on Functional Program-

ming Languages and Computer Architecture, pages 170-181, 1995.

[4] T. Fruhwirth, E. Shapiro, M. Y. Vardi and E. Yardeni, Logic Programs as Types for Logic

Programs. In Proceeding of the 6

th

IEEE-LICS, pages 300-309, 1991.

[5] N. Heintze and J. Ja�ar, A �nite presentation theorem for approximating logic programs. In

Proceedings of the 17

th

ACM POPL, pages 197-209, 1990.

[6] J. W. Lloyd, Foundations of Logic Programming. Springer-Verlag 1987.

[7] JM. Talbot, S. Tison and P. Devienne, Set-Based Analysis for Logic Programming and Tree

Automata, In Pascal Van Hentenryck (ed.) volume 1302 of Lecture Notes in Computer Science :

Static Analysis 4

th

International Symposium, SAS'97, pages 127-140. Springer-Verlag, 1997.

[8] G. Winskel, The Formal Semantics of Programming Languages: An Introduction In Michael Garey

and Albert Meyer (ed.), Foundations of Computing, The MIT Press, 1993.

310 APPIA-GULP-PRODE'98

