
Approximation of the Well-Founded Semantics for

Normal Logic Programs using Abstract Interpretation

Roberta Gori, Ernesto Lastres, Ren�e Moreno, Fausto Spoto

Abstract

The well-founded semantics for normal logic programs is de�ned in a construc-

tive way through the use of a �xpoint operator and in general is not computable.

We propose an approach for approximating through abstract interpretation the con-

crete behavior of normal logic programs described by the well-founded semantics.

We provide also an abstract well-founded semantics scheme, based on an abstract

immediate consequences operator and apply this scheme to obtain an approximated

semantics on the depth(k) domain.

Keywords: Logic Programming, Abstract Interpretation, Well-Founded Seman-

tics.

1 Introduction

Abstract interpretation is a theory developed to reason about the abstraction relation

between two di�erent semantics. In general it is used to design abstract semantics useful

for static analysis, but it can also be used to approximate the concrete semantics of

programs. This last aspect becomes relevant when the concrete semantics is not �nitely

computable, which is the case of the well-founded semantics for normal logic programs.

The well-founded semantics is one of the well known semantics for normal logic pro-

grams. It is de�ned in a constructive way through the use of a �xpoint operator, allowing

a direct approximation through abstract interpretation. Moreover, the well-founded se-

mantics is applicable to every normal logic program, without any syntactical restriction.

This paper presents an approach for approximating through abstract interpretation

the concrete behavior of normal logic programs described by the well-founded semantics.

We provide an abstract well-founded semantics scheme, based on an abstract immediate

consequences operator. If the abstract domain is �nite we get the abstract �xpoint of

this operator in a �nite number of steps. We provide su�cient conditions on the abstract

domain and the abstract operators which ensure that the �xpoint is correct w.r.t. the

concrete well-founded semantics of the program, in the sense that it provides upward

approximations of both, the positive and the negative facts of the semantics. We apply

then our scheme to the depth(k) abstract domain.

The paper is organized as follows. In section 3 we recall the basic de�nitions of the

well-founded semantics, in section 4 we de�ne our abstraction scheme and we prove

its correctness w.r.t the concrete semantics. Section 5 presents the application of our

approximation scheme to the depth(k) domain and �nally in 5.1 we show some examples

of approximations.

Dipartimento di Informatica, Universit�a di Pisa Corso Italia 40, 56125 Pisa, Italy. Phone : +39

(+50) 887279 E-mail: fgori,lastres,moreno,spotog@di.unipi.it

433

434 APPIA-GULP-PRODE'98

2 Preliminaries

The reader is assumed to be familiar with standard logic programming de�nitions as

presented in [1, 4].

In the paper we will consider the equational version of logic programs. With c; p(x) we

denote a constrained atom, by U

H

and B

H

we denote the Herbrand Universe and Base

respectively. P denotes the set normal logic programs, P

H

denotes the set of ground

normal logic programs. By T

P

we denote the usual immediate consequences operator for

positive logic programs as de�ned in [4]. If S is a set then P(S) denotes the powerset of

S.

We assume also familiarity with the theory of abstract interpretation as presented in

[2].

3 Well-Founded Semantics

The well-founded semantics (wfs) [7] is based on the idea that a given program may not

necessarely provide information on the truth or falsehood of every fact. Instead some facts

may simply be indi�erent to it, and the answer should be allowed to say that the truth

value of those facts is unknown. The price is that the answer is no longer guaranteed to

provide total information. A key point of this approach is that all normal programs can

be considered without any syntactical restriction as in the case of strati�ed and locally

strati�ed models. Another aspect of this approach is that it puts negative and positive

facts on a more equal footing: both must be inferred.

To formalize this, we will introduce a 3-valued interpretation, which is a pair of Her-

brand interpretations: the �rst one contains the positive facts and the second one contains

the negative facts. The other facts are considered unknown. Hence we will write an in-

terpretation as I = hI

+

; I

�

i, where I

+

is the set of positive facts and I

�

is the set of

negative facts. This set of interpretations is made into a cpo hI;�i de�ning I � J i�

I

+

� J

+

and I

�

� J

�

.

While many formulations of wfs have been given, we use here a presentation based

on a �xpoint calculation: The interpretations are re�ned with an immediate consequence

operator W

P

.

Given a program P consider the program P

0

formed by all ground instances of the clauses

in P. Let I be an interpretation; W

P

(I) =

M

P

0

=

I

+

;M

P

0

=

I

�

�

, where M

R

stands for the

least �xpoint of the Herbrand immediate consequence operator T

R

and M

R

stands for

B

H

nM

R

and

1. P

0

=

I

+

is computed in the following three steps:

(a) Remove all clauses having at least a literal in their body which is false in I;

(b) Remove all literals (from the body of the program clauses) which are true in

I.

(c) P

0

=

I

+

is obtained by removing all clauses having at least a negative literal in

their body.

2. P

0

=

I

�

is computed in the following three steps:

(a) Remove all clauses having at least a literal in their body which is false in I;

Approximation of the Well-Founded Semantics for Normal Logic Programs using Abstract Interpretation 435

(b) Remove all literals (from the body of the program clauses) which are true in

I.

(c) P

0

=

I

�

is obtained by removing all negative literals.

It was shown in [7] that the W

P

operator is monotone on hI;�i. Hence the semantics

of the program P is de�ned as the least �xpoint of the W

P

operator. Since W

P

is not

continuous the computation of its �xpoint could require more than ! iterations.

Note that this de�nition is based on three basic operations, namely

1. The operator G : P ! P

H

, which computes the set of ground instances of a

program,

2. The operator Comp : P(U

H

)! P(U

H

), which computes the complement w.r.t. the

Herbrand Base of a set of ground atoms,

3. The usual membership operator 2: U

H

� P(U

H

)! ftrue; falseg.

4 Abstract Semantics

In this section we show how an abstract wfs can be de�ned for an abstract program given

a Galois-insertion h�;
i from the concrete domain hI;�i to an abstract domain hI

�

;�

�

i.

Actually this function � is induced by an abstraction function from the Herbrand Universe

to an abstract Herbrand domain, which with abuse of notation we will call �. Note

that this abstraction function determines univocally the abstract functions on atoms and

programs.

We have to specify the abstract counterparts of the three concrete operators described

in the previous section. We de�ne the following abstract (optimal) operators:

1. Abstract optimal grounding: G

�

: �(P)! �(P

H

), as

G

�

(P

�

) = � (G (
(P

�

))), where P

�

is an abstract program.

2. Abstract optimal complement: Comp

�

: P(�(U

H

))! P(�(U

H

)) , as

Comp

�

(S

�

) =

T

fS

0

�

j Comp(g) �
(S

0

�

); 8g:�(g) 2 S

�

g which can be rewritten as

Comp

�

(S

�

) =

T

g2
(S

�

)

�(Comp(g)):

3. Abstract membership: 2

�

: �(U

H

)� P(�(U

H

))! ftrue; falseg, as

�(c; p(x)) 2

�

S

�

i�
 (�(c; p(x))) \
(S

�

) 6= �

Given an abstract interpretation I

�

= hI

+

�

; I

�

�

i, the abstract immediate consequences

operator for an abstract program P

0

= G

�

(�(P)) is de�ned asW

�

�(P)

(I

�

) =

D

M

P

0

=

I

+

�

;M

P

0

=

I

�

�

E

,

where M

R

stands for the least �xpoint of the abstract immediate consequences operator,

M

R

stands for the complement of M

R

and

1. P

0

=

I

+

�

is obtained through the following three steps:

(a) Do nothing

(b) Remove all literals which are true in I

�

, using the abstract membership oper-

ator.

436 APPIA-GULP-PRODE'98

(c) P

0

=

I

+

�

is obtained by removing all clauses having at least a negative literal in

their body,

2. P

0

=

I

�

�

is obtained through the following three steps:

(a) Remove all clauses having at least a literal in their body which is false in I

�

,

using the abstract membership operator,

(b) Do nothing

(c) P

0

=

I

�

�

is obtained by removing all negative literals.

Now we have to �nd su�cient conditions that guarantee the correctness of the ab-

stract semantics w.r.t. the concrete one. Formally, we will prove that the follow-

ing conditions will entail the correctness of the W

�

�(P)

operator w.r.t. W

P

, namely

W

P

(I) �
(W

�

�(P)

(�(I))):

1. � (G(P)) = G

�

(�(P))

2. �(Comp(S)) � Comp

�

(�(S))

3. c; p(x) 2 S) �(c; p(x)) 2

�

�(S)

4. The abstract immediate consequences operator for positive programs is correct

w.r.t. the concrete one.

Actually we will prove a stronger property:

Proposition 1 Let I be an interpretation and I

�

be an abstract interpretation. Then we

have, for every program P �(I) � I

�

) � (W

P

(I)) � W

�

�(P)

(I

�

)

Proof:

The correctness condition 1 on the abstract grounding allows us to consider the ab-

stract ground program over whichW

�

�(P)

works, as the abstraction of the ground program

over which W

P

works. We split the proof in two parts, the �rst one for the positive facts

of the interpretation and the second one for the negative facts.

1. The concrete positive facts are obtained as the least �xpoint of the program ob-

tained through steps 1.a, 1.b and 1.c of the de�niton of W

P

. In the de�nition of

W

�

�(P)

the step 1.a is no more executed, hence this step removes some clauses only

from the concrete program. Step 1.b is executed in both operators: Since we as-

sume I

+

� I

+

�

and by correctness condition 3 on the membership operator, literals

are more often removed from the abstract program than from the concrete one.

Step 1.c either removes from the abstract program a clause which is the abstraction

of a concrete clause which was already removed in step 1.a of W

P

, or removes a

clause which is the abstraction of a concrete clause which gets removed in step 1.c of

W

P

. This is because step 1.b removes more literals from the abstract program than

from the concrete one. From these considerations we conclude that the abstraction

of the �xpoint of the concrete program computed in W

P

contains less facts than

the �xpoint of the abstract program computed in W

�

�(P)

, since we assume to use

an abstract �xpoint operator on positive programs which is correct on w.r.t. the

concrete �xpoint operator on positive programs.

Approximation of the Well-Founded Semantics for Normal Logic Programs using Abstract Interpretation 437

2. The concrete negative facts are obtained as the complementation of the least �x-

point of the program obtained through steps 2.a, 2.b and 2.c of the de�nition ofW

P

.

Since complementation is antimonotonic, we have to show that the abstraction of

the �xpoint of this program contains all facts contained in the �xpoint of the ab-

stract program computed in the de�nition ofW

�

�(P)

. Step 2.a removes a clause from

the concrete program only if its abstraction is removed from the abstract program.

This is because we assume �(I) � I

�

and by correctness condition 2. Step 2.b is

executed only on the concrete program. Step 2.c removes a literal from the concrete

program only if it removes the abstraction of the literal from the abstract clause

which is the abstraction of the concrete clause the �rst literal belongs to. These

considerations, together with the correctness condition 4, imply that the abstrac-

tion of the �xpoint of the concrete program obtained through the algorithm forW

P

contains the �xpoint of the abstract program obtained through the algorithm for

W

�

�(P)

.

2

Corollary 2 Let I be an interpretation. Then we have, for every program P ,

� (W

P

(I)) � W

�

�(P)

(�(I))

5 Approximation using the depth(k) domain

We show now how the concrete well-founded semantics can be approximated using the

depth(k) domain [6]. The idea is to approximate the in�nite ground success set by means

of a depth(k) cut, i.e., by cutting terms which have a depth greater than k. Terms are

cut by replacing each sub-term rooted at depth k with a new variable taken from a set

e

V disjoint from V (the set of variables of the program). A depth(k) term represents all

the terms obtained by instantiating the variables of

e

V with groundterms.

We have to de�ne the abstraction functions �

k

on terms and �

c

k

on constraints.

� If k = 0 we de�ne �

0

(t) = Z, where Z 2

e

V is a new fresh variable

� If k > 0 we de�ne

{ �

k

(a) = a, if a is a constant.

{ �

k

(X) = X, if X is a variable.

{ �

k

(f(t

1

; :::; t

n

)) = f(�

k�1

(t

1

); :::; �

k�1

(t

n

)), if f is a functor.

{ �

c

k

(fX = tg) = fX = �

k

(t)g.

{ �

c

k

(C

1

[C

2

) = �

c

k

(C

1

) [�

c

k

(C

2

).

We show now how the abstract operations can be e�ectively computed for the depth(k)

domain

The abstract grounding G

�

k

of a program on depth(k) can be computed through the

following algorithmic de�nition G

�

k

e

:

� If k = 0: G

�

k

e

(t) = Z for all abstract terms t.

438 APPIA-GULP-PRODE'98

� If k > 0:

{ G

�

k

e

(a) = a

{ G

�

k

e

(X) = U

k

H

, where U

k

H

is the abstraction of the Herbrand Universe.

{ G

�

k

e

(f(t

1

; :::t

n

)) =

�

f(

e

t

1

; :::;

e

t

n

) j

e

t

i

2 G

�

k�1

e

(t

i

)

	

{

G

�

k

e

(X = t

�

) = ffX = t

�

X

; Y = t

�

Y

; :::g j

X; Y; ::: 2 V; t

�

X

; t

�

Y

; ::: 2 �

k

(U

H

)

and (t

�

[Y = t

�

Y

; :::])

k

= t

�

X

g

{ G

�

k

e

(C

1

[C

2

) = G

�

k

e

(C

1

) \G

�

k

e

(C

2

)

The following lemma shows that the algorithmic de�nition for the abstract ground-

ing agrees with the generic de�nition given in section 4. Moreover, it shows that the

correctness condition for the abstract grounding holds in the depth(k) domain.

Lemma 3 The following two properties hold:

� G

�

k

(tc) = G

�

k

e

(tc) for every term or constraint tc.

� �

k

(G(P)) = G

�

k

(�

k

(P)) for every program P .

If the Herbrand Universe is in�nite it can be shown that the abstract complement can

be e�ectively computed as comp

�

(I

�

) = B

k

P

n

�

p(

e

t) 2 I

�

j p(

e

t) is not cut

	

Since the concretization of di�erent abstract constrained atoms are disjoint, the ab-

stract membership operator becomes the usual membership operator, which is e�ective

because the set of abstract constrained atoms is �nite.

Finally, correctness condition 4 holds, as shown in [5].

Note that the depth(k) domain, for a given k and a �nite number of function symbols,

is �nite. Hence the abstract �xpoint is always reachable in a �nite number of steps.

5.1 Examples

Consider the following program P de�ning the predicates odd, which computes the set of

odd natural numbers, mult3 for computing the set of natural numbers which are multiple

of three and oddnotmult3 for computing the set of odd natural numbers which are not

multiple of three.

odd(X) : �X = s(0):

odd(X) : �X = s(s(Y)); odd(Y):

mult3(X) : �X = s(s(s(0))):

mult3(X) : �X = s(s(s(Y))); mult3(Y):

oddnotmult3(X) : �X = Y; X = Z; odd(Y); :mult3(Z):

Consider now the abstraction �

k

(P) for k = 4, which is equal to P . The grounding of

�

k

(P) yields:

Approximation of the Well-Founded Semantics for Normal Logic Programs using Abstract Interpretation 439

odd(X) : �X = s(0):

odd(X) : �X = s(s(0)); Y = 0; odd(Y):

odd(X) : �X = s(s(s(0))); Y = s(0); odd(Y):

odd(X) : �X = s(s(s(s(K)))); Y = s(s(0)); odd(Y):

odd(X) : �X = s(s(s(s(K)))); Y = s(s(s(0))); odd(Y):

odd(X) : �X = s(s(s(s(K)))); Y = s(s(s(s(K1)))); odd(Y):

mult3(X) : �X = s(s(s(0))):

mult3(X) : �X = s(s(s(0))); Y = 0; mult3(Y):

mult3(X) : �X = s(s(s(s(K)))); Y = s(0); mult3(Y):

mult3(X) : �X = s(s(s(s(K)))); Y = s(s(0)); mult3(Y):

mult3(X) : �X = s(s(s(s(K)))); Y = s(s(s(0))); mult3(Y):

mult3(X) : �X = s(s(s(s(K)))); Y = s(s(s(s(K1)))); mult3(Y):

oddnotmult3(X) : �X = 0; Y = 0; Z = 0; odd(Y); :mult3(Z):

oddnotmult3(X) : � X = s(0); Y = s(0); Z = s(0);

odd(Y); :mult3(Z):

oddnotmult3(X) : � X = s(s(0)); Y = s(s(0)); Z = s(s(0));

odd(Y); :mult3(Z):

oddnotmult3(X) : � X = s(s(s(0))); Y = s(s(s(0))); Z = s(s(s(0)));

odd(Y); :mult3(Z):

oddnotmult3(X) : � X = s(s(s(s(K)))); Y = s(s(s(s(K))));

Z = s(s(s(s(K)))) odd(Y); :mult3(Z):

The abstract �xpoint is

I

+

2

= fX = s(0); odd(X); X = s(s(s(0))); odd(X); X = s(s(s(s(K)))); odd(X);

X = s(s(s(0))); mult3(X); X = s(s(s(s(K)))); mult3(X);

X = s(0); oddnotmult3(X); X = s(s(s(s(K)))); oddnotmult3(X)g

I

�

2

= fX = 0; odd(X); X = s(s(0)); odd(X); X = s(s(s(s(K)))); odd(X);

X = 0; mult3(X); X = s(0); mult3(X);

X = s(s(0)); mult3(X); X = s(s(s(s(K)))); mult3(X);

X = 0; oddnotmult3(X); X = s(s(0)); oddnotmult3(X);

X = s(s(s(0))); oddnotmult3(X);

X = s(s(s(s(K)))); oddnotmult3(X)g

which is exactly the depth(4) approximation of the concrete semantics of the program.

Note that in this example, as a consequenece of the abstract complement operator, the

intersection between the positive and the negative atoms is not empty. Note also that

there are not atoms which do not belong neither to the positive information nor to

the negative information, therefore the well founded semantics coincide with the stable

models semantics [3] of the program.

This is not the case of the next example, where some facts are left unde�ned in the

�xpoint, i.e. they do not belong neither to the positive information nor to the negative

information.

440 APPIA-GULP-PRODE'98

Consider the following program P , which is a generalization of the well-known barber's

problem.

citizen(X) : �X = 0:

citizen(X) : �X = s(Y); citizen(Y):

shave(X; Y) : �X = s(s(0)); citizen(Y);:shave(Y; Y):

The abstract �xpoint is

I

+

2

= fX = 0; citizen(X); X = s(0); citizen(X); X = s(s(0)); citizen(X);

X = s(s(s(0))); citizen(X); X = s(s(s(s(K)))); citizen(X);

X = s(s(0)); Y = 0; shave(X; Y); X = s(s(0)); Y = s(0); shave(X; Y);

X = s(s(0)); Y = s(s(s(0))); shave(X; Y);

X = s(s(0)); Y = s(s(s(s(K)))); shave(X; Y)g

I

�

2

= fX = s(s(s(s(K)))); citizen(X); X = 0; Y = 0; shave(X; Y);

X = 0; Y = s(0); shave(X; Y); X = 0; Y = s(s(0)); shave(X; Y);

X = 0; Y = s(s(s(0))); shave(X; Y); X = 0; Y = s(s(s(s(K)))); shave(X; Y);

X = s(0); Y = 0; shave(X; Y); X = s(0); Y = s(0); shave(X; Y);

X = s(0); Y = s(s(0)); shave(X; Y); X = s(0); Y = s(s(s(0))); shave(X; Y);

X = s(0); Y = s(s(s(s(K)))); shave(X; Y);

X = s(s(0)); Y = s(s(s(s(K)))); shave(X; Y);

X = s(s(s(0))); Y = 0; shave(X; Y); X = s(s(s(0))); Y = s(0); shave(X; Y);

X = s(s(s(0))); Y = s(s(0)); shave(X; Y);

X = s(s(s(0))); Y = s(s(s(0))); shave(X; Y);

X = s(s(s(0))); Y = s(s(s(s(K)))); shave(X; Y);

X = s(s(s(s(K)))); Y = 0; shave(X; Y); X = s(s(s(s(K)))); Y = s(0); shave(X; Y);

X = s(s(s(s(K)))); Y = s(s(0)); shave(X; Y);

X = s(s(s(s(K)))); Y = s(s(s(0))); shave(X; Y);

X = s(s(s(s(K)))); Y = s(s(s(s(K)))); shave(X; Y)g

Note that the fact X = s(s(0)); Y = s(s(0)); shave(X; Y) does not belong neither to I

�

2

nor to I

+

2

6 Conclusions

We showed how the well-founded semantics for normal logic programs can be approx-

imated using abstract interpretation theory. We presented an approximation based on

the depth(k) domain, but it is worth noting that another sensitive approximation can be

de�ned applying our scheme to a type domain.

This approach can be used as alternative or support to other methods for approximat-

ing non computable semantics as is the case of set based analysis.

References

[1] K. R. Apt. Introduction to Logic Programming. In J. van Leeuwen, editor, Handbook

of Theoretical Computer Science, volume B: Formal Models and Semantics, pages

495{574. Elsevier and The MIT Press, 1990.

Approximation of the Well-Founded Semantics for Normal Logic Programs using Abstract Interpretation 441

[2] P. Cousot and R. Cousot. Abstract Interpretation and Applications to Logic Pro-

grams. Journal of Logic Programming, 13(2 & 3):103{179, 1992.

[3] M. Gelfond and V. Lifschitz. The Stable Model Semantics for Logic Programs. In R. A.

Kowalski and K. A. Bowen, editors, Proc. Fifth Int'l Conf. on Logic Programming,

pages 1070{1079. The MIT Press, 1988.

[4] J. W. Lloyd. Foundations of Logic Programming. Springer-Verlag, 1987. Second

edition.

[5] K. Marriott and H. Sondergaard. Bottom-up Data
ow Analysis of Normal Logic

Programs. Journal of Logic Programming, 13(2 & 3):181{204, 1992.

[6] H. Tamaki and T. Sato. Unfold/Fold Transformations of Logic Programs. In Sten-

�

Ake T�arnlund, editor, Proc. Second Int'l Conf. on Logic Programming, pages 127{139,

1984.

[7] A. van Gelder, K. A. Ross, and J. S. Schlipf. The Well-Founded Semantics for General

Logic Programs. Journal of the ACM, 38(3):620{650, 1991.

442 APPIA-GULP-PRODE'98

