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Abstract

The Herbrand model H of a de�nite logic program P is an initial model among

the class of all the models of P , interpreting P as an initial theory. Such a theory

proves (computes) only positive literals (atoms) in P , so it does not deal with

negation. In this paper, we introduce isoinitial models of logic programs. We

show that isoinitial semantics deals with negation, and works in a uniform way

for de�nite and normal logic programs. Moreover, the lack of an isoinitial model

signals the absence of information. Thus it also provides a unifying semantics for

closed and open logic programs.

Keywords: Semantics, isoinitial models, negation

1 Introduction

The intended model of a standard (Horn clause) logic program P is its Herbrand model

H. It interprets P under the Closed World Assumption [11]. Considering the class of all

the models of P , H interprets P as an initial (Horn) theory [5]. A distinguishing feature of

an initial theory P is that, in general, it proves (computes) only positive literals (atoms)

in P , so it does not deal with negation.

In this paper, we introduce isoinitial models [2] of logic programs. If the completion

Comp(P ) of a program P has an isoinitial model, thenH is also such a model of Comp(P ).

For a de�nite program P , H is always an initial model of Comp(P ), but Comp(P ) may

have no isoinitial models. Far from being a drawback, this is in fact an advantage: the

lack of an isoinitial model is a symptom of termination problems with respect to �nite

failure. That is, isoinitial semantics works in a uniform way for de�nite and normal

logic programs; the lack of an isoinitial model always exposes some circularity or lack of

information in Comp(P ), with respect to the provability of negated atoms.

This capability of signaling absence of information makes isoinitial semantics a good

candidate for capturing open, i.e. incomplete, programs. Indeed isoinitial semantics

provides a unifying semantics for closed and open logic programs. It also deals with

negation. We have used isoinitial semantics in our work in formal program development

in computational logic (e.g. [7, 8]), since it provides a suitable semantic framework.

In this paper we consider mainly de�nite programs, and we compare initial and isoini-

tial semantics for such programs. Normal programs, for which other kinds of semantics

should be considered, are only brie
y addressed at the end of Section 3.
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2 Initial and Isoinitial Theories

A �-theory is a set of �-sentences, where � � hF;Ri is a signature � with function sym-

bols F and relation symbols R over the domain D, where each symbol has an associated

arity. For example, Peano Arithmetic is a Nat-theory, where Nat � hf0

0

; s

1

;+

2

; �

2

g; f=

2

gi.

1

We shall work in �rst-order logic with identity, i.e. identity = and the usual identity

axioms will be always understood. For example, we can introduce Nat as the signature

Nat � hf0

0

; s

1

;+

2

; �

2

g; fgi, = being understood.

Let � � hF;Ri be a signature. As usual, a �-structure is a tripleM� hD;F

M

; R

M

i,

where F

M

is a F -indexed set of functions interpreting F , and R

M

is an R-indexed set

of relations interpreting R. Of course, the interpretation of a function symbol f

n

is an

n-ary function f

nM

: D

n

! D, and the interpretation of a relation symbol r

m

2 R is an

m-ary relation r

mM

� D

m

. When no confusion can arise, we may omit the arity, i.e. we

write f

M

instead of f

nM

and r

M

instead of r

mM

.

In a structureM, terms and formulas are interpreted in the usual way. t

M

will indicate

the value of a ground term t inM, and I j= A will indicate that the sentence (sentences)

A is (are) true in I.

Finally, homomorphisms, isomorphisms and isomorphic embeddings are de�ned in the

usual way. Since the latter are less popularly used in the literature than homomorphisms

and isomorphisms, we brie
y recall them here.

An isomorphic embedding i : J ! M is a homomorphism that preserves the com-

plements of relations, i.e.: (�

1

; : : : ; �

n

) 62 r

J

entails (i(�

1

); : : : ; i(�

n

)) 62 r

M

. Therefore,

� 6= � entails i(�) 6= i(�), i.e. isomorphic embeddings are injective. Moreover, the i-

image of J is isomorphic to a substructure ofM, i.e. J is `isomorphically embedded' in

M.

Now we can de�ne initial and isoinitial models of �-theories.

De�nition 2.1 (Initial Models) Let T be a �rst-order �-theory, and I be a model of

T . I is an initial model of T i�, for every other model M of T , there is a unique

homomorphism h : I !M.

De�nition 2.2 (Isoinitial Models) Let T be a �rst-order �-theory, and J be a model

of T . J is an isoinitial model of T i�, for every other modelM of T , there is a unique

isomorphic embedding i : I !M.

Example 2.1 Consider the simple signature K � hfa

0

; b

0

g; fgi, containing just two

constant symbols a and b. The corresponding Herbrand Interpretation H is de�ned by

D = fa; bg, a

H

= a and b

H

= b.

2

H is an initial model of the empty theory ;. Indeed, for every other model M, the

map h de�ned by (h(a) = a

M

; h(b) = b

M

) is the unique homomorphism from H intoM.

The empty theory does not prevent interpretations where a = b.

H is not an isoinitial model of ; however. Indeed, there is no isomorphic embedding

fromH into modelsM such that a

M

= b

M

, since isomorphic embeddings have to preserve

inequality.

H is an isoinitial model of :a = b. Indeed, for every modelM of :a = b, we have

a

M

6= b

M

, and the map i such that (i(a) = a

M

; i(b) = b

M

) is the unique isomorphic

embedding of H intoM.

1

�

n

indicates a symbol � with arity n.

2

The standard interpretation of = is understood.
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It is worthwhile noting that H is both an initial and an isoinitial model of :a = b.

We will consider the particular case of reachable initial and isoinitial models: a struc-

ture M � hD;F

M

; R

M

i is reachable if, for every � 2 D, there is a ground term t such

that t

M

= �.

Theorem 2.1 Let J be a reachable model of a �-theory T . Then J is an initial model

of T if and only if the following initiality condition (ini) holds:

Let A be a ground atom andM be a model of T . Then J j= A entailsM j= A: (ini)

while it is an isoinitial model of T if an only if the following isoinitiality condition (iso)

holds:

Let A be a ground atom andM be a model of T . Then J j= A i�M j= A: (iso)

Proof. The non-trivial direction follows from the reachability hypothesis. Here we omit

the proof for conciseness. 2

That is, initial models represent truth of atomic formulas in every model, while isoini-

tial models represent both truth and falsity of atomic formulas in every model. By the

completeness theorem for �rst-order theories, we can prove:

Corollary 2.1 In Theorem 2.1, we can replace (ini) and (iso) by:

For every ground atom A, J j= A i� T ` A. (ini')

For every ground literal L, J j= L i� T ` L. (iso')

That is, initial models represent provability of atomic formulas, while isoinitial models

represent provability of literals, i.e. they behave properly with respect to negation of

atomic formulas.

Of course, in general, a �rst-order theory may have no initial or isoinitial models. To

state the existence of such models, we can apply the previous results. For isoinitialmodels,

we have a more manageable condition, that allows us to introduce a proof-theoretical tool

for stating isoinitiality.

Corollary 2.2 In Theorem 2.1, we can replace (iso) by the following atomic complete-

ness condition:

For every ground atom A, T ` A or T ` :A. (atc)

In condition (atc) models disappear altogether,

3

i.e., we have a purely proof-theoretic

condition. As a �rst application, let us prove the following theorem:

Theorem 2.2 Let K � hF; fgi be a signature containing a non-empty set F of function

and constant symbols, with at least one constant. Let H be the corresponding Herbrand

structure. Let CET (F ) be Clark's Equality Theory for F . Then H is an isoinitial model

of CET (F ).

3

However, models do not disappear completely from Theorem 2.1, because the existence of at least

one reachable model J is always assumed.
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Proof. H is a model of CET (F ). Being a term-model, it is trivially reachable. Atomic

completeness follows from the fact that, for every ground atomic formula t = t

0

, ; ` t = t

0

if t and t

0

coincide, and CET (F ) ` :t = t

0

, if they are di�erent. 2

As a second application, we introduce constructive logics, as tools for formally proving

isoinitiality.

De�nition 2.3 (Constructive Logics) Let S be a classically consistent logic contained

in CL. S is constructive with respect to a theory T if and only if:

� For every ground formula A _B, T `

S

A _B entails T `

S

A or T `

S

B.

� For every ground formula 9x : F (x), if T `

S

9x : F (x), then there is a ground term

t such that T `

S

F (t).

We recall that S is classically consistent if T ` false entails T `

S

false. Intuitionis-

tic logic int is not classically consistent, while logics containing int + K are classically

consistent, where K is the Kuroda Principle 8x::A(x) ! ::8xA(x). We can prove the

following corollary:

Corollary 2.3 Let S be constructive with respect to T . Then, in Theorem 2.1, we can

replace (iso) by the following constructive atomic completeness condition:

T `

S

8x

1

; : : : ; x

n

: r(x

1

; : : : ; x

n

) _ :r(x

1

; : : : ; x

n

), for every r

n

2 R. (catc)

Proof. Since S is constructive, (catc) entails atomic completeness. 2

An interesting example is the logic Kat = int + K + at, where at is ::A ! A, for

A atomic.

4

Kat is constructive in any axiomatisation T containing Harrop-axioms and

possible �rst-order induction schemas. Moreover, in (T+Kat)-proofs we can use classical

proofs of Harrop formulas, without enlarging the class of (T +Kat)-theorems.

We do not enter into further details here, because this paper is mainly on semantics

of isoinitial models, and we use some proof-theoretical tools only in some examples. For

a discussion, see [10, 9], where semi-constructive systems are also introduced.

3 Closed Logic Programs

We �rst introduce closed �rst-order theories. For the sake of conciseness, we will use ini

for initial semantics, i.e. semantics based on initial models, iso for isoinitial semantics,

i.e. semantics based on isoinitial models, and sem as a parameter standing for one of

the two. Moreover, ini-models will be reachable initial models, and iso-models will be

reachable isoinitial models.

Closed �rst-order �-theories are de�ned as follows:

De�nition 3.1 (sem-closed �-theories) A theory T is sem-closed if and only if it has a

sem-model.

4

Kat is non-standard. Indeed, in at, A must be atomic and hence at is not closed under substitution.
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Let us consider a signature K � hF; fgi with at least a constant symbol. We are

interested in axiomatising the corresponding Herbrand Structure H.

The empty theory ; is ini-closed, and H is an ini-model of ;. By contrast, ; is not

iso-closed. However, CET (F ) is an iso-closed theory, with iso-model H (see Theorem

2.2).

Therefore, iso is better equipped to deal with negation: iso shows that ; lacks in-

formation with respect to negation, whereas ini does not show this. This advantage is

further elucidated as follows:

De�nition 3.2 Let T be a sem-closed theory with a sem-model I. We say that T is

closed with respect to (I and) a sentence F if and only if:

I j= F i� T ` F

9(Q) is an existential formula if 9 is a possibly empty list of existential quanti�ers and

Q is quanti�er-free. If Q is positive, then 9(Q) is a positive existential formula. We have:

Theorem 3.1 If T is ini-closed, then it is closed with respect to all the positive exis-

tential sentences. Moreover, if T ` 9x : P (x), where 9x : P (x) is a positive existential

sentence, then T ` P (t), for at least a ground t.

If T is iso-closed, then it is closed with respect to all the existential sentences. More-

over, if T ` 9x : Q(x), where 9x : Q(x) is an existential sentence, then T ` Q(t), for at

least a ground t.

Proof. By induction on the structure of formulas, using the reachability hypothesis and

Corollary 2.1. 2

That is, for iso-closed theories, Q may contain negation, whereas P cannot contain

negation for ini-closed theories, unless the latter are also iso-closed.

Now we consider closed logic programs as closed �rst-order theories.

Let P be a logic program, with signature �

P

� hF

P

; R

P

i. We will separately consider

the axioms of CET (F

P

), the universal closure 8P of the clauses of P , and, for every

predicate p 2 R

P

, the only-if parts of the completed de�nition Cdef

�

(p) of p in P . For

the latter, we will use the counterposition 8x : :p(x)  :D(x), instead of the usual

8x : p(x) ! D(x), because the former is an Harrop formula and we can use it in con-

structive reasoning. By Cdef

�

(P ), we will indicate the set of the Cdef

�

(p), for p 2 R

P

.

The completion of P , written Comp(P ), is the union of CET (F

P

), P and Cdef

�

(P ).

Example 3.1 Let us consider the usual program SumP for the sum of natural numbers,

with signature �

SumP

� hf0

0

; s

1

g; fsum

3

gi. Now CET (0

0

; s

1

) contains the axioms

f8x : :0 = s(x); 8x; y : s(x) = s(y)! x = yg [ f8x : :s

n

(x) = xjn > 0g

5

8SumP is:

8x : sum(x; 0; x); 8x; i; v : sum(x; s(i); s(v)) sum(x; i; v)

Cdef

�

(sum) is (after some obvious simpli�cations):

8x; y; z : :sum(x; y; z) :(y = 0 ^ z = x _ (9i; v : y = s(i) ^ z = s(v) ^ sum(x; i; v)))

The completion is Comp(SumP ) = CET (0

0

; s

1

) [ 8SumP [ Cdef

�

(sum).

5

n is not the arity: it indicates the iteration of s for n times.
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H

P

will indicate the Herbrand Structure corresponding to F

P

. As usual, a Herbrand

Model is an interpretation of the predicates of R

P

over the domain of H

P

. The Minimum

Herbrand ModelM(P ) is de�ned in the usual way.

Theorem 3.2 M(P ) is an initial model of P and of Comp(P ), but it is not an isoinitial

model of P .

Proof. The initiality of M(P ) is well-known [5]. M(P ) cannot be an isoinitial model

of P , because no negated formula is provable from P (that is, P is not and cannot be

atomically complete). 2

One would expect thatM(P ) is an isoinitial model of Comp(P ). However, this is not

necessarily true, as shown by the following example:

Example 3.2 Consider the program P

1

:

p(a)  q(a)

q(a)  p(a)

(P

1

)

with signature �

1

� hfa

0

g; fp

1

; q

1

gi. CET (a) is empty. Cdef

�

(p) is 8x : :p(x) :(x =

a ^ q(a)), and Cdef

�

(q) is 8x : :q(x) :(x = a ^ p(a)).

Atomic completeness requires that Comp(P

1

) ` p(a) or Comp(P

1

) ` :p(a), and

Comp(P

1

) ` q(a) or Comp(P

1

) ` :q(a). However these requirements are not met and,

therefore, no reachable isoinitial model can exist. On the other hand, the minimum

Herbrand Model of P

1

(where p(a) and q(a) are false) is an initial model of Comp(P

1

).

Therefore P

1

and Comp(P

1

) are ini-closed, but not iso-closed.

Let us consider the program P

2

p(a)  q(a)
(P

2

)

Comp(P

2

) is both ini- and iso-closed. Indeed, now Cdef

�

(q) is 8x : :q(x), and we can

prove :q(a) and :p(a). The Minimum Herbrand Model of P

2

is the same as that of P

1

,

but now it is both initial and isoinitial.

Finally, while P

1

does not terminate with respect to the goals  p(a) and  q(a), P

2

�nitely fails for both.

This example suggests that termination and iso-closure are related. Indeed, we can

prove the following result:

De�nition 3.3 (Existential Ground-termination) Let P be a de�nite program. P ex-

istentially ground-terminates if and only if its Herbrand Universe is not empty and, for

every ground goal  A, either there is a refutation of  A, or  A �nitely fails.

Theorem 3.3 Let P be a de�nite program with a non-empty Herbrand universe. Comp(P )

is iso-closed if and only if it existentially ground-terminates.

Proof. If Comp(P ) is iso-closed, it is atomically complete. By completeness of SLDNF -

resolution for de�nite programs, P existentially ground-terminates. If P atomically

ground-terminates, then Comp(P ) is atomically complete. 2

This theorem indicates that we can use termination analysis for stating isoinitiality.

Moreover, we can also do the converse, i.e. we can derive existential ground-termination

by stating isoinitiality.
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Example 3.3 Consider the program SumP in Example 3.1. We can prove that SumP

existentially ground-terminates. Therefore, we can conclude that its minimum Herbrand

Model is an isoinitial model of Comp(SumP ).

However, we can also proceed in a di�erent way. Since the axioms of Comp(SumP )

are Harrop formulas, Kat is semi-constructive with respect to it. By induction on n, we

can prove that, for every s

n

(O):

Comp(SumP ) ` sum(x; s

n

(O); z

1

) ^ sum(x; s

n

(O); z

2

)! z

1

= z

2

(1)

Comp(SumP ) `

Kat

9z : sum(x; s

n

(O); z) (2)

From (1) and (2) we get

Comp(SumP ) `

Kat

sum(x; s

n

(O); z) _ :sum(x; s

n

(O); z) (3)

In (1), classical logic CL is used. As we already said, this is permitted because the

proved formula is a Harrop one.

By constructiveness, we get that Comp(SumP ) is atomically complete. Therefore, its

(trivially reachable) minimum Herbrand model is an isoinitial one.

As a corollary, we also get that SumP existentially ground-terminates.

By Theorem 3.2, for a de�nite program P , P and Comp(P ) are always ini-closed, but

they may not be iso-closed, as we have shown. Local variables are a remarkable source

of possible absence of iso-closure, as is shown by the following example:

Example 3.4 Let us assume that there is a program P

r

for computing a relation r(x; y)

over some domain. Let P

q

be the following program:

8x : q(x) 9y : r(x; y)

The completed de�nition Cdef

�

(q) is

8x : :q(x) :(9y : r(x; y))

Let us assume that Comp(P

r

) is iso-closed. This does not guarantee that Comp(P

r

[P

q

),

i.e Comp(P

r

) [ Cdef

�

(q), is iso-closed. However, it is ini-closed, because ini-closure is

always guaranteed, for de�nite programs. That is, initial semantics does not have the

capability to expose a possible lack of information, with respect to the decidability of q.

As we can see, Comp(P

r

[ P

q

) is iso-closed if and only if Comp(P

r

) is complete with

respect to all the formulas :(9y : r(t; y)) such that t is a ground term. For example, if

the program P

r

is

r(a; b) 

then Comp(P

r

) ` 9y : r(a; y)) and Comp(P

r

) ` :(9y : r(b; y)), i.e. Comp(P

r

[P

q

) ` q(a)

and Comp(P

r

[ P

q

) ` :q(b), i.e. it is iso-closed.

Let us conclude with a quick look at normal programs, even though they are not the

main concern of this paper. For a normal program P ,

6

8P and Comp(P ) may be not ini

and not iso-closed.

6

Here we consider only consistent normal programs.
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Example 3.5 Consider the program P

3

:

p(a)  :q(a)

q(a)  :p(a)

(P

3

)

8P

3

and Comp(P

3

) are not ini- and not iso-closed. Indeed P

3

has three Herbrand models:

fp(a)g, fq(a)g and fp(a); q(a)g, and Comp(P

3

) has two Herbrand models: fp(a)g and

fq(a)g.

The reason for the non-closure of P

3

is circularity: p is de�ned in terms of q, and q in

terms of p, in a non-well-founded way. Circularity is exposed by both initial and isoinitial

semantics.

The same kind of circularity also occurs in the program P

1

of Example 3.2. In that

case, however, circularity was exposed only by isoinitial semantics. In initial semantics,

circular de�nite programs have an intended model, namely the empty model.

It is worthwhile to remark that we are interested in logic programs as �rst-order

theories. In particular, we study the intended models of normal logic programs, but we

do not deal with the soundness or completeness problems of SLDNF -resolution. For

example, in an iso-closed program P , Comp(P ) ` 9x : :A(x) entails Comp(P ) ` :A(t)

for at least one ground term t (see Theorem 3.1), while, with SLDNF -resolution, the

open goal  :A(X) gives rise to the well-known problem of 
oundering.

4 Isoinitial Semantics for Open Logic Programs

A theory T is open with respect to sem, or sem-open for short, if it is consistent and

has no sem-model. We consider a sem-open theory as an incomplete axiomatisation of

a sem-model, to be completed by adding new axioms and, possibly, new symbols to the

signature.

Open theories are needed if we want to compose small well-de�ned theories to build

new larger theories [7, 6]. In the case of programs, open programs are needed if we want

to use and compose them as modules [3, 4]. In this paper, we do not treat the problem

of theory or program composition. Rather, we study only the consequences of initial and

isoinitial semantics in open theories and programs.

Dealing with open theories, we have to consider di�erent signatures. A signature

� � hF;Ri is a subsignature of �

0

� hF

0

; R

0

i, written � � �

0

, if and only if F � F

0

and

R � R

0

.

For � � �

0

, we have the well known notions of reduct and expansion. The �-reduct of

a �

0

-structure N is the �-structure Nj� that has the same domain as N and interprets

each symbol s of � in the same way as N , i.e., s

Nj�

= s

N

. Conversely, ifM = Nj�, N

is said to be a �

0

-expansion ofM.

A well known property of reducts is that, for every �-formula F , N j= F i� Nj� j= F .

Now we can discuss open theories. In general, an open theory O

1

leaves open the

intended meaning of some symbols and, possibly, the intended domain. O

1

is composed

with another closed or open theory O

2

, giving rise to a composite theory O

1

O

2

. The

resulting theory may be further composed with O

3

, and so on, until a �nal closed the-

ory is obtained. This is what happens, for example, when theories are logic programs.

Composing them yields a �nal closed program.

If composition is associative, i.e. (O

1

O

2

)O

3

= O

1

(O

2

O

3

), each sequence O

1

O

2

� � �O

n

is equivalent to a two-step sequence O

1

T , with T = O

2

� � �O

n

. For example, composition
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of logic programs is associative. Moreover, in many interesting cases, if O

1

T is closed,

then so is T . This is the case, for example, for program composition without mutual

recursion. In the sequel we consider cases where we assume T to be sem-closed.

Let us start from our sem-closed theory T , with sem-model I. Let us assume that

we add new constant, function or relation symbols. In general, the new symbols become

open symbols, since, in the new language, T is no longer sem-closed. In our previous

discussion, they are closed by the axioms of O

1

. The problem is: if we close T by some

O

1

, what is preserved of the sem-model I of T ? A �rst answer is:

Theorem 4.1 Let � � hF;Ri be a signature, and T be a sem-closed �-theory, with

sem-model I � hD;F

I

; R

I

i. Let �

0

� hF

0

; R

0

i be a larger signature, and T

0

be a sem-

closed theory containing T , with sem-model I

0

. Then there is a unique sem-morphism

h : I ! I

0

j�.

Proof. The proof follows easily from the fact that T � T

0

and, hence, I

0

j� j= T . 2

Let us brie
y consider the consequences of this theorem:

Corollary 4.1 Let T , T

0

, I, I

0

be as in Theorem 4.1. If sem is ini, then for every

positive existential �-sentence 9(P ), I j= 9(P ) entails I

0

j= 9(P ).

If sem is iso, then for every existential �-sentence 9(Q), I j= 9(Q) entails I

0

j= 9(Q).

Moreover, for a quanti�er-free �-sentence, I j= Q i� I

0

j= Q.

Proof. The proof follows from Theorem 3.1, I

0

j� being a model of T . 2

As we can see, iso-closed theories preserve truth and falsity of quanti�er-free formulas.

This corresponds to the fact that I is isomorphically embedded into I

0

j�. In initial

semantics, I is only guaranteed to be homomorphic.

When the domain is preserved, iso-closure has a strong consequence:

Corollary 4.2 Let T , T

0

, I, I

0

, h be as in Theorem 4.1. If sem is iso and h is surjective,

then, for every �-sentence F , I j= F i� I

0

j= F .

Proof. A surjective isomorphic embedding is an isomorphism. 2

Corollary 4.2 does not hold for initial semantics, because surjective homomorphisms

are not necessarily isomorphisms.

For logic programs, Corollary 4.1 applies when we add new constant or function sym-

bols, while Corollary 4.2 applies when we add only new predicates. This suggests that

it is useful to start from a signature larger than the one of the program at hand, and

containing all the possible function and constant symbols. In this way, if we work with

iso-closed programs, then the strong property of Corollary 4.2 is guaranteed.

7

However, �xing in advance the whole domain is too restrictive. A more reasonable

alternative is to introduce many-sorted programs.

Example 4.1 Let us consider the program SumP of Example 3.1, and let us introduce

the following program for computing the sum of a list of natural numbers:

sumlist(nil; 0) ; 8n; l; a; b : sumlist(n:l; a) sumlist(l; b) ^ sum(n; b; a)

We have to add the list constructor � and the constant nil. If we stay in the one-

sorted case, the predicate sum is automatically extended to the larger domain. Since

Comp(SumP ) is iso-closed, by the previous results we have that the old Minimum

Herbrand Model is isomorphically embedded into the new one.

8

Therefore, truth of

7

To apply Corollary 4.2 correctly, we have to check that the new Comp(P

0

) entails the old one.

8

In this case the new theory is iso-closed, but this is not guaranteed in general.
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quanti�er-free and existential closed formulas is preserved. However, this iso-complete

axiomatisation may be incomplete with respect to formulas like :exists(Q), i.e., the lat-

ter may be true in the original model but false in the new one. A possible solution is

to introduce lists as a new sort. In this case the domain interpreting the sort of natural

numbers does not change, sum cannot be applied to lists, and we are in a situation where

Corollary 4.2 applies.

In general, we can show that Corollary 4.2 can be extended to the many-sorted case,

and it holds whenever the domains interpreting the old sorts are preserved. This shows

that introducing sorts is very useful, when dealing with program composition.

Parametrised theories are a particular case of open theories. A parametrised theory

T (P ) is a theory with signature � = hF;Ri and a set P � F [ R of parameters. Let us

indicate by �

P

= hF \ P;R \ P i the subsignature of the parameters. A �

P

-structure P

can be seen as a kind of parameter passing, and we can consider the P-models of T (P )

determined by it.

De�nition 4.1 Let T (P ) be a �-theory, and P be a �

P

-interpretation. A P-model of

T (P ) (if one exists) is a modelM of T such thatMj�

P

= P.

That is, P-models are models that agree with the parameter passing P.

De�nition 4.2 Let � � � be two signatures, P be a �-structure, and N and M be

two �-expansions of P. A P-homomorphism h :M!N is a homomorphism such that

h(s

M

) = h(s

N

) = h(s

P

), for every symbol s of �. A P-(isomorphic embedding) is a

P-homomorphism that preserves the complements of the relations.

That is, P-homomorphisms and isomorphisms completely preserve the parameter pass-

ing P (i.e., they work as the identity over the parameters). P-initial models and P-

isoinitial models are de�ned like initial and isoinitial models. The di�erence is that they

use P-homomorphisms and P-isomorphisms.

De�nition 4.3 Let �(�) = hF;Ri be a signature and T (P ) be a parametric �-theory.

T (P ) is ini-parametric if and only if, for every �

P

-interpretation P, the classMOD

P

(T (P ))

of the P-models of T (P ) contains a P-initial model I

P

. If I

P

is P-isoinitial inMOD

P

(T (P )),

then T is iso-parametric.

All the model-theoretic results that we have shown for initial and isoinitial models

extend to P-initial and P-isoinitial models, considering the class of P-models of a theory.

Here reachability is not required, since the domain of the P-models is completely left to

P.

With respect to provability, an open theory in general does not prove any ground

atomic formula, since relation symbols are left open. For example, an open program

often `always �nitely fails'. We have to complete the theory, by adding a set Ax of new

axioms, that characterises a parameter passing P. Here we have the following su�cient

completeness problem: how much of P is to be codi�ed by Ax, in order to obtain a

sem-complete theory T (P ) [ Ax? Indeed, in general, sem-completeness of Ax does not

su�ce. It turns out that the use of constructive systems allows us to develop a proof

theory for stating iso-parametricity, based on Corollary 2.3 (see [10]).

Moreover, the above notion of parametricity may be too restrictive. There are cases

where it su�ces to consider only particular classes of P. For example, if we have already

in mind a reachable domain where we want to interpret the relation symbols of T (P ),
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we can consider only those P that have this domain. However, these aspects are not the

main concern of this paper, so we will not discuss further details about parametricity.

Now, we consider open logic programs. If a predicate q(x) is not de�nite

9

in a program

P , then we will consider it an open predicate. To handle such predicates, we introduce

the open completion Ocomp(P ), that contains Cdef

�

(p) for every de�ned predicate p,

but does not contain Cdef

�

(q) = 8x:q(x), for the open predicates.

Example 4.2 Let us consider the program P

even

even(0); 8x : even(s(x)) odd(x)

It is reasonable to consider odd as an open symbol. The open completion contains

Cdef

�

(even), i.e. 8x : :even(s(x))  :odd(x), but it does not contain 8x : :odd(x).

More precisely, the open completion contains P

even

, Cdef

�

(even) and CET (0; s).

We can show that P

even

is parametric with respect to odd, at least in the class of

interpretations of odd over the Herbrand structure corresponding to CET (0; s). Thus

we have a parametric theory Ocomp(P

even

)(odd). The signature of the parameters is

�

P

= hfg; foddgi.

Theorem 4.2 Let P be a program with at least one open predicate, and with a non-

empty Herbrand Universe. Then Ocomp(P ) is ini-closed, but it is not iso-closed.

We omit the easy proof. This theorem shows that, while initial semantics does not

expose the fact that some information is missing, isoinitial semantics does: Ocomp(P ) is

not iso-complete, hence it is not iso-closed.

For example, Ocomp(P

even

)(odd) is iso-open. We can close it by 8x : odd(s(x))  

even(x). Here mutual recursion is well-founded, i.e. non-circular. Circularity would be

exposed by the lack of an iso-initial model, since iso-initiality is related to existential

ground-termination.

The next example discusses the problem of su�cient completeness:

Example 4.3 Consider the open completion of the program P

q

of Example 3.4:

8x; y : q(x) r(x; y); 8x : :q(x) :(9y : r(x; y))

The parametric Ocomp(P

q

)(r) is ini-closed, and the empty model is its initial model. It

is not iso-closed. It is ini-parametric and iso-parametric. Indeed, the signature of the

parameters is � = hfg; fr

2

gi, and for every �-interpretation P there is one P-initial and

P-isoinitial model of Ocomp(P ). For example, if the domain of P is fa; bg and 9y : r(x; y)

holds in P if and only if x = a, then the corresponding P-isoinitial (and P-initial) model

is the expansion of P interpreting q(a) as true and q(b) as false.

Now, let us assume that we have a program Q. As already remarked in Example

3.4, to obtain an ini-complete Comp(P [ Q), it su�ces that Q is ini-complete. How-

ever, if we want iso-completeness, we need Q to be complete with respect to the sentences

:9y : q(t; y), called su�cient completeness requirements. Therefore, with respect to para-

metricity, initial semantics also works in a larger class of cases, but yields less information.

9

I.e. it does not occur in the head of any clause.
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5 Conclusion

Starting from the general theory of isoinitial models [2], we have presented some prelim-

inary results on initial and isoinitial theories and models. They are oriented towards our

approach to modular program synthesis, but, we believe, they are interesting in general.

The traditional view of a de�nite logic program (e.g., [5]) treats it as an initial theory.

This in our opinion is too restrictive because it basically takes the Closed World view and

does not provide a uniform semantics for negation and open programs, or parametricity.

This view is therefore very much one of programming-in-the-small . For normal programs,

other kinds of semantics have been proposed (for a survey see e.g. [1]). A comparison

with these semantics is one of our next steps.

Our (preliminary) results on isoinitial theories and models are motivated by a search

for a suitable uniform semantics for both programming-in-the-large and programming-in-

the-small . We believe that isoinitial semantics �ts the bill, for logic programs. It handles

not only negation but also parametricity in a uniform manner with respect to both closed

and open programs. Moreover, constructive formal systems can help to formally prove

isoinitiality.

Clearly such a uniform semantics is important if logic programming is to be used for

large-scale software development. Indeed we believe this semantics is a unique feature and

a great advantage of the logic programming paradigm. We have already used isoinitial

semantics in our work in formal program development, and more recently in component-

based software development, in computational logic. It is within this context that we

plan to continue our study of isoinitial theories and models.
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