
Dynamic Logic Programming

J. J. Alferes, J. A. Leite, L. M. Pereira

H. Przymusinska, T. C. Przymusinski

Abstract

In this paper we investigate updates of knowledge bases represented by logic

programs. In order to represent negative information, we use generalized logic

programs which allow default negation not only in their bodies but also in their

heads.We start by introducing the notion of an update P �U of a logic program P

by another logic program U . Subsequently, we provide a precise semantic character-

ization of P�U , and study some basic properties of program updates. In particular,

we show that our update programs generalize the notion of interpretation update.

We then extend this notion to sequences of logic programs updates P

1

�P

2

�: : : ,

de�ning dynamic program updates, thereby introducing the paradigm of dynamic

logic programming. This paradigm signi�cantly facilitates modularization of logic

programming, and thus modularization of non-monotonic reasoning as a whole.

Speci�cally, suppose that we are given a set of logic program modules, each

describing a di�erent state of our knowledge of the world. Di�erent states may

represent di�erent time points or di�erent sets of priorities or perhaps even di�erent

viewpoints. Consequently, program modules may contain mutually contradictory as

well as overlapping information. The role of the dynamic program update is to use

the mutual relationships existing between di�erent states to precisely determine,

at any given state, the declarative as well as procedural semantics of the combined

program, resulting from all these modules.

Keywords: Logic Programming, Nonmonotonic Logics, Updates

1 Introduction

Most of the work conducted so far in the �eld of logic programming has focused on

representing static knowledge, i.e., knowledge that does not evolve with time. This is

a serious drawback when dealing with dynamic knowledge bases in which not only the

First Author is with Dep. Matemática - Univ. Évora and CENTRIA - Univ. Nova de Lisboa - 2825

Monte da Caparica - Portugal. E-mail: jja@di.fct.unl.pt

Second and Third Authors are with CENTRIA - Dept. de Informática - F.C.T. - Univ. Nova de

Lisboa - 2825 Monte da Caparica - Portugal. E-mail: {jleite|lmp}@di.fct.unl.pt

Fourth Author is with Dept. of Computer Science - California State Polytechnic Univ. - Pomona -

CA 91768 USA. E-mail: halina@cs.ucr.edu

Fifth Author is with Dept. of Computer Science - Univ. of California - Riverside - CA 92521 USA.

E-mail: teodor@cs.ucr.edu

This work was partially supported by PRAXIS XXI project MENTAL, by JNICT project ACROP-

OLE, by the National Science Foundation grant # IRI931-3061, and a NATO scholarship while the

Third Author was on sabbatical leave at the Department of Computer Science, University of California,

Riverside. The work of the Second Author was supported by PRAXIS Scholarship no. BD/13514/97.

393

394 APPIA-GULP-PRODE'98

extensional part (the set of facts) changes dynamically but so does the intensional part

(the set of rules).

In this paper we investigate updates of knowledge bases represented by logic programs.

In order to represent negative information, we use generalized logic programs which allow

default negation not only in rule bodies but also in their heads. This is needed, in par-

ticular, in order to specify that some atoms should became false, i.e., should be deleted.

However, our updates are far more expressive than a mere insertion and deletion of facts.

They can be speci�ed by means of arbitrary program rules and thus they themselves are

logic programs. Consequently, our approach demonstrates how to update one general-

ized logic program P (the initial program) by another generalized logic program U (the

updating program), obtaining as a result a new, updated logic program P � U .

Several authors have addressed the issue of updates of logic programs and deductive

databases (see e.g. [9, 10, 1]), most of them following the so called �interpretation update�

approach, originally proposed in [11, 5]. This approach is based on the idea of reducing

the problem of �nding an update of a knowledge base DB by another knowledge base

U to the problem of �nding updates of its individual interpretations (models

1

). More

precisely, a knowledge base DB

0

is considered to be the update of a knowledge base DB

by U if the set of models of DB

0

coincides with the set of updated models of DB, i.e.

�the set of models of DB

0

� = �the set of updated models of DB�. Thus, according

to the interpretation update approach, the problem of �nding an update of a deductive

databaseDB is reduced to the problem of �nding individual updates of all of its relational

instantiations (models) M . Unfortunately such an approach su�ers, in general, from

several important drawbacks

2

:

� In order to obtain the update DB

0

of a knowledge base DB one has to �rst compute

all the modelsM of DB (typically, a daunting task) and then individually compute

their (possibly multiple) updates M

U

by U: An update M

U

of a given interpretation

M is obtained by changing the status of only those literals in M that are �forced�

to change by the update U , while keeping all the other literals intact by inertia (see

e.g. [9, 10]).

� The updated knowledge baseDB

0

is not de�ned directly but, instead, it is indirectly

characterized as a knowledge base whose models coincide with the set of all updated

modelsM

U

of DB: In general, there is therefore no natural way of computing

3

DB

0

because the only straightforward candidate forDB

0

is the typically intractably large

knowledge base DB

00

consisting of all clauses that are entailed by all the updated

models M

U

of DB:

� Most importantly, while the semantics of the resulting knowledge base DB

0

indeed

represents the intended meaning when just the extensional part of the knowledge

base DB (the set of facts) is being updated, it leads to strongly counter-intuitive

1

The notion of a model depends on the type of considered knowledge bases and on their semantics.

In this paper we are considering (generalized) logic programs under the stable model semantics.

2

In [1] the authors addressed the �rst two of the drawbacks mentioned below. They showed how

to directly construct, given a logic program P , another logic program P

0

whose partial stable models

are exactly the interpretation updates of the partial stable models of P . This eliminates both of these

drawbacks (in the case when knowledge bases are logic programs) but it does not eliminate the third,

most important drawback.

3

In fact, in general such a database DB

0

may not exist at all.

Dynamic Logic Programming 395

results when also the intensional part of the database (the set of rules) undergoes

change, as the following example shows.

Example 1 Consider the logic program P :

P : sleep not tv_on tv_on

watch_tv tv_on

whose M = ftv_on; watch_tvg is its only stable model. Suppose now that the update

U states that there is a power failure, and if there is a power failure then the TV is no

longer on, as represented by the logic program U :

U : not tv_on power_failure

power_failure

According to the above mentioned interpretation approach to updating, we would obtain,

as the only update of M by U , the model M

U

= fpower_failure; watch_tvg. This is

because power_failure needs to be added to the model and its addition forces us to make

tv_on false. As a result, even though there is a power failure, we are still watching

TV. However, by inspecting the initial program and the updating rules, we are likely to

conclude that since �watch_tv� was true only because �tv_on� was true, the removal of

�tv_on� should make �watch_tv� false by default. Moreover, one would expect �sleep�

to become true as well. Consequently, the intended model of the update of P by U is the

model M

0

U

= fpower_failure; sleepg.

Suppose now that another update U

2

follows, described by the logic program:

U

2

: not power_failure

stating that power is back up again. We should now expect the TV to be on again. Since

power was restored, i.e. �power_failure� is false, the rule \not tv_on power_failure"

of U should have no e�ect and the truth value of �tv_on� should be obtained by inertia

from the rule \tv_on " of the original program P . �

This example illustrates that, when updating knowledge bases, it is not su�cient to

just consider the truth values of literals �guring in the heads of its rules because the

truth value of their rule bodies may also be a�ected by the updates of other literals. In

other words, it suggests that the principle of inertia should be applied not just to the

individual literals in an interpretation but rather to entire rules of the knowledge base.

In this paper we investigate the problem of updating knowledge bases represented by

generalized logic programs and we propose a new solution to this problem that attempts

to eliminate the drawbacks of the previously proposed approaches. Speci�cally, given one

generalized logic program P (the so called initial program) and another logic program U

(the updating program) we de�ne a new generalized logic program P�U called the update

of P by U . The de�nition of the updated program P�U does not require any computation

of the models of either P or U and is in fact obtained by means of a simple, linear-time

transformation of the programs P and U: As a result, the update transformation can be

accomplished very e�ciently and its implementation is quite straightforward

4

.

Due to the fact that we apply the inertia principle not just to atoms but to entire

program rules, the semantics of our updated program P �U avoids the drawbacks of in-

terpretation updates and moreover it seems to properly represent the intended semantics.

4

The implementation is available from: http://www-ssdi.di.fct.unl.pt/�jja/updates/.

396 APPIA-GULP-PRODE'98

As mentioned above, the updated program P �U does not just depend on the semantics

of the programs P and U; as it was the case with interpretation updates, but it also

depends on their syntax. In order to make the meaning of the updated program clear

and easily veri�able, we provide a complete characterization of the semantics of updated

programs P � U .

Nevertheless, while our notion of program update signi�cantly di�ers from the notion

of interpretation update, it coincides with the latter (as originally introduced in [9] under

the name of revision program and later reformulated in the language of logic programs

in [10]) when the initial program P is purely extensional, i.e., when the initial program

is just a set of facts. Our de�nition also allows signi�cant �exibility and can be easily

modi�ed to handle updates which incorporate contradiction removal or specify di�erent

inertia rules. Consequently, our approach can be viewed as introducing a general dynamic

logic programming framework for updating programs which can be suitably modi�ed to

make it �t di�erent application domains and requirements.

Finally, we extend the notion of program updates to sequences of programs, de�ning

the so called dynamic program updates. The idea of dynamic updates is very simple and

quite fundamental. Suppose that we are given a set of program modules P

s

, indexed

by di�erent states of the world s. Each program P

s

contains some knowledge that is

supposed to be true at the state s. Di�erent states may represent di�erent time periods

or di�erent sets of priorities or perhaps even di�erent viewpoints. Consequently, the

individual program modules may contain mutually contradictory as well as overlapping

information. The role of the dynamic program update

L

fP

s

: s 2 Sg is to use the

mutual relationships existing between di�erent states (as speci�ed by the order relation)

to precisely determine, at any given state s, the declarative as well as the procedural

semantics of the combined program, composed of all modules.

Consequently, the notion of a dynamic program update supports the important paradigm

of dynamic logic programming. Given individual and largely independent program mod-

ules P

s

describing our knowledge at di�erent states of the world (for example, the knowl-

edge acquired at di�erent times), the dynamic program update

L

fP

s

: s 2 S g speci�es

the exact meaning of the union of these programs. Dynamic programming signi�-

cantly facilitates modularization of logic programming and, thus, modularization of non-

monotonic reasoning as a whole. Whereas traditional logic programming has concerned

itself mostly with representing static knowledge, we show how to use logic programs to

represent dynamically changing knowledge.

Our results extend and improve upon the approach initially proposed in [7], where the

authors �rst argued that the principle of inertia should be applied to the rules of the

initial program rather than to the individual literals in an interpretation. However, the

speci�c update transformation presented in [7] su�ered from some drawbacks and was

not su�ciently general.

We begin in Section 2 by de�ning the language of generalized logic programs, which

allow default negation in rule heads. We describe stable model semantics of such programs

as a special case of the approach proposed earlier in [8]. In Section 3 we de�ne the

program update P � U of the initial program P by the updating program U . In Section

4 we provide a complete characterization of the semantics of program updates P � U

and in Section 5 we study their basic properties. In Section 6 we introduce the notion

of dynamic program updates. We close the paper with concluding remarks and notes on

future research.

Dynamic Logic Programming 397

2 Generalized Logic Programs and their Stable Mod-

els

In order to represent negative information in logic programs and in their updates, we need

more general logic programs that allow default negation not A not only in premises of

their clauses but also in their heads.

5

. We call such programs generalized logic programs.

In this section we introduce generalized logic programs and extend the stable model

semantics of normal logic programs [3] to this broader class of programs

6

.

The class of generalized logic programs can be viewed as a special case of a yet broader

class of programs introduced earlier in [8]. While our de�nition is di�erent and seems

to be simpler than the one used in [8], when restricted to the language that we are

considering, the two de�nitions can be shown to be equivalent

7

.

It will be convenient to syntactically represent generalized logic programs as proposi-

tional Horn theories. In particular, we will represent default negation not A as a standard

propositional variable (atom). Suppose that K is an arbitrary set of propositional vari-

ables whose names do not begin with a �not�. By the propositional language L

K

generated

by the set K we mean the language L whose set of propositional variables consists of:

fA : A 2 Kg [fnot A : A 2 Kg:

Atoms A 2 K, are called objective atoms while the atoms not A are called default atoms.

From the de�nition it follows that the two sets are disjoint.

By a generalized logic program P in the language L

K

we mean a �nite or in�nite set

of propositional Horn clauses of the form:

L L

1

; : : : ; L

n

where L and L

i

are atoms from L

K

. If all the atoms L appearing in heads of clauses of P

are objective atoms, then we say that the logic program P is normal. Consequently, from

a syntactic standpoint, a logic program is simply viewed as a propositional Horn theory.

However, its semantics signi�cantly di�ers from the semantics of classical propositional

theories and is determined by the class of stable models de�ned below.

By a (2-valued) interpretation M of L

K

we mean any set of atoms from L

K

that

satis�es the condition that for any A in K, precisely one of the atoms A or not A belongs

to M . Given an interpretation M we de�ne:

M

+

= fA 2 K : A 2Mg M

�

= fnot A : not A 2Mg = f not A : A =2Mg

De�nition 2 (Stable models of generalized logic programs) We say that a (2-

valued) interpretation M of L

K

is a stable model of a generalized logic program P if M

is the least model of the Horn theory P [M

�

:

M = Least(P [M

�

);

or, equivalently, if M = fL : L is an atom and P [M

�

` Lg. �

5

For further motivation and intuitive reading of logic programs with default negations in the heads

see [8].

6

In a forthcoming paper we extend our results to 3-valued (partial) models of logic programs, and, in

particular, to well-founded models.

7

Note that the class of generalized logic programs di�ers from the class of programs with the so called

�classical� negation [4] which allow the use of strong rather than default negation in their heads.

398 APPIA-GULP-PRODE'98

Example 3 Consider the program:

a not b c b e not d

not d not c; a d not e

and let K = fa; b; c; d; eg. This program has precisely one stable model

M = fa; e; not b; not c; not dg:

To see that M is stable we simply observe that:

M = Least(P [fnot b; not c; not dg):

The interpretation N = fnot a; not e; b; c; dg is not a stable model because:

N 6= Least(P [fnot e; not ag): �

Following an established tradition, from now on we will be omitting the default (nega-

tive) atoms when describing interpretations and models. Thus the above modelM will be

simply listed as M = fa; eg. The following Proposition easily follows from the de�nition

of stable models.

Proposition 4 An interpretation M of L

K

is a stable model of a generalized logic program

P if and only if

M

+

= fA : A 2 K and

P

M

` Ag and M

�

� fnot A : A 2 K and

P

M

` notAg;

where

P

M

denotes the Gelfond-Lifschitz transform [3] of P w.r.t. M. �

Clearly, the second condition in the above Proposition is always vacuously satis�ed for

normal programs and therefore we immediately obtain:

Proposition 5 The class of stable models of generalized logic programs extends the class

of stable models of normal programs [3]. �

3 Program Updates

Suppose that K is an arbitrary set of propositional variables, and P and U are two

generalized logic programs in the language L = L

K

. By

b

K we denote the following

superset of K:

b

K = K [fA

�

; A

P

; A

�

P

; A

U

; A

�

U

: A 2 Kg:

This de�nition assumes that the original set K of propositional variables does not contain

any of the newly added symbols of the form A

�

; A

P

; A

�

P

; A

U

; A

�

U

so that they are all

disjoint sets of symbols. If K contains any such symbols then they have to be renamed

before the extension of K takes place. We denote by

b

L = L

b

K

the extension of the language

L = L

K

generated by

b

K.

Dynamic Logic Programming 399

De�nition 6 (Program Updates) Let P and U be generalized programs in the lan-

guage L. We call P the original program and U the updating program. By the update

of P by U we mean the generalized logic program P � U , which consists of the following

clauses in the extended language

b

L:

(RP) Rewritten original program clauses:

A

P

 B

1

; : : : ; B

m

; C

�

1

; : : : ; C

�

n

(1)

A

�

P

 B

1

; : : : ; B

m

; C

�

1

; : : : ; C

�

n

(2)

for any clause:

A B

1

; : : : ; B

m

; not C

1

; : : : ; not C

n

and

not A B

1

; : : : ; B

m

; not C

1

; : : : ; not C

n

respectively, in the original program P . The rewritten clauses are obtained from

the original ones by replacing atoms A (respectively, the atoms not A) occurring in

their heads by the atoms A

P

(respectively, A

�

P

) and by replacing negative premises

not C by C

�

:

(RU) Rewritten updating program clauses:

A

U

 B

1

; : : : ; B

m

; C

�

1

; : : : ; C

�

n

(3)

A

�

U

 B

1

; : : : ; B

m

; C

�

1

; : : : ; C

�

n

(4)

for any clause:

A B

1

; : : : ; B

m

; not C

1

; : : : ; not C

n

and, respectively,

not A B

1

; : : : ; B

m

; not C

1

; : : : ; not C

n

in the updating program U . The rewritten clauses are obtained from the original

ones by replacing atoms A (respectively, the atoms not A) occurring in their heads

by the atoms A

U

(respectively, A

�

U

) and by replacing negative premises not C by

C

�

:

(UR) Update rules:

A A

U

A

�

 A

�

U

(5)

for all objective atoms A 2 K. The update rules state that an atom A must be

true (respectively, false) in P � U if it is true (respectively, false) in the updating

program U .

(IR) Inheritance rules:

A A

P

; not A

�

U

A

�

 A

�

P

; not A

U

(6)

for all objective atoms A 2 K. The inheritance rules say that an atom A (respec-

tively, A

�

) in P�U is inherited (by inertia) from the original program P provided it

is not rejected (i.e., forced to be false) by the updating program U . More precisely,

an atom A is true (respectively, false) in P � U if it is true (respectively, false)

in the original program P; provided it is not made false (respectively, true) by the

updating program U .

400 APPIA-GULP-PRODE'98

(DR) Default rules:

A

�

 not A

P

; not A

U

not A A

�

(7)

for all objective atoms A 2 K. The �rst default rule states that an atom A in P �U

is false if it is neither true in the original program P nor in the updating program

U . The second says that if an atom is false then it can be assumed to be false by

default. It ensures that A and A

�

cannot both be true. �

It is easy to show that any model N of P �U is coherent, i.e., A is true (respectively,

false) in N i� A

�

is false (respectively, true) in N , for any A 2 K. In other words, every

stable model of P � U satis�es the constraint not A � A

�

. Consequently, A

�

can be

simply regarded as an internal (meta-level) representation of the default negation not A

of A.

Example 7 Consider the programs P and U from Example 1:

P : sleep not tv_on U : not tv_on power_failure

watch_tv tv_on power_failure

tv_on

The update of the program P by the program U is the logic program P � U = (RP) [

(RU) [(UR) [(IR) [(DR), where:

RP : sleep

P

 tv_on

�

RU : tv_on

�

U

 power_failure

watch_tv

P

 tv_on power_failure

U

tv_on

P

It is easy to verify that M = fpower_failure; sleepg is the only stable model (modulo

irrelevant literals) of P � U . �

4 Semantic Characterization of Program Updates

In this section we provide a complete semantic characterization of update programs P�U

by describing their stable models. This characterization shows precisely how the seman-

tics of the update program P � U depends on the syntax and semantics of the programs

P and U .

Let P and U be �xed generalized logic programs in the language L. Since the update

program P � U is de�ned in the extended language

b

L, we begin by showing how inter-

pretations of the language L can be extended to interpretations of the extended language

b

L.

De�nition 8 (Extended Interpretation) For any interpretation M of L we denote

by

c

M its extension to an interpretation of the extended language

b

L de�ned, for any atom

A 2 K, by the following rules:

A

�

2

c

M i� not A 2M

A

P

2

c

M i� 9 A Body 2 P and M j= Body

A

�

P

2

c

M i� 9 not A Body 2 P and M j= Body

A

U

2

c

M i� 9A Body 2 U and M j= Body

A

�

U

2

c

M i� 9 not A Body 2 U and M j= Body:�

Dynamic Logic Programming 401

We will also need the following de�nition:

De�nition 9 For any model M of the program U in the language L de�ne:

Defaults[M] = fnot A : M j= :Body; 8(A Body) 2 P [Ug;

Rejected[M] = fA Body 2 P : 9 (not A Body

0

2 U) and M j= Body

0

g[

[fnot A Body 2 P : 9 (A Body

0

2 U) and M j= Body

0

g;

Residue[M] = P [U �Rejected[M]: �

The set Defaults[M] contains default negations not A of all unsupported atoms A,

i.e., atoms that have the property that the body of every clause from P [U with the

head A is false in M . Consequently, negation not A of these unsupported atoms A can

be assumed by default. The set Rejected[M] � P represents the set of clauses of the

original program P that are rejected (or contradicted) by the update program U and its

model M . The residue Residue[M] consists of all clauses in the union P [U of programs

P and U that were not rejected by the update program U . Note that all the three sets

depend on the model M as well as on the syntax of the programs P and U:

Now we are able to describe the semantics of the update program P �U by providing

a complete characterization of its stable models.

Theorem 10 (Characterization of stable models of update programs) An inter-

pretation N of the language

b

L = L

b

K

is a stable model of the update P � U if and only

if N is the extension N =

c

M of a model M of U that satis�es the condition:

M = Least(P [U � Rejected[M] [Defaults[M]);

or M = Least(Residue[M] [Defaults[M]), equivalently. �

Example 11 Consider again the programs P and U from Example 1.

Let M = fpower_failure; sleepg. We obtain:

Defaults[M] = fnot watch_tv; g

Rejected[M] = ftv_on g

Residue[M] =

8

>

>

<

>

>

:

sleep not tv_on

watch_tv tv_on

not tv_on power_failure

power_failure

9

>

>

=

>

>

;

and thus it is easy to see that

M = Least(Residue[M] [Defaults[M]):

Consequently,

c

M is a stable model of the update program P � U . �

402 APPIA-GULP-PRODE'98

5 Properties of Program Updates

In this section we study the basic properties of program updates. Since Defaults[M] �

M

�

, we conclude that the condition M = Least(Residue[M] [Defaults[M]) clearly

implies M = Least(Residue[M] [M

�

) and thus we immediately obtain:

Proposition 12 If N is a stable model of P � U then its restriction M = N jL to the

language L is a stable model of Residue[M]. �

However, the conditionM = Least(Residue[M][Defaults[M]) says much more than

just that M is a stable model of Residue[M]. It says that M is completely determined

by the set Defaults[M], i.e., by the set of negations of unsupported atoms that can be

assumed false by default.

Clearly, ifM is a stable model of P[U then Rejected[M] = ; andDefaults[M] = M

�

;

which implies:

Proposition 13 If M is a stable model of the union P [U of programs P and U then

its extension N =

c

M is a stable model of the update program P �U . Thus, the semantics

of the update program P �U is always weaker than or equal to the semantics of the union

P [U of programs P and U . �

In general, the converse of the above result does not hold. In particular, the union

P [U may be a contradictory program with no stable models.

Example 14 Consider again the programs P and U from Example 1. It is easy to see

that P [U is contradictory. �

If either P or U is empty and M is a stable model of P [U then Rejected[M] = ;

and therefore M is also a stable model of P � U .

Proposition 15 If either P or U is empty then M is a stable model of P[U i� N =

c

M

is a stable model of P �U . Thus, in this case, the semantics of the update program P �U

coincides with the semantics of the union P [U . �

Proposition 16 If both P and U are normal programs (or if both have only clauses with

default atoms not A in their heads) then M is a stable model of P [U i� N =

c

M is a

stable model of P � U . Thus, in this case the semantics of the update program P � U

also coincides with the semantics of the union P [U of programs P and U . �

5.1 Program Updates Generalize Interpretation Updates

In this section we show that interpretation updates, originally introduced under the name

�revision programs� by Marek and Truszczynski [9], and subsequently given a simpler

characterization by Przymusinski and Turner [10], constitute a special case of program

updates. Here, we identify the �revision rules�:

in(A) in(B); out(C) and out(A) in(B); out(C)

used in [9], with the following generalized logic program clauses:

A B; not C and not A B; not C

Dynamic Logic Programming 403

Theorem 17 (Program updates generalize interpretation updates) Let I be any

interpretation and U any updating program in the language L. Denote by P

I

the gener-

alized logic program in L de�ned by

P

I

= fA : A 2 Ig [fnot A : not A 2 Ig:

Then

b

J is a stable model of the program update P

I

� U of the program P

I

by the

program U i� J is an interpretation update of I by U (in the sense of [9]). �

This theorem shows that when the initial program P is purely extensional, i.e., contains

only positive or negative facts, then the interpretation update of P by U is semantically

equivalent to the updated program P � U . As shown by Example 1, when P contains

deductive rules then the two notions become signi�cantly di�erent.

Remark 18 It is easy to see that, optionally, we could include only positive facts A

in the program P

I

thus making it a normal program. �

5.2 Adding Strong Negation

We now show that it is easy to add strong negation �A ([4],[2]) to generalized logic

programs. This demonstrates that the class of generalized logic programs is at least as

expressive as the class of logic programs with strong negation. It also allows us to update

logic programs with strong negation and to use strong negation in updating programs.

De�nition 19 (Adding strong negation) Let K be an arbitrary set of propositional

variables. In order to add strong negation to the language L = L

K

we just augment the set

K with new propositional symbols f�A : A 2 Kg, obtaining the new set K

�

, and consider

the extended language L

�

= L

K

�

. In order to ensure that A and �A cannot be both true

we also assume, for all A 2 K, the following strong negation axioms, which themselves

are generalized logic program clauses:

(SN1) not A � A

(SN2) not �A A:

Remark 20 In order to prevent the strong negation rules (SN) from being inadvertently

overruled by the updating program U , one may want to make them always part of the

most current updating program (see the next section). �

6 Dynamic Program Updates

In this section we introduce the notion of dynamic program update

L

f P

s

: s 2 Sg over

an ordered set P = f P

s

: s 2 Sg of logic programs which provides an important gener-

alization of the notion of single program updates P � U introduced in Section 3.

The idea of dynamic updates, inspired by [6], is simple and quite fundamental. Suppose

that we are given a set of program modules P

s

, indexed by di�erent states of the world

s. Each program P

s

contains some knowledge that is supposed to be true at the state

s. Di�erent states may represent di�erent time periods or di�erent sets of priorities

or perhaps even di�erent viewpoints. Consequently, the individual program modules

may contain mutually contradictory as well as overlapping information. The role of

404 APPIA-GULP-PRODE'98

the dynamic program update

L

fP

s

: s 2 Sg is to use the mutual relationships existing

between di�erent states (and speci�ed in the form of the ordering relation) to precisely

determine, at any given state s, the declarative as well as the procedural semantics of the

combined program, composed of all modules.

Consequently, the notion of a dynamic program update supports the important paradigm

of dynamic logic programming. Given individual and largely independent program mod-

ules P

s

describing our knowledge at di�erent states of the world (for example, the knowl-

edge acquired at di�erent times), the dynamic program update

L

fP

s

: s 2 S g speci�es

the exact meaning of the union of these programs. Dynamic programming signi�-

cantly facilitates modularization of logic programming and, thus, modularization of non-

monotonic reasoning as a whole.

Suppose that P = fP

s

: s 2 Sg is a �nite or in�nite sequence of generalized logic

programs in the language L = L

K

, indexed by the set S = f1; 2; : : : ; n; : : :g. We will

call elements s of the set S [f0g states and we will refer to 0 as the initial state. If S

has the largest element then we will denote it by max :

Remark 21 Instead of a linear sequence of states S [f0g one could as well consider

any �nite or in�nite ordered set with the smallest element s

0

and with the property that

every state s other than s

0

has an immediate predecessor s� 1 and that s

0

= s � n, for

some �nite n. In particular, one may use a �nite or in�nite tree with the root s

0

and the

property that every node (state) has only a �nite number of ancestors. �

By K we denote the following superset of the set K of propositional variables:

K = K [f A

�

; A

s

; A

�

s

; A

P

s

; A

�

P

s

; reject(A

s

);

reject(A

�

s

) : A 2 K; s 2 S [f0gg:

As before, this de�nition assumes that the original set K of propositional variables does

not contain any of the newly added symbols of the formA

�

; A

s

; A

�

s

; A

P

s

; A

�

P

s

; reject(A

s

);

reject(A

�

s

) so that they are all disjoint sets of symbols. If the original languageK contains

any such symbols then they have to be renamed before the extension of K takes place.

We denote by L = L

K

the extension of the language L = L

K

generated by K.

De�nition 22 (Dynamic Program Update) By the dynamic program update over

the sequence of updating programs P = fP

s

: s 2 Sg we mean the logic program

U

P,

which consists of the following clauses in the extended language L:

(RP) Rewritten program clauses:

A

P

s

 B

1

; : : : ; B

m

; C

�

1

; : : : ; C

�

n

(8)

A

�

P

s

 B

1

; : : : ; B

m

; C

�

1

; : : : ; C

�

n

(9)

for any clause:

A B

1

; : : : ; B

m

; not C

1

; : : : ; not C

n

respectively, for any clause:

not A B

1

; : : : ; B

m

; not C

1

; : : : ; not C

n

in the program P

s

, where s 2 S. The rewritten clauses are simply obtained from

the original ones by replacing atoms A (respectively, the atoms not A) occurring in

their heads by the atoms A

P

s

(respectively, A

�

P

s

) and by replacing negative premises

not C by C

�

:

Dynamic Logic Programming 405

(UR) Update rules:

A

s

 A

P

s

; A

�

s

 A

�

P

s

(10)

for all objective atoms A 2 K and for all s 2 S. The update rules state that an atom

A must be true (respectively, false) in the state s 2 S if it is true (respectively,

false) in the updating program P

s

.

(IR) Inheritance rules:

A

s

 A

s�1

; not reject(A

s�1

) ; A

�

s

 A

�

s�1

; not reject(A

�

s�1

)
(11)

reject(A

s�1

) A

�

P

s

; reject(A

�

s�1

) A

P

s

(12)

for all objective atoms A 2 K and for all s 2 S. The inheritance rules say that an

atom A is true (respectively, false) in the state s 2 S if it is true (respectively, false)

in the previous state s�1 and it is not rejected, i.e., forced to be false (respectively,

true), by the updating program P

s

. The addition of the special predicate reject,

although not strictly needed at this point, allows us to impose later on additional

restrictions on the inheritance by inertia.

(DR) Default rules (describing the initial state):

A

�

0

; (13)

for all objective atoms A 2 K. Default rules describe the initial state 0 by making

all objective atoms initially false. �

Observe that the dynamic program update

U

P is a normal logic program, i.e., it does

not contain default negation in heads of its clauses. Moreover, only the inheritance rules

contain default negation in their bodies. Also note that the program

U

P does not contain

the atoms A or A

�

, where A 2 K, in heads of its clauses. These atoms appear only in

the bodies of rewritten program clauses. The notion of the dynamic program update

L

s

P at a given state s 2 S changes that.

De�nition 23 (Dynamic Program Update at a Given State) Given a �xed state

s 2 S; by the dynamic program update at the state s, denoted by

L

s

P, we mean the

dynamic program update

U

P augmented with the following:

Current State Rules CS(s):

A A

s

A

�

 A

�

s

not A A

�

s

(14)

for all objective atoms A 2 K. Current state rules specify the current state s in

which the updated program is being evaluated and determine the values of the atoms

A;A

�

and not A. In particular, if the set S has the largest element max then we

simply write

L

P instead of

L

max

P. �

Mark that whereas for any state s

U

P is not required to be coherent,

L

s

P must be

so.

The notion of a dynamic program update generalizes the previously introduced notion

of an update P � U of two programs P and U .

406 APPIA-GULP-PRODE'98

Theorem 24 Let P

1

and P

2

be arbitrary generalized logic programs and let S = f1; 2g.

The dynamic program update

L

fP

1

; P

2

g =

L

2

fP

1

; P

2

g at the state max = 2 is seman-

tically equivalent to the program update P

1

� P

2

de�ned in Section 3. �

Example 25 Let P = fP

1

; P

2

; P

3

g ; where P

1

, P

2

and P

3

are as follows:

P

1

: sleep not tv_on P

2

: not tv_on power_failure

watch_tv tv_on power_failure

tv_on P

3

: not power_failure

The dynamic program update over P is the logic program

U

P= (RP

1

)[(RP

2

)[(RP

3

)[

(UR) [(IR) [(DR), where

RP

1

: sleep

P

1

 tv_on

�

RP

2

: tv_on

�

P

2

 power_failure

watch_tv

P

1

 tv_on power_failure

P

2

tv_on

P

1

 RP

3

: power_failure

�

P

3

and the dynamic program update at the state s is

L

s

P =

U

P [CS(s). Consequently,

as intended,

L

1

P has a single stable model M

1

= ftv_on; watch_tvg;

L

2

P has a single

stable model M

2

= fsleep; power_failureg and

L

P =

L

3

P has a single stable model

M

3

= ftv_on; watch_tvg (all models modulo irrelevant literals). Moreover.

L

2

P is

semantically equivalent to P

1

� P

2

. �

7 Conclusions and Future Work

We de�ned a program transformation that takes two generalized logic programs P and

U , and produces the updated logic program P �U resulting from the update of program

P by U . We provided a complete characterization of the semantics of program updates

P � U and we established their basic properties. Our approach generalizes the so called

revision programs introduced in [9]. Namely, in the special case when the initial program

is just a set of facts, our program update coincides with the justi�ed revision of [9].

In the general case, when the initial program also contains rules, our program updates

characterize precisely which of these rules remain valid by inertia, and which are rejected.

We also showed how strong or �classical� negation can be easily incorporated into the

framework of program updates.

With the introduction of dynamic program updates, we have extended program up-

dates to ordered sets of logic programs (or modules). When this order is interpreted as a

time order, dynamic program updates describe the evolution of a logic program which un-

dergoes a sequence of modi�cations. This opens up the possibility of incremental design

and evolution of logic programs, leading to the paradigm of dynamic logic programming.

We believe that dynamic programming signi�cantly facilitates modularization of logic

programming, and, thus, modularization of non-monotonic reasoning as a whole.

A speci�c application of dynamic logic programming that we intend to explore, is the

evolution and maintenance of software speci�cations. By using logic programming as

a speci�cation language, dynamic programming provides the means of representing the

evolution of software speci�cations.

However, ordered sets of program modules need not necessarily be seen as just a

temporal evolution of a logic program. Di�erent modules can also represent di�erent

sets of priorities, or viewpoints of di�erent agents. In the case of priorities, a dynamic

Dynamic Logic Programming 407

program update speci�es the exact meaning of the �union� of the modules, subject to

the given priorities. We intend to further study the relationship between dynamic logic

programming and other preference-based approaches to knowledge representation.

Although not explored in here, a dynamic program update can be queried not only

about the current state but also about other states. If modules are seen as viewpoints

of di�erent agents, the truth of some A

s

in

L

P can be read as: A is true according to

agent s in a situation where the knowledge of the

L

P is �visible� to agent s.

We are in the process of generalizing our approach and results to the 3-valued case,

which will enable us to update programs under the well-founded semantics. We have al-

ready developed a working implementation for the 3-valued case with top-down querying.

Our approach to program updates has grown out of our research on representing non-

monotonic knowledge by means of logic programs. We envisage enriching it in the near

future with other dynamic programming features, such as abduction and contradiction

removal. Among other applications that we intend to study are productions systems

modelling, reasoning about concurrent actions and active and temporal databases.

References

[1] J. J. Alferes, L. M. Pereira. Update-programs can update programs. In J. Dix, L. M.

Pereira and T. Przymusinski, editors, Selected papers from the ICLP'96 Workshop

NMELP'96, vol. 1216 of LNAI, pages 110-131. Springer-Verlag, 1997.

[2] J. J. Alferes, L. M. Pereira and T. Przymusinski. Strong and Explicit Negation in

Non-Monotonic Reasoning and Logic Programming. In J. J. Alferes, L. M. Pereira

and E. Orlowska, editors, JELIA '96, volume 1126 of LNAI, pages 143-163. Springer-

Verlag, 1996.

[3] M. Gelfond and V. Lifschitz. The stable model semantics for logic programming.

In R. Kowalski and K. A. Bowen. editors. 5th International Logic Programming

Conference, pages 1070-1080. MIT Press, 1988.

[4] M. Gelfond and V. Lifschitz. Logic Programs with classical negation. In Warren and

Szeredi, editors, 7th International Logic Programming Conference, pages 579-597.

MIT Press, 1990.

[5] H. Katsuno and A. Mendelzon. On the di�erence between updating a knowledge

base and revising it. In James Allen, Richard Fikes and Erik Sandewall, editors,

Principles of Knowledge Representation and Reasoning: Proceedings of the Second

International Conference (KR91), pages 230-237, Morgan Kaufmann 1991.

[6] João A. Leite. Logic Program Updates. M.Sc. Dissertation, Universidade Nova de

Lisboa, 1997.

[7] J. A. Leite and L. M. Pereira. Generalizing updates: from models to programs. In

LPKR'97: ILPS'97 Workshop on Logic Programming and Knowledge Representa-

tion, Port Je�erson, NY, USA, October 13-16, 1997.

[8] V. Lifschitz and T. Woo. Answer sets in general non-monotonic reasoning (prelimi-

nary report). In B. Nebel, C. Rich and W. Swartout, editors, Principles of Knowledge

Representation and Reasoning, Proceedings of the Third International Conference

(KR92), pages 603-614. Morgan-Kaufmann, 1992

408 APPIA-GULP-PRODE'98

[9] V. Marek and M. Truszczynski. Revision speci�cations by means of programs. In C.

MacNish, D. Pearce and L. M. Pereira, editors, JELIA '94, volume 838 of LNAI,

pages 122-136. Springer-Verlag, 1994.

[10] T. Przymusinski and H. Turner. Update by means of inference rules. In V. Marek,

A. Nerode, and M. Truszczynski, editors, LPNMR'95, volume 928 of LNAI, pages

156-174. Springer-Verlag, 1995.

[11] M. Winslett. Reasoning about action using a possible models approach. In Proceeding

of AAAI'88, pages 89-93. 1988.

