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Abstract

Modular abstract diagnosis shows that the abstract diagnosis method [5] does

not need to be extended to perform the diagnosis in a modular way. We can verify

and debug incomplete programs, once we have the speci�cations for the missing

program components.
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Abstract diagnosis [6, 7, 4] is a generalization of declarative diagnosis [11, 9, 8], where

we consider operational properties, i.e., observables, which are properties which can be

extracted from a goal computation. In a modular abstract diagnosis we are concerned

with programs composed of separate modules. Our theory of abstract diagnosis can be

applied to modular diagnosis even if our concrete semantics is not OR-compositional,

while usually an OR-compositional semantics was needed (see, for example, modular

analysis in [2]).

Abstract diagnosis consists of comparing the actual and the intended behaviors of

the program P w.r.t. the observable property � and determining the wrong program

components, when the two behaviors are di�erent. The formulation is parametric w.r.t.

the property � considered in the speci�cation and in the actual behavior. Assume FJPK be

the concrete semantics of a program P (in our case the least �xed point of the s-semantics

immediate consequences operator

P

JPK) and � be an observable, i.e., an abstract domain

related to the concrete domain of answer substitutions by a Galois insertion, whose

abstraction function is �. The standard correctness and completeness properties can

now be de�ned as follows.

De�nition 1 [5, 4] Let P be a program and � be an observable.

1. P is partially correct w.r.t. I

�

if �(FJPK) � I

�

.

2. P is complete w.r.t. I

�

if I

�

� �(FJPK).

3. P is totally correct w.r.t. I

�

, if �(FJPK) = I

�

.

Note that we are comparing the abstraction of the concrete semantics and the spec-

i�cation. Abstract diagnosis determines the errors without requiring to determine the

symptoms in advance. This is obtained by systematically deriving all the incorrect clauses
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and uncovered elements. Incorrect clauses and uncovered elements are de�ned in terms

of the abstract immediate consequences operator,

P

�

JPK(K

�

) = �p(x):

~

[

fD j c = p(x) E;A

1

; : : : ; A

n

is a renamed

clause of P, z = var(c), for i 2 [1; n], y

i

= var(A

i
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where P is a program in equational form

1

, K

�

is an abstract denotation and

~

S

,

~


 and

~

j are the abstract join, meet and restriction operators (automatically derived for each

observable � from the concrete operators) [5, 4].

De�nition 2 Let P be a program. If there exists an A -element � such that � 6� I

�

and

� �

P

�

JfcgK(I

�

), then the clause c 2 P is incorrect on �.

Moreover, an A -element � is uncovered if � � I

�

and � 6�

P

�

JPK(I

�

).

The abstract immediate consequences operator can in general introduce an approxima-

tion. Complete observables are those observables such that � �

P

JPK =

P

�

JPK � �, while

for approximate observables

2

� �

P

JPK �

P

�

JPK � � holds. Complete observables (such

as computed answers, correct answers, etc.) usually lead to in�nite speci�cations (and

therefore to non-e�ective de�nitions of incorrect clauses and uncovered elements). On the

contrary, speci�cations are �nite (and diagnosis is e�ective) in the case of approximate

observables (such as depth(k) answers, types, groundness dependencies, etc.). However

weaker result hold, because of approximation. Here are the basic results of abstract

diagnosis.

Let � be an approximate or complete observable. Then

� If there are no incorrect clauses in P, then P is partially correct w.r.t. I

�

.

� Let P be partially correct w.r.t. I

�

. If there exists an uncovered A -element, then P

is not complete.

� Let � be complete observable and P be a complete program w.r.t. I

�

. If there exists

an incorrect clause in P, then P is not partially correct.

� Let � be a complete observable and assume

P

�

JPK has a unique �xpoint. If there

are no uncovered A -elements, then P is complete w.r.t. I

�

.

As already said, in modular abstract diagnosis we are concerned with programs com-

posed of separate modules. The idea is that of performing the diagnosis in a modular

way, i.e., module by module. Modular analysis is usually based on an OR-compositional

semantics. For example, the modular analysis framework in [2] is based on the OR-com-

positional version of the s-semantics [1]. Our concrete semantics is not OR-compositional

and this is obviously true for all its abstractions. However, we can note that abstract

diagnosis does not require to actually compute the abstract semantics, since it is simply

based on one application of the abstract immediate consequence operator to the speci�ca-

tion. The s-semantics immediate consequence operator is known to be OR-compositional

1

Given any program clause p(t) p

1

(t

1

); : : : ; p

n

(t

n

) its equational form is the formula

p(x) E; p

1

(x

1

); : : : ; p

n

(x

n

) where E = fx = t; x

1

= t

1

; : : : ; x

n

= t

n

g (x; x

1

; : : : ; x

n

are new distinct

variables).

2

Approximate observables have noetherian domains.
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(see for example [10]). The same result holds (by de�nition) for all the abstract immedi-

ate consequence operator corresponding to complete and approximate observables. The

conclusion is that our theory of abstract diagnosis can directly be applied to modular

diagnosis, as we will formally show in the following.

We assume a program P to be partitioned into predicate-disjoint modules [2], such

that each predicate symbol is completely de�ned by a single module. Namely,

De�nition 3 A program partitioning P

1

; : : : ; P

n

is predicate-disjoint if, for any i 6= j,

PredsDef (P

i

) \ PredsDef (P

j

) = ;, where PredsDef (P) := fp j p(t) B 2 Pg.

Speci�cations I

1

�

; : : : ; I

n

�

are associated to modules P

1

; : : : ; P

n

. Since the partition is

predicate-disjoint, any I

i

�

is unde�ned for all the pure atoms with predicate not in

PredsDef (P

i

) and then 8i 6= j: dom(I

i

�

) \ dom(I

j

�

) = ;. It is worth noting that our

de�nition of partitioning does not require a hierarchical decomposition, since mutual re-

cursion between modules is possible.

The overall speci�cation is I

�

= I

1

�

e

t : : :

e

t I

n

�

. A module P

i

does not necessarily need

to use all the other modules. Hence we introduce the operator use which gives those

speci�cations which are relevant to a module P

i

, i.e., use(P

i

) =

�

I

j

�

j module P

i

uses

(i.e., clause bodies contain) predicates which are de�ned by P

j

	

3

. P

i

is a basic module if

it does not use other modules, i.e., if use(P

i

) = ;.

The decomposition into modules allows us to de�ne incorrect clauses and uncovered

A -elements in a (more e�cient) modular way.

De�nition 4 Let P

1

; : : : ; P

n

be a program partitioning and c be a clause in P

i

, for some

1 � i � n. If there exists an A -element � such that � 6� I

i

�

and � �

P

�

JfcgK(I

i

�

e

t

e

F

use(P

i

)), then the clause c 2 P is m-incorrect on �.

c is m-incorrect on � if it derives, from the (relevant part of the) intended semantics, an

A -element which is not in the module's intended semantics.

De�nition 5 Let P

1

; : : : ; P

n

be a program partitioning and let � = p(x) 7! D be an

A -element such that p 2 PredsDef (P

i

), for some 1 � i � n. � is m-uncovered if � � I

i

�

and � 6�

P

�

JP

i

K(I

i

�

e

t

e

F

use(P

i

)).

An A -element in the intended semantics of a module is m-uncovered if there are no clauses

in the module deriving it from the (relevant part of the) intended semantics.

It is worth noting that, in the above de�nitions of m-incorrect clauses and m-uncovered

A -elements, we compare two denotations which give a meaning only to those predicates

which are de�ned inside the module and that we are only concerned with the speci�cations

used by the module.

In Figure 1 we show the meta-interpreter implementation of the algorithms to deter-

mine m-incorrect clauses and m-uncovered A -elements. They are parametric w.r.t. the

observable (the parameter Obs in the two main procedures), whose operations have to

be speci�ed in a suitable module. Apart from being generic, the meta-interpreter is very

similar to those proposed for declarative diagnosis (using the concept of oracle simula-

tion). The main di�erence is that our does not need to start from symptoms. In fact, our

oracle simulation just needs to be applied to �nitely many pure atomic goals (generated

by the call to userdefined/2). If the oracle returns �nitely many answers to each query

3

Note that

e

F

use(P

i

) � I

�

and that dom(

e

F

use(P

i

)) \ dom(I

i

�

) = ;. Moreover, due to

P

�

JP

i

K

de�nition,

P

�

JP

i

K(I

i

�

e

t

e

F

use(P

i

)) =

P

�

JP

i

K(I

�

).
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incorrectClause(Obs, Mod, RealElem, Clause) :-

userdefined(Mod, Atom),

observableClause(Obs, Atom, ClauseE, Body, Clause),

meetTheAnswers(Obs, Body, ClauseE, RealBodyEs),

domainProject(Obs, Atom, RealBodyEs, RealEs),

domainSingleton(Obs, RealE, RealEs),

not(

(observableAnswers(Obs, Atom, IntendedEs),

domainSingleton(Obs, RealE, IntendedEs)) ),

showAelement(Obs, Atom, RealE, RealElem).

uncoveredE(Obs, Mod, IntendedElem) :-

userdefined(Mod, Atom),

observableAnswers(Obs, Atom, IntendedEs),

domainSingleton(Obs, IntendedE, IntendedEs),

not( (

findall( (R, ClauseE, Body),

(observableClause(Obs, Atom, ClauseE, Body, _),R=Atom), Bodies),

joinTheAnswers(Obs, Atom, Bodies, RealEs),

domainSingleton(Obs, IntendedE, RealEs) ) ),

showAelement(Obs, Atom, IntendedE, IntendedElem).

Figure 1: The main module of the modular diagnosis program

(i.e., if I

�

is �nite), the meta-interpreter systematically derive all the incorrect clauses

and uncovered A -elements.

Let us brie
y explain the base meta-interpreter code.

incorrectClause/4) As speci�ed by our oracle simulation methodology we have to per-

form a top-down resolution step for every pure atomic goal (relevant to the currently

diagnosed module Mod). Hence we generate an atom and choose a clause H D;B

unifying with it

userdefined(Mod, Atom),

observableClause(Obs, Atom, ClauseE, Body, Clause),

then we (incrementally) get from the oracle a solution for (all the atoms in) the body

of the clause and we build (step by step) the meet of D and the solutions. Then

we project away all uninteresting variables from the abstract resulting equation.

meetTheAnswers(Obs, Body, ClauseE, RealBodyEs),

domainProject(Obs, Atom, RealBodyEs, RealEs),

Then we test if the oracle can provide an equivalent answer, i.e., if there exists any

x � RealEs and x 6� IntendedEs (an incorrectness bug generated by the selected

clause).

domainSingleton(Obs, RealE, RealEs),
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not(

(observableAnswers(Obs, Atom, IntendedEs),

domainSingleton(Obs, RealE, IntendedEs)) ),

If such an x exists we simply use the pretty-printing utility showAelement to return

it to the user.

uncoveredE/3) Dually to the previous case, we have to ask the oracle an abstract answer

(IntendedE) for a pure atomic goal. Then we test if the oracle simulation can

provide an equivalent answer, i.e., if there exists any x � IntendedEs and x 6�

RealEs (an incompleteness bug). We perform another oracle simulation, but this

time we have to use the entire program instead of a single clause. Then the (partial)

results for all the clauses must be joined, before we can check whether x � RealEs.

It is worth noting that meta-interpreter work with the PROLOG representation (rather

than with the equational CLP representation) of the programs and (whenever possible) of

the speci�cations. The complete sources of the meta-interpreter can be found in [3], where

we also show the implementation of the modules for the complete observable computed

answers and for the approximate observables depth(k) answers and POS.

The following theorems show that the general results on complete and approximate

observables of abstract diagnosis do apply to modular abstract diagnosis.

Theorem 6 Let P = P

1

[ � � �[P

n

. If there are no m-incorrect clauses in any module P

i

,

then P is partially correct w.r.t. �.

Proof. By hypothesis, for any i, 8c 2 P

i

:

P

�

JfcgK(I

i

�

e

t

e

F

use(P

i

)) � I

i

�

. Hence, for any

i,

P

�

JP

i

K(I

�

) � I

i

�

. Now, by de�nition of

P

�

J�K,

P

�

J[P

i

K(I

�

) �

e

F

I

i

�

= I

�

. Hence

I

�

is a pre-�xpoint of

P

�

JPK and then, since �(FJPK) � F

�

JPK = lfp

P

�

JPK, by Tarski's

theorem �(FJPK) � I

�

.

Theorem 7 Let � be a complete observable and P = P

1

[ � � �[P

n

be a complete program

w.r.t. I

�

. If, for some i, there exists an m-incorrect clause in P

i

, then P is not partially

correct.

Proof. By completeness of P and Theorem 3.5 in [5], I

�

� �(FJPK) = F

�

JPK. Then,

by monotonicity of

P

�

J�K,

P

�

JPK(I

�

) �

P

�

JPK(F

�

JPK) = F

�

JPK. Thus, � 6� I

i

�

and

� �

P

�

JfcgK(I

�

) =

P

�

JfcgK(I

i

�

e

t

e

F

use(P

i

)) implies � 6� I

i

�

and � � F

�

JPK = �(FJPK),

which means that P is not partially correct.

Theorem 8 Let P = P

1

[ � � � [ P

n

be partially correct w.r.t. I

�

. If there exists an

m-uncovered A -element, then P is not complete.

Proof. Let � = p(x) 7! D with p 2 PredsDef (P

i

), for some 1 � i � n. By Theorem 3.5

in [5] and partial correctness of P, F

�

JPK = �(FJPK) � I

�

. By monotonicity of

P

�

JPK,

�(FJPK) =

P

�

JPK(F

�

JPK) �

P

�

JPK(I

�

): (1)

Now, � � I

i

�

and � 6�

P

�

JP

i

K(I

�

) =

P

�

JP

i

K(I

i

�

e

t

e

F

use(P

i

)) implies (since the other

modules cannot de�ne predicate p) � � I

i

�

and � 6�

P

�

JPK(I

�

). Thus � � I

i

�

� I

�

and,

by (1), � 6� �(FJPK), which means that P is not complete.
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Module \satis�able"

sat(true).

sat(or(X,Y)) :- sat(X).

sat(neg(X)) :- inv(X).

%the clause sat(or(X,Y)) :- sat(Y). is missing

Module \invalid", this module is not supplied to the diagnoser.

inv(false).

inv(neg(X)) :- sat(X).

inv(or(X,Y)) :- inv(X),inv(Y).

Figure 2: The program of Example 10

Theorem 9 Let � be a complete observable, P = P

1

[ � � � [ P

n

be a program and assume

P

�

JPK has a unique �xpoint. If there are no m-uncovered A -elements, then P is complete

w.r.t. I

�

.

Proof. Absence of m-uncovered A -elements implies 8i: I

i

�

�

P

�

JP

i

K(I

�

) =

P

�

JP

i

K(I

i

�

e

t

e

F

use(P

i

)). Hence, I

�

�

P

�

JPK(I

�

), i.e., I

�

is a post-�xpoint of

P

�

JPK. Then, by Tarski's

theorem, I

�

� gfp(

P

�

JPK). Since, by Theorem 3.5 in [5], �(FJPK) = F

�

JPK = lfp

P

�

JPK

and, by hypothesis, gfp(

P

�

JPK) = lfp(

P

�

JPK), the program P is complete.

Example 10

The program in Figure 2 is a wrong version of a program verifying satis�ability of

boolean formulas (built with or and neg) which has a missing clause. We consider the

approximate observable depth(2)-answers (�

2

) where we replace all the subterms at depth

greater than 2 by a fresh variable. The answers of the diagnosis meta-interpreter is

incorrectClause(depth(2), modSat, AE, C).

Any (other) answer for sat(_1710) wrt obs. depth(2) ? sat(or(X,true)).

Any (other) answer for sat(_1710) wrt obs. depth(2) ? sat(true).

Any (other) answer for sat(_2173) wrt obs. depth(2) ? sat(neg(false)).

Any (other) answer for sat(_2173) wrt obs. depth(2) ? sat(neg(neg(J))).

Any (other) answer for sat(_2173) wrt obs. depth(2) ? sat(or(true,Y)).

Any (other) answer for sat(_2197) wrt obs. depth(2) ? sat(neg(or(J,K))).

Any (other) answer for sat(_2197) wrt obs. depth(2) ? sat(or(Y,neg(J))).

Any (other) answer for sat(_2197) wrt obs. depth(2) ? sat(or(Y,or(J,K))).

Any (other) answer for sat(_2197) wrt obs. depth(2) ? sat(or(neg(J),Y)).
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Any (other) answer for sat(_2197) wrt obs. depth(2) ? sat(or(or(J,K),Y)).

Any (other) answer for sat(_1830) wrt obs. depth(2) ? no.

Any (other) answer for inv(_1780) wrt obs. depth(2) ? inv(false).

Any (other) answer for inv(_1780) wrt obs. depth(2) ? inv(neg(neg(J))).

Any (other) answer for inv(_1780) wrt obs. depth(2) ? inv(neg(or(J,K))).

Any (other) answer for inv(_1780) wrt obs. depth(2) ? inv(neg(true)).

Any (other) answer for inv(_1780) wrt obs. depth(2) ? inv(or(false,neg(J))).

Any (other) answer for inv(_1780) wrt obs. depth(2) ? inv(or(false,or(J,K))).

Any (other) answer for inv(_1780) wrt obs. depth(2) ? inv(or(neg(J),false)).

Any (other) answer for inv(_1780) wrt obs. depth(2) ? inv(or(or(J,K),false)).

Any (other) answer for inv(_1780) wrt obs. depth(2) ? inv(or(false,false)).

Any (other) answer for inv(_1780) wrt obs. depth(2) ? no.

no (more) solutions

uncoveredE(depth(2), modSat, AE).

AE = sat(or(_1620,or(_1621,_1622))) ;

AE = sat(or(_1620,neg(_1621))) ;

AE = sat(or(_1620,true)) ;

no (more) solutions

As resulting from the answers of the user

4

, the speci�cation of the module \sat" is

I

�

2

:= sat(x) 7!

�

fx = trueg; fx = or(y; true)g; fx = or(true; y)g;

fx = or(neg(x̂); y)g; fx = or(y; neg(x̂))g;

fx = neg(false)g; fx = neg(neg(x̂))g;

fx = neg(or(x̂; ŷ))g; fx = or(y; or(x̂; ŷ))g;

fx = or(or(x̂; ŷ); y)g

	

4

Note that depth(2)-variables, which represent any term in the concrete domain, are denoted as x̂; ŷ,

to distinguish them from depth(1)-variables, which represent only themselves in the concrete domain.
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while the speci�cation of the module \invalid" is

K

�

2

:= inv(x) 7!

�

fx = falseg; fx = or(false; false)g; fx = neg(true)g;

fx = neg(neg(x̂))g; fx = neg(or(x̂; ŷ))g;

fx = or(false; neg(x̂))g; fx = or(neg(x̂); false)g;

fx = or(false; or(x̂; ŷ))g; fx = or(or(x̂; ŷ); false)g

	

Hence we �nd out that there are no m-incorrect clauses and then (by Theorem 6) the

program is partially correct. Furthermore, the following A -element are m-uncovered.

1. sat(x) 7! fx = or(y; or(v;w))g,

2. sat(x) 7! fx = or(y; neg(z))g,

3. sat(x) 7! fx = or(y; true)g.

Then (by Theorem 8) the (entire) program is not complete.

The above results show that, if we split the program and the speci�cation into modules,

we can determine incorrect clauses and uncovered A -elements by means of (more e�cient)

modular algorithms. We will now turn to the (more interesting) case where we consider a

single module (all the other modules may be not implemented yet), and we want to debug

it, under the assumption that all the other missing modules do satisfy their speci�cations

(i.e., are totally correct). The diagnosis will still be based on De�nitions 4 and 5. However

we have to introduce a new de�nition of partial correctness and completeness for a single

module.

The new de�nitions are of course given in terms of the concrete semantics of a module

P

i

, which can be determined from the clauses in P

i

and from the concrete semantics of

the (missing) modules used by P

i

. Since these modules have not been implemented yet,

we have only their abstract speci�cations. In order to reason about the correctness and

completeness of P

i

we need a concrete speci�cation. Thus we assume that their concrete

semantics is simply the concretization of the abstract speci�cations

5

. This is achieved by

�rst de�ning the following concrete (I

�

-augmented) immediate consequence operator:

P

I

�

JP

i

K(K) :=

P

JP

i

K(K t

G


(use(P

i

))):

This operator is continuous. The concrete semantics of a program module P

i

can be then

de�ned as

F

I

�

JP

i

K :=

P

I

�

JP

i

K"!:

This leads to the new notions of partial correctness and completeness of a module w.r.t.

the intended abstract semantics of the whole program.

De�nition 11 Let P

1

; : : : ; P

n

be a program partitioning, let � be an observable, and let

I

1

�

; : : : ; I

n

�

be an intended module semantics. A module P

i

is

1. m-partially correct w.r.t. I

1

�

; : : : ; I

n

�

if �(F

I

�

JP

i

K) � I

i

�

.

2. m-complete w.r.t. I

1

�

; : : : ; I

n

�

if I

i

�

� �(F

I

�

JP

i

K)

5

Note that the concretization 
(I

�

) of the abstract speci�cation I

�

is the maximal of all possible

concrete speci�cations I which I

�

represents. Indeed, for any I such that �(I) = I

�

, I v 
(I

�

).
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3. P is m-totally correct w.r.t. I

1

�

; : : : ; I

n

�

, if �(F

I

�

JP

i

K) = I

i

�

The proof of the theorems uses the following (continuous) abstract (I

�

-augmented) im-

mediate consequence operator and its �xpoint.

P

I

�

�

JP

i

K(K

�

) :=

P

�

JP

i

K(K

�

e

t

f

G

use(P

i

)); F

I

�

�

JP

i

K := lfp(

P

I

�

�

JP

i

K);

Theorem 12 If there are no m-incorrect clauses in P

i

, then P

i

is m-partially correct

w.r.t. I

1

�

; : : : ; I

n

�

.

Proof. By hypothesis, for any clause c in P

i

,

P

�

JfcgK(I

i

�

e

t

e

F

use(P

i

)) � I

i

�

. Hence

P

�

JP

i

K(I

�

) � I

i

�

. Now, by de�nition,

P

�

JP

i

K(I

�

) =

P

I

�

�

JP

i

K(I

i

�

) and then I

i

�

is a pre-

�xpoint of

P

I

�

�

JP

i

K. Then, since �(F

I

�

JP

i

K) � F

I

�

�

JP

i

K = lfp(

P

I

�

�

JP

i

K) � I

i

�

, P

i

is

m-partially correct w.r.t. I

1

�

; : : : ; I

n

�

.

Theorem 13 Let � be a complete observable and P

i

be an m-complete module w.r.t.

I

1

�

; : : : ; I

n

�

, for some 1 � i � n. If there exists an m-incorrect clause in P

i

, then P

i

is

not m-partially correct.

Proof. By m-completeness of P

i

and since � is complete, I

i

�

� �(F

I

�

JP

i

K) = F

I

�

�

JP

i

K.

By monotonicity of

P

I

�

�

JP

i

K,

P

I

�

�

JP

i

K(I

i

�

) �

P

I

�

�

JP

i

K(F

I

�

�

JP

i

K) = F

I

�

�

JP

i

K. On the other

hand, by de�nition,

P

I

�

�

JP

i

K(I

i

�

) =

P

�

JP

i

K(I

�

). Thus, � 6� I

i

�

and � �

P

�

JfcgK(I

�

)

implies � 6� I

i

�

and � � �(F

I

�

JP

i

K), i.e., P

i

is not m-partially correct.

Theorem 14 Let P

i

be m-partially correct w.r.t. I

1

�

; : : : ; I

n

�

, for some 1 � i � n. If

there exists an m-uncovered A -element in P

i

, then P

i

is not m-complete.

Proof. The operator

P

I

�

�

JP

i

K is correct. Indeed,

(

P

I

�

�

JP

i

K � �)(K) = [ by

P

I

�

�

JP

i

K de�nition ]

P

�

JP

i

K(�(K)

e

t

f

G

use(P

i

)) = [ since � is additive and �
 = Id ]

(

P

�

JP

i

K � �)(K t

G


 use(P

i

)) � [ since

P

�

JP

i

K is correct ]

(� �

P

JP

i

K)(K t

G


 use(P

i

)) = [ by

P

I

�

JP

i

K de�nition ]

(� �

P

I

�

JP

i

K)(K):

Hence,

�(F

I

�

JP

i

K) =

[ since F

I

�

JP

i

K is a �xpoint of

P

I

�

JP

i

K ]

�(

P

I

�

JP

i

K(F

I

�

JP

i

K)) �

[by the previous result ]

P

I

�

�

JP

i

K(�(F

I

�

JP

i

K)) �

[by monotonicity of

P

I

�

�

JP

i

K and m-partial correctness of P

i

]

P

I

�

�

JP

i

K(I

i

�

) =

[by de�nition ]

P

�

JP

i

K(I

�

):

Now, if � is an m-uncovered A -element (i.e., � � I

i

�

and � 6�

P

I

�

�

JP

i

K(I

i

�

)), then � � I

i

�

and � 6� �(F

I

�

JP

i

K), i.e., P

i

is not m-complete.
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acc([b|Xs]) :- accept(Xs).

%the clause acc([]). is missing

Figure 3: The program of Example 16

Theorem 15 Let � be a complete observable and assume that

P

I

�

�

JP

i

K has a unique

�xpoint (for some 1 � i � n). If there are no m-uncovered A -elements in P

i

, then P

i

is

m-complete w.r.t. I

1

�

; : : : ; I

n

�

.

Proof. Absence of m-uncovered A -elements in P

i

implies I

i

�

�

P

�

JP

i

K(I

�

). Since, by

de�nition,

P

I

�

�

JP

i

K(I

i

�

) =

P

�

JP

i

K(I

�

), I

i

�

�

P

I

�

�

JP

i

K(I

i

�

), i.e., I

i

�

is a post-�xpoint of

P

I

�

�

JP

i

K and, by Tarski's theorem, I

i

�

� gfp(

P

I

�

�

JP

i

K).

Now, by hypothesis, gfp(

P

I

�

�

JP

i

K) = lfp(

P

I

�

�

JP

i

K) = F

I

�

�

JP

i

K = �(F

I

�

JP

i

K). Thus,

I

i

�

� �(F

I

�

JP

i

K), i.e., P

i

is m-complete w.r.t. I

1

�

; : : : ; I

n

�

.

Example 16

The program P

acc

in Figure 3 is a wrong version of a module of an automaton which

recognizes the language L = f(ab)

n

j n � 0g [ f(ab)

n

a j n � 0g. The answers of the

meta-interpreter is

uncoveredE(depth(2), modAcc, AE).

Any (other) answer for acc(_3430) wrt obs. depth(2) ? acc([]).

Any (other) answer for accept(_3680) wrt obs. depth(2) ? accept([]).

Any (other) answer for accept(_3680) wrt obs. depth(2) ? accept([a]).

Any (other) answer for accept(_3680) wrt obs. depth(2) ? accept([a,B|J]).

Any (other) answer for accept(_3680) wrt obs. depth(2) ? no.

AE = acc([]) ;

Any (other) answer for acc(_3430) wrt obs. depth(2) ? acc([b]).

Any (other) answer for acc(_3430) wrt obs. depth(2) ? acc([b,A|J]).

Any (other) answer for acc(_3430) wrt obs. depth(2) ? no.

no (more) solutions

incorrectClause(depth(2), modAcc, AE, C).

no (more) solutions

As resulting from the answers of the user, the speci�cation of the diagnosed module w.r.t.

the depth(2)-answer observable (�

2

) is

I

�

2

:= acc(X) 7!

�

fX = [ ]g; fX = [b]g; fX = [b; âjx̂]g

	

;
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while the speci�cation of the other module is

K

�

2

:= accept(X) 7!

�

fX = [ ]g; fX = [a]g; fX = [a;

^

bjx̂]g

	

:

Hence we �nd out that P

acc

is m-partially correct (without actually computing F

I

�

JP

acc

K)

and that the A -element acc(x) 7! fx = [ ]g is m-uncovered. Then (by Theorem 14) the

module is not m-complete (and the entire program is not complete).

Theorem 17 Let P = P

1

[ � � � [ P

n

. If all the modules P

i

are m-partially correct w.r.t.

I

1

�

; : : : ; I

n

�

, then P is partially correct w.r.t. I

�

. Moreover, if P has a unique �xpoint and

all the modules P

i

are m-complete w.r.t. I

1

�

; : : : ; I

n

�

, then P is complete w.r.t. I

�

.

Proof. We prove the two points separately.

partial correctness

�

Let K =

F

i

K

i

. For any i,

P

I

�

JP

i

K(K

i

) =

P

JP

i

K(K

i

t

G


 use(P

i

)) �

P

JP

i

K(K

i

)

Thus

F

i

P

I

�

JP

i

K(K

i

) �

P

JPK(K) and the following facts hold.

�(FJPK) � [ by the previous result ]

�(

G

i

F

I

�

JP

i

K) = [ by additivity ]

f

G

i

�(F

I

�

JP

i

K) � [ by m-partial correctness ]

f

G

i

I

i

�

= I

�

completeness

�

First of all note that, if the hole program P has a unique �xpoint, than

also any module P

i

must have a unique �xpoint and

F

i

F

I

�

JP

i

K v FJPK. Thus the

following facts hold.

I

�

=

f

G

i

I

i

�

� [ by m-partial completeness ]

f

G

i

�(F

I

�

JP

i

K) = [ by additivity ]

�(

G

i

F

I

�

JP

i

K) � [ by the �xpoint uniqueness of P ]

�(FJPK)
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