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Abstract

The paper introduces a semantics for logic programs based on �rst order hered-

itary Harrop formulas which are expressed in terms of intuitionistic derivations.

The derivations are constructed by means of an intuitionistic proof procedure that

constitutes the resolution mechanism of the language. The semantics of a program

is a goal independent denotation which can be equivalently speci�ed by a denota-

tional and an operational semantics. The denotational semantics is de�ned using a

set of primitive semantic operators that act on derivations and are directly related

to the properties of the derivations.
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1 Introduction

The aim of this work is to introduce a semantics for logic programs based on �rst order

hereditary Harrop (fohh) formulas expressed in terms of intuitionistic proofs, in order

to study the various properties of such programs. The proof procedure presented by

Nadathur in [10] constitutes the basis of the proof mechanism of languages like �Prolog

and speci�es an operational model of such kind of languages. There are various attempts

of de�ning semantics for fohh-programs. In [9] is presented a semantics based on a gen-

eralization of the standard immediate consequences T

P

ground operator [7], to describe

a Kripke-like model theory of positive Horn clauses programs permitting implications.

There is also a T

P

-like approach using categories [4]. These semantics are based on the

notion of success set and therefore are not adequate to reason about important properties

of programs as well as about its behavior. One important point in the understanding of

the program meaning is the equivalence of programs, which is based on our ability to

detect when two programs can not be distinguished observing their behaviors. It is well

known the inadequacy of the previously mentioned approaches to study the observational

equivalence of classical logic programs [2]. In that sense the s-semantics [3, 5], extending

the Herbrand interpretation, really captures the operational semantics, and is therefore

suitable for semantic based logic analysis and to reason in terms of program equivalences.

Unfortunately this approach can not be used in fohh-programs, because the introduction

of implication in goals invalidates the use of the computed answers obtained from pure

atomic goals for de�ning program equivalences. In fact, the implication in the fohh case is

operationally treated by adding a clause to the program, which can dramatically change
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the meaning of programs that are equivalent in terms of the s-semantics. Hence, to have

a goal-independent semantics, it is not enough to reason about the computed answers in

the way it is achieved with the s-semantics. We need therefore a semantics capable to

represent how the answers are calculated, furthermore it must be compositional w.r.t. all

language operators. It means that our semantics must be compositional w.r.t. the union

of programs, i.e., the addition of new program modules.

Our work follows the methodology of the semantics presented in [1], but we have to

face the problem that the more complex structure of the derivations makes it di�cult to

�nd the properties on which all our approach is based, i.e., the properties of composition-

ality. We propose a more general operational semantics (a top-down denotation) based

on derivations, associating to each program all derivations constructed by the proof pro-

cedure, from all possible pure atomic goals. More than a notion of derivation, we want

also to have a denotational semantics which allows to de�ne goal-independent denota-

tions, and therefore the semantics of a program as a set of procedures. Furthermore,

the denotational semantics we present is equivalent to the top-down denotation, and is

de�ned by means of various operators that gives to it its compositional nature. The

semantic operators used to de�ne the bottom-up denotation are the counterpart of the

syntactic ones. They allow us to describe operational properties of program derivations,

considering that they deal with low-level operational details.

The reader is assumed to be familiar with notions of logic programming and semantics

of logic programs. The paper is organized as follows: in section 2 we present the basic

de�nitions of the fohh; in section 3 we describe the intuitionistic proof procedure; in

sections 4 and 5 we introduce the semantics domains and denotational semantics respec-

tively; and �nally in sections 6 and 7 we present our operational model and semantics

properties of the denotation.

2 First Order Hereditary Harrop Formulas

The �rst order hereditary Harrop formulas (fohh-formulas) [6, 8] are divided in two

groups: the G-formulas (goals) and the D-formulas (de�nite clauses). They are de�ned

by the following syntax rules, where A is an atom:

G ::= A jG ^G jG _G j 9x:G jD � G j 8x:G

D ::= A jG � A jD ^D j 8x:D

We assume that the formulas are de�ned over a �rst order signature where V ars

denotes the set of variables and Consts the set of constants. By vars and consts we

denote the functions that, respectively, give the set of variables and constants occurring

in a formula or in a set of them.

These formulas de�ne a logic programming language in the sense that a G -formula

can be seen as a query or a goal to be resolved using a program which is a set of de�nite

clauses (D-formulas). In this case the process of answering consists of constructing an

intuitionistic proof of the existential closure of the query from the given program. In the

following we will refer to a D-formula as a program clause and to a G-formula as a goal.

We denote by P the set of all fohh-programs.

To show the results described in [10] we need �rst to de�ne some notions concerning

the logic programming language we are dealing with.

De�nition 2.1. The elaboration of a program clause D, denoted by elab(D), is a set

de�ned as:
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� If D ::= A or D ::= G � A, then elab(D) = fDg.

� If D ::= D

1

^D

2

then elab(D) = elab(D

1

) [ elab(D

2

).

� If D ::= 8x:D

0

, then elab(D) = f8x:D

00

j D

00

2 elab(D

0

)g

It is clear that in elab(D) the conjunctions are eliminated, i.e., all the clauses are

atoms or implication formulas universally quanti�ed.

De�nition 2.2. Let D be a clause. An instance of a formula 8x

1

:::8x

n

:F 2 elab(D)

is any formula that can be written as F�, where � is a substitution whose domain is

fx

1

; :::; x

n

g. The instances of a D-formula are all the instances of the formulas in elab(D).

3 Intuitionistic Proof Procedure

In this section we describe the proof procedure presented by Nadathur in [10] for deter-

mining a proof (if it exists) of a goal formula from a fohh -program. First are introduced

some notions on uni�cation mechanisms on which are based the proof procedure.

3.1 Labeled Uni�cation

The non-deterministic proof procedure described in [10] makes use of a di�erent notion

of uni�cation that restricts the standard uni�cation, creating a sort of scoping between

variables and constants.

De�nition 3.1. The labelling function L : V ars [Consts! N associates to each con-

stant or variable a natural number. We call this number the level (label ) of the variables

and constants. The function L, de�ned over formulas, gives the labelling function on the

variables and constants in such formulas.

De�nition 3.2. Let � = f[t

i

=x

i

] j 1 � i � ng be a substitution and let L be a labelling

function on the variables and constants in �. The substitution � is said to be a proper

labelled substitution with respect to L if and only if, L(c) � L(x

i

) for every constant c

appearing in t

i

. The induced labelling is the labelling L

0

of the substitution � which is

obtained from L in the following manner:

L

0

(x) = min (fL(x)g [ fL(x

i

) j [t

i

=x

i

] 2 � and x appears in t

i

g)

De�nition 3.3. Let T = fht

i

; s

i

i j 1 � i � ng be a set of pairs of terms and let L be

a labelling function on the variables and constants occurring in T . A labelled uni�er (

l-uni�er ) for T under L is a substitution � which is proper w.r.t. L and for each pair

ht

i

; s

i

i 2 T the equality t

i

� = s

i

� holds. A most general l-uni�er (lmgu) for T under

L is a l-uni�er � such that for any other l-uni�er � for T there is a substitution � with

�� = �.

3.2 The proof procedure

This algorithm, as presented in [10], determines the transition of one computation state

to other. The initial state represents the information about the goal and the program.

The �nal state contains the empty goal (if there is a proof). The information about all

substitutions needed to calculate the computed answer can be retrieved from all preceding

states.
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De�nition 3.4. A state S is a tuple hW; k; L; �i where

� W is a set of tuples hG;P; ni where G is a goal, P is a program and n is a natural

number,

� k is a clause used to reduce a goal (� denotes the void clause, i.e., no reduction),

� L is a labelling function on vars(W ) [ consts(W ), and

� � is a substitution (� denotes the empty substitution).

The initial state of a computation G in P is de�ned as S

0

= hfhG;P; 0ig ; �; L

0

; �i,

where L

0

= 0. A state is said to be proper if for each w = hG;P; ni 2 W is the case that

L

jw

� n.

De�nition 3.5 (proof procedure). The state S

1

= hW

1

; k

1

; L

1

; �

1

i derives in one step

to the state S

2

= hW

2

; k

2

; L

2

; �

2

i using the following rules:

1. If 9w

1

= hG

1

^G

2

; P; ni2 W

1

then W

2

= (W

1

� fw

1

g) [ fhG

1

; P; ni ; hG

2

; P; nig,

L

2

= L

1

, k

2

= � and �

2

= �.

2. If 9w

1

= hG

1

_G

2

; P; ni2 W

1

then W

2

= (W

1

� fw

1

g) [ fhG

i

; P; nig for i 2 f1; 2g,

L

2

= L

1

, k

2

= � and �

2

= �.

3. If 9w

1

= hD � G;P; ni 2 W

1

then W

2

= (W

1

� fw

1

g) [ fhG;P [ fDg ; nig, L

2

=

L

1

, k

2

= � and �

2

= �.

4. If 9w

1

= h9x:G; P; ni 2 W

1

then W

2

= (W

1

� fw

1

g) [ fhG [y=x]i ; P; ng for y 62

vars(W

1

), L

2

= L

1

[ fhy; nig, k

2

= � and �

2

= �.

5. If 9w

1

= h8x:G; P; ni 2 W

1

then W

2

= (W

1

� fw

1

g) [ fhG [c=x]i ; P; n+ 1g for

c 62 consts(W

1

), L

2

= L

1

[ fhc; n+ 1ig, k

2

= � and �

2

= �.

6. If 9w

1

= hA; P; ni 2 W

1

and 9k = 8x

1

:::8x

n

:A

0

2 elab(P ) such that 9� =

lmgu (A;A

0

�) relative to L

0

= L

1

[ fhy; ni j y 2 range(�)g, where � is a renam-

ing over all variables of A

0

with range(�) \ vars(W

1

) = ;, then W

2

= fw� j w 2

W

1

� fw

1

gg, k

2

= k�, L

2

is the labelling induced by � from L

0

, and �

2

= �.

7. If 9w

1

= hA; P; ni 2 W

1

and 9k = 8x

1

:::8x

n

: (G

0

� A

0

) 2 elab(P ) such that

9� = lmgu (A;A

0

�) relative to L

0

= L

1

[ fhy; ni j y 2 range(�)g, where � is a

renaming over all variables of A

0

with range(�) \ vars(W

1

) = ;, then W

2

=

fw� j w 2 W

1

� fw

1

gg [ fhG

0

; P; ni �g, k

2

= k�, L

2

is the labelling induced by

� from L

0

, and �

2

= �.

The derivation step between states S

1

and S

2

is denoted by S

1

! S

2

De�nition 3.6. The sequence of states S

0

; :::; S

n

is a derivation sequence (S

0

!

�

S

n

) if

S

i

! S

i+1

, i � 0. The sequence is a successful derivation if S

0

is an initial state and

S

n

= h;; k

n

; L

n

; �

n

i for some L

n

, k

n

, and �

n

. Moreover, we say that a non successful

derivation is a failure if it can not be extended by applying a derivation step to its last

state.
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Given a derivation d = hW

0

; k

0

; L

0

; �

0

i ; :::; hW

n

; k

n

; L

n

; �

n

i we denote by first(d) and

last(d) the set of all goals occurring in the �rst and the last derivation state respectively.

By clauses(d) we denote the set of all program clauses selected to reduce goals at each

state of a derivation d, and by prefix(d) we denote the set of all derivations which are

pre�xes of d.

Lemma 3.1. ([10]). Let S

0

; :::; S

n

be a derivation sequence where S

0

is an initial state.

Then for each S

i

, i < n, the substitution �

i

= �

n

� :::��

i+1

restricted to vars(W

i

) is proper

w.r.t. L

i

.

De�nition 3.7. Let S

0

= hfhG;P; 0ig ; �; L

0

; �i be an initial state and S

0

!

�

S

n

a

successful derivation, its associated answer substitution is the restriction of � = �

1

:::�

n

to vars(G;P ). The computed answer is the formula G�.

Lemma 3.2. ([10]). All states of a derivation starting from an initial state are proper.

By completeness theorem (theorem 15, [10]) we know that a computed answer of a

proof (successful derivation) exists regardless the goal selected at each stage in construct-

ing the derivation. So, we can establish an equivalence relation between these derivations.

De�nition 3.8. The computation tree of a goal w = hG;P; 0i has w as root node, and

each node (goal) has as children all the goals that it generates when is reduced. The

computation set of a derivation d is composed by all trees generated by the goals in

first(d).

De�nition 3.9. We say that two derivations d

1

= S

1

!

�

S

n

and d

2

= S

0

1

!

�

S

0

n

are

equivalent if they have the same computation set, modulo renaming of variables and

constants with label greater than 0. In that case we say that d

1

is a variant of d

2

(d

1

�

c

d

2

).

Since there are new constants in the derivations (with label greater than 0), introduced

by the non-deterministic proof procedure for resolving the universal quanti�cation in

goals, two equivalent derivations can contain di�erent constants. In that case we say that

a derivation is a variant of other, if there exists a renaming of constants and variables

where each one is replaced by a constant or variable of the same level, that make both

derivations syntactically equal.

4 Semantic Domains

Now we use the derivation concept introduced in the previous section to formalize the

domains of the semantics de�nitions.

A set of derivations S is said to be well formed if and only if for any d 2 S we have

prefix(d) � S. We denote byWFD the complete lattice of well-formed set of derivations

ordered by �.

De�nition 4.1. A collection is a partial function C : Goals!WFD, such that if C(G)

is de�ned, then it is a well-formed set of derivations. C is the domain of all collections

ordered by v, where C v C

0

i� 8G:C(G) � C

0

(G). A pure collection is a collection

de�ned only for pure atomic goals.



426 APPIA-GULP-PRODE'98

We introduce the relation of equivalence modulo variance �

C

de�ned on collections.

Namely, C �

C

C

0

if and only if for any G there exists a variant G

0

of G such that, if

C(G) is de�ned, then C

0

(G

0

) is de�ned, and for any d 2 C(G) there exists d

0

2 C

0

(G

0

)

such that d �

c

d

0

.

De�nition 4.2. An interpretation I is a pure collection modulo variance. The set of all

interpretations is denoted by I. The pair (I;v) is a complete lattice with the induced

quotient order.

5 Denotational Semantics

We de�ne a denotational semantics inductively on the following syntax of fohh-logic

programs.

QUERY ::= GOAL in PROG

GOAL ::= G-formula

PROG ::= fD-formulag [ PROG j ;

where the syntax of G-formulas and D-formulas is already de�ned in the section 2.

The semantic functions are

Q : QUERY ! C

G : GOAL! (N ! P ! I! C )

P : PROG! (I! I)

C : D-formula! (N ! PI! I)

and are de�ned by means of some speci�c operators on which is based the composition-

ality. The operator + computes the nondeterministic union of two classes of collections.

The operator ./ computes the interpretation obtained by replacement, adding to the �rst

derivation step (computed by the operator tree) all possible derivations of the clause

goal. The operator � restricts (instantiates) an interpretation to such derivations that

can be \matched" with an atomic goal. The operator 
 computes the conjunction of two

interpretations, leaving only the uni�able derivations of the two goals, while the opera-

tor � computes the extension of the union of two classes of interpretations. Finally we

introduce the operator ] to calculate an extended interpretation given a new clause.

1. Q[[G in P ]] := G[[G]]

0

lfpP[[P ]];P

2. P[[P

S

fcg]]

I

:= C[[c]]

0

I;P

S

fcg

+ P[[P ]]

I

; P[[;]]

I

:= �I:I

3. C[[p(t)]]

n

P

:= tree(p(t))

n

P

4. C[[G � p(t)]]

n

I;P

:= tree(G � p(t))

n

P

./ G[[G]]

n

I;P

5. G[[A]]

I

:= A � I

6. G[[G

1

^G

2

]]

n

I;P

:= G[[G

1

]]

n

I;P


 G[[G

2

]]

n

I;P

7. G[[G

1

_G

2

]]

n

I;P

:= G[[G

1

]]

n

I;P

� G[[G

2

]]

n

I;P

8. G[[9x:G]]

n

I;P

:= 999

n

x

G[[G]]

n

I;P
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9. G[[8x:G]]

n

I;P

:= 888

n

x

G[[G]]

n+1

I;P

10. G[[D � G]]

n

I;P

:= G[[G]]

n

I

0

;P

0

where I

0

= I ] C[[D]]

n

I;P

and P

0

= P [ fDg

Before describing the semantic operators, we need to de�ne some concepts and opera-

tions on derivations that will help us to de�ne all compositional operators over collections.

De�nition 5.1. Let d

1

= S

1

1

; :::; S

1

n

and d

2

= S

2

1

; :::; S

2

m

be derivations, the concatenation

of d

1

and d

2

, (d

1

:: d

2

) is de�ned if S

1

n

= S

2

1

and vars(d

1

) \ vars(d

2

) = vars(S

2

1

), then

d

1

:: d

2

= S

1

1

; :::; S

1

n

; S

2

2

; :::; S

2

m

.

The restriction introduced on the occurrence of variables asserts that all variables

introduced in the second derivation must be new with respect to the �rst one.

De�nition 5.2. Let d = S

1

; :::; S

n

be a derivation and let W

0

be a set of goals. The

insertion of W

0

in d (d / W

0

) is de�ned if each state S

0

i

= hW

i

[ (W

0

�

i

); k

i

; L

i

[ L

0

i

; �

i

i

is a proper state, where S

i

= hW

i

; k

i

; L

i

; �

i

i2 d and L

0

i

is the labelling resulting when

applying �

i

to W

0

, with �

i

= �

1

:::�

i

. In this case d / W

0

= S

0

1

; :::; S

0

n

.

The insertion of a goal in a derivation means that the goal is added to each state, and

it remains unsolved at the end of the derivation, but modi�ed by all the substitutions

executed in the preceding states.

De�nition 5.3. Let d

1

= S

1

1

; :::; S

1

n

and d

2

= S

2

1

; :::; S

2

m

be derivations. The fusion of

d

1

and d

2

(d

1

]d

2

) is de�ned if vars(d

1

) \ vars(d

2

) � vars(first(d

1

) [ first(d

2

)) and if

the concatenation d

0

1

:: d

0

2

is de�ned, where d

0

1

= d

1

/ first(d

2

), d

0

2

= d

2

/ last(d

1

) and

8x: x 2 vars(d

1

) \ vars(d

2

) is the case that �

1

(x) = �

2

(x), where �

1

and �

2

are the

computed substitution of d

1

and d

2

respectively.

De�nition 5.4. Let d = S

1

; :::; S

n

be a derivation and � an idempotent substitution

such that vars(first(d)�) \ vars(clauses(d)) = ; and let L

0

be a labelling function for

all variables in range(�). Then the application of � to d, d� = S

0

1

; :::; S

0

n

is de�ned if for

each state S

i

= hW

i

; k

i

; L

i

; �

i

i 2 d, we have that S

0

i

= hW

0

i

; k

i

; L

0

i

; �

0

i

i where

� if k

i

6= � then 9�

0

i

= lmgu(A�;A

0

) relative to L

i

[ L

0

where k

i

= 8x

1

:::8x

n

:(G

0

�

A

0

) and hA; P; ni 2 W

i�1

. In that case W

0

i

= fhG;P; ni �

0

i

j hG;P; ni 2 W

i

�

fhA; P; nigg [ fhG

0

; P; ni �

0

i

g and L

0

i

is the labelling induced by �

0

i

from L

i

[ L

0

.

� if k

i

6= � then 9�

0

i

= lmgu(A�;A

0

) relative to L

i

[ L

0

where k

i

= 8x

1

:::8x

n

: A

0

and

hA; P; ni 2 W

i�1

. In that case W

0

i

= fhG;P; ni �

0

i

j hG;P; ni 2 W

i

� fhA; P; nigg

and L

0

i

is the labelling induced by �

0

i

from L

i

[ L

0

.

� if k

i

= � then S

0

i

is a proper state, where W

0

i

=W

i

�, L

0

i

is the new induced labelling

function for all variables in range(�) [ (Dom(L

1

)�Dom(�)) and �

0

i

= �.

Note that the substitution applied to a derivation attempts to reconstruct the deriva-

tion, starting from a new goal (more instantiated or just renamed) using the same clauses,

until a failure of a lmgu or a substitution that yields a non proper state. In any other

case the substitution has success and the result is a derivation sequence.

De�nition 5.5. Let d = S

1

; :::; S

n

be a derivation and G be a goal, the instantiation

�

G

(d) of d is de�ned if there exists a labelled substitution �, such that G = G

0

� and if d�

is de�ned, where first(d) = fG

0

g. In that case �

G

(d) = d�.
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Now we describe and de�ne all semantic operators and auxiliary functions utilized in

our denotational semantic.

� The operator lfp is the least �xed point over functions f : I! I and is de�ned as

lfp f = f "! where f

n+1

= f(f

n

) and f

0

= ?.

� The operator tree, given a clause G � p(t), a level n and a program P , creates the

interpretation I = fhp(x); fd

0

; d

1

gig where d

0

= hfhp(x); P; nig ; �; L

0

; �i and

d

1

= hfhp(x); P; nig ; �; L

0

; �i ! hfhG;P; ni �g ; G � p(t)�; L

1

; �i. Given a clause

p(t), the operator creates the interpretation I = fhp(x); fd

0

; d

1

gig where d

0

=

hfhp(x); P; nig ; �; L

0

; �i and d

1

= hfhp(x); P; nig ; �; L

0

; �i ! h;; p(t)�; L

1

; �i. We

have also, L

0

= L(P ) [ fhx; 0ig, L

0

= L

0

[ fhy; ni j y 2 range(�)g where � is a

renaming over x and L

1

is the labelling induced by � = fx=t�g from L

0

.

� The operator + is the sum of classes of interpretations:

C

1

+ C

2

:= �G:C

1

(G) [ C

2

(G)

i.e., it assigns to each goal the union of its interpretations in C

1

and C

2

.

� The operator ./ computes the concatenation of the collection C

1

by C

2

. It is de�ned

as

C

1

./ C

2

:= �G:C

1

(G) [ f d

1

:: d

0

2

j d

1

2 C

1

(G) and d

0

2

= d

2

� where is the

substitution applied in the last state of d

1

and

d

2

2 C

2

(G)g

By means of this operator the function C constructs the maximum number of deriva-

tions that can be obtained for a pure goal. Precisely by this reason the denotational

semantics of a program is an interpretation.

� The operator � makes the instantiation of an interpretation I with an atom A. Is

de�ned as

A � I := �A: f�

A

(d) j d 2 I(A)g

This operator assigns to A all the instantiated derivations in I.

� The product of C

1

and C

2

is

C

1


 C

2

= �G:f S

0

; (d

1

]d

2

) j G = G

1

^G

2

; d

1

2 C

1

(G

1

); d

2

2 C

2

(G

2

) and S

0

=

hfhG;P; nig ; �; L; �i , where P and n are the program and level

occurring in the unique goal of first(d

1

) and first(d

2

)g

Note that the collection de�ned by this operator only operates over conjunctions

of goals. The operator takes the derivations associated to each component of the

conjunction and fuses them (when it is possible) in an unique derivation, adding a

head state (S

0

) containing the conjunction goal.
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� The extension of the union of C

1

and C

2

is

C

1

� C

2

= �G:f S

0

; d j G = G

1

_G

2

; d 2 C

1

(G

1

) [ C

2

(G

2

);

d

1

2 C

1

(G

1

); d

2

2 C

2

(G

2

);

S

0

= hfhG;P; nig ; �; L; �i , where P and n are the program and

level occurring in the unique goal of first(d

1

) and first(d

2

)g

This operator is very similar to the sum of collections, it di�ers only in the head

state added by the operator to the resulting derivations.

� The existential quanti�er of variable x in a level n over a collection C is de�ned as

999

n

x

C = �G:f S

0

; d

0

j G = 9x:G

0

; d 2 C(G

0

); d

0

= d[y=x], where L(y) = n

for a new variable y; P is the program

occurring in first(d) and

S

0

= hfhG;P; nig ; �; L; �ig

� The universal quanti�er of variable x in a level n over a collection C is de�ned as

888

n

x

C = �G:f S

0

; d

0

j G = 8x:G

0

; d 2 C(G

0

); d

0

= d[c=x], where L(c) = n

for a new constant c; P is the program

occurring in first(d) and

S

0

= hfhG;P; nig ; �; L; �ig

� The composition of two interpretations I

1

and I

2

is I

1

] I

2

= lfp f

I

1

;I

2

where

f

I

1

;I

2

(I) =

�

I

1

if I = ?

(I .�/ I

2

) + (I

2

.�/ I) otherwise.

This operator de�nes an OR-composition between program interpretations. It takes

the least �xed point of all possible mutually extensions of both interpretations. It

is easy to show that this operator is commutative analyzing the properties of the

following operator.

� The operator .�/ computes the compatible extension of a collection C

1

by a collection

C

2

and is de�ned as

C

1

.�/ C

2

= �G:C

1

(G) [ f d

1

:: (d

0

]d

0

2

) where d

1

2 C

1

(G); d

0

=

S

n

= hW

n

; k

n

; L

n

; �

n

i ; d

1

= S

1

; :::; S

n

and d

0

2

= �

G

(d

2

)

with G 2 W

n

and d

2

2 C

2

(G)g

This operator extends the derivation in C

1

with all possible instances of the deriva-

tions in C

2

. In other words, this operator continues an stopped computation (rep-

resented by a derivation of C

1

), \executing" the steps of other computation (repre-

sented by a derivation of C

2

). Note that the second derivation only reduces (derives)

a pending goal in d

1

, by this reason the extended derivation has all the remaining

goals pending.

Note that the function P[[P ]] must be continuous in order to have a least �xed point.

Hence, all the operators de�ned above must be also continuous. This can be easily proved

using standard techniques.
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6 Operational Semantics

The procedure presented in section 3 can be seen as a transition system between con�g-

uration states of an operational semantics. This operational semantics describes, in the

most concrete way, the resolution principle of the fohh-programs. We present now an

extended semantics based on derivations.

De�nition 6.1. Let P be a fohh-program. The behavior of a query G in P is de�ned as

B[[G in P ]] = �G: fS

0

!

�

S

n

j S

0

is the initial state hfhG;P; 0ig ; �; 0; �ig/

�C

The behavior modulo variance is a collection that assigns to every goal G the equiv-

alence classes of derivation sequences which initial state contains only the goal G. The

derivation sequences assigned to goals are constructed in a top-down way as described in

de�nition 3.5, so we have not only all the successful derivations, but also all failed and

in�nite derivations, including their pre�xes.

De�nition 6.2. Let P be a fohh-program. Its top-down intuitionistic derivation deno-

tation is

O[[P ]] =

[

p(x)2Goals

B[[p(x) in P ]]

Note that O[[P ]] is de�ned only for pure atoms, assigning a non empty set of derivations

to the atoms that match any head of clause in the program P .

Theorem 6.1. Let P be a fohh-program, then

O[[P ]] = lfpP[[P ]];

moreover

B[[G in P ]] = Q[[G in P ]]:

Using the previous denotations we can de�ne the equivalence of two programs P

1

; P

2

as

P

1

� P

2

() 8G 2 Goals; B[[G in P

1

]] = B[[G in P

2

]]:

7 Semantics Properties

The program denotation O[[P ]] has several interesting properties. These can all be viewed

as compositionality properties, and are based on the semantics operators de�ned in sec-

tion 5. The �rst result is a theorem that shows the compositionality of the semantic

function B w.r.t. procedure calls and the di�erent syntactic operators of the language.

Theorem 7.1. Let A be an atom , D be a program clause and G;G

1

; G

2

be goals. Then

� B[[A in P ]] = A � O[[P ]];

� B[[G

1

^G

2

in P ]] = B[[G

1

in P ]]
 B[[G

2

in P ]];

� B[[G

1

_G

2

in P ]] = B[[G

1

in P ]]� B[[G

2

in P ]];
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� B[[9x:G in P ]] = 999

x

B[[G in P ]];

� B[[8x:G in P ]] = 888

x

B[[G in P ]];

� B[[D � G in P ]] = B[[G in P [ fDg]]:

It can be easily shown that the denotation O is correct and minimal w.r.t. �, i.e.,

P

1

� P

2

() O[[P

1

]] = O[[P

2

]]

Finally we can state the following theorem, which establishes the OR-composition

between program denotations

Theorem 7.2. Let P

1

and P

2

be programs. Then O[[P

1

[ P

2

]] = O[[P

1

]] ] O[[P

2

]]

8 Conclusions

We have presented two equivalent semantic de�nitions for fohh-programs based on deriva-

tions; one with a top-down construction and other with a bottom-up speci�cation. These

semantics will help us to �nd models which really captures the operational and deno-

tational semantics and are therefore useful for de�ning program equivalences and for

semantics-based program analysis.

As mentioned in the introduction our semantics will be used to study the properties

of fohh-programs. The characteristics of our de�nitions allow us to claim that they

constitute a good basis for the construction of a semantic framework to systematically

derive more abstract semantics, using the formal tools of abstract interpretation, and to

study the relationship between semantics at di�erent levels of abstraction.
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