
Plan of activities on the map calculus

Andrea Formisano, Eugenio Omodeo, Marco Temperini

Abstract

Tarski-Givant's map calculus is briey reviewed and a plan of research is out-

lined, aimed at investigating applications of this formalism in the theorem-proving

�eld. The connections between �rst-order logic and the map calculus are investi-

gated, focusing on techniques for translating single sentences from one context to

the other as well as on the translation of entire set theories. Issues regarding 'safe'

forms of map reasoning are singled out, in sight of possible generalizations to the

database area.

Keywords: Algebraic logic, Relation algebras, First-order theorem-proving.

Introduction

Everybody remembers that Boole's Laws of thought (1854), Frege's Begri�sschrift (1879),

and the Whitehead-Russell's Principia Mathematica (1910) have been three major mile-

stones in the development of contemporary logic (cf. [3, 10, 21, 4]). Only a few people

are aware that very important pre-Principia milestones were laid down by C.S. Peirce

and E. Schr�oder and culminated in the monumental work [16] on the Algebra der Logik .

The \rather capricious line of historical development" of the algebraic form of logic

|the map calculus, as we will call it| that Peirce and Schr�oder had contributed to

create and which short after the appearance of the Principia fell into general oblivion,

was already signaled as an anomaly by Tarski in 1941 (cf. [18]). Even more anomalous

it should be considered today, since the footprint of the map language can be recognized

in relational database languages, and since, moreover, the subsequent work of Tarski and

others (cf. [19]) made it clear that map calculus had no inner weaknesses preventing

it from becoming the frame for an omni-comprehensive deductive system such as set

theory. The rehabilitation of map calculus from its disrepute (whose historical causes are

skillfully investigated in [1]) has reopened the opportunity, dismissed for decades, to put

together complementary virtues of the map calculus and of �rst-order predicate logic.

This motivates us in proposing in this paper a few directions for research on the

map calculus, aimed at bringing to light its practical value for formal computer-based

veri�cation.

A few scenarios of use of Tarski-Givant's map calculus are developed. Properties of

familiar structures (natural numbers, lists, sets) endowed with operations and relations

A. Formisano is with Univ. \La Sapienza" of Rome, Dept. of Computer Science. E-mail: formisan@dm.univaq.it

E. Omodeo is with Univ. of L'Aquila, Dept. of Pure and Applied Mathematics. E-mail: omodeo@univaq.it

M. Temperini is with Univ. \La Sapienza" of Rome, DIS. E-mail: marte@dis.uniroma1.it

Work partially supported by CNR of Italy, coordinated project SETA, and by MURST 40%, \Tecniche speciali per la

speci�ca, l'analisi, la veri�ca, la sintesi e la trasformazione di programmi".

343

344 APPIA-GULP-PRODE'98

are formally speci�ed. Exercise of this nature, largely based on paper and pencil for

the time being, is aimed at bringing to light translation techniques that may e�ectively

bridge the gap between �rst-order predicate calculus and the map calculus. Two such

translation techniques, su�ering from the limitation of relying merely on syntax, are

examined in detail.

It is also discussed in what way a state-of-the-art theorem-prover for �rst-order logic

can be exploited to emulate, and reason about, map calculus|at least on a temporary

basis, until tools speci�cally designed for the latter come into existence.

To end, we envisage the design of a `safe' version of map calculus, paradigmatic of the

way one views relations in the database �eld.

1 Syntactic and semantic background: L

�

and L

+

L

�

is a ground equational language where one can state properties of binary relations over

an unspeci�ed, yet �xed, domain U of discourse. The basic ingredients of this language

are:

� three constants: �, 1l, �;

� in�nitely many map letters: p

1

; p

2

; p

3

; : : : (whose typographic form can widely vary,

e.g., suc, �, +, 2);

� binary constructs \, 4, � of map intersection, map symmetric difference, and

map composition;

� the unary construct

�1

of map inversion.

Map expressions are obtained through repeated use of \, 4, �, and

�1

, starting from

the map letters p

i

, which can be freely interpreted as binary relations over U , and from

the mentioned constants. Map equalities have the form Q=R, where Q and R are

map expressions.

Once a nonempty U has been �xed and subsets p

=

1

; p

=

2

; p

=

3

; : : : of U

2

=

Def

U � U have

been put in correspondence with the p

i

s , each map expression P comes to designate a

speci�c map P

=

, on the basis of the following evaluation rules:

�

=

=

Def

;, 1l

=

=

Def

U

2

, �

=

=

Def

f[a; a] : a 2 Ug;

(Q \R)

=

=

Def

f [a; b] 2 Q

=

: [a; b] 2 R

=

g,

(Q4R)

=

=

Def

f [a; b] 2 U

2

: [a; b] 2 Q

=

i� [a; b] =2 R

=

g;

(Q � R)

=

=

Def

f [a; b] 2 U

2

: there is a c 2 U for which [a; c] 2 Q

=

and [c; b] 2 R

=

g;

(Q

�1

)

=

=

Def

f [b; a] : [a; b] 2 Q

=

g.

Accordingly, an equality Q=R turns out to be either true or false in each interpretation

=. One often strives to specify the collection C of interpretations that are of interest in

some application through a set of equalities that must be true in every = of C. Requiring,

for instance, that �=1l leads in essence to propositional logic, because it forces U to be

singleton, and hence makes ; and U

2

the only possible values for each map expression P .

Figures 3 and 5, to be commented later on, show much more sophisticated examples.

L

+

is a variant version of a �rst-order dyadic predicate language: an atomic formula of

L

+

has either the form xQy or the form Q=R, where x; y stand for individual variables

(ranging over U) and Q;R stand for map expressions of L

�

. Here propositional connec-

tives and existential/universal quanti�ers are employed as usual. An ordering v

1

; v

2

; : : :

of individual variables is assumed.

To enrich L

�

and L

+

and improve the readability of their map expressions, we can

use several pieces of shorthand notation, such as:

Plan of activities on the map calculus 345

P �

Def

6P �

Def

P 4 1l,

P [Q �

Def

(P 4Q)4 (P \Q),

P yQ �

Def

P �Q,

funPart(P) �

Def

P \ P � �,

P nQ �

Def

P \ (Q4 P),

3P �

Def

1l � P � 1l.

The interpretation of L

�

and L

+

obviously extends to the new constructs; e.g.

1

,

funPart(P)

=

=

Def

f[a; b] 2 P

=

: [a; c] =2 P

=

for any c 6= bg.

Through similar rewriting rules we can extend L

�

in order to emulate familiar con-

structs such as inclusion, negation, and implication (and then, plainly, all other proposi-

tional connectives):

P�Q �

Def

P nQ= �, :P=Q �

Def

P 6=Q �

Def

3 (P 4Q)=1l,

P=Q! R=S �

Def

3(P 4Q) � (R4 S)=�.

It is also possible to overcome the limitation of not having constants or function sym-

bols available in L

�

, because these can be represented by map symbols P subject to the

respective conditions that

P

=

= f[e; e]g for some e 2 U ,

and that for all a 2 U , there is exactly one b 2 U for which [a; b] 2 P

=

.

In the map language, these two conditions can be rendered as follows:

Const(P) �

Def

P � 1l � P�� ^ P 6=�,

TotFun(P) �

Def

P

�1

� P�� ^ P � 1l=1l.

In spite of all these extensions, L

�

remains limited in means of expression with respect

to L

+

, due to its lack of individual variables and quanti�ers. We will discuss how to

circumvent the limitations of L

�

in speci�c but very signi�cant cases in Sections 4 and 5.

2 Raw deductive machinery for a map calculus

We will now slightly adjust the derivability notion for L

�

formalized in [19] to our context.

Admittedly, there will be map equalities P = 1l not derivable from an empty set of

premisses but nonetheless valid, in the sense that P

=

=U

2

is true in every interpretation

= of L

�

. This is due to an intrinsic limitation: there is no way out of this lack of semantic

completeness of the derivability notion for L

�

.

We start with recording onto the following list of schemes an in�nite collection �

�

of

valid map equalities, to be regarded as the logical axioms of L

�

:

P \Q = Q \ P

(P \ (Q4R))4 (P \Q) = P \R

1l \ P = P

(P ? Q) ? R = P ? (Q ? R) ? chosen once in f4;\; �g

� � P = P

(P [Q) � R = (Q �R) [(P � R)

P

�1

�1

= P

(P ? Q)

�1

= Q

�1

? P

�1

? chosen once in f\; �g

(P

�1

� (R n (P �Q))) \Q = �

Given a collection E of map equalities, we will denote as �

�

(E) the smallest collection

of map equalities which both ful�lls the inclusion

�

�

[E [fP=P : P is a map expression g � �

�

(E)

and enjoys the following closure property: When P=Q and R=S both belong to �

�

(E),

and R occurs in Q and/or in P , then any equality obtainable from P=Q by replacement

of some occurrence of R by an occurrence of S belongs to �

�

(E) in its turn.

1

funPart renders the \functional aspect" of a predicate; so funPart(P)=P means \P is a partial

function".

346 APPIA-GULP-PRODE'98

The notation E `

�

Q=R is employed to indicate that Q=R belongs to �

�

(E). We

take an analogous (but semantically complete!) de�nition of `

+

for granted.

2

3 First-order theorem-proving used for map logic.

Can the service be reciprocated?

Notice that we have been using P;Q;R; and S, as metavariables ranging over map ex-

pressions. What would be implied by us changing perspective and regarding P;Q;R; S

as individual variables (ruled by understood 8-quanti�ers in all logical axiom schemes)?

Then each scheme in �

�

would be regarded as a single �rst-order equality, and we would

be dealing with an equational axiomatic �rst-order theory �

RA

instead of with an alter-

native formalism. The models of �

RA

are the structures traditionally known as relation

algebras, on which [19], p.48, states: every equation which is shown to be identically

satis�ed in every relation algebra yields a schema of which all the particular instances

(obtained by substituting predicates for variables) are sentences logically provable in L

�

.

This indicates that we can use an automated deduction tool conceived for �rst-order

logic, Otter to be speci�c (cf. [12, 2]), to experiment with L

�

. Although Otter cannot

directly produce derivations of L

�

, once the equalities that form �

�

are loaded into

Otter, whatever chain of inference steps can be drawn from them witnesses the existence

of corresponding chains in L

�

. One can moreover load into Otter, along with �

�

, a set

E of map equalities, and derive theorems of �

�

(E).

The very shape of the equalities in �

�

is the result of us having carried out a number

of experiments of this nature. We are still trying other formulations of the logical axioms

of L

�

, that will perhaps drive Otter better; anyway, the one we have adopted above is the

outcome of a series of ameliorations carried out on an initial version, until we succeeded

in getting an automatic proof of various propositions of [19], pp.49-50, that we had chosen

as our benchmarks (cf. [2]).

What we have just said entails that a good �rst-order theorem prover such as Otter,

or simply a theorem prover for pure equational logic, or perhaps a theorem prover based

on T -resolution (cf. [15]) and exploiting a decider for map constructs embedded in set

theory (cf. chapter 9 of [7]), provides adequate support to symbolic manipulations in the

map calculus. Even more importantly, the �rst-order predicate formalism o�ers a basis

for schematizing meta-theorems of the map calculus, as well as for proving them. In some

cases, it enables one to compress into a single quanti�ed sentence an in�nite axiom scheme

of a theory based on map calculus (examples of this, stressed in boldface in Figures 3, 6,

and 5, will be the two induction principles and the restricted set comprehension scheme).

Even though we are eagerly following this approach in order to play, and experiment

with, speci�cations written in the map language, we have in mind to invert the approach

in the long run. We believe that the map calculus deserves |and sorely lacks, to date|

an autonomous and e�ective instrumentation, to be put to the service of �rst-order

reasoning, and of automated reasoning in general. In sight of this we are developing in

SETL [17] a basic layer of Boolean-Peircean simpli�cations applicable to L

�

-expressions

and equalities.

2

Any derivability notion for �rst-order logic can be exploited for L

+

, cf., e.g., [19].

Plan of activities on the map calculus 347

4 Translating �rst-order sentences into map equalities

It is shown in [19] that in L

+

the map constructs �; 1l;\;4; �;

�1

;= can be made to

dissolve into connectives and quanti�ers: this elimination (whose feasibility was already

clear in [21]) leads to a far more conventional �rst-order language, L, where � generally

takes the typographic form =. A remarkable fact about the elimination technique is the

following: when one applies it to a sentence � of L

+

3

, i.e., an � of L

+

that involves no

more than three distinct individual variables, the resulting sentence � will also involve

three or fewer variables. This is what happens, e.g., when � is an equality Q=R of L

�

.

L

3

L

�

L L

+

3

L

+

�

�

��

@

@

@I

�

�

�

�

�

�

�

�

�

�

�1

�

�

��

@

@

@I

�	

�

�)

@R

-

�

��

	

�

�

�

�

Figure 1: Embeddings and translatability relations between formalisms

To what extent is the reverse translation of L

+

into L

�

possible? In the sequel, we

outline a method to translate sentences from L

+

3

to L

�

through a quanti�er-elimination

process that applies to any L

+

3

-formula. It is hard to go beyond this, because the said

translations reveal that a sentence of L

+

can be expressed in L

�

if and only if it is

logically equivalent to a sentence � of L

+

3

, while [11] shows that the collection of all such

s is undecidable.

Our purpose can be achieved by means of rewriting rules (see Figure 2) de�ning a

computable total functionH : fformulas of L

+

3

g �! fformulas of L

+

3

g with the following

properties:

3

� for each L

+

3

-formula ', H' is quanti�er-free; moreover, ' and H' have the same free

variables;

� when restricted to the sentences of L

+

3

, H becomes surjective on the sentences of L

�

;

� for each set 	 of sentences of L

+

3

, fH� : � 2 	g and 	 are logically equivalent in L

+

3

.

Translation proceeds in this manner (cf. [14]): �rst the occurrences of negation are

moved inwards, close to atomic sub-formulas, then they are removed using the rules

displayed in Figure 2. Then the swapping rules are exploited to reduce the number of

cases to be taken into account by the assimilation and merging rules. The latter rules

combine together distinct atoms of conjunctions or disjunction. Quanti�ers are treated by

the remaining rules: they are moved inwards to restrict their scope, and then translated

into map constructs. It should be noticed that unrestrained usage of the distributive laws

could critically a�ect the computational complexity of the translation procedure. As a

matter of fact, a na��ve use of these rules tends to cause an exponential growth of the size

of the formula.

A translator of L

+

3

into L

�

(along with a reverse translator) has been implemented in

Prolog and performs well in practice, but a precise assessment of the complexity of the

underlying technique is a main issue left open by our work. We are now redesigning the

translator in the imperative programming language SETL, to achieve better control of

the e�ciency through the choice of the appropriate data structures.

3

This H stands for the same function represented by �! in Figure 1.

348 APPIA-GULP-PRODE'98

:xPy; xPy :P=Q; 3(P 4Q)=1l

Elimination of the negation connective.

yRx; xR

�1

y P=Q ? uRv ; u3(P 4Q)v ? uRv

yRy ? xSx; xSx ? yRy uSu ? uRv ; u(S \ �) � 1lv ? uRv

uRv ? P=Q; P=Q ? uRv uSu ? vRu; v1l � (S \ �)u ? vRu

uRv ? wSw ; wSw ? uRv if u 6� v uSu_vRv ; u(S \ �) � 1lv_u1l � (R \ �)v

Swapping rules: ? 2 f_;^g.

(The �rst two rules are applied only when x

comes before y in the ordering of variables.)

Assimilation rules: ? 2 f_;^g.

8x(' ^); 8x ' ^ 8x

P=Q ^R=S ; (P 4Q) [(R4 S)=� 9x('_); 9x '_9x

P=Q_R=S ; (P 4Q) � 1l � (R4 S)=�

�

8

9

�

u ;

uRv

�

^

_

�

uSv ; uR

�

\

[

�

Sv

�

8

9

�

u ('

�

_

^

�

); (

�

8

9

�

u ')

�

_

^

�

uSu ^ vRv ; u(S \ �) � 1l � (R \ �)v

�

8

9

�

u (

�

_

^

�

');

�

_

^

��

8

9

�

u '

Merging rules. Rules on quantifiers: u =2 vars().

(' ^)_�; ('_�) ^ (_�) ('_) ^ �; (' ^ �)_(^ �)

Distributive laws.

8u uPu; ��P 9u uPu; 3(� \ P)=1l ;

8u uQv ; v� yQv 9u uQv ; v1l �Qv

8u vQu; vQ y �v 9u vQu; vQ � 1lv

8u(uQv_wRu); wR yQv 9u(uQv ^ wRu); wR �Qv

8u(uQv_uRw); wR

�1

yQv 9u(uQv ^ uRw); wR

�1

�Qv

8u(vQu_wRu); vQ yR

�1

w 9u(vQu ^ wRu); vQ �R

�1

w

8u(vQu_uRw); vQ yRw 9u(vQu ^ uRw); vQ � Rw

Elimination of 8. Elimination of 9.

Figure 2: Rewriting rules employed to translate L

+

3

into L

�

In parallel, we are investigating conservative techniques for translating L

+

-sentences

into L

�

directly, without the burden of �rst having to reformulate them (manually or by

other means) in L

+

3

. Why should one, e.g., recast the monotonicity condition

(8x; y; u; v)(x < y ^ xfu ^ yfv! u < v)

into the unnatural form (:9x; v)(9y(x < y ^ yfv) ^ 9y(xfy ^ y 6< v)) before being

able to obtain its translation (< � f)\ (f � 6<) = �? A technique to avoid this, described

in [6], led us to improved and generalized techniques implemented �rst in SETL2 and

then in Java.

Let us briey review this algorithm. An existentially quanti�ed conjunction ' of

literals of the form xPy, where x and y are variables and P is a map expression (negative

literals have been rewritten in the form xQy), is given. The algorithm tries to produce

an equivalent quanti�er-free conjunction as output. The process starts with building an

undirected graph G(') such that: a) G(') has a node n

v

i

for each distinct variable v

i

occurring in '; b) for each literal v

i

P v

j

in the conjunction ', there is an edge fn

v

i

; n

v

j

g

labeled by the map expression P or P

�1

depending on whether i � j or j < i. The nodes

corresponding to variables bound in ' are called bound nodes.

An initial phase eliminates every edge of the form fn

x

; n

x

g by creating and suitably

introducing a node n

y

(where y is a new variable) and an edge fn

x

; n

y

g labeled P \ �;

moreover, multiple edges between the same nodes are combined (cf. rules in Figure 2).

The elimination of bound nodes (corresponding to eliminations of existential quanti-

�ers in ') is performed by applying two graph-transformation rules:

� bypass rule. Let n

x

be a bound node with degree 2 and let P

1

, P

2

be the labels of

the incident edges fn

z

; n

x

g, fn

x

; n

y

g. Then the node n

x

is removed and a new edge

Plan of activities on the map calculus 349

labeled with the map expression R suitably drawn from P

1

� P

2

, P

�1

1

� P

2

, P

�1

2

� P

1

,

etc., is created between n

z

and n

y

. If the edge fn

z

; n

y

g existed already with label Q,

then its label becomes Q \R.

� bigamy rule. The rule applies to any bound node n

x

having just one incident edge

fn

z

; n

x

g, such that there exists an edge fn

z

; n

y

g with y 6� x. Then the bigamy rule

behaves as if there were an edge fn

x

; n

y

g labeled 1l, in order to bypass the node n

x

.

The process ends when no more applications of the previous rules are possible. If the

resulting graph has no bound nodes of degree greater that 1, the formula searched for

can be directly read o� the graph, else we have a failure.

Example. Let us consider a base B of Prolog clauses subject to the following restrictions:

a) all predicate letters in B are dyadic; b) B involves no function letters, but may involve

constants. W.l.o.g., we can assume that B = B

E

[B

I

, where

� the extensional part B

E

of B is made of facts e

1

qe

2

 , with e

1

and e

2

constants;

� the intensional part B

I

of B is made of clauses urv

V

n

i=1

x

i

p

i

y

i

;

where u; v; x

i

; y

i

are individual variables, u is distinct from v, n � 0, each p

i

is either

a map letter or �, and r is a map letter not appearing in B

E

.

Going to an extreme, we could require that e

1

coincides with e

2

and q occurs in only

one fact, for any fact e

1

qe

2

 in B

E

. On the other hand, it is easy to conceive a

generalization where the letters p

i

are superseded by arbitrary map expressions P

i

in the

body of intensional rules.

The body

V

n

i=1

x

i

p

i

y

i

of each intensional clause urv

V

n

i=1

x

i

p

i

y

i

can, hence, be

submitted to the algorithm described above, treating all variables as existentially bound,

save u and v. When the algorithm terminates with success, it supplies an atom of form

uQv, uQu, vQv, or Q=R; in the respective cases one can rewrite the clause as Q�r,

(Q \ �) � 1l�r, 1l � (Q \ �)�r, or �(Q4R)�r. Moreover, after successfully rewriting

every clause de�ning r in the form S

j

�r, one can condense all such clauses into a single

atom

S

m

j=1

S

j

=r. 2

5 From �rst-order theories to map calculus

It often turns out that a sentence which, taken alone, would not be translatable from �rst-

order logic into map calculus, becomes such when treated in the context of an axiomatic

theory. [8] makes the following example: resorting to four variables may seem essential

to express the existence of four distinct entities in the domain U of discourse, but in the

theory of strict total orderings <, the circumstance can be stated as follows:

(9 x; y)(x < y ^ 9 x(y < x ^ 9 y x < y)).

Systematic ways of performing the translation irrespective of the number of individual

variables can be based on [19], which suggests a general technique based on the notion

of conjugated quasi-projections. These are a pair P;Q of maps such that

P=funPart(P), Q=funPart(Q), P

�1

�Q=1l;

i.e., partial functions that permit combination of any given pair x; y into a z (intuitively

speaking, a pair) for which zPx and zQy.

To illustrate the point, let us make the exercise of specifying the properties of increment

(suc), sum, and product over natural numbers. Otherwise stated, we are seeking an L

�

-

equivalent of Peano arithmetic. A di�culty arises from the presence of binary operations.

Normally these are regarded as ternary predicates; as such, however, they do not �t well

in L

�

.

350 APPIA-GULP-PRODE'98

A key remark is that U is forced by the axioms to be in�nite. Since a one-to-one

correspondence � exists between U and U

2

, we can conservatively extend the theory with

two unary function symbols, ` and r, whose rôle is to represent the `left' and `right'

projections of numbers. That is, b = `

=

(a) and c = r

=

(a) are to ful�ll �(a) = [b; c] for all

a 2 U . The fact that `; r are total functions inverting a pairing function is easily stated in

L

�

, as shown in the �rst two lines of Figure 3. Most of the remaining axioms of Figure 3

were obtained in [6] from those of a standard �rst-order axiomatization of the Peano

arithmetic (cf., e.g., [13]). This task was achieved with the help of the graph-thinning

algorithm outlined above.

The last item in Figure 3 expresses the arithmetic induction principle. This is an

example of how one can compress an in�nite axiom scheme into a single formula, taking

advantage of the �rst-order metalanguage.

TotFun(`) TotFun(r)

`

�1

� r=1l (` � `

�1

) \ (r � r

�1

)��

Const(0) suc � 0=0

TotFun(suc) funPart(suc

�1

)=suc

�1

(` �+

�1

) \ �=(r � suc

�1

� 1l) \ � � 4 (` [r)�1l � suc

(r � suc

�1

� 1l) \+=((r � suc

�1

� r

�1

) \ (` � `

�1

)) �+ � suc

(r � suc

�1

� 1l) \ �=((((r � suc

�1

� r

�1

) \ (` � `

�1

)) � � � `

�1

) \ (` � r

�1

)) �+

(� y ((P [(suc

�1

� 1l)) \ (P [(suc � P))) y �) � P=�

Figure 3: Map-formulation of Peano arithmetic (in L

�

)

As a further example, we show how to formulate a set theory in the map formalism.

Figure 4 describes an axiomatization of a weak set theory including: the axioms of ex-

tension (E), regularity (R), and separation (S). The last item |(W), the with axiom|

expresses the property that it is always possible to compose the set x [fyg out of given

x; y (i.e., we can adjoin any element y to any set x and obtain a set).

(E) 8x 8 y (8 v (v 2 x$ v 2 y) ! x = y)

(R) 8x 9 y 8 v (v 2 x ! (y 2 x ^ v =2 y))

(S) 8x 9 y 8 v (v 2 y$ (v 2 x ^ v P x))

(W) 8x 8 y 9w 8 v (v 2 w$ (v 2 x _ v = y))

Figure 4: First-order formulation of a weak set theory (in L

+

)

The axioms (E), (R), and (S) are expressed by L

3

-formulas, hence translating them

into the map calculus does not present di�culties. The map-formulations of these axioms

are displayed in Figure 5, where we have adopted the following de�nition: 3 �

Def

2

�1

.

Notice that in the translation of (S) (analogously to what happened with the arith-

metic induction principle in the previous example) we take advantage of the �rst-order

metalanguage. In Figures 4 and 5, P ranges over the set of all map expressions.

(E) ��(63 � 2) [(3 � =2)

(R) 2 �1l � (2 \3 � 2)

(S) 1l � ((63 y 2) \ (63 yP) \ (3 y2 \P))=1l

(W

1

) 1l = �

�1

0

� �

1

(W

2

) ��((((�

0

� 3) [�

1

) y 2) \ (((�

0

� 3) [�

1

)y 2)) � 1l

Figure 5: Map-formulation of a weak set theory (in L

�

)

Plan of activities on the map calculus 351

The �rst-order formulation of (W) uses four distinct variables. This it is not an

L

3

-formula and its translation cannot be immediate;

4

we have to introduce a pair of

conjugated quasi-projections (�

0

and �

1

below) in order to properly face the problem:

33 �

Def

3 � 3, 3

s

3 �

Def

3 �funPart(3),

�

0

�

Def

funPart(3

s

3), �

1

�

Def

33 \(33 \�

0

) � �.

The axioms (W

1

) and (W

2

) in Figure 5 express the with axiom in the map-calculus.

Notice that it is (W

1

) that forces the two maps �

0

and �

1

to be conjugated quasi-

projections.

Our third and last example is borrowed from [2], with some simpli�cations. In Figure 6

we are characterizing the domain of at lists composed of individuals drawn from an

in�nite collection of atoms (in [2] lists are not at, in the sense that a list can be a

member of another list). Needless to say, we are assuming that the sorts of `atoms' and

`lists' are disjoint.

a. Const(nl) at \ nl=�

b. fun(hd) fun(tl)

c. hd � 1l=tl � 1l at4 (nl � 1l)=tl � 1l

d. at \ at

�1

�tl

�1

� hd (hd � hd

�1

) \ (tl � tl

�1

)��

e. 1l � (at n ocl)=1l ocl=(� � hd

�1

) [(ocl � tl

�1

)

f. (tl [ocl) \ �=� 3((at [(nl � 1l) [((hd � P) \ (tl � P))) n P) y P=1l

Figure 6: Map-formulation of a theory of at lists (in L

�

)

By a. in Figure 6, a distinguished individual (to be intended as the empty list `nil')

di�ers from any atom. Axioms b. and c. impose hd and tl to be partial functions de�ned

on the same domain (to be regarded as the lists), which includes everything but atoms

and nil. Notice that, by c.2, the `is atom' predicate does not truly depend on its second

argument. Axiom d.1 states that given any pair a; b such that a is an atom and b is

not, there exists a list whose head and tail are a and b, respectively; moreover, by d.2,

lists that di�er from one another cannot have the same head and the same tail. Axioms

e.1 and e.2 express the concept of occurrence with the usual meaning. The acyclicity

requirement is imposed by axiom f.1: nothing can either occur within itself or be its own

tail. Finally, axiom f.2 expresses an induction principle for lists: P , as for the previous

examples, can be any map expression.

6 Quest for syllogistics dealing with set combinators

A line of research initiated in the late seventies led to the discovery of a number of decid-

able fragments of set theories. Among the decision algorithms, known as syllogistics,

some deal with map constructs (cf. Chapter 9 of [7]); hence we expect that they can

o�er useful support to map reasoning in the framework of L

�

. However, since they were

originally conceived in the framework of Set Theory, they will need some adaptation to

be exploitable in the new context.

Conversely, as outlined in Sec.5, one can express set theories in the map calculus.

Accordingly, syllogistics that are ordinarily referred to �rst-order set theories can also be

viewed as solvers for somewhat speci�c map reasoning problems. From this standpoint

one may get a new insight on the decision problem for fragments of set theories, ultimately

leading to enhancements of the known syllogistics in unprecedented directions.

4

As a matter of fact, [11] shows that (W), taken alone, cannot be expressed in L

3

.

352 APPIA-GULP-PRODE'98

To hint at the point with a simple case-study, let us briey consider here multi-level

syllogistic with singleton, or MLSS . The problem at hand is the one of testing for satis�-

ability an unquanti�ed formula that can only involve set variables, the null-set constant

;, and the remaining constructs of Figure 7, which are

� the monadic singleton operator f�g;

� the dyadic operators \; n;[|provisionally designating, here, operations on sets;

� membership and set-equality relators; and

� propositional connectives.

Primitive Derived

� [� � n � f�g � \ � ;

� = � � 2 � � � �

:� � ^ � �_� �!� �$�

Figure 7: Constructs of the multilevel syllogistic language

This decision problem, which was �rst shown to be solvable in [9], is easily reduced to

the satis�ability problem for conjunctions of literals of the following forms (where x; y; u

stand for individual variables):

u 2 y; u = y; u 6= y; ; = x \ y; u � y; u = fyg; u = x [y:

To reformulate any such conjunction in map-theoretic terms, we can translate its

MLSS -literals into corresponding map formulas, one by one, as indicated in Figure 8.

u = y ; u�y u 6= y ; u�y u 2 y ; u 2 y

; = x \ y ; x3 � 2y u � y ; u 63 y 2 y u = fyg ; y 2 u ^ y � y =2 u

u = x [y ; p�

0

x ^ p�

1

y ^ x � u ^ y � u ^ u 63 y(2 � 22)p

Figure 8: Rules for translating MLSS into the map calculus

The key idea of this translation is the introduction of two conjugated quasi-projections

�

0

and �

1

. Having in mind the classical pair notion due to Kuratowski, namely

[x; y] �

Def

ffxg; fy; xgg,

these can be de�ned as follows, to the e�ect that

p�

0

x $ fxg 2 p ^ 8 z 2 p(z 6= fxg ^ z 6= ;!(9u; v 2 z)u 6= v);

p�

1

y $ y 22 p ^ (8z 22 p)(z 6= y!p�

0

z):

We have now seen how to rewrite an MLSS -formula as a conjunction of atoms of the

form xSy, where S is drawn from a �nite collection of combinators: �, �, 2, 3 � 2, 63 y 2,

etc. Now the question arises naturally: To what extent, and by what criteria, could we

broaden the collection of admitted set combinators, without either losing decidability or

leaving the complexity class of MLSS (whose decision problem is NP -complete)?

7 Safe map reasoning

There is an evident kinship between L

�

and the relational algebra language used in the

database �eld. There are obvious di�erences, too; to mention one, the map letters of

L

�

represent binary relations, whereas database languages have to manage relations in

any number of arguments. Moreover, in L

�

complementation is made w.r.t. a �xed

universe of discourse, which may be in�nite. In the latter regard L

�

exceeds the needs

of database management, as it may bring in�nite relations into play. Thus, in order that

the kinship between L

�

and relational algebra can really make L

�

paradigmatic |on

the small scale| of symbolic languages of great practical value, one must occasionally

Plan of activities on the map calculus 353

restrain the forms of notation and reasoning allowed in L

�

, so as to ban in�nite maps

from consideration. Establishing tight correspondences between formalisms is generally

enlightening, and we see, e.g., an analogy between translating �rst-order theories into

L

�

(cf. Sec.5) and translating Datalog into relational algebra (cf. [20]), to the extent to

which these translations are possible.

Safe map reasoning ought to imply no engagement about the availability of in�nite

maps (even assuming an in�nite domain U of discourse). A drastic choice, to achieve

this, would be to do entirely without 1l and �. However, this would expunge |together

with undesired operations such as complementation| useful secondary operations such

as those of forming P \ � and P �1l�Q out of safe map expressions P;Q. These or similar

operations could, as a remedy, be taken as primitives; likewise, inequalities P 6=Q should

somehow be re-admitted into play.

All of this would, of course, impose a redesign of the deductive apparatus proposed for

L

�

(cf. Sec.2), that reected the intended meaning of the additional primitive constructs

while ensuring the safeness of each step in a derivation. We expect that this can be done

in a way that guarantees that when P;Q are safe and P=Q (respectively, P 6=Q) belongs

to �

�

(C), where all constraints in C are safe, then P=Q (resp. P 6=Q) can be safely derived

from C. As initial moves in the direction of safe map reasoning, we have adopted 4 as

a primitive construct of L

�

(whereas [19] adopts complementation); we have accordingly

chosen a set �

�

of logical axioms for L

�

where the rôle of 1l is very marginal; moreover,

we have preferred safe characterizations of [and n in Sec.1 to simpler ones such as would

have been: P [Q �

Def

P \Q and P nQ �

Def

P \Q.

Example. Let us restrain our consideration to the collection F consisting of all map

expressions that do not involve 4, and to those interpretations that assign �nite values

to the map letters p

i

. We subdivide F into six equivalence classes, with representative

elements �; s; �; s � 1l; 1l � s, and 1l (here s is a short for p

1

):

� represents the class consisting of all expressions whose value is necessarily ; (i.e., in

each interpretation their value must be the empty set);

s represents the class of those expressions whose value is necessarily �nite but not nec-

essarily ; (among them, all map letters p

i

);

� represents the class of those expressions whose value is necessarily a subset of �

=

whose

complement in �

=

is possibly �nite;

s � 1l represents the class of those expressions whose value's domain and image, unless

empty, are: a necessarily �nite subset of U , and a possibly co�nite subset of U (i.e.,

one having a �nite complement), respectively;

1l � s represents the class of those expressions whose value's domain and image, un-

less empty, are: a possibly co�nite subset of U , and a necessarily �nite subset of U ,

respectively;

1l represents all expressions whose value has a possibly �nite complement in U

2

.

It will turn out that, in F , the equivalence class of � consists of all expressions where �

occurs at least once. Moreover, the equivalence class of 1l (respectively, of �) is composed

by expressions whose value is necessarily U

2

(resp., f[a; a] : a in Ug).

To assess the type of each expression P , i.e. the equivalence class to which P belongs,

we can exploit a small algebra of types. One begins with assigning the type s to all map

letters in the given P , and then propagates type information through the whole of P by

the rules of the type algebra. Figure 9 shows a tabular form of the rules for \ and �. It

is easily seen that P is safe if and only if its type turns out to be either � or s. 2

354 APPIA-GULP-PRODE'98

\ 1l�s s s�1l 1l � �

1l�s 1l�s s s 1l�s s �

s s s s s s �

s�1l s s s�1l s�1l s �

1l 1l�s s s�1l 1l � �

� s s s � � �

� � � � � � �

� 1l�s s s�1l 1l � �

1l�s 1l�s 1l�s 1l 1l 1l�s �

s s s s�1l s�1l s �

s�1l s s s�1l s�1l s�1l �

1l 1l�s 1l�s 1l 1l 1l �

� 1l�s s s�1l 1l � �

� � � � � � �

Figure 9: Tables for safeness detection

Conclusions

First-order predicate logic undoubtedly deserves the primacy, with respect to the map

calculus, of user-friendliness and expressive manageability. One cannot, however, dis-

card beforehand the idea that the map calculus may perform better in the rôle of basic

machine-reasoning layer. This expectation deserves, in our opinion, a serious and twofold

experimentation e�ort. On the one hand, it calls for

� development of e�ective theorem-proving techniques directly rooted on the map cal-

culus (cf. Sec.3); on the other hand, it requires

� sophisticated techniques for translating sentences |or even entire sets of axioms|

from �rst-order logic into the map language.

In essence the latter techniques (which this paper has striven to bring to surface|see, in

particular, Sections 4 and 5) are to translate formal speci�cations, phrased in �rst-order

logic as is nowadays more common, into a specialized area of algebra.

It is well-known that the language of map calculus has the same strength (and weak-

ness) as a �rst-order language involving three individual variables altogether. Apart from

this, it is a stimulating fact of mathematics that one cannot decide the precise extent

to which the envisaged translation of logic into algebra is possible (cf. [11]); as a conse-

quence, this is an issue to be tackled pragmatically and conservatively. Powerful ideas

have emerged from a protracted stream of research initiated in the forties and �nally

blossomed in the Tarski-Givant monograph [19], which indicates (as we have demon-

strated in Sec.5) how any theory regarding either sets or arithmetics can be phrased in

map-theoretic terms.

Acknowledgments

We are indebted to IASI (Istituto di Analisi dei Sistemi ed Informatica, CNR) for pro-

moting exchanges of ideas between authors (cf. [2]), to DIS (Dip. di Informatica e Sis-

temistica, Univ. \La Sapienza" of Rome) for funding [14], to Vuokko-Helena Caseiro for

careful revision of the manuscript, to Paul Broome (cf. [5]) for �rst bringing [19] to our

attention during the ICLP conference held in Budapest in 1993, to Emidio Silvestri for

paving the way to this research with a Prolog implementation of a logic-to-mapalgebra

translator, to Domenico Cantone and Alessandra Cavarra for very pleasant summer con-

versations which led to discoveries on how to improve the translator, and to Fabiola

Aureli for contributing to the design of a basic map reasoning layer in SETL.

References

[1] I. H. Anellis and N. R. Houser. Nineteenth century roots of algebraic logic and universal

Plan of activities on the map calculus 355

algebra. In H. Andr�eka, J. D. Monk, and I. N�emeti, eds. Algebraic Logic, vol. 54 of Colloquia

Mathematica societatis J�anos Bolyai, pages 1{36. North-Holland Publishing Co., 1991.

[2] E. Aureli, E. G. Omodeo, and M. Temperini. Map calculus: Initial application scenarios

and experiments based on Otter. Technical Report R499, IASI-CNR, 1998.

[3] I. M. Boche�nski. A history of formal logic. Chelsea, Thomas, I. editor and translator, 1970.

[4] G. Boole. An investigation of the laws of thought on which are founded the mathematical

theories of logic and probabilities. Dover books in Advanced Mathematics, 1854.

[5] P. Broome and J. Lipton. Constructive relational programming: A declarative approach

to program correctness and high level optimization. Trans. of the 9th Army Conference

on Applied Mathematics and Computing. Tech. Rep. ARO Report 92-1, DARPA, USA,

1992.

[6] D. Cantone, A. Cavarra, and E. G. Omodeo. On existentially quanti�ed conjunctions of

atomic formulae of L

+

. In M. P. Bonacina and U. Furbach, editors, Proceedings of the

FTP97 International workshop on �rst-order theorem proving, RISC-Linz Report Series

No.97-50, pages 45{52, 1997.

[7] D. Cantone, A. Ferro, and E. G. Omodeo. Computable Set Theory. Vol. 1. Oxford Uni-

versity Press, Int. Series of Monographs on Computer Science, 1989.

[8] E. Gr�adel, Ph. G. Kolaitis, and M. Y. Vardi. On the decision problem for two-variable

�rst-order logic. Bulletin of Symbolic Logic, 3(1), 1997.

[9] A. Ferro, E. G. Omodeo, and J. T. Schwartz, Decision Procedures for Elementary Sublan-

guages of Set Theory I. Multilevel Syllogistic and Some Extensions. Comm. on Pure and

Appl. Mathematics, 33, pages 599{608, 1980.

[10] J. van Heijenoort. From Frege to G�odel - A source book in mathematical logic, 1879{1931.

Source books in the history of the sciences. Harvard University Press, 3

rd

printing edition,

1977.

[11] M. K. Kwatinetz. Problems of expressibility in �nite languages. PhD thesis, University of

California, Berkeley, 1981.

[12] W. W. McCune. Otter 3.0 Reference manual and guide. Technical Report ANL-94/6,

Argonne National Laboratory, 1994. (Revision A, august 1995).

[13] E. Mendelson. Introduction to Mathematical Logic. Van Nostrand, New York, 1979.

[14] E. G. Omodeo. Speci�che formali di propriet�a di relazioni: esempi. Technical Report 36-97,

Dip. Informatica e Sistemistica, Universit�a La Sapienza di Roma, 1997.

[15] A. Policriti and J. T. Schwartz. T Theorem Proving I. Journal of Symbolic Computation,

20:315{342, 1995.

[16] E. Schr�oder. Vorlesungen �uber die Algebra der Logik (exakte Logik). B. Teubner, Leipzig,

1891-1895. [Reprinted by Chelsea Publishing Co., New York, 1966.]

[17] J. T. Schwartz, R. K. B. Dewar, E. Dubinsky, and E. Schonberg. Programming with Sets:

An introduction to SETL. Texts and Monographs in Computer Science. Springer-Verlag,

1986.

[18] A. Tarski. On the calculus of relations. Journal of Symbolic Logic, 6(3):73{89, 1941.

[19] A. Tarski and S. Givant. A formalization of Set Theory without variables, volume 41 of

Colloquium Publications. American Mathematical Society, 1987.

[20] J. D. Ullman. Database and Knowledge-base Systems, vol.2, volume 50 of Principles of

Computer Science. Computer Science Press, Stanford University, 1989.

[21] A. N. Whitenead and B. Russell. Principia Mathematica. Cambridge University Press,

1910. Reprinted 1980.

356 APPIA-GULP-PRODE'98

