
Inverse Narrowing for the Induction of Functional

Logic Programs

J. Hernandez-Orallo, M.J. Ramirez-Quintana

Abstract

We present a framework for the Induction of Functional Logic Programs (IFLP)

from facts. This can be seen as an extension to the now consolidated �eld of

Inductive Logic Programming (ILP). Inspired in the inverse resolution operator of

ILP, we study the reversal of narrowing, the more usual operational mechanism for

Functional Logic Programming. We also generalize the selection criteria for guiding

the search, including coherence criteria in addition to the MDL principle. A non-

incremental learning algorithm is presented. We discuss the advantages of IFLP

over ILP, most of which are inherited from the power of narrowing wrt resolution.

At the end of this paper, we comment on the plausibility of extending the presented

techniques to higher-order induction and its appropriateness for function invention,

a topic which is di�cult to incorporate homogeneously with the basic �rst-order

inductive rules of inference in ILP.

1 Introduction

1.1 Precedents

Since the beginning of this decade, Inductive Logic Programming (ILP) has been a very

important area of research as an appropriate framework for the inductive inference of

�rst-order clausal theories from facts. ILP was uni�ed around the works of Muggleton

and the new name ILP [15]. He de�ned ILP as the intersection of inductive learning and

logic programming. As a machine learning paradigm, the general aim of ILP is to deve-

lop tools, theories and techniques to induce hypotheses from examples and background

knowledge. ILP inherits the representational formalism, the semantical orientation and,

the well-established techniques of logic programming. From a proof theory point of view,

ILP can also be considered as the dual paradigm of Logic Programming (LP): whereas

ILP describes the process of the induction of logic programs from logic formulae, LP

deals with the deduction of logic formulae from logic programs provided by the user, i.e.,

the induction can be thought of as the inverse process to deduction. Therefore, inductive

inference rules can be obtained by inverting deductive ones. Several approaches corres-

ponding to di�erent assumptions about the deductive rule and the format of background

theory and examples have been proposed and investigated. The most interesting is based

on the inversion of the resolution principle. Although inverse resolution has been propo-

sed in [14] as an inference system which consists of four rules (Absorption, Identi�cation

DSIC, UPV, Camino de Vera s/n, 46022 Valencia, Spain. E-mail: fjorallo,mramirezg@dsic.upv.es.

This work has been partially supported by CICYT under grant TIC 95-0433-C03-03.

379

380 APPIA-GULP-PRODE'98

and two rules for the introduction of new predicate symbols), more speci�c forms of these

have been implemented by having a two-stage operation: �rst, inverse resolution opera-

tors are applied to examples, and then clauses are reduced by generalization. As we will

show, our proposal induces equational clauses in a way which is quite similar.

Inside the general framework of learning and induction, the importance of ILP may

be justi�ed for many reasons. First, one of the advantages of ILP is the ability to use

background knowledge and the understandability of theories, di�ering radically from

other novel approaches like fuzzy systems or neural networks. Second, ILP is a more

tractable and natural framework for many problems and has all the hypothesis validation

e�ciency of SLD-resolution. Third, it is easier to state formal considerations about the

hypotheses, the evidence and their relationship.

ILP has provided an outstanding advantage in the inductive machine learning �eld by

increasing the applicability of learning systems to theories with more expressive power

than propositional frameworks. However, ILP has also inherited the main limitations

of computational logic: the impossibility of de�ning functions in a natural way and the

absence of higher-order constructs.

There are some previous works on the learning of functions and the induction of func-

tional programs, usually combining very di�erent techniques (evolutionary programming,

MDL principle, folding) to synthesize recursive Standard ML programs as in [16],
atte-

ning the logic program with function symbols to transform it into an equivalent program

without functions [20], using extensions of the least general generalization technique used

in ILP (see for instance [1]) or a similar approach to Shapiros MIS [21] for inducing term

rewriting systems [23]. Also, there are some early works on the induction of LISP pro-

grams in the seventies (see [22] for a survey), although we do not consider them to be

very related to our approach because they learn from execution traces.

Over the last decade, it has been theoretically and experimentally demonstrated that

functional logic languages have more expressive power in comparison to functional langua-

ges and a better operational behavior in comparison to logic languages [7]. One relevant

approach [9] to integration is the functional logic programming where the programs are

logic programs which are augmented with Horn equational theories. The main semantic

properties of logic programs also hold for functional logic programs. Thus, these programs

admit least model and �xpoint semantics. The operational semantics of a functional logic

language is de�ned in terms of semantic uni�cation or E-uni�cation (i.e., general uni�-

cation w.r.t. an equational theory E) requiring a complete E-uni�cation procedure to

determine whether two terms, t and s, are equal under an equational theory. A sound

and complete E-uni�cation method is narrowing

1

[10, 19]. Several strategies have been

proposed in order to improve the e�ciency of the narrowing algorithm.

The induction of functional logic programs has been discussed in [2], but as a restricted

variant of logic programs such that each n-ary predicate can be associated to a total

function as follows: m of its arguments are labeled as input, while the remaining n-m are

labeled as output, and for every given sequence of input values, there is one and only one

sequence of output values that makes the predicate true. The programs are not in any

other way functional. In addition, a framework for the induction of Escher programs is

presented in [4]. Escher [13] is an integrated logic and functional programming language

based on the Church theory of types which incorporates some higher-order concepts. The

syntax of programs is functional (as in the Haskell language) and the computational model

1

The completeness of this algorithm requires some additional requirements on equations, especially

on conditional equations like the absence of extra variables in conditions.

Inverse Narrowing for the Induction of Functional Logic Programs 381

of Escher is based on the rewriting mechanism. Since functions operate on data types

with several data constructors, the proposed algorithm chooses one of the arguments

as pattern for the induction of a function and partitions the examples according to the

constructor appearing in them in this argument. Then, one statement is learned for each

case. On the contrary, our approach does not consider pattern scheme and it is oriented

to working with languages which are based on narrowing and are not typed.

1.2 IFLP Motivations

In this work, we present a general framework for the induction of functional logic programs

(IFLP) from examples, generalizing the scope of the ILP. At the moment, we will consider

the unconditional case. For simplicity, the (positive and negative) examples are expressed

as pairs of ground terms or ground equations where the right term is in normal form.

Positive examples represent terms that will have to be proven equal using the induced

program, whereas negative examples consist of terms that do not have to be proven

equal. Our approach is based on the idea of the inverse resolution of ILP. Starting from

the generalization of positive examples to include variables as arguments of functions, we

have de�ned an inverse narrowing mechanism which selects pairs of equations to obtain an

equation which is more general than the original ones from the generalized examples. The

selection criteria is based on the number of positive examples that can be derived from

the equation. Then, if the generated equation covers more positive examples or subsumes

other equations, then it is added to the previously selected equations (probably replacing

some of them). This process is repeated until a program (or set of equations) is valid

according to some selection criteria. One of the main di�erences between our approach

and ILP is the meaning of `concise' program. ILP looks for the shortest program [12, 15]

whereas we consider programs that are consilient [8]: a program is consilient if it has not

exceptions, i.e. it does not `discriminate' a part of its consequences, in the sense that

these consequences are outside the scope of the main rule.

Since an alternative approach to implementing functional logic languages via SLD-

resolution is based on the
attening of the program and the goal

2

[3, 24], we could �rst

apply such a
attening and then use the well-studied techniques of ILP, for the induc-

tion of functional logic programs. Indeed, Left-to-right SLD-resolution combined with

attening is equivalent to leftmost innermost basic narrowing. However, the
attening

approach is limited as [7] points out: it is not ensured that functional expressions are re-

duced in a purely deterministic way if all arguments of a function are ground values. This

important property of functional languages is not preserved since the information about

functional dependencies is lost by
attening. Moreover,
attening restricts the chance to

detect deterministic computations by the dynamic cut which is relevant especially in the

presence of conditional equations. The result of
attening plus resolution in these cases

is the appearance of in�nite loops or duplicity of solutions, which did not exist in the

original functional logic version.

Finally, in our opinion, another important reason for undertaking the jump to IFLP

is that once the properties and behaviour of di�erent inverted narrowing techniques are

established, the step to higher order induction may be easier to bridge based on the

2

This
attening eliminates the nesting functional in the head of the rules of a conditional term

rewriting system preserving the body of the clauses, along with their function symbols; whereas the

attening procedure in [20] (above mentioned) eliminates all the function symbols, converting each

function term of arity n into a new predicate of arity n + 1.

382 APPIA-GULP-PRODE'98

deductive higher-order counterparts [18]. The work is organized as follows. In Section 2,

we recall the main concepts of ILP and we formalize the narrowing semantics we focus

on. Section 3 presents the general IFLP framework and gives the overall strategy for

searching the program space. The search is guided by measures of program quality just

as its consilience and the length of the right hand side of the rules. Section 4 presents

a non-incremental version of the algorithm which computes a solution program from the

examples, including the de�nition of the inverse narrowing procedure. An example of

the application of the algorithm is also included. In Section 5, we discuss the step for

dealing with conditions and the plausibility of higher-order induction. Finally, Section 6

concludes the paper.

2 Preliminaries

We brie
y review some basic concepts about ILP, equations, Term Rewriting Systems

and E-uni�cation. For any concept which is not explicitly de�ned the reader may refer

to [7, 11, 15].

The problem addressed by ILP can be simply stated as the inference of a theory (a

logic program) P from facts (or evidence logic theory) using a background knowledge

theory B (another logic program). Evidence can be only positive E

+

or both positive

and negative (E

+

,E

�

). The sets E

+

and E

�

are usually given in an extensional manner

(i.e., as facts) but the framework does not exclude intensional manner (i.e., theories) as

evidence. A program P is a solution to the ILP problem if it covers all positive examples

(B [P j= E

+

, posterior su�ciency or completeness) and does not cover any negative

examples (B [P 6j= E

�

, posterior satis�ability or consistency). An atom g is a common

generalization of atoms a and b if and only if there exist substitutions � and � such that

a = g� and b = g�. A clause G is a common generalization of clauses C and D if and

only if there exists a substitution � such that G� � C and G� � D. These de�nitions

can be extended in the obvious way to sets of atoms and clauses.

Let � be a set of function symbols (or functors) together with their arity

3

and let X

be a countably in�nite set of variables. Then T (�;X) denotes the set of terms built from

� and X . The set of variables occurring in a term t is denoted V ar(t). This notation

naturally extends to other syntactic objects (like clause, literal, : : :). A term t is a ground

term if V ar(t) = ;. An occurrence u in a term t is represented by a sequence of natural

numbers. O(t) and

�

O(t) denote the set of occurrences and non-variable occurrences of

t, respectively. t

ju

denotes the subterm of t at the occurrence u and t[t

0

]

u

denotes the

replacement of the subterm of t at the occurrence u by the term t

0

. An equation is an

expression of the form l = r where l and r are terms. l is called the left hand side

(lhs) of the equation and r is the right hand side (rhs). An equational theory E (which

we call program) is a �nite set of equational clauses of the form l = r (e

1

; : : : ; e

n

:

with n � 0 where e

i

is an equation, 1 � i � n. The theory (and the clauses) are

called conditional if n > 0 and unconditional if n = 0. An equational theory can also

be viewed as a (Conditional) Term Rewriting System (CTRS) since the equation in the

head is implicitely oriented from left to right and the literals e

i

in the body are ordinary

non-oriented equations. Given a (C)TRS R, t !

R

s is a rewrite step if there exists an

ocurrence u of t, a rule l = r 2 R and a substitution � with t

ju

= �(l) and s = t[�(r)]

u

.

A term t is said to be in normal form w.r.t. R if there is no term t

0

with t !

R

t

0

. We

3

We assume that � contains at least one constant.

Inverse Narrowing for the Induction of Functional Logic Programs 383

say that an equation t = s is normalized w.r.t. R if t and s are in normal form. R is

said to be canonical if the binary one-step rewriting relation !

R

is terminating (there

is no in�nite chain s

1

!

R

s

2

!

R

s

3

!

R

: : :) and con
uent (8 s

1

; s

2

; s

3

2 T (�;X) such

that s

1

!

�

R

s

2

and s

1

!

�

R

s

3

; 9 s 2 T (�;X) such that s

2

!

�

R

s and s

3

!

�

R

s). An E-

uni�cation algorithm de�nes a procedure for solving an equation t = s within the theory

E . Narrowing is a sound and complete method for solving equations w.r.t. canonical

programs. Given a program P , a term t narrows into a term t

0

(in symbols t,!

P

t

0

) i�

u 2

�

O(t), l = r is a new variant of a rule from P , � = mgu(t

ju

; l) and t

0

= �(t[r]

u

). We

write t,!

n

P

t

0

if t narrows into t

0

in n narrowing steps.

3 The IFLP framework

IFLP can be de�ned as the functional (or equational) extension of ILP

4

. The goal is

the inference of a theory (a functional logic program P) from evidence (a set of positive

and optionally negative equations E) using a background knowledge theory (a functional

logic program B).

3.1 Sample Presentation and Other Assumptions

We will consider evidence composed of positive E

+

and negative E

�

equations

5

and

their rhs which are normalized wrt the background theory B and the theory P which

is meant to be discovered (hypothesis), with B [P being canonical. E must always

be consistent with B. We can do some preprocessing to E, which includes well known

equation simpli�cations: (i) any equation of the form f(x

1

; x

2

; : : : ; x

n

) = f(y

1

; y

2

; : : : ; y

n

)

is replaced by the n equations x

1

= y

1

, x

2

= y

2

, : : : , x

n

= y

n

, and (ii) the elimination of

all redundant equations. This is illustrated in the following example:

Example 1 : Consider the following background theory B = fs(X) < s(Y) = X < Y; 0 <

s(Y) = true; X < 0 = falseg along with the incomplete positive and negative evidence E

+

and E

�

:

(E

+

1

) 0 + 0 = 0

(E

+

2

) s(0) + s(0) = s(s(0))

(E

+

3

) 0 + s(0) = s(0)

(E

+

4

) s(s(0) + s(0))) = s(s(0))

(E

+

5

) s(s(s(0)) + s(0))) = s(s(s(s(0))))

(E

�

1

) s(0) + 0 = 0

(E

�

2

) 0 + 0 = s(0)

(E

�

3

) s(0) + s(0) = s(0)

(E

�

4

) s(0) + 0 = s(s(0))

(E

�

5

) s(0 + 0) = s(s(0))

(E

�

6

) s(s(0) + s(0)) = 0

(E

�

7

) s(0) = 0

l As we have just said, example E

+

4

can be simpli�ed into s(0) + s(0) = s(0), because

(by (i)) E

+

4

is equal to E

+

2

and hence one of them (e.g. E

+

4

) can be eliminated (by (ii)).

In the same way, the last positive example is simpli�ed into s(s(0)) + s(0)) = s(s(s(0)))

and the negative example E

�

5

is removed because it is redundant with E

�

2

.

4

It is obvious that any problem expressed in the ILP framework can also be expressed in the IFLP

framework, because all the positive facts e

+

i

of an ILP problem can be converted into equations of the

form e

+

i

= true and all the negative facts e

�

j

can be expressed as e

�

j

= false.

5

If only boolean functions were to be induced, no negative sample would be required for IFLP. For

general functions, however, it may be very useful to also have a negative sample.

384 APPIA-GULP-PRODE'98

3.2 Hypothesis Selection

As in ILP, we have to select \the optimal program" from all the many possible valid

programs ensuring posterior su�ciency and satis�ability. The problem is that there is

no such thing as \the right hypothesis", so an optimality criterion must be arbitrarily

selected depending on the application or purpose of the induction: prediction, scienti�c

discovery, program synthesis, function invention, program transformation, abduction or

explanation-based learning (EBL). Moreover, some of them drastically diverge for dif-

ferent kinds of samples: (perfect / imperfect), (complete / incomplete) and (positive

evidence only / positive and negative evidence).

Despite this undeniable fact, theMinimumDescription Length (MDL) principle

is the most popular selection criteria in ILP, which is supported by the classical view of

unsupervised learning as compression, by the e�ectiveness of its use in many applications

of machine learning, and by its recent formal justi�cation [12] in relation to Bayesian

learning. The MDL principle has been successfully applied mainly where the source has

a statistical character and it might contain errors. However, in other applications where

no errors are expected from the source [12], like program synthesis from examples or, in

incremental learning, the MDL principle sometimes fails.

For our purposes, we will compute the length of the equations as length(e) = 1+n

v

=2+

n

c

+ n

f

with n

v

, n

c

and n

f

being, respectively, the number of variables, constants and

functors of the rhs of the rules only, because it is desirable to obtain short equations with

decreasing character

6

. Note that we promote variables over constants or functors. Finally,

we de�ne the length factor of a set of equations P as LenF(P) = �

P

e2P

log

2

length(e).

However, there are other selection criteria. The so-called subset-principle, with

Plotkin's least general generalization (lgg) [17] being its concretization for logic programs,

means that the hypothesis must cover the smallest superset of the sample data.

In this paper, we take up the classical concept of coherence of scienti�c theories [8]

used as a selection criterion in some applications of machine learning, especially explana-

tory reasoning or abductive inference. The idea of intrinsical coherence of a description

can be adapted to the case of functional logic programs in many slightly di�erent ways.

We present just two of these ways. The �rst one deals with the concept of separation, i.e,

the facts can be independently covered by parts of the programs. More formally, a pro-

gram P is n-separable in a partition fP

1

; P

2

; : : : ; P

n

g from P such that P

i

6� P

j

8i 6= j

i� for every equation e such that P j= e there exists a P

i

such that P

i

j= e. Otherwise, P

is said to be robust i� it has no 2-separation. In order to give a more gradual value (a

factor) of coherence, we introduce a related but di�erent concept: the consilience factor

of a functional logic program P wrt some given examples E

+

, which can be computed

e�ectively as

ConF(P) =

(

1 if P has only an equation

1�max(card(e 2 E

+

: P

i

� P ^ P

i

j= e)=card(E

+

)) otherwise

Also, in some cases, like abductive or explanatory learning, the consilience factor

should be computed jointly with the background theory, i.e. ConF(P [B).

In those cases where the data are approximate or noisy, it is interesting to compute a

covering factor w.r.t. the positive evidence, de�ned simply as CovF

+

(P) = card(e 2

6

Theoretically, the length should be computed using a generating grammar for all the terms in the

Herbrand Universe as in [5]. In our case, we give an approximation that works well in practice and

has the advantage of being independent of the total number of constants, variables and functors in the

program or the Herbrand Universe.

Inverse Narrowing for the Induction of Functional Logic Programs 385

E

+

: P j= e)=card(E

+

), i.e., the proportion of positive cases covered. CovF

�

can be

de�ned in the same way.

Finally, the e�ciency of a program is a very interesting criterion for program synt-

hesis. Computing the number of narrowing steps is a good approximation for it. Thus,

we de�ne the e�ciency of a program P as E�F(P) =

P

l=r2E

+

n; l ,!

n

P

r.

To illustrate the divergence of these criteria, let us consider some consistent (CovF

�

=

0) and complete (CovF

+

= 1) programs with Example 1:

P

1

= E

+

P

2

= fX + 0 = X; 0 +X = X; s(X) + s(0) = s(s(X))g

P

3

= fX + 0 = X;X + s(Y) = s(X + Y)g

P

4

= fX + 0 = X;X + s(0) = s(X)g

P

5

= fX + Y = X : �Y = 0;X + s(Y) = s(X) : �Y = 0g

P

6

= fX + Y = Y +X : �X < Y;X + 0 = X; s(X) + s(Y) = s(s(X + Y))g

P

7

= fX + 0 = X; 0 +X = X; s(X) + s(Y) = s(s(X + Y))g

P

8

= fX + 0 = X; 0 +X = X; s(X) + s(Y) = s(X + s(Y)))g

According to the criteria we have just presented, P

4

is the shortest one, followed by P

3

.

According to the subset principle, P

4

is also better than P

3

, but P

1

is the best hypothesis.

However, P

1

is clearly separable, along with P

2

, P

4

, P

5

, P

7

, P

8

whereas P

3

and P

6

are

robust. Both P

3

and P

4

have the greatest consilience factor 0.75. Finally, in most cases,

P

7

will be more e�cient than P

3

and always more e�cient than P

8

.

In the light of this example, it even seems arbitrary to select P

3

as the \right hypot-

hesis". In fact, the idea of \the best hypothesis" only makes sense in the context of the

purpose of the application.

3.3 Hypothesis Generation and Heuristics

For the present paper, we will consider the data to be perfect (no transmission errors) and

we are especially interested in program synthesis of only one concept at a time, so, for the

moment, the stop criterion consists only of the completeness condition CovF

+

= 1 and a

threshold for the consilient factor, usually 0.5. However, since consilience is favoured by

short programs and a length factor is considered in the search heuristics, the syntactical

length criterion is implicitly present. Also, e�ciency is implicitly taken into account due

to the character of the search.

As we will see in the next section, the search is initially bottom-up, but this is not de-

�nitive, because it works with populations of programs and \merges" them using inverse

narrowing. A rating is made from this population according to an optimality value, in a

way which resembles genetic programming.

Concretely, our optimalitymeasure is constructed simply as

7

: Opt(P) = ��LenF (P)+

� � CovF

+

(P) +
 � ConF (P).

These combined heuristics considerably reduce the size of the sample which is necessary

to induce the intended hypothesis over other approaches which are exclusively based on the

MDL principle. Once the hypotheses selection criteria are settled, the algorithm drives

their generation in a proper way, using the optimality criterion as a search heuristic

along with the stop criterion selected. This makes our approach very generic and easily

adaptable to quite di�erent applications.

7

For the examples we will consider just � = 1, � = 1,
 = 1, but in the future these values could be

parametrised for di�erent kind of problems.

386 APPIA-GULP-PRODE'98

4 Non-incremental Algorithm for IFLP

In this Section, we discuss the skeleton form of the algorithm for the inductive inference

of functional logic programs. As already pointed out, our learning task consists of an

inductive search of hypothetical equations and a selection of programs constructed from

these equations, until one of the programs is evaluated as a good solution.

For instance, in a logic program, given only the positive data fp(a; b; a; a); p(b; c; b; c);

q(a; f(a); c); q(b; f(b); c)g we can compute the most general program fp(X; Y; Z;W); q(X;

Y; Z;W)g and re�ne it by specialization. Alternatively, we can begin from the positive

data as a program and proceed by generalization.

In the case of functional logic programs, we cannot start from the most general program

because the examples are equations, and the most general program X = Y would not

make the program �nite nor con
uent. The most speci�c generalization in this case is the

program itself. In contrast, our approach starts from almost all possible generalizations

of the sample equations, with a very small and reasonable restriction:

De�nition 1 Restricted Generalization (RG)

Given an equation e � ft = sg, the equation t

0

= s

0

is a restricted generalization of e if

it is a generalization of e (i.e. 9� : t

0

� = t ^ s

0

� = s) such that 8x(x 2 V ar(s

0

)) x 2

V ar(t

0

)).

In other words, RG does not introduce extra variables on the rhs of the equations. RG

prevents meaningless generalizations from being taken into consideration when we search

the intended program for the given examples.

Since we have to ensure posterior satis�ability, we begin generating all possible restric-

ted generalizations from each positive example which is consistent with both the positive

and negative examples. More formally,

De�nition 2 Consistent Restricted Generalization CRG

An equation e = fl

1

= r

1

g is a consistent restricted generalization (CRG) wrt E

+

and

E

�

and an existing theory T = B [P if and only if e is a RG for some equation of E

+

(always oriented left to right) and there does not exist a narrowing chain using e and T

that yields some equation of E

�

.

Also, by this de�nition, trivial CRG's like X = X are not allowed.

Despite the fact that we use CRG's, our algorithm is not strictly a generalization

algorithm because we work with sets of equations and programs instead of re�ning a

single program.

Straightforwardly, since narrowing is a sound and complete method for E-uni�cation,

we will study an inverse method of it that we will call inverse narrowing. Let us illustrate

the concept with an example.

Example 2 Suppose we are inducing a program P from the positive examples in Example 1. At

the n-th step, suppose we select the clause fX

0

+0 = X

0

g as good for P and we arbitrarily select

the rhs of another clause fX + s(0) = s(X)g, i.e., s(X). The �rst rule can be used inversely

in the second term in di�erent positions. In this case, there are di�erent possible applications

which are variable or non-variable:

(t

1

) s(X + 0)

(t

2

) s(X) + 0

That is to say t

1

and t

2

can be narrowed to s(X) using a rule of P . The resulting equations are

X + s(0) = s(X + 0) and X + s(0) = s(X) + 0.

Inverse Narrowing for the Induction of Functional Logic Programs 387

De�nition 3 Inverse Narrowing

Given a functional logic program P , we say that a term t conversely narrows into a

term t

0

, and we write t

u;l=r;�

 -

P

t

0

, i� u 2 O(t), l = r is a new variant of a rule from

P , � = mgu(t

ju

; r) and t

0

= �(t[l]

u

). The relation -

P

is called the inverse narrowing

relation.

The IFLP algorithm

As we have already mentioned, we start the inductive process from positive and ne-

gative evidence E

+

and E

�

. Additionally a background theory B can be used to induce

the target program P . In the following, we will denote BF (Basic Functions) the subset

of functions from B, determined by the user, which can be used in the de�nition of the

learned functions of P . For the sake of e�ciency, the IFLP algorithm is also parametrized

by three more input parameters: 1) min indicates the maximal number of CRG's that

must be generated from one example at each algorithm step, 2) step is a measure that

indicates the increase of the min parameter (as we will see, min value must be increa-

sed when no program solution is found using the current min value), and 3) inarcomb

shows the maximal number of inverse narrowing steps that can be carried out with a

pair of programs. These parameters are provided in order to improve the e�ciency and

performances of the algorithm.

The basic IFLP algorithm learns programs by generating two sets of hypotheses: a set

of equations (we denote EH, Equation Hypothesis) where the equations are mainly ge-

nerated by means of CRG, and a set of programs (we denote PH, P rogram Hypothesis)

which are composed exclusively from equations of EH. At each step of the algorithm,

new equations and programs are generated by inverse narrowing. Thus, the kernel of the

algorithm is constituted by two auxiliary procedures: GenerateCRG and InverseNarro-

wing.

TheProcedure GenerateCRG(input:E

+

; E

�

; EH;min; output:EH

f

) returns the

set EH

f

which is obtained by adding to EH the set of equations which are CRG's wrt

E

+

and E

�

and which are constructed from each equation in E

+

. Also, the optimality

of each equation is computed as well as the number of examples which are covered by it.

The size of the generated set EH

f

is limited by the min value.

The Procedure InverseNarrowing(input:P

1

; P

2

; BF; inarcomb;output:EH;PH)

returns a set of equations (EH) and a set of programs (PH) obtained in the following

way: �rst, inverse narrowing is applied between equations of the two input programs

(up to inarcomb number of combinations) and, then, the sets are pruned to eliminate

redundancy and inconsistency.

Procedure InverseNarrowing(input:P

1

; P

2

; BF; inarcomb;output:EH;PH)

Calculate the set fe

i

g

i2I

by applying inverse narrowing steps between a deterministically

8

selected equation e from P

1

(or P

2

) and all possible equations e

0

from P

2

(or P

1

). When

BF 6= ; then e 2 P

1

and e

0

2 P

2

. Then we compute all the CRG's e

i

j

; j 2 J; from e

i

Let EH be [

j2J;i2I

fe

i

j

g

Let PH be fP

1

[P

2

[fe

i

j

g=fegg

j2J;i2I

Calculate coverings and optimalities of each set in PH

while some program p in PH is inconsistent or not canonical

Remove p from PH if p is not consistent.

Replace p by each of its canonical subsets, if p is not canonical.

8

Beginning with the pair of equations with best optimality until inarcomb = card(PH)

388 APPIA-GULP-PRODE'98

endwhile

Clean the sets in PH removing redundant rules

endprocedure

The �rst step of the learning algorithm generates the initial EH set with all the CRG's

from E

+

. Next, PH is initialized to the set of all possible programs containing only one

equation from EH. Then, at each iteration, RH and PH are recalculated until a program

P is found which covers E

+

and whose ConF factor must be better than a certain desired

consilience value (that we call dc). At every step, the theory B is only used if there is no

program in PH which covers some example with an acceptable optimality Op.

Finally, we would like to note that the parameters dc;min; step; Op and inarcomb

are heuristical, as well as the coe�cients for Opt(P). Therefore, they must be estimated

depending on several factors (like the complexity of the theory B, the expected complexity

of P , the number of examples, : : :). Our experiments demonstrate good performances of

the algorithm when the following values are used: dc = 0:5, min = 2� 3, step = 2� 3,

Op = 0 and inarcomb = 3. Some of them can be modi�ed if no solution is found (for

instance, the inarcomb parameter can be increased for generating more programs).

Next, we outline the IFLP algorithm.

Input: E

+

; E

�

; B;BF; dc;min; step; inarcomb. Output: a program P = BestSolution

begin

Let EH = ; and let PH = ;

GenerateCRG(input:E

+

; E

�

; ;; output: EH)

Let BestSolution = Select best(PH)

while not stop criterion(BestSolution) do

if using B fusing background knowledgeg and

9E

0

� E

+

and 6 9P 2 PH j Opt(P) � Op

then begin

for each e 2 E

0

do

Let P = feg

InverseNarrowing(input:P;B;BF ;output:EH

0

; PH

0

)

Update all(BestSolution;EH;PH;EH

0

; PH

0

)

endfor

endbegin

endif f using background knowledgeg

fGeneral case. Select the most weighted pair of programs P

1

; P

2

from

PHg

Let n = card(E

+

)

while n > 0 do

PP = f(P

1

; P

2

) j P

1

; P

2

2 PH;P

1

6= P

2

s.t. card(fe 2 E

+

j

P

1

j= e _ P

2

j= eg) � ng

if PP 6= ;

then let (P

1

; P

2

) = argmin

PP

(Opt(P

1

)+Opt(P

2

) and break

while

else let n = n� 1

endif

endwhile

if n = 0 then begin

let min = min+ step

GenerateCRG(input:E

+

; E

�

; EH;min; output: EH

0

)

if EH

0

= EH then halt fNo more programs to essay. No

solution.g

endbegin

else begin

Inverse Narrowing for the Induction of Functional Logic Programs 389

InverseNarrowing(input:P

1

; P

2

; ;;output:EH

0

; PH

0

)

Update all(BestSolution;EH;PH;EH

0

; PH

0

)

endbegin

endif

endwhile

endalgorithm

where:

� Select best(PH) selects the program with the best covering, the greatest consilience

and, �nally, the best optimality.

� Update all(S;E; P; E

0

; P

0

) performs the following actions:

{ E = E [E

0

and P = P [P

0

{ S = Select best(P)

The following example illustrates the use of the algorithm for a typical problem: the

induction of the function append.

Example 3 Shorten the trace, the following parameters are selected: min = 2, step = 2,

inarcomb = 3. The stop-criterion is settled at consilience > dc = 0:5. Using Prolog notation

for lists, the evidence is as follows:

(E

+

1

) append([1; 2]; [3]) = [1; 2; 3]

(E

+

2

) append([c]; [a]) = [c; a]

(E

+

3

) append([]; [4]) = [4]

(E

+

4

) append([a; b]; []) = [a; b]

(E

+

5

) append([a; b; c]; [d; e]) = [a; b; c; d; e]

(E

�

1

) append([3]; [4]) = [4; 3]

(E

�

2

) append([1; 2]; []) = [1]

(E

�

3

) append([1; 2; 3]; [4]) = [1; 2; 3; 4; 5]

(E

�

4

) append([]; [a; b]) = [b; a]

Since min = 2, we generate only the two CRG's with best optimality from each example:

CRG(E

+

1

) = fappend(:(X; :(Y; [])); Z) = :(X; :(Y;Z));

append(:(X; :(Y;Z)); :(W;Z)) = :(X; :(Y; :(W;Z)))g

CRG(E

+

2

) = fappend(:(X; []); Y) = :(X;Y); append(:(X;Y); :(Z; Y)) = :(X; :(Z; Y))g

CRG(E

+

3

) = fappend([];X) = X; append(X; :(Y;X)) = :(Y;X)g

CRG(E

+

4

) = fappend(X; []) = X; append(:(X; :(Y;Z)); Z) = :(X; :(Y;Z))g

CRG(E

+

5

) = fappend(:(Y; :(Z; :(W;V)));X) = :(Y; :(Z; :(W;X)));

append(:(Y; :(Z; :(W; [])));X) = :(Y; :(Z; :(W;X)))g

The �rst EH and PH are composed of 10 equations and the corresponding 10 programs.

The �rst BestSolution covering all the examples can be constructed from 4 equations with

consilience = 0.2 and optimality = - 5.7. Next we begin the inverse narrowing combina-

tions. Since there is no pair of programs covering 5 or 4 examples, with n = 3 we �nd

P

1

= fappend(:(X; :(Y; [])); Z) = :(X; :(Y;Z))g, covering f E

+

1

, E

+

4

g and optimality = -

0.76 and P

2

= fappend([];X) = Xg, covering E

+

3

and optimality = + 0.62. We have

3 possible inverse narrowing combinations (which is just equal to inarcomb), all using e

1

=

fappend(:(X; :(Y; [])); Z) = :(X; :(Y;Z))g and e

2

= fappend([];X) = Xg, giving three consis-

tent programs, which are added to PH:

P

a

= fappend(:(X; :(Y;W)); Z) = :(append(W;X); :(Y;Z)); append([];X) = Xg

P

b

= fappend(:(X; :(Y;W)); Z) = :(X; :(append(W;Y); Z)); append([];X) = Xg

P

c

= fappend(:(X; :(Y;W)); Z) = :(X; :(Y; append(W;Z))); append([];X) = Xg

390 APPIA-GULP-PRODE'98

In the same way, the second EH and PH are computed with 3 more equations and programs,

respectively. Now, there is no pair of programs covering 5 examples. With n = 4, we �nd two

programs P

1

= fappend(:(X; :(Y;W)); Z) = :(append(W;X); :(Y;Z)); append([];X) = Xg cove-

ring f E

+

1

, E

+

3

, E

+

4

g and P

2

= fappend(:(X; []); Y) = :(X;Y)g covering f E

+

2

g. We select the

two rules with higher optimaly, i.e., fappend([];X) = Xg and fappend(:(X; []); Y) = :(X;Y)g

which generate some new programs by inverse narrowing. Most of them are inconsistent, others

are not con
uent and then split into inconsistent programs. Finally, only one of them results

in a consistent and con
uent program:

P

d

= fappend(:(X;Z); Y) = :(X; append(Z; Y)); append([];X) = Xg

which covers all E

+

and has optimality = -2.7. A fourth combination could be made between

fappend(:(X; :(Y;W)); Z) = :(append(W;X); :(Y;Z))g and fappend(:(X; []); Y) = :(X;Y)g gi-

ving some other new programs, but the value of inarcomb = 3 forces the exit from the procedure

InverseNarrowing. Since P

d

covers all the examples, it is consistent and has consilience > 0:5,

the algorithm stops and outputs P

d

.

Finally, it is straightforward to prove the following correctness theorem for the learning

algorithm.

Theorem 1 Given an evidence E

+

; E

�

and a background theory B, if a program P is a

solution of the IFLP algorithm then it is canonical and B [P j= E

+

and B [P 6j= E

�

.

5 Future Work

In incremental learning, conditions are a powerful tool for making inconsilient programs

(modifying the previous hypothesis by adding the new anomaly as a negated condition)

if syntactic length is the prevailing criterion. Therefore, if functional logic programs

have advantages over functional ones, we have to introduce conditions only when neces-

sary, provided the program is shortened and consilience is conserved or increased. Also

there are other restrictions, depending of the kind of conditional narrowing (e.g. simple

conditional narrowing does not allow extra variables in conditions).

Besides the di�culty of extending the techniques, we have introduced for unconditional

theories, we have to deal with the question of selecting when it is convenient to introduce

conditions to make a program better according to some criteria.

We are currently working on an incremental extension of the algorithm for conditional

theories. We have added an extra set CH of conditions, written as sets of equations. We

now allow inconsistent generalizations such that if a generalization covers most cases but

is inconsistent with a few examples, a new condition can be generated which is `inspired'

in some program from PH (or its negation) that covers these examples.

The power of higher-order languages for induction of theories from facts has not been

fully exploited so far. The issue here is that if higher-order uni�cation is di�cult and

deduction very problematic, what can be expected from a much harder problem like

induction? However, there are reasons to think that new possibilities are feasible. In

this way, the �rst steps towards Higher-Order Induction are being taken by Bowers et

al. [4]. An intended higher-order inverse narrowing �rst requires the choice of a proper

\higher-order narrowing" from some higher-order uni�cation methods which have been

presented to date [6, 18].

Although the greater expressible power of higher-order logic can make hypotheses shor-

ter and more consilient, function invention is the problem that highlights the necessity of

Inverse Narrowing for the Induction of Functional Logic Programs 391

higher-order representation languages for induction. Of course, we lose the conveniences

of �rst-order languages, mainly their complete deduction methods, but we acquire bene-

�ts for inductive tasks. Fortunately, a good premise to start from is that, whatever the

selected higher-order deductive mechanism, any higher-order inductive algorithm should

be required to construct terminating programs for the evidence.

6 Conclusions

We have presented a general framework for the Induction of Functional Logic Programs as

an extension of ILP, including a discussion of selection criteria for equational theories and

an algorithm that is guided by an adaptable optimality factor based on these criteria. The

kernel of the algorithm is an inverse narrowing procedure which is used for the induction

of equational clauses. In this paper, we have not studied how selection strategies of

narrowing can a�ect the inference process.

In the future, classical problems of ILP could be addressed under the higher-order

extension, like function invention or the induction of schemata (not an ad-hoc use) for

complex problems.

Our approach is quite generic and powerful enough to be adapted to di�erent tasks:

program synthesis, abduction, explanation-based learning (EBL) and prediction.

References

[1] H. Arimura, H. Ishizaka, T. Shinohara, and S. Otsuki. A generalization of the least gene-

ralization. Machine Intelligence, 13:59{85, 1992.

[2] F. Bergadano and D. Gunetti. Functional Inductive Logic Programming with Queries to

the User. In Proceedings of the European Conference on Machine Learning, 1993.

[3] P. Bosco, E. Giovannetti, and C. Moiso. Narrowing vs. SLD-resolution. Theoretical Com-

puter Science, 59:3{23, 1988.

[4] A.F. Bowers, C. Giraud-Carrier, C. Kennedy, J.W. Lloyd, and R. Mackinney-Romero.

A framework for Higher-Order Inductive Machine Learning. In Representation issues in

reasoning and learning. Area meeting of CompulogNet Area `Computational Logic and

Machine Learning, 1997.

[5] D. Conklin and I.H. Witten. Complexity-Based Induction. Machine Learning, 16:203{225,

1994.

[6] Daniel J. Dougherty. Higher-order uni�cation via combinators. Theoretical Computer

Science, 114(2):273{298, 21 1993.

[7] M. Hanus. The Integration of Functions into Logic Programming: From Theory to Prac-

tice. Journal of Logic Programming, 19-20:583{628, 1994.

[8] J.H. Holland, K.J. Holyoak, R.E. Nisbett, and P.R. Thagard. Induction. Processes of

Inference, Learning, and Discovery. The MIT Press, 1989.

[9] S. H�olldobler. Equational Logic Programming. In Proc. Second IEEE Symp. on Logic In

Computer Science, pages 335{346. IEEE Computer Society Press, 1987.

[10] H. Hussmann. Uni�cation in conditional-equational theories. Technical report, Fakult�at

f�ur Mathematik und Informatik, Universit�at Passau, 1986.

392 APPIA-GULP-PRODE'98

[11] J.W. Klop. Term Rewriting Systems. Handbook of Logic in Computer Science, I:1{112,

1992.

[12] M. Li and P. Vitanyi. An Introduction to Kolmogorov Complexity and its Applications.

2nd Ed. Springer-Verlag, 1997.

[13] J.W. Lloyd. Declarative programming in Escher. Technical Report CSTR-95-013, Depart-

ment of Computer Science, University of Bristol, 1995.

[14] S. Muggleton. Duce, An Oracle Based Approach to Constructive Induction. In Proc. 10th

Int'l Joint Conference on Arti�cial Intelligence, pages 287{292. Morgan Kaufmann, 1987.

[15] S. Muggleton. Inductive Logic Programming. New Generation Computing, 8(4):295{318,

1991.

[16] R. Olson. Inductive functional programming using incremental program transformation.

Arti�cial Intelligence, 74(1):55{81, 1995.

[17] G. Plotkin. A note on inductive generalization. Machine Intelligence, 6, 1970.

[18] Z. Qian. Higher-order equational logic programming. In Proc. 21st ACM Symposium on

Principles of Programming Languages, pages 254{267, 1994.

[19] U.S. Reddy. Narrowing as the Operational Semantics of Functional Languages. In Proc.

Second IEEE Int'l Symp. on Logic Programming, pages 138{151. IEEE, 1985.

[20] C. Rouveirol. Flattening and Saturation: Two Representation Changes for Generalization.

Machine Learning, 14:219{232, 1994.

[21] E.Y. Shapiro. Inductive inference of theories from facts. Computational Logic: Essays in

Honor of Alan Robinson, 1991.

[22] D.R. Smith. The synthesis of LISPprograms from examples: A survey. Automatic Program

Construction Techniques, pages 307{324, 1984.

[23] A. Togashi and S. Noguchi. Inductive Inference of Term Rewriting Systems Realizing

Algebras. In S. Arikawa, S. Goto, S. Ohsuga, and T. Yokmori, editors, Proceedings of the

First International Workshop on Algorithmic Learning Theory, pages 411{424. Japanese

Society for Arti�cial Intelligence, 1990.

[24] M.H. van Emden and K. Yukawa. Logic Programming with Equations. Journal of Logic

Programming, 4:265{288, 1987.

