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Abstract

We de�ne a logical semantics called back-and-forth, applicable to normal and

disjunctive datalog programs as well as to programs possessing a second, explicit or

`strong' negation operator. We show that on normal programs it is equivalent to the

well-founded semantics (WFS), and that on disjunctive programs it is equivalent

to the P-stable semantics of Eiter, Leone and Sacc�a, hence to Przymusinski's 3-

valued stable semantics. The main advantage is that it is characterised by simple

conditions on models in a well-known nonclassical logic and therefore provides a

better insight into the nature of partial stable models from a logical standpoint. It

also suggests why the P-stable models are a natural generalisation of WFS to the

disjunctive case.

On extended programs with strong negation, the back-and-forth semantics is

apparently new, di�ering from answer sets, from WSFX and from the static seman-

tics.

Keywords: stable models, P-stable models, disjunctive programs, intermediate

logics, strong negation.

1 Introduction

Of the major semantics proposed for logic programs with negation-as-failure, the well-

founded semantics (WFS) of [9] and the stable model semantics of [10] have proved to

have appealing and enduring features. Each has its advantages and drawbacks. Inference

based on stable model semantics is stronger and in many instances more `intuitive' than

that based on well-founded semantics. On the other hand, WFS is de�ned for a larger

class of programs and admits a more e�cient computation. Then again, the stable model

semantics for normal programs has a very simple and natural extension to disjunctive

programs, and even to extended programs having an additional, strong negation operator.

So it is almost immediately applicable to these more expressive kinds of formalism. It

is much harder to identify analogously simple and natural extensions of WFS. Indeed,

in the case of disjunctive programs, several di�erent semantics have been proposed as

extensions of WFS.

Another di�erence between the two approaches concerns their logical characterisation

and their relation to other systems of nonmonotonic reasoning. There is a large body of

results comparing stable model inference with default logic, circumscription, nonmono-

tonic modal logic, and other systems. Recently, in [22], inference base on stable models
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and answer sets has been characterised as a simple form of minimal model reasoning in a

nonclassical logic. In the case of WFS, fewer interesting connections with nonmonotonic

logics are known, and comparable characterisations in nonclassical logic have yet to be

provided.

The present paper is devoted to one such characterisation. More precisely, we de-

scribe here a logical semantics for logic programs which we call the back-and-forth se-

mantics. Like stable semantics, it has an obvious extension to disjunctive programs and

to programs possessing a strong negation operator. The underlying logic involved is a

well-known nonclassical logic, sometimes called here-and-there, because it is complete

for linear Kripke-frames having precisely two `worlds', \here" and\there". Our seman-

tics is so named because its intended models can be described by a certain condition

that takes one from \here" to \there" and back again. The logic of here-and-there can

also be described as a 3-valued logic and as the greatest extension of intuitionistic logic

that is properly contained in classical logic. It also has a natural interpretation already

proposed by Heyting [16] in 1930: namely as a logic whose \third" truth value corre-

sponds to the property that the proposition in question can never be false, yet cannot

be proven true. To handle strong negation, we simply take the least strong negation

extension of here-and-there (in the sense of Nelson's [20] strong negation) and re-apply

the same back-and-forth conditions. Here-and-there, and its least strong negation exten-

sion, are precisely the logics suitable for characterising inference based on stable models

and answer sets: the latter are in fact just back-and-forth models satisfying one extra

condition.

It turns out that on normal programs back-and-forth models are equivalent to station-

ary models, so the resulting semantics is equivalent to WFS. On disjunctive programs

our semantics coincides with the P-stable, or partial stable semantics, de�ned by Eiter,

Leone and Sacc�a [6], and shown by them to be equivalent in turn to the 3-valued stable

models of Przymusinski [27]. On extended programs with strong negation, back and

forth semantics appears to be new. It is intermediate in strength between answer sets

semantics and the extension of WFS with `explicit' negation, WFSX, developed in [23].

It is also di�erent from the extended semantics proposed in [26] and recently in [28].

In summary, the present paper aims to help clarify the logical nature of WFS and

stationary semantics as a form of preferential model reasoning in a nonclassical logic. We

also identify\natural" extensions of WFS to disjunctive and extended logic programs and

study the relation of these to other semantics proposed in the literature.

2 Preliminaries

This section reviews the main de�nitions and results needed for the remainder of the

paper.

2.1 Logic Programs

First let us recall the syntax of logic programs. We use standard logical notation, rather

than the special notation often employed in logic programming. In the setting of dis-

junctive logic programs, program formulas are built-up from atomic formulas using the

logical constants: ^;_;!;:, standing respectively for conjunction, disjunction, impli-

cation, and negation. Negation is often denoted by the symbol `not' and referred to as

negation-as-failure or negation-by-default. The nonlogical vocabulary comprises a �xed



set of predicate symbols (no function symbols) and a nonempty set of names. This

language will be left implicit throughout.

Program formulas with free variables are treated as shorthand for the set of their

ground instances, so that a logic program can be represented as a collection � of closed

program formulas having the following form:

A

1

^ : : : ^ A

m

^ : A

m+1

^ : : : ^ : A

n

! B

1

_ : : : _B

k

(1)

where the A

i

and B

j

are ground (closed) atoms. These formulas are often called rules

and written in a di�erent notation, actually back-to-front; but the form is always the

same. There is a single arrow, preceded by conjunctions of atoms and negated atoms,

and followed by a disjunction of atoms. We may have m or n zero, or m = n; but we

always have k � 1. When k = 1 in each formula, ie. no disjunctions occur in �, the

program is said to be normal.

We denote the set of all ground atoms (resp. ground literals) in the language of � by

H

�

(resp. L

�

). Whenever � is given we drop the subscript `�'. For any literal L, let

::L denote the complement of L, ie. for an atom A, ::A is :A, and for a negated literal,

L = :B, ::L = B. If X is a set of literals, set ::X = f::L : L 2 Xg. Given a program

formula ' of form (1), we denote by a(') the set of literals occurring in the antecedent

(`body') of ' and by c(') the set of atoms occurring in the consequent (`head') of '.

Given a program � and a set S of ground atoms in the language of � we consider what

it means for certain formulas to be satis�ed by S. In particular, we say that S satis�es

an atom A if A 2 S. Moreover a conjunction of atoms is satis�ed if each conjunct is

satis�ed, and a disjunction of atoms is satis�ed if at least one of the disjuncts is satis�ed.

If � is a conjunction of atoms and � is a disjunction of atoms, then S satis�es �! � if

S satis�es � whenever it satis�es �. Given a program � and a set S � H, we de�ne as

usual the Gelfond-Lifschitz reduction of � as follows. Given a formula ' 2 � of the form

(1), let '

S

be the formula

A

1

^ : : : ^ A

m

! B

1

_ : : : _B

k

(2)

if for each i = m+ 1; : : : ; n, A

i

62 S. Otherwise, if for some i = m+ 1; : : : ; n, A

i

2 S, let

'

S

be the empty formula. Set �

S

= f'

S

: ' 2 �g.

2.2 Intuitionistic Logic

Classical logic is based on the (classical) notion of truth, whereby every proposition is

either true or false, independent of our knowledge of its truth-value. In constructive

reasoning this principle (of tertium non datur) is rejected, and logic is built upon the

notion of (constructive) proof. The standard formalisation of the logic of constructive

reasoning is due to Heyting [16], and called intuitionistic logic. We denote it by H.

In intuitionistic logic, terms and formulas are built-up in the usual manner, using the

logical constants of H: ^;_;:;! and the quanti�ers 9; 8; but one explains the meaning

of the connectives and quanti�ers not in terms of classical truth-conditions but in terms

of constructions acting on proofs. There are many variations on this explanation, which,

when made su�ciently precise, lead to logical calculi equivalent to Heyting's (see any

standard text, eg. [3]). Intuitionistic logic can readily be presented in any of the usual

`deductive' styles, eg. as a tableau system, a natural deduction system or as a Gentzen-

style sequent calculus. For example, the sequent calculus for H restricts sequents on



the right to single formulas; the natural deduction rules follow those of classical logic,

except that the classical rule reductio ad absurdem is omitted. H is a proper subsystem

of classical logic: every intuitionistically valid formula is also classically valid, but not

conversely. The derivability relation for H will be denoted by `

H

.

There are several types of semantics for intuitionistic logic. We mention here only the

method of Kripke models, also known as possible worlds semantics. Formally, one starts

with a so-called Kripke frame F ,where

F = hW;�i;

W is a set and � is a partial-ordering on W . The elements of W are sometimes called

possible worlds. One may also think of them intuitively as stages (in the growth of

knowledge). At each world or stage w 2 W some primitive propositions (atoms) are

veri�ed as true, and, once veri�ed at some stage w, an atom A remains true at every

`later' stage, ie. at all w

0

such that w � w

0

(in this sense knowledge may grow in several

directions, but veri�ed propositions are never subsequently forgotten). A Kripke model

M can therefore be represented as a frame F together with an assignment i of sets of

atoms to each element of W , such that if w � w

0

then i(w) � i(w

0

). An assignment is

then extended inductively to all formulas via the following rules:

' ^  2 i(w) i� ' 2 i(w) and  2 i(w)

' _  2 i(w) i� ' 2 i(w) or  2 i(w)

'!  2 i(w) i� for all w

0

such that w � w

0

' 2 i(w

0

) implies  2 i(w

0

)

:' 2 i(w) i� for all w

0

such thatw � w

0

' 62 i(w

0

)

(we omit here the semantics of quanti�cation).

A formula ' is true in a Kripke model M at world w, in symbols M; w j= ', i�

' 2 i(w). ' is true in a Kripke model M, in symbols M j= ', if it is true at all worlds in

M. A formula ' is said to be valid, in symbols, j=

H

', if it is true in all Kripke models. '

is said to be an H-consequence of a set � of formulas, written � j=

H

', i� for all models

M and any world w 2 M, M; w j= � )M; w j= '. The Kripke semantics is complete

for H in the sense that for all T and '

T `

H

' i� T j=

H

': (3)

We use Cn

H

(T ) to denote the set of all H-consequences of a theory T , and we denote by

Th(M) the set of all sentences true in a Kripke model M.

2.3 Intermediate Logics

We also consider intermediate logics, obtained by adding additional axioms to H; they are

complete wrt a generalised notion of Kripke frame. An intermediate logic is called proper

if it is strictly contained in classical logic. In the lattice of intermediate propositional

logics (extensively investigated in the literature, see eg. [2]) classical logic has a unique

lower cover which is the supremum of all proper intermediate logics. This greatest proper

intermediate logic we shall denote by J. It is often referred to as the logic of \here-and-

there", since it is characterised by linear Kripke frames having precisely two elements or

worlds:`here' and `there'. J is also characterised by the three element Heyting algebra,

and is known by a variety of other names, including the Smetanich logic. Truth tables

for J were already given by Heyting [16], and the logic was further used by G�odel in a



paper of 1932, [13]. However, it was apparently �rst axiomatised by  Lukasiewicz [18]. He

characterised J by adding to H the axiom schema

(:�! �) ! (((� ! �) ! �) ! �):

He also showed that disjunction is de�nable in J. An algebraic characterisation of J is

straightforward; for present purposes, however, it is more practical to use the Kripke-

model characterisation.

2.4 Minimal Models

Let J be the Smetanich logic of here-and-there. Then J is determined by Kripke models

based on the 2-element, `here-and-there' frame. Each J-model can be represented as a

structure hfh; tg;�; ii, where the worlds h and t are re
exive, and h � t. For any worlds

h; t we use the corresponding upper-case letters H; T to denote the set of all atoms true

at those worlds; eg. H = fA : A 2 i(h)g. Note that for any model hfh; tg;�; ii we

always have H � T . We may equivalently represent a model simply as a pair hH; T i.

Until further notice, by \model" we mean a here-and-there model of this kind.

Our semantics will be based on a notion of minimal model de�ned as follows.

De�nition 1 De�ne a partial ordering � on J-models by hH; T i � hH

0

; T

0

i i� H � H

0

and T = T

0

. Then a model hH; T i of � is said to be a minimal model of � i� it is

minimal among models of � under the �-ordering.

The following lemmas will be useful.

Lemma 1 ([22]) Let � be a logic program and let M = hH; T i be a model of �.Then

M j= �

T

.

Lemma 2 ([22]) Let � be a logic program and M = hH; T i be a model of �. M is a

minimal model of � i� H is a minimal set of atoms satisfying �

T

.

3 Back-and-forth semantics and WFS

We now introduce a semantics for logic programs, based on minimal models in J, and

show that on normal programs it is equivalent to the well-founded semantics.

De�nition 2 Let � be a logic program and M = hH; T i a model of �. M is said to be

a back-and-forth model of � i� (i) M is a minimal model of �, and (ii) T is a minimal

set of atoms satisfying �

H

.

By Lemma 2, condition (i) is equivalent to the property that H is a minimal set satisfying

�

T

, giving rise to the label \back-and-forth". The back-and-forth semantics for logic

programs is determined by the collection of all back-and-forth models of a program. We

show that on normal programs it is equivalent to the well-founded semantics.

First, recall that a set H � H

�

is said to be a stable model of a program � if H is a

minimal Herbrand model of �

H

([10, 11]). In the case of a normal program �, a minimal

set of atoms satisfying �

H

is actually unique (ie. least) and is often denoted by �

�

(H)

(we usually drop the subscript �). Thus for normal �, H is a stable model of � i�

H = �(H):



Note that, by uniqueness, in the case of a normal program a back-and-forth model of �

can equivalently be described as a model hH; T i of � such that �(H) = T and �(T ) = H.

Viewed thus as an operator on sets of atoms, � is antimonotone, from which it follows

that �

2

(= � ��) is monotone and has a least �xpoint, say I

�

. Then �(I

�

) is the greatest

�xpoint of �

2

.

De�nition 3 ([8]) For any normal program � the well-founded model of �, is charac-

terised by WFM(�) = hI

�

;�(I

�

)i:

The well-founded semantics (WFS) of a program � is determined by the well-founded

model, as follows: an atom A is true if A 2 I

�

, false if A 62 �(I

�

), and undecided

otherwise.

1

More generally,

De�nition 4 ([25]) For a normal program �, and set J of atoms, if �

2

(J) = J � �(J),

then the pair hJ;�(J)i is said to be a stationary model of �.

So the well-founded model is simply the least stationary model.

Proposition 1 For normal programs and atomic queries the back-and-forth semantics

is equivalent to the well-founded semantics.

Proof. It is straightforward to show that back-and-forth models determine stationary

models, and vice versa. One can then verify that the well-founded semantics of a program

agrees with the back-and-forth semantics (we restrict attention to atomic queries for which

WFS is usually de�ned).

The stable models of a normal program � can be regarded as stationary models in

which there are no unde�ned atoms. Likewise, stable models can be viewed (even in the

disjunctive case) as back-and-forth models with no unde�ned atoms. In fact, minimality

and de�niteness su�ce.

De�nition 5 ([22]) Let � be a logic program. A minimal model hH; T i of � such that

H = T is said to be an equilibrium model of �.

Proposition 2 ([22]) A set S of atoms is a stable model of a program � i� it is the set

of atoms true in an equilibrium model of �.

It follows that inference based on stable models (for short stable inference) as well as

inference based on stationary models (for short well-founded inference) can be regarded

as extending in each case the logic J. Moreover these extensions are well-behaved in the

sense that two programs that are equivalent (ie. interderivable) in J must have the same

stable models and the same stationary models, since, by completenss, the must have in

each case the same here-and-there models. A monotonic logic that underlies in this well-

behaved sense a given nonmonotonic inference relation is called a deductive basis for the

relation in question, [5]. It is easy to see that classical logic does not in this sense form

a deductive basis for either well-founded or stable inference, even though the latter is a

strengthening of classical inference. However, since we know J to be the greatest proper

intermediate logic, we have established

Corollary 1 The logic J of here-and-there is a maximal deductive basis of back-and-

forth inference, hence (for atomic queries) for well-founded inference, as well as for

stable inference.

1

The well-founded semantics is often equivalently characterised by de�ning WFM(�) as the pair

hI;�(I)i, where X denotes the complement of X (in the language of �, or in some suitable, universal

language). In this case �(I) represents the set of false atoms.



4 Disjunctive Logic Programs

There is no general agreement on how to extend WFS or stationary semantics to dis-

junctive programs; di�erent proposals can be found eg. in [27], [28], [4], [6, 7]. The

back-and-forth semantics turns out to be equivalent to the partial stable (or P-stable)

semantics recently extended to disjunctive programs by Eiter, Leone and Sacc�a [6, 7];

this is in turn equivalent to Przymusinski's [27] 3-valued stable semantics.

The P-stable semantics is de�ned in terms of what are called unfounded sets. The

authors use a slightly di�erent notion of model or interpretation. For them an inter-

pretation M = M

+

[M

�

is a consistent set of ground literals, where M

+

is a set of

atoms and M

�

is a set of atoms pre�xed by :. To make comparison with here-and-there

models easier, in what follows we shall represent interpretations as pairs of sets of atoms

M = hH; T i, where H represents the true atoms (M

+

) and T represents the set of atoms

that are not false. As in the case of here-and-there models, the complement T = H� T

of T denotes the set of false atoms, and therefore T corresponds to the set ::M

�

. By

the consistency requirement, we always have H � T . Clearly the two notions of inter-

pretation are equivalent and fully intertranslatable. Using our reformulated version, the

concepts of unfounded set and founded interpretation from [7] can be described as follows.

De�nition 6 ([7]) Let M = hH; T i be an interpretation for a disjunctive logic program

�, (ie. H � T � H

�

). A set X of ground atoms is said to be an unfounded set for � wrt

M i� for each A 2 X and each formula ' in � such that A belongs to the consequent

c(') of ', either (i) a(') \ (::H [ T [X) 6= ; or (ii) c(') 6� (::H [ T [X).

De�nition 7 ([7]) An interpretation hH; T i of a program � is said to be founded if H

is a minimal set of atoms satisfying �

T

.

De�nition 8 ([7]) Let M = hH; T i be an interpretation of a logic program �. M is

said to be a P-stable or partial stable model of � i� (a)M is founded; (b) T is a maximal

unfounded set for � wrt M.

We now show that P-stable models and back-and-forth models are equivalent. We do

this in three stages.

Lemma 3 Let M = hH; T i be a minimal model of �, such that T satis�es �

H

.Then M

is founded and T is an unfounded set for � wrt M.

Proof. Assume the hypothesis of the lemma. Then clearly M is a (consistent) interpre-

tation of � and that this model is minimal is equivalent by Lemma 2 to the property

that H is a minimal set satisfying �

T

, so M is certainly founded. It remains to verify

that T is unfounded for � wrt M. This will be the case, if, for every A 62 T , and each

' 2 � such that A 2 c('), either condition (i) or condition (ii) of De�nition 7 holds.

Setting X = T , these conditions simplify to

(i)

0

a(') \ (::H [ T ) 6= ;

(ii)

0

c(') 6� (::H [ T ):

Since the head or consequent of ' can only contain (positive) atoms, (ii)' further simpli�es

to

(ii)

00

c(') \ T 6= ;:



Now, since T satis�es �

H

, in particular, T satis�es each '

H

of the form � ! �. If �

contains an atom A 62 T , then, if � is true wrt T , some head atom B, di�erent from A,

must belong to T , implying that (ii)" holds. If T does not satisfy �, then it must also fail

to satisfy �. Then for some atom C in �, C 62 T , implying that C 2 T . Alternatively, it

may happen that '

H

is empty, which is the case if the antecedent of ' contains a literal

:A such that A 2 H. These last two possibilities imply that a(') \ (::H [ T ) 6= ;), as

required. 2

Lemma 4 Let � be a disjunctive program and M = hH; T i an interpretation for �

such that M is founded and T is an unfounded set for � wrt M.Then M is a minimal

here-and-there model of �, and T satis�es �

H

.

Proof. Assume the hypothesis and regard M equivalently as a here-and-there model

hfh; tg;�; ii. We �rst show that M j= �. Since T is unfounded, conditions (i) and (ii) of

De�nition 7 hold, and simplify as before to a(') \ (::H [ T ) 6= ;), and c(') \ T 6= ;. In

other words, for every A 62 T and every ' 2 � such that A 2 c('), either (a) the body of

' contains a negative literal :B, such that B 2 H, or (b) the body of ' contains an atom

C such that C 62 T , or (c) the head of ' contains an atom B belonging to T . Let ' be

of the form �! �. If (a) holds, M; h j= B, hence M; h j= :B ! � and M; h j= �! �,

and so M j= '. If (b) holds, then M; h j= :C. So again �! � is true at h in M, hence

M j= '. Finally, suppose that neither (a) nor (b) holds. By (c), �, hence �! � is true

in M at t. It remains to verify that �! � is also true at h.

First, since M is founded, H satis�es �

T

. Therefore for all nonempty '

T

, H satis�es

'

T

hence also '. Therefore, since M; t j= ', also M; h j= '. Suppose that '

T

is

empty. Then � contains a literal :B such that B 2 T . Consequently, M j= ::B. So

M; h j= �! �, as required.

Lastly, we need to consider those ' 2 � such that conditions (i) and (ii) of De�nition

7 do not apply. In this case all the atoms in the consequent of ' belong to T , so trivially

M; t j= '. Also M; h j= ' by the earlier argument, namely that H satis�es �

T

and so

H satis�es ' for all nonempty '

T

. If, alternatively, '

T

is empty, then the antecedent of

' contains a literal :B, such that B 2 T . Consequently, M j= ::B and so M j= '.

Since M is a here-and-there model of � and is founded, clearly M is minimal. It

remains to check that T satis�es �

H

. By our earlier Lemma, T satis�es �

T

, so it remains

to verify that T satis�es the formulas in �

H

��

T

. These are formulas '

H

such that the

antecedent of ' contains some literal :B, such that B 2 T but B 62 H. Consider any

such '

H

of the form � ! �. If all the atoms in � belong to T then clearly T satis�es

� hence also � ! �. If not, then conditons (a) or (b) or (c) above hold of '. Of these

(a) is excluded by the fact that '

H

is nonempty. If (b) holds, then � contains an atom

C not in T , so T satis�es �! �. If (c) holds, then � contains an atom belonging to T ,

whence T satis�es � and therefore �! �. Consequently, T satis�es �

H

, completing the

proof of the lemma.2

Proposition 3 Let � be a disjunctive logic program and let M = hH; T i be an inter-

pretation of �. M is a back-and-forth model of � if and only if it is a P-stable model of

�.

Proof. Immediate from the lemmas. One need only add the observation that maximising

the unfounded set T is equivalent to minimising the set T such that T satis�es �

H

. 2

It follows from the results of [7] that back-and-forth semantics, being equivalent to P-

stable, is also equivalent to the 3-valued stable semantics of Przymusinski [27]. It is worth



noting, however, that Przymusinski's 3-valued semantics is not de�ned on the basis of

the logic J of here-and-there. In particular, his truth-value assignments are such that

the third truth-value can be understood as `unde�ned' or `indeterminate'; hence if an

atom takes this value, so does its negation. By contrast, in J the third truth-value,

as Heyting noted, corresponds to \cannot be false, yet not provably true", yielding the

consequence that if an atom A takes this value, then :A takes the value `false'. In

addition, Przymusinski's intended models are de�ned using a 3-valued generalisation of

the Gelfond-Lifschitz reduction of a program, rather than, as here, a back-and-forth

construction involving the ordinary Gelfond-Lifschitz reduction.

Other subclasses of P-stable models, studied in [7], such as M-stable and L-stable

models, can readily be de�ned and investigated in the present framework. For instance,

a back-and-forth model M of � is an M-stable (maximal stable) model of � if and only

if there is no back-and-forth model M

0

of � such that Th(M) \ L is a proper subset

of Th(M

0

) \ L. Similarly, an L-stable (or least unde�ned stable) model corresponds to

a back-and-forth model hH; T i in which the set of atoms T � H is minimal among the

back-and-forth models of the program in question.

5 Extended Logic Programs

Several authors have proposed extensions of the syntax of logic programs to include a

second negation operator, representing explicit, direct falsity, as opposed to negation by

default [21, 11, 26, 23]. We shall denote this new negation by `�'. The formulas of such

extended logic programs thus have the form

L

1

^ : : : ^ L

m

^ : L

m+1

^ : : : ^ : L

n

! K

1

_ : : : _K

k

(4)

where now the L and K with subscripts range over what we might call the strict literals,

ie. over atoms and atoms pre�xed by the new negation �. Let Lit denote the collection

of all strict literals.

In logic, a natural way to represent explicit falsity is to use the notion of strong nega-

tion, introduced by Nelson [20]. Nelson's logic N is known as constructive logic with

strong negation and was developed as an alternative approach to constructive reasoning.

It adds to Heyting's logic the insight that primitive propositions may not only be con-

structively veri�ed but also constructively falsi�ed. The language of intuitionistic logic

is accordingly extended by adding a new, strong negation symbol, `�', and giving it the

intepretation that � A is true if A is constructively false. This is quite di�erent from

the meaning of :A in H, where :A is the same as A ! ?. The meaning of strong

negation, `�', in Nelson's logic can be explained by extending the usual interpretation

of the intuitionistic connectives and quanti�ers to include a notion of disproof (or refu-

tation). An axiom system for N is obtained by taking the axiom schemata and rules of

H together with the following axiom schemata (due to Vorob'ev [29]) involving strong

negation (where `�$ �' abbreviates (�! �) ^ (� ! �):

N1. � (�! �) $ �^ � �

N2. � (� ^ �) $� �_ � �

N3. � (� _ �) $� �^ � �

N4. �$���

N5. � :�$ �

N6. (for atomic �) � �! :�.



N is a conservative extension of H in the sense that any formula without strong negation

is a theorem of N if and only if it is a theorem of H. Notice that Nelson's negation `�'

is aptly termed `strong', since in N, �' ! :' is a theorem, for all ' (not only atomic

'). (See eg. [15, 3]). The derivability relation for N is denoted by `

N

.

A semantics for N can be obtained by a straightforward generalisation of the Kripke

semantics for H discussed earlier. One may take the same Kripke-frames as for intu-

itionistic logic; what changes is the nature of the assignments or truth-valuations. In the

case of H, atoms were simply veri�ed (directly) at any stage or world, and falsity was a

derived notion. However, for constructive logic with strong negation a direct notion of

falsi�cation is available as a primitive concept. Accordingly, we can now imagine that at

every stage or world some atoms are veri�ed and some are falsi�ed. For reasons of space

we do not repeat the de�nitions here, but see eg. [15] or [22].

Given any intermediate logic I one may form the least strong negation extension of I by

adding � and the Vorob'ev axioms N1-N6. This is always a conservative extension [17].

If I is complete for a given class K of Kripke-frames then its least strong extension of is

complete for the same class K of frames under the generalised assignments. Consequently,

the logic J of here-and-there has a least strong negation extension, which we shall denote

by N2, that is complete for the class of 2-element, here-and-there frames. An N2 model

can also be represented as a pair hH; T i, where now H and T are sets of strict literals.

An algebraic characterisation of N2 is straightforward; see [17] where N2 is presented as

a 5-valued logic.

The logic N2 may be used to capture inference based on the answer set semantics

[12] for extended logic programs. One de�nes minimal models and equilibrium models as

above, but with respect to N2 rather than J. Analogous to Proposition 2 one can then

show that equilibrium models correspond to answer sets, see [22]. Similarly, we obtain

a simple generalisation of back-and-forth semantics by reformulating De�nitions 1 and

2 for the logic N2. The details are straightforward and will not be repeated here. We

merely note that a back-and-forth model hH; T i is now a pair of sets of strict literals.

Back-and-forth semantics therefore generalises WFS to the case of extended logic pro-

grams, with or without disjunction. How does it compare with other generalisations of

WFS? First, notice that a naive adaptation of WFS to extended programs formed by

replacing sets of atoms with sets of literals (see [26]) does not lead to an adequate seman-

tics, as [24] points out. The problem arising there is addressed by Pereira et al [23, 24]

who propose an alternative extension of the well-founded semantics, called WFSX, for

non-disjunctive programs. WSFX is a conservative extension of WFS in the sense that

it agrees with WFS on all normal programs. It also shares with WFS the property that,

whenever the semantics is de�ned for some program, a single, intended model of the pro-

gram is de�ned and may be characterised by an iterative process. The inference relation

de�ned by WSFX is weaker than stable inference, not only on the class of normal pro-

grams. In fact it can be shown that whenever an extended logic program has an answer

set, the set of literals de�ned by WFSX to be true is a subset (not necessarily a proper

subset) of those literals derivable from the program in the answer set semantics. WFSX

is, however, weaker than one might wish, not only by virtue of its being a conservative

extension of WFS. It can be shown that explicit negation `�' in this semantics does not

correspond to Nelson's strong negation. Consider the following example.

Example 1 Let � = f� B;C ! B;:C ! D;:D ! Cg, where B;C;D are distinct

atoms. In the WFSX semantics, the intended model of � is non-empty but � does not

derive the atom D, although � `

N

D.



Consequently, N is not a deductive basis, and indeed not even a monotonic sublogic,

for the inference relation corresponding to WFSX. However, N is the least constructive

(strong negation) extension of intuitionistic logic, which is certainly a deductive basis for

WFS-inference. We conclude that no strong negation extension of any intermediate logic

forms a deductive basis for WSFX- inference. In fact, the latter simply fails to conform

to the Vorob'ev axioms (N1{N6). One reason seems to be that although WFSX supports

the inference from � A to :A, it does not support the validity of the strong negation

axiom N6: � A! :A. From the standpoint of ordinary constructive reasoning, the main

weakness of WSFX-inference is that it can sometimes assign a non-trivial semantics to a

program that is inconsistent according to the logic N.

Example 2 Consider the following program � = fA ! C;B ! A;:B ! B;� Ag

taken from [23], where A;B;C are distinct atoms. According to WSFX, the intended

model of � contains :A;� A;:C;: � C and : � B. However, it is easily seen that in

constructive logic � is inconsistent, since both B and :B are N-derivable.

In the above examples, back-and-forth semantics behaves as one would expect. The

program � of Example 1 has a single back-and-forth model hf� B;Dg; f� B;Dgi which

coincides with the answer set of �. In Example 2 there are no back-and-forth models

because, by inconsistency, there are no N2-models at all. This is slightly di�erent from

the case of answer set semantics which does not return the inconsistent answer set Lit, but

rather no answer set at all. However, it follows from the de�nitions and the results of [22]

that every consistent answer set is (equivalent to) a back-and-forth model of the program

in question. Since the converse does not hold in general, back-and-forth semantics is

weaker than that of answer sets, though de�ned on a larger class of programs.

6 Conclusions and Future Work

We have provided a semantics, called back-and-forth, for logic programs and proved its

equivalence with WFS or stationary semantics on normal programs and P-stable seman-

tics on disjunctive programs. Though back-and-forth semantics is in this sense therefore

not strictly new, it has a more logical 
avour than other approaches and helps us to un-

derstand P-stable inference as a form of minimal model reasoning based on a well-known

nonclassical logic. This in turn helps to compare P-stable inference with answer sets

and other nonmonotonic reasoning systems. A further advantage is its naturalness and

simplicity. The notion of unfounded set is not very intuitive, and it is not easy to see why

the extension of this concept to the disjunctive case should be precisely as formulated

in [6, 7]. In the case of back-and-forth semantics, the extension to the disjunctive case

is trivial and so we gain additional grounds for regarding P-stable and 3-valued stable

models as `natural' generalisations of well-founded semantics.

We also sketched the way in which back-and-forth semantics can readily be extended

to handle a second, strong negation in logic programs, apparently di�erent from other

similar extensions of WFS, such as WFSX. In an extended version of the paper we plan to

study this semantics at greater length, in particular to explore its metalogical properties

and its relation to other approaches in more detail.

There is an important problem which this paper leaves unsolved, but which future work

should certainly address. The �rst condition on back-and-forth models (De�nition 2, (i))

is a purely logical, minimality requirement, independent of the syntax of logic programs.

The second condition, however, makes use of the Gelfond-Lifschitz reduct of a program



�. It is not therefore a purely logical condition on � itself and is not independent of the

program's syntax (unlike the analogous condition for answer sets). It is of considerable

interest, therefore, to �nd a means to re-express condition (ii) of De�nition 2 algebraically,

say in terms of a preferential ordering on the models of a program �. This would open

the way to extend the range of the partial stable semantics to more general classes of

theories.
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