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Abstract

The inclusion of negation among the logical facilities of LP has been a very

active area of research, and several techniques have been proposed. However, the

negation capabilities accepted by current Prolog compilers are very limited. In

this paper, we discuss the possibility to incorporate some of these techniques in an

e�cient way in a Prolog compiler. Our idea is to mix some of the existing proposals

guided by the information provided by a global analysis of the source code.
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1 Introduction

The desire to write logic programs that use negation is as old as logic programming.

There are many reasons for this necessity: On one hand negation plays a very important

role for knowledge representation and most of its uses cannot be simulated with positive

programs. On the other hand, the possibility to use negation can contribute to include

all the capabilities of logic in a programming language (what also includes equality,

computable functions and higher order logic).

For these reasons, the research community on negation in LP has made a lot of e�orts

to propose di�erent ways to understand and incorporate negation into programming lan-

guages. Most of the interesting proposals rely on semantics, and a considerable amount

of papers in logic programming conferences are devoted to these subjects. Surprisingly,

only a small subset of these ideas have arrived to the �eld on implementation and have

produced modi�cations to Prolog compilers. In fact, the negation capabilities incorpo-

rated by current Prolog compilers are rather limited. To our knowledge, the only negation

techniques that are present in a Prolog compiler are:

� The (unsound) negation as failure rule, that is present in most Prolog compilers

(Sicstus, Bin Prolog, Quintus, etc.).

� The sound (but incomplete) delay technique of G�odel or Nu-Prolog that applies

negation as failure when the variables of the negated goal are ground. It is well

known that it has the risk of 
oundering.

� The constructive negation of Eclipse, that was announced in earlier versions but

has been removed from recent releases.
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This paper is devoted to study the possibility to go a bit further than these experiences,

and to design the steps needed to extend a Prolog compiler with a negation subsystem.

The paper does not try to propose any new method, but to combine existing techniques

to make some negation techniques useful for practical application. The novelty appears

in the techniques used for the combination and the combination strategy.

At the moment, we are interested in techniques with a single and simple semantics.

For this reasons we adopt the most simple possibility: Closed Word Assumption (CWA)

[10] by program completion and Kunen's 3-valued semantics [14]. With respect to the

techniques used, they need to share these semantics. Another important issue is that

they must be \constructive", i.e. the program execution needs to search for the values

that make a negated goal false. One can argue that Chan's constructive negation ful�l

both points, but it is quite di�cult to implement and expensive in terms of execution

resources. So, our idea is to try to use the simplest technique as possible in any particular

case. To help on this distinction, we need to use some tests to characterize the situation.

To avoid the execution of these tests during the execution of the program, the results of

a global analysis of the source code are used. The program analyses includes groundness

detection, elimination of delays, and the determination of the �niteness of the number of

solutions. All these analyses are incorporated in the CIAO compiler [6], an extension of

Sicstus Prolog, and it will be used as the test bench for our proposals.

The rest of the paper is organized as follows. Section 2 presents some preliminaries:

we discuss the negation techniques to be used, and brie
y enumerates the characteristics

of the program analyses. In order to present how the techniques can be introduced in

a Prolog compiler, we start with the management of disequality constraints (Section 3),

then we discuss the implementation of (a part of) constructive negation (Section 4).

Intensional negation as well as the computation of universal quanti�ed goals are studied

in Section 5. Section 6 explains how to combine all the techniques. Finally, we conclude.

2 Preliminaries

In this section we introduce some previous work on negation and program analysis that

will be used along the paper.

2.1 Treatment of Negation

Among the techniques that have been proposed to implement the computation of negated

goals of the form :Q in a program P based on the CWA, the most promising are the

following:

� The negation as �nite failure rule of Clark [10], which states that :Q is a conse-

quence of a program P if a �nitely failed SLD tree for the query Q with respect

to P exists, (in short, if Q �nitely fails). The implementation provided by Prolog

compilers is the following:

naf (Q) :- Q, !, fail.

naf (Q).

that is unsound except if it is used for ground goals (i.e. Q has no free variables).

� There are many works related to the program completion of Clark [10], (see [16],

[1]), some of them ([3, 4]) oriented to obtain a program that is a transformation

of a original program P which introduce also the \only if" part of the predicate

de�nitions (i.e., interpreting implications as equivalences).

� The constructive negation proposed by Chan [8, 9], and formalized in the context

of CLP by Stuckey [21].
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2.2 Information obtained by global analysis

In order to provide some heuristics to guide the computation of the negation process we

will use some techniques of global analysis. Along the paper we assume that a part of

the Prolog compiler produces to same degree of accuracy, the following information. At

least this is true for the CIAO system:

� Groundness: The groundness analysis tries to identify those variables that are

bound to a ground term in a certain point of the program. There are several

papers and implementation of groundness analysis (see, for instance, [17]).

� Elimination of delays: In the presence of delays (or waits) the analysis tries to

identify which of them are useless (so, removing them) or if there is a reordering of

the goals that does not need the delay directive. See [12] for a reference.

� Finiteness of the number of solutions: The analysis is based on complexity and

execution cost to determine if a goal has a �nite number of solutions (even zero) or

there are a potential in�nite number of answers. The interested reader can consult

[15, 2].

3 Management of disequality constraints

The �rst step in our management of negation is to handle disequalities between terms

t

1

6= t

2

. Most Prolog implementations can work with disequalities if both terms are

ground (built-in predicate /==). However, they cannot work in the presence of free

variables. The \constructive" behaviour must allow the \binding" of a variable with a

disequality: the solution to the goal X /== t is the constraint X 6= t. In fact, what

we need is a implementation of CLP (H) (constraints over the Herbrand Universe with

equality and disequality). This capability is present in several CLP Prolog extensions

(Prolog III for instance), but is not available in usual Prolog compilers. As we are going

to prove, the inclusion of disequalities and constrained answers has a very low cost.

First of all, we need a representation for constraint answers. The disequation c(X; a) 6=

c(b; Y ) introduces a disjunction X 6= b _ Y 6= a. For this reason, we use conjunctions

of disjunctions of disequations as normal forms. On the other hand, we will produce

disequations by means of the negation of a equation X = t(Y ). This fact produces

the universal quanti�cation of the free variables in the equation, unless a more external

quanti�cation a�ects them. The negation of such equation is 8 Y X 6= t(Y ). Also,

universally quanti�ed disequations are allowed in the constraints. More precisely, the

normal form of constraints is:

^
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negative information

where each X

i

appears only in X

i

= t

i

, none s

r

k

is Y

r

k

and the universal quanti�cation

could be empty (leaving a simple disequality).

It is easy to rede�ne the uni�cation algorithm to manage constrained variables. This

very compact way to represent a normal form was �rstly presented in [18] and di�ers

from Chan's representation where only disjunctions are used

1

.

Therefore, in order to include disequalities into a Prolog compiler we need to repro-

gram uni�cation. It is possible if the Prolog version allows attributed variables ([7] for

1

Chan treats the disjunctions by means of backtracking. The main advantage of this normal form is

that the search space is drastically reduced.
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instance, in Sicstus Prolog or in Eclipse, where they are called meta-structures). Such

these variables let us keep associated information with each variable during the uni�cation

and that is what can be used to dynamically control the constraints.

Attributed variables are variables with an associated attribute, which is a term. We

will associate to each variable a data structure containing a normal form constraint.

They behave like ordinary variables, except that the programmer can supply code for

uni�cation, printing facilities and memory management. In our case, the printing facility

is used to show constrained answers. The main task is to provide a new uni�cation code.

Once the uni�cation of a variable X with a term t is triggered, there are three possible

cases (up to commutativity):

1. if X is a free variable and t is not a variable with a negative constraint, X is just

bind to t,

2. if X is a free variable or bound to a term t

0

and t is a variable Y with a nega-

tive constraint, we need to check if X (or, equivalently, t

0

) satisfy the constraint

associated with Y . A predicate satisfy is used for this purpose.

3. if X is bound to a term t

0

and t is a term (or a variable bound to a term), the

classical uni�cation algorithm can be used.

A predicate =/=, to check disequalities, is de�ned in a similar way than uni�cation.

The main di�erence is that it incorporates negative constraints instead of bindings and

the decomposition step (not studied before) can produce disjunctions.

As an example, let us show the constraints produced in certain situations. The at-

tribute/constraint of a variable is represented as a list of list of pairs (variable, term)

using a constructor /, i.e. the disequality X 6= 1 is represented as X / 1. When an

universal quanti�cation is used in a disequality (e.g. 8Y X 6= c(Y )) the new constructor

fA=2 is used (the previous constraint is represented as fA (Y, X / c (Y)). The �rst

list is used to represent disjunctions while the list inside represents the conjunction of

disequalities. We focus on the variable X.

SUBGOAL ATTRIBUTE CONSTRAINT

: member (X,[1,2,3]) [[X=1;X=2;X=3]] X 6= 1 ^X 6= 2 ^X 6= 3

: member (X,[1,2,3]), X =/= 2 [[X=1;X=3]] X 6= 1 ^X 6= 3

member (X,[1]), X =/= 1 fail false

X =/= 4 [[X=4]] X 6= 4

X =/= 4; (X =/= 6, X =/= Y [[X=4]; [X=6;X=Y ]] X 6= 4 _ (X 6= 6 ^X 6= Y )

member (X,[0,s(0),s(s(0))]),

fA (Y, X =/= s (Y)) 0 X = 0

4 Constructive negation

The second technique we are going to implement is constructive negation. Constructive

negation was proposed by Chan [8, 9] and it is widely accepted as the \most promising"

method to handle negation with Kunen's 3-valued semantics (up to some extensions and

modi�cations proposed by other authors). Although the �rst Chan's paper is credited as

the presentation of the idea, but a \mistake" in the development of the technique (solved

in the second one), it has still some interesting results from the implementation point of

view. The main idea of constructive negation is easy to describe: in order to obtain the

solutions of :Q we proceed as follows:
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1. Firstly, the solutions of Q are obtained getting a disjunction:

Q � S

1

_ S

2

_ ::: _ S

n

Each of the component S

i

can be understood as a conjunction of equalities:
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i

2. Then the formula is negated and rearranged to obtain a normal form constraint:
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n

)

The formula can be obtained in a di�erent way depending on how we negate a

solution. It can also be arranged in a disjunction of conjunctions according with

the variables in each S

j

i

.

Of course, the solution is not valid in general, because a goal can have an in�nite

number of solutions. [8] o�ers a technique to negate a solution and to normalize the

previous formula. [18], working on a CLP framework as proposed by [21], adapted the

idea (in a di�erent but equivalent context) using our notion of constraint normal form.

Given a constraint

m
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the negation will produce the following constraints:
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i
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), for all l < n.

Notice again that we are using a much more compact representation for the negated

constraints than that proposed in [8].

Once we have explained how to negate a constraint, the rest is easy: for each solution,

each possibility of the negation is combined with one of the others. All these di�erent

solutions are obtained by backtracking.

The implementation of :Q (in Prolog cneg (Q)) works as follows:

1. First of all, all variables V of the goal Q are obtained.

2. Secondly, all the solutions of Q for variables in V are computed using setof=3.

Each solution is a constraint in normal form.

3. The negation of each solution is computed and combined to obtain an answer to

:Q one by one.

Of course, this implementation is only valid when it is detected that the goal has a �nite

number of solutions. The full code ([19]) is available from the authors on request.

Some examples were this technique is useful are the following. They are extracted

from a running session.

j ?- cneg (X =/= Y).

X = Y ?;

no

j ?- cneg (X=/=Y, member(Y,[1,2])).

Y /= 1, Y /= 2 ?;

X = 1, Y = 1 ?;

X = 2, Y = 2 ?;

no

j ?- cneg(member(Y,[X]),member(Y,[2])).

X /= 2; Y /= 2 ?;

no

j ?- cneg (X =/= X).

true ? ;

no

j ?- cneg (cneg (X =/= X)).

no

j ?- cneg(member(X,[1,2,3])).

X /= 1, X /= 2, X /= 3 ? ;

no

j ?- cneg ([1,X] =/= [Y,2]).

Y = 1, X = 2 ?;

no
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5 Intensional negation and universal quanti�cation

Intensional negation [3, 4] uses a di�erent approach to handle negation. A program

transformation technique is used to add new predicates to the program in order to express

the negative information. Informally, the complement of head terms of the positive clauses

are computed and they are used later as the head of the negated predicate.

For example, if we have the program:

even (0).

even (s(s(X))) :- even (X).

the transformation produces a new predicate not even that succeeds when even fails.

not even (s(0)).

not even (s(s(X))) :- not even (X).

There are two problems with this technique. The �rst one is that in the presence on

logical variables in the rhs of a clause, the new program needs to handle some kind of

universal quanti�cation construct. The second trouble is that, while the new program is

semantically equivalent to the completed program, the operational behaviour can di�ers.

In the presence of logical variables, the new predicate can generate all the possible values

one by one, even when a more general answer can be given. The predicate:

p (X, X).

is negated by:

not p (X, Y) :- not eq (0, s(Y)).

not eq (X, Y). not eq (s(X), 0).

not eq (s(X), s(Y)) :- not eq (X, Y).

if the program only contains natural numbers with 0 and succ. The query not p (X,

Y) will generate in�nitely many answers, instead of the more general X 6= Y . An answer

of the form X 6= Y can only be replaced by an in�nite number of equalities.

Our approach to manage this problem is to use constraints instead of concrete terms.

All what we need is to have disequality constraints, what are yet included. So, the

negated predicates of the previous examples, with our transformation, are the following:

not even (X) :- X =/= 0, fA (Y, X =/= s(s(Y))).

not even (s(s(X))) :- not even (X).

not p (X, Y) :- X =/= Y.

Notice that if the program only contains natural numbers, the �rst clause is equivalent

to the one obtained above.

A bit more complicate is the �rst problem. For this purpose we have implemented a

predicate for all=2 that tries to detect if a goal Q is valid for all possible values of a list

of variables [X

1

; : : : ; X

n

] with a call for all ([X1, ..., Xn], Q).

Roughly speaking, the implementation, explained in more detail later, instantiates

incrementally the variables X

1

; : : : ; X

n

and tries to make Q true without further instan-

tiation. The idea was sketched in [4] but without a concrete implementation.
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5.1 Program transformation

We are going to present the transformation technique in a di�erent way that [4]. They

apply the transformation to a restricted class of programs that are powerful enough to

cover all the cases. We prefer to apply the transformation to all kind of programs, what

is closer to the behaviour of the compiler.

In order to formally de�ne the negated predicate not p for p we proceed step by step.

First of all we need the de�nition of the complement of a term t. Without using con-

straints, the only way to represent the complement of a term is a set of terms. However,

this set can be expressed by means of a constraint on a variable X that does not appear

in the term (i.e. the constrained values for X are exactly the terms that are not t.

De�nition: Complement of a term

The complement of a term t (not using the variable X) on the variable X (in symbols

Comp(t)) is a constraint value for X, de�ned inductively as follows:

� Comp(Y ) = fail

� Comp(c) = (X 6= c), with c constant.

� Comp(c(t

1

; : : : ; t

n

)) = 8 Z(X 6= c(t

1

; : : : ; t

n

)), with c a constructor and Z the

variables of t

1

; : : : ; t

n

.

Without loss of generality we can consider that all the predicates has one argument,

taking the tuple construction as a constructor. Given a set of clauses for a predicate p:

C

1

: p(t

1

) : � G

1

.

. . .

C

m

: p(t

m

) : � G

m

.

we say that the complement clause of the program is

not p(X) : � Comp(t

1

); : : : ; Comp(t

m

).

assuming, by adequate renamings, that the terms do not share variables (i.e. var(t

i

) \

var(t

j

) = ; for i 6= j).

This clause covers the cases where there is no de�nition for the predicate in the original

program, and it must be included in the new program. For the rest of the clauses of the

negated predicates some additional concepts are needed:

De�nition: Critical pair

We say that a program has a critical pair t in fl

1

; : : : ; l

r

g � f1; : : : ; mg if

m:g:u:(t

l

1

; : : : ; t

l

r

) = � and t = t

l

1

�

The de�nition is well know in term rewriting and, intuitively, detects the terms for

which there are more than one clause applicable. In those cases, all the bodies of the

applicable clauses must be negated together.

For each critical pair t in fl

1

; : : : ; l

r

g of the program we generate the following clause:

not p(t) : � negate body(var(t); (G

l

1

; : : : ;G

l

r

)):

where the negate body function negates a body clause (see below). There is no rule if

all the G

l

j

are empty. Notice that the formula p(t)  ! G

l

1

_ : : : _ G

l

r

is part of the

completed program.

Now, we are in a position to transform each of the clauses of the program. Each clause
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p(t

i

) : �G

i

.

generates one of the following clauses for not p:

� not p(t

i

) : �t

i

= = = t; negate body(var(t

i

); G

i

).

if there is a critical pair t involving clause i.

� not p(t) : �negate body(var(t

i

); G

i

). otherwise. There is no clause if G

i

is empty.

The e�ect of negate body is easy to explain. It just negates the body and introduces

universal quanti�cations when they are needed:

� negate body(V;G) = negate(G) if var(G) � V

� negate body(V;G) = for all([Y

1

; : : : ; Y

k

]; negate(G))

if var(G)� V = fY

1

; : : : ; Y

k

g 6= ;.

The function negate can be de�ned inductively: it moves conjunction (,) into disjunc-

tion (;), disjunction into conjunction, equality into disequalities and vice versa.

The e�ect of negate over a single predicate call needs a further discussion. In prin-

ciple it is possible to de�ne negate(q(s)) by any of the previous methods: negation as

failure (naf (q (s))), constructive negation (cneg (q (s))) or the transformed pred-

icate (not q (s)). The last one will be used in case of recursive calls. The decision

will be �xed by the negation strategy of the compiler that will be discussed in the next

section.

The transformation has some similarities with the one proposed in [5]. Although we

have only found the paper very recently, we can mention some di�erences. [5] proposal

has a much more simple formulation and some optimization covered by our detection

of critical pairs are not taken into account. The result is that much more universally

quanti�ed goals are generated and the programs contains a lot of trivial constraints (i.e.

they are trivially true or false, as X = a ^ X 6= a, or X = a _ X 6= a).

Let us discuss the application of the method in a couple of examples. Consider the

fragment of the program:

less (0, s(Y)).

less (s(X), s(Y)) :- less (X, Y).

First of all, we need to compute the complement of the terms in the head of the clauses,

with respect to the variable pair (W, Z). We have:

� Comp(0; s(Y )) = (W 6= 0; 8 Y (Z 6= s(Y )))

� Comp(s(X); s(Y )) = (8 X(W 6= s(X)); 8 Y (Z 6= s(Y )))

The complement clause is:

not less (W, Z) :- W =/= 0, fA (X, W =/= s (X)), fA (Y, Z =/= s (Y)).

There are no critical pairs, so the transformed clause is (the �rst one has no body):

not less (s (X), s (Y)) :- not less (X, Y).

The second example is also well known, and includes free variables in the body:

parent(john,mary). ancestor(X,Y) :- parent(X,Y).

parent(john,peter). ancestor(X,Y) :- ancestor(X,Z), parent(Z,Y)

parent(peter,susan).

The transformation of the predicate ancestor has no complement clause. The �rst

clause and the second clause have an obvious critical pair (X; Y ). The clause for it is:
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not ancestor (X, Y) :- cneg (parent (X,Y)),

for all ([Z], (not ancestor (X, Z);

cneg (parent (Z,Y))).

Notice that we have used cneg as the way to negate the predicate parent. It is safe

because parent has always a �nite number of solutions. In the case we can infer that a

call to :parent is ground, we can use naf instead of cneg. Notice that the call inside the

for all goal has the �rst argument ground for sure.

In principle, we need to transform each of the clauses, including the constraint (X; Y ) =

= = (X; Y ) in their bodies, but it is trivially unsatis�able and we can omit the clauses.

5.2 Implementation of universal quanti�cation

The e�cient implementation of universally quanti�ed goals is not an easy task. However,

we are only interested in a particular use of this quanti�cation: that which comes from

the previous transformation.

There are some other approaches to implement some kind of universal quanti�cation,

although they are rather limited:

1. Nu-Prolog [20] and G�oedel [13] include universally quanti�ed goals, but they are

executed when all the variables are ground. Obviously it has the risk of 
oundering.

2. Voronkov [22] has studied the use of bounded quanti�cations over �nite sets.

Our implementation is based on two ideas:

1. A universal quanti�cation of the goalQ over a variableX succeeds when Q succeeds

without binding (or constraining) X.

2. A universal quanti�cation of Q over X is true if Q is true for all possible values for

the variable X.

The second point can be combined with the �rst one in order to get an implementa-

tion. Instead of generating all possible values (which is not possible in the presence of a

constructor of arity greater than 0) we can generate all the possible esqueletons of values,

using new variables. The simplest possibility is to include all the constants and all the

constructors applied to fresh variables. Now, the universal quanti�cation is tested for all

this terms, using the new variables in the quanti�cation.

In order to formalize this concept, we need the notion of covering.

De�nition: Covering of the Herbrand Universe

A covering is any set of terms ft

1

; : : : ; t

n

g such that:

� For every i; j with i 6= j, t

i

and t

j

do not superpose, i.e. there is no ground

substitution � with t

i

� = t

j

�.

� For all ground term s of the Herbrand Universe there exists i and a ground substi-

tution � with s = t

i

�.

The simplest covering is a variable fXg. If the program only uses natural numbers, the

following sets are coverings: f0; s(X)g, f0; s(0); s(s(X))g f0; s(0); s(s(0)); s(s(s(X)))g,

. . .

The example also gives us the hint about how to incrementally generate coverings.

We depart from the simplest covering X. From one covering we generate the next one

choosing one term and one variable in this term. The term is removed and then we add

all the terms obtained replacing the variable by all the possible instances of that element.
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In order to �x a strategy to select the term and the variable we use a Cantor's

diagonalization

2

to explore the domain of a set of variables. It is a breadth �rst strategy

to cover every element of the domain. The previous concepts extend trivially in the case

of tuple of elements of the Herbrand Universe, i.e. several variables.

The implementation of the for all ([X1, ..., Xn], Q) predicate follows the pre-

vious ideas. We start with the initial covering f(X

1

; : : : ; X

n

)g.

The actual covering is checked with the predicate Q. This means that for each element

t in the covering we execute Q replacing the variables (X

1

; : : : ; X

n

) by t. We have two

possibilities:

1. Q succeeds in all the cases without any bind of the variables introduced by the

covering. Then the universal quanti�cation is true.

2. Q fails in a case without any attempt to use a quanti�ed variable. Then the

universal quanti�cation is false for sure.

3. Q fails in at least one of the cases attempting to use a quanti�ed variable. The

next covering is generated and the process continues recursively.

There are two important details that optimize the execution. The �rst one is that

in order to check if there are bindings in the covering variables, it is better to replace

them by new constants that do not appear in the program. In other words, we are using

\Skolem constants".

The second optimization is much more useful. Notice that the coverings grow up

incrementally, so we only need to check the most recently included terms. The other

ones have been checked before and there are no reason to do it again.

As an example, consider the sequence of coverings for the goal 8 X; Y; Z p(X; Y; Z)

in a program using only natural numbers. Sk (i), with i a number represents the ith

Skolem constant.

C

1

= [(Sk(1); Sk(2); Sk(3))]

C

2

= [(0; Sk(1); Sk(2)); (s(Sk(1)); Sk(2); Sk(3))]

C

3

= [(0; 0; Sk(1)); (0; s(Sk(1)); Sk(2)); (s(Sk(1)); Sk(2); Sk(3))]

C

4

= [(0; 0; 0); (0; 0; s(Sk(1))); (0; s(Sk(1)); Sk(2)); (s(Sk(1)); Sk(2); Sk(3))]

C

5

= [(0; 0; 0); (0; 0; s(0)); (0; 0; s(s(Sk(1)))); (0; s(Sk(1)); Sk(2)); (s(Sk(1)); Sk(2); Sk(3))]

C

6

= : : :

In each step, only two elements need to be checked, those that appear underlined. The

rest are part of the previous covering and they do not need to be checked again. Again,

the authors can supply details of the code [19].

Let us show some examples of the use of the for all predicate, indicating the covering

found to get the solution. We are still working only with natural numbers:

j ?- for all ([X], even (X)).

no

with covering f0; s(0); s(s(Sk(1))g.

j ?- for all ([X], X =/ a).

yes ? .

with covering fSk(1)g.

j ?- for all ([X], less (0, X) -> less (X, Y)).

Y = s (s( A)) ?.

2

This is a method to enumerate IN

m

. It ensures that all elements are visited in a �nite number of

steps.
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with covering f0; s(Sk(1))g.

Actually, this solution does not guarantee completeness of the query evaluation pro-

cess. There are some cases when the generation of coverings does not �nd one which is

correct or incorrect. Nevertheless, this solution fails to work properly in very particular

cases. Remember that we are not interested in giving the user an universal quanti�cation

operator, but just to implement the code coming from the tranformation of a negated

predicate.

5.3 Behaviour of the application of the technique

Here we have some examples coming from a running session that show the behaviour of

the transformation technique:

j?- not even (s(s(0))).

no

j?- not even (s(s(s(0)))).

yes ?;

no

j?- not even(X).

X =/= 0, X =/= s (s ( A)) ? ;

X=s(s(Y)),Y=/=0,Y=/=s(s( A)) ? ;

.

.

.

j?- not less (0, s(X)).

no

j?- not less (s(X), 0).

true ? ;

no

j?- not less(s(X), X).

^C

Prolog interruption (h for help)? a

fExecution abortedg

j?- not ancestor (mary, peter).

yes ? ;

no

j?- not ancestor (john, X).

no

j?- not ancestor (peter, X).

X = john ? ;

X = mary ? ;

X = joe ? ;

X = peter ? ;

no

The divergence of the goal not less(s(X), X) is of the same nature of the divergence

of less (X, s (X)) and is related to the incompleteness of Prolog implementations.

In any case, our implementation provides only sound results, although there are cases

where we cannot provide any result.

6 The compiler strategy

Once we have described the main implemented methods, we can discuss the most im-

portant part: the combination of these techniques in order to get a system to handle

negation.

What we need is a strategy that the compiler can use to generate code for a negated

goal. The strategy is �xed by the information of the di�erent program analyses. Notice

that the strategy also ensures the soundness of the method: if the analysis is correct, the

precondition to apply a technique is ensured, so the results is sound.

Given a (sub)goal of the form :G(X) the compiler produces one of the following codes:

1. If the analysis of the program ensures that G(X) is ground then simple negation as

failure is applied, i.e. it is compiled to naf (G(X)). Since 
oundering is undecidable,

the analysis only provides an approximation of the cases where negation as failure

can be applied safely. This means that maybe we are avoiding to use the technique

even in cases that it could work properly.

2. Otherwise, the compiler generates a new program replacing the goal by G(X) and

adding a delay directive to get ground variables in X before the call. Then, the
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compiler applies the elimination of delays technique. If the analysis and the pro-

gram transformation are able to remove the delay (maybe moving the goal), use

the outcoming program but replace G(X) by naf (G(X)) as before. Again, the ap-

proximation of the analysis could forbid us to apply constructive negation in cases

it should give a sound result.

3. Otherwise, look for the result of the �niteness analysis. If it ensures that G(X) has

a �nite number of solutions, then the compiler can use simple constructive negation,

transforming the negated goal into cneg (G(X)).

4. Otherwise, the compiler uses the intensional negation approach. Some negated

predicates are generated and the goal is replaced by negate(G(X)).

During this process new negated goal can appear and the same compiler strategy

is applied to each of them.

The strategy is incomplete, in the sense that the last step does not ensure to produce

a result. However, if a result is got, it is correct.

Up to now, we have applied this strategy manually (using the real results of the

analyzers) and a good collection of programs with negation has been checked. As a

future work, we plan to modify the CIAO compiler in order to implement this strategy.

7 Conclusion

We have presented a collection of techniques, more or less well known in logic program-

ming, that can be used togheter in order to produce a system that can handle negation

e�ciently. Although we do not claim to invent any \new method" to handle negation,

to our knowledge it is one of the �rst serious attempts to include such proposals on the

incorporation of negation into a Prolog compiler.

Our main contribution is to use the information of a program analyzer to design a

strategy to organize the use of the negation components.

Some other contributions of the paper are the management of disequality constraints

using attributed variables and the new compact way to handle constraint normal forms,

which has a number of advantages.

The transformation approach in term of disequality constraint is another important

point, because it solves some of the problems of intensional negation in a more e�cient

way than [5].

Finally, the approach to compute universally quanti�ed goals was sketched in [4], but

the concrete implementation needs to solve a lot of technical di�culties, what makes our

implementation more than a student exercise.

The results of the practical experimentation are quite acceptable on time. However,

we cannot compare with existing methods, so the runtimes are not useful.

As a future work, we plan to modify the compiler in order to produce a version of CIAO

with negation. It will give us a real measure of what important is the information of the

analyzer to help our strategy. On the other hand, there are still some unsolved problems.

The most important is the detection of the cases where the universal quanti�cation does

not work. Probably, in such these cases we will need to use full constructive negation,

hard to implement and, probably, not very e�cient. The work of [11] could help on this

task. In any case, it will be the last resource to be used.
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