
The immediate consequence operator and Robinson's

operator

Miguel Angel Guti�errez Naranjo

Abstract

This paper discusses the relation between Robinson's operator (R

n

P

) and van

Emden and Kowalski's immediate consequence operator, in ascendant form (T

P

")

as well as in descendant form (T

P

#). Our main result proves that T

P

# and T

R

n

P

#

coincide in each level k, i.e., T

P

# k = T

R

n

P

# k with independence of the n we

choose.

Keywords: Immediate consequence operator, Robinson's operator, Logic pro-

gramming

1 Introduction

Since van Emden and Kowalski presented their immediate consequence operator [8] in

1976, it has become the paradigm of the semantic interpretation of Logic Programming.

Eleven years before, J. A. Robinson [7] presented resolution as proof procedure and

the so{called Robinson's operator R

n

P

. Given a program P , this operator allows us

to get another program P

0

obtained by adding to P all the binary resolvents between

clauses of P . This paper discusses the relation between both operators, considering the

immediate consequence operator in ascendant form as well as in descendant form. With

respect to the ascendant operator, theorem 3.1 shows that if a ground atom A is a logical

consequence of P , then we can �nd a natural number n such that for all m � n, the fact

A is a ground instance of a fact of R

n

P

.

Our main result is theorem 4.8, where we prove that operators T

P

# and T

R

n

P

# coincide,

not only in the limit as it happens with T " (Th. 3.2), but in each level k, and we prove

that the result holds for all n.

2 De�nitions and notation

In the sequel we will consider some �xed �rst{order language with a �nite number of

function symbols (including constants) and a �nite number of predicate symbols. For

most de�nitions from logic, we refer to [1, 3, 6]. Let us recall the following:

Terms are de�ned inductively as follows: constants and variables are terms, and if

t

1

; : : : ; t

n

are terms and f is a function symbol of arity n, then f(t

1

; : : : ; t

n

) is a term. An
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atom has the form p(t

1

; : : : ; t

n

) where p is an n{ary predicate symbol and t

1

; : : : ; t

n

are

terms.

A de�nite program clause (a clause in the following) is a formula of the form 8x

1

: : :8x

s

(A_:A

1

_ : : :_:A

n

) where A and A

1

; : : : ; A

n

are atoms, n � 0, and x

1

; : : : ; x

s

are all the

variables occuring in A_ :A

1

_ : : :_A

n

. We will denote that clause by A A

1

; : : : ; A

n

as usual. A term or a clause is ground if it does not contain any variables.

A substitution is a �nite mapping from variables to terms, and is written as � = fx

1

=t

1

; : : :

x

s

=t

s

g. If all t

1

; : : : ; t

s

are ground, then � is called ground. If for a substitution � we have

A� = B�, then � is called a uni�er of A and B. A uni�er � is called a most general

uni�er (or mgu in short) if it is more general than any other uni�er of A and B. A

de�nite program is a set of clauses

1

. If the clause C is the binary resolvent of the clauses

C

1

and C

2

, we will write C = C

1

� C

2

The Herbrand base of a program P , B

P

, is the set of all ground atoms which can be

formed out of the symbols occuring in P . As usual, M

P

is the least Herbrand model of

P , i.e., the intersection of all Herbrand models for P , and 2

B

P

is the power set of B

P

.

We also recall the de�nitions of Robinson's operator [7] and van Emden and Kowalski's

immediate consequence operator [8].

De�nition 2.1 Let P be a de�nite program and let R

P

be the set

R

P

= fC : 9C

1

; C

2

2 P (C = C

1

� C

2

)g

Robinson's operator is de�ned recursively as follows

R

0

P

= P

R

n+1

P

= R

n

P

[R

R

n

P

De�nition 2.2 Let P be a de�nite program. We call the immediate consequence operator

to the mapping

T

P

: 2

B

P

! 2

B

P

de�ned as follows: 8I � B

P

T

P

(I) = fA 2 B

P

: A A

1

; : : : ; A

n

is a ground instance of

a clause in P and fA

1

; : : : ; A

n

g � Ig.

Obviously T

P

is monotonic, i.e., if X � Y then T

P

(X) � T

P

(Y ).

The next de�nition is adapted from [3].

De�nition 2.3 Let P be a de�nite program and T

P

its immediate consequence operator.

The following mappings are de�ned

T

P

": N �! 2

B

P

n 7! T

P

" n =

(

; if n = 0

T

P

(T

P

" (n� 1)) if n > 0

T

P

#: N �! 2

B

P

n 7! T

P

# n =

(

B

P

if n = 0

T

P

(T

P

# (n� 1)) if n > 0

We also consider

T

P

" ! = [fT

P

" k : k � 0g

T

P

# ! = \fT

P

# k : k � 0g

1

A de�nite program is usually considered as a �nite set of clauses. We permit in�nite sets for our

purpose.
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We �nish this section with a classic theorem in Logic Programming (Th 6.2 and Th. 6.5

in [3]).

Theorem 2.4 Let P be a de�nite program. Then T

P

" ! = M

P

= fA 2 B

P

: P j= Ag

3 The ascendant operator

The next theorem shows that if a ground atom A is a logical consequence of P , i.e.,

(9k)[A 2 T

P

" k] (Th. 2.4), then we can �nd a natural number n such that for all m � n,

the fact A is a ground instance of a fact of R

n

P

.

Theorem 3.1 Let P be a de�nite program and let l be the maximum number of literals

in the body of a clause of P . Then, given k � 1, there is n such that

� T

P

" k � T

R

n

P

" 1

� 0 � n � (k � 1)l

Proof. The proof is by induction on k

(k = 1) We only must consider n = 0

(k ! k+1) Suppose the theorem holds for k, i.e., there is n

0

with 0 � n

0

� (k� 1)l such

that T

P

" k � T

R

n

0

P

" 1, i.e., for all A 2 T

P

" k, A  is a ground instance of a clause of

R

n

0

P

. Assume B 2 T

P

" (k+1). Then we can �nd a ground instance C � B  A

1

; : : : ; A

s

of a clause of P (and hence, a clause of R

n

0

P

) such that fA

1

; : : : ; A

s

g � T

P

" k. So we

have that B  A

1

; : : : ; A

s

and A

1

 ; : : : ; A

s

 are ground instances of clauses of R

n

0

P

and therefore

B  � (((: : : ((C � A

1

 ) � A

2

 ) : : :) � A

s

 ) 2 R

n

0

+s

P

Then if we take n = n

0

+ s, we have B 2 T

R

n

P

" 1 and s � l. Therefore 0 � n � kl. 2

The next theorem shows that, in the limit, we have the equality.

Theorem 3.2 Let P be a de�nite program. Then, for all n, T

P

" ! = T

R

n

P

" !

Proof. Since P and R

n

P

are logically equivalent, for all n, we have

T

P

" ! = M

P

= \fI � B

P

: I j= Pg = \fI � B

P

: I j= R

n

P

g = M

R

n

P

= T

R

n

P

" ! 2

4 The descendant operator

Our following goal is to study the relation between T

P

# and Robinson's operator. The

main result is the theorem 4.8. It shows that for all k, T

R

n

P

# k = T

P

# k with indepen-

dence of the n we choose. We �rst prove the natural inclusion.

Theorem 4.1 Let P be a de�nite program. Then 8k � 0; 8n � 0; T

P

# k � T

R

n

P

# k

Proof. By induction on k:

(k = 0) Trivial, since the Herbrand base of P and R

n

P

are the same: T

P

# 0 = B

P

=

T

R

n

P

# 0

(k ! k + 1) Suppose the result holds for k, and assume A 2 T

P

# (k + 1) = T

P

(T

P

# k),

i.e., there is a ground instance A B

1

; : : : ; B

s

of a clause of P such that fB

1

; : : : ; B

s

g �
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T

P

# k. By induction hypothesis, T

P

# k � T

R

n

P

# k (8n � 0) and trivially P � R

n

P

(8n � 0) Then, given n � 0, we have, on the one hand, fB

1

; : : : ; B

s

g � T

R

n

P

# k

and on the other hand A  B

1

; : : : ; B

s

is a ground instance of a clause of R

n

P

. Hence

A 2 T

R

n

P

(T

R

n

P

# k) = T

R

n

P

# (k + 1) 2

For the proof of the other inclusion we need some previous results.

De�nition 4.2 Let P be a de�nite program. We denote by [P ] the set of all ground

instances of clauses of P .

Lemma 4.3 Let P be a de�nite program. Then 8I � B

P

; T

P

(I) = T

[P ]

(I)

Proof. A 2 T

P

(I) if and only if there is a ground instance of a clause of P , A  

B

1

; : : : ; B

s

(s � 0) such that fB

1

; : : : ; B

s

g � I and it happens if and only if A 2 T

[P ]

(I)

2

Corollary 4.4 Let P be a de�nite program. Then 8k � 0 T

P

# k = T

[P ]

# k

Proof. By induction on k.

(k = 0) T

P

# 0 = B

P

= T

[P ]

# 0

(k ! k + 1) By the induction hypothesis we have T

P

# k = T

[P ]

# k, then T

P

# (k + 1) =

T

P

(T

P

# k) = T

P

(T

[P ]

# k). Also, by lemma 4.3 T

P

(T

[P ]

# k) = T

[P ]

(T

[P ]

# k). Therefore

T

P

# (k + 1) = T

P

(T

P

# k) = T

P

(T

[P ]

# k) = T

[P ]

(T

[P ]

# k) = T

[P ]

# (k + 1) 2

Lemma 4.5 Let P be a de�nite program. Then 8n � 0 [R

n

P

] = R

n

[P ]

Proof. We are going to prove the lemma by induction on n.

(n = 0) [R

0

P

] = [P ] = R

0

[P ]

(n� 1! n) We prove the equality by double inclusion

(A) We �rst prove [R

n

P

] � R

n

[P ]

Suppose C 2 [R

n

P

] = [R

n�1

P

[ R

R

n�1

P

] = [R

n�1

P

] [ [R

R

n�1

P

] We have to prove C 2 R

n

[P ]

. We

consider two cases:

Case 1: C 2 [R

n�1

P

]

In this case, by induction hypothesis, we have [R

n�1

P

] = R

n�1

[P ]

and trivially, R

n�1

[P ]

� R

n

[P ]

,

then C 2 [R

n�1

P

] = R

n�1

[P ]

� R

n

[P ]

Case 2: C 2 [R

R

n�1

P

]

Consider C

0

2 R

R

n�1

P

such that there is a ground substitution � such that C

0

� = C.

As C

0

2 R

R

n�1

P

, there are C

1

; C

2

2 R

n�1

P

such that C

0

= C

1

� C

2

. Assume C

1

� A  

A

1

; : : : ; A

s

and C

2

� B  B

1

; : : : ; B

t

and let � be a mgu of A

i

and B, i.e., A

i

� = B�

and hence C

0

is the clause A�  A

1

�; : : : ; A

i�1

�;B

1

�; : : : ; B

t

�;A

i+1

�; : : : ; A

s

� and C

is the clause A��  A

1

��; : : : ; A

i�1

��; B

1

��; : : : ; B

t

��; A

i+1

��; : : : ; A

s

��. Let  be a

substitution that make A

i

�� ground, i.e., a substitution such that A

i

�� = B�� is a

ground atom. Let C

0

1

and C

0

2

be the clauses

C

0

1

� A��  A

1

��; : : : ; A

i�1

��; A

i

��; A

i+1

��; : : : ; A

s

��

and

C

0

2

� B��  B

1

��; : : : ; B

t

��

We have the following:
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� C

0

1

and C

0

2

are clauses of [R

n�1

P

] since they are ground instances of C

1

and C

2

,

(C

0

1

� C

1

�� and C

0

2

� C

2

��) and C

1

and C

2

belong to R

n�1

P

� By induction hypothesis [R

n�1

P

] = R

n�1

[P ]

, therefore C

0

1

; C

0

2

2 R

n�1

[P ]

� Finally, C = C

0

1

� C

0

2

, hence C 2 R

n

[P ]

(B) Now our goal is to prove R

n

[P ]

� [R

n

P

]

Assume C 2 R

n

[P ]

= R

n�1

[P ]

[ R

R

n�1

[P ]

We have to consider the following cases:

Case 1: C 2 R

n�1

[P ]

By induction hypothesis R

n�1

[P ]

= [R

n�1

P

] and since R

n�1

P

� R

n

P

we have that [R

n�1

P

] � [R

n

P

].

Therefore C 2 R

n�1

[P ]

= [R

n�1

P

] � [R

n

P

]

Case 2: C 2 R

R

n�1

[P ]

Let C

1

� A  A

1

; : : : ; A

s

and C

2

� B  B

1

; : : : ; B

t

be two clauses of R

n�1

[P ]

such

that C = C

1

� C

2

with A

i

= B, then C � A  A

1

; : : : ; A

i�1

; B

1

; : : : ; B

t

; A

i+1

; : : : ; A

s

By induction hypothesis, R

n�1

[P ]

= [R

n�1

P

], hence C

1

; C

2

2 [R

n�1

P

]. Therefore there are

two clauses C

0

1

; C

0

2

2 R

n�1

P

(we can suppose they are standardized apart) and a ground

substitution � such that C

0

1

� = C

1

and C

0

2

� = C

2

Consider C

0

1

� A

0

 A

0

1

; : : : ; A

0

s

and

C

0

2

� B

0

 B

0

1

; : : : ; B

0

t

We know that A

0

i

and B

0

are uni�able, since A

0

i

� = A

i

= B = B

0

�.

Let � be a mgu of A

0

i

and B

0

, i.e. A

0

i

� = B

0

� and suppose C

0

= C

0

1

� C

0

2

, C

0

2 R

n

P

C

0

� A

0

�  A

0

1

�; : : : ; A

0

i�1

; B

1

�; : : : ; B

t

�;A

0

i+1

�; : : : ; A

t

�. As � is a mgu of A

0

i

and B

0

,

there is a substitution � such that �� = � and therefore we have C

0

2 R

n

P

and C

0

� = C,

hence C 2 [R

n

P

] 2

Theorem 4.6 Let P be a de�nite program

8n � 0; 8k � 0 T

R

n

[P ]

# k � T

[P ]

# k

Proof. We prove the theorem by induction on n

(n = 0) T

R

0

[P ]

# k = T

[R

0

P

]

# k = T

[P ]

# k

(n! n + 1) Suppose

8k � 0 T

R

n

[P ]

# k � T

[P ]

# k (1)

We have to prove

8k � 0 T

R

n+1

[P ]

# k � T

[P ]

# k

We prove this inclusion by induction on k

(k = 0) T

R

n+1

[P ]

# 0 = B

R

n

[P ]

= B

[P ]

= T

[P ]

# 0

(k ! k + 1) In this case we suppose

T

R

n+1

[P ]

# k � T

[P ]

# k (2)

and we have to prove

T

R

n+1

[P ]

# (k + 1) � T

[P ]

# (k + 1)

Suppose A 2 T

R

n+1

[P ]

# (k+1) Then there is a clause C 2 R

n+1

[P ]

, C � A A

1

; : : : ; A

s

such

that fA

1

; : : : ; A

s

g � T

R

n+1

[P ]

# k. Since C 2 R

n+1

[P ]

= R

n

[P ]

[R

R

n

[P ]

we consider the following

two cases:

Case 1: C 2 R

n

[P ]
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On the one hand, since we assume (2), T

R

n+1

[P ]

# k � T

[P ]

# k, on the other hand by theorem

4.1, T

[P ]

# k � T

R

n

[P ]

# k. Therefore T

R

n+1

[P ]

# k � T

R

n

[P ]

# k. Also fA

1

; : : : ; A

s

g � T

R

n+1

[P ]

# k,

then fA

1

; : : : ; A

s

g � T

R

n

[P ]

# k and since C � A A

1

; : : : ; A

s

2 R

n

[P ]

, we have

A 2 T

R

n

[P ]

(T

R

n

[P ]

# k) = T

R

n

[P ]

# (k + 1) (3)

But we assume (1), then

T

R

n

[P ]

# (k + 1) � T

[P ]

# (k + 1) (4)

Therefore, by (3) and (4), we have A 2 T

[P ]

# (k + 1)

Case 2: C 2 R

R

n

[P ]

Let C

1

and C

2

be two clauses of R

n

[P ]

such that C = C

1

� C

2

, i.e., C

1

� L  L

1

; : : : ; L

r

and C

2

�M  M

1

; : : : ;M

t

with L

i

=M , hence

C � L L

1

; : : : ; L

i�1

;M

1

; : : : ;M

t

L

i+1

; : : : ; L

r

and then we have L = A and

A

j

=

8

>

<

>

:

L

j

if j 2 f1; : : : ; i� 1g

M

j�i+1

if j 2 fi; : : : ; i+ t� 1g

L

j�t+1

if j 2 fi+ t; : : : ; sg

To prove A 2 T

[P ]

# (k + 1), we will �rst see that fL

1

; : : : ; L

r

g � T

R

n

[P ]

# k. We will show

it in two steps:

Step 1: We are going to prove fL

1

; : : : ; L

i�1

; L

i+1

; : : : ; L

r

g � T

R

n

[P ]

# k.

We have fL

1

; : : : ; L

i�1

; L

i+1

; : : : ; L

r

g � fA

1

; : : : ; A

s

g � T

R

n+1

[P ]

# k. By (2) we

assume T

R

n+1

[P ]

# k � T

[P ]

# k and by theorem 4.1 T

[P ]

# k � T

R

n

[P ]

# k.Hence

fL

1

; : : : ; L

i�1

; L

i+1

; : : : ; L

r

g � fA1; : : : ; A

s

g � T

R

n+1

[P ]

# k � T

[P ]

# k � T

R

n

[P ]

# k.

Step 2: Our goal now is to prove L

i

2 T

R

n

[P ]

# k.

We have fM

1

; : : : ;M

t

g � fA1; : : : ; A

s

g � T

R

n+1

[P ]

# k and by (2) and theorem (4.1)

(as above) T

R

n+1

[P ]

# k � T

R

n

[P ]

# k. And since the immediate consequence operator

is monotonic and T

R

n

[P ]

# 0 = B

P

, we have T

R

n

[P ]

# k � T

R

n

[P ]

# (k � 1). Therefore

fM

1

; : : : ;M

t

g � T

R

n+1

[P ]

# k � T

R

n

[P ]

# k � T

R

n

[P ]

# (k � 1). So we have on the one

hand fM

1

; : : : ;M

t

g � T

R

n

[P ]

# (k� 1) and, on the other hand the clause C

2

�M  

M

1

; : : : ;M

t

in R

n

[P ]

. Hence M = L

i

2 T

R

n

[P ]

# k

So we have that fL

1

; : : : ; L

r

g � T

R

n

[P ]

# k and C

1

� L  L

1

; : : : ; L

r

is a clause of R

n

[P ]

.

Hence L = A 2 T

R

n

[P ]

# (k + 1). But we assume (1), so we have T

R

n

[P ]

# (k + 1) � T

[P ]

#

(k + 1). So we conclude A 2 T

[P ]

# (k + 1). 2

Corollary 4.7 8n � 0; 8k � 0 T

R

n

P

# k � T

P

# k

Proof. By corollary 4.4 T

R

n

P

# k = T

[R

n

P

]

# k. By lemma 4.5 T

[R

n

P

]

# k = T

R

n

[P ]

# k. By

theorem 4.6 T

R

n

[P ]

]

# k � T

[P ]

# k. Applying corollary 4.4 again, T

[P ]

# k = T

P

# k. So we

have T

R

n

P

# k = T

[R

n

P

]

# k = T

R

n

[P ]

]

# k � T

[P ]

# k = T

P

# k. 2

Finally, if we put together theorem 4.1 and corollary 4.7 we can enounce our equality.
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Theorem 4.8 Let P be a de�nite program. Then 8n � 0; 8k � 0T

R

n

P

# k = T

P

# k

Corollary 4.9 Let P be a de�nite program. Then 8n � 0; T

R

n

P

# ! = T

P

# !

Proof. Trivially, from 4.8 T

R

n

P

# ! = \fT

R

n

P

# k : k � 0g = \fT

P

# k : k � 0g = T

P

# !

2

5 Conclusion and future work

One of the research �elds having received more attention in recent years has been Induc-

tive Logic Programming [4, 5, 6]. But, despite its encouraging success, we think that a

deeper research in its semantics is necessary.

The results we present, although interesting by themselves, can be seen as a new step in

this line.

If we consider Robinson's operator as a generalization of the method called unfolding,

introduced by Bostr�om and Idestam{Almquist in [2] to solve the specialization problem

of ILP, this paper o�ers a semantic point of view to approach this problem.
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