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. ure PROLOG protrams is used as the 
Abs~ract A statte anatysts ~r P r ptimizint the execution or 

r t tecluuque5 or o . th 
common basis or dif eren the information computed durtn_t e w describe how i an t,hese prog:rams. e usef\ll for executint l tn. 

· r a pro &:: r a..m l s · n d t n a static ana)ysts 0 intetlirent backtracktnt. a 
. •"'D-pa.ra.lle. l fashion, performint be appl ied alone a.s 
~· E h or tke teckniques can . s ace erricienl.. wa.y. ac 
w:lt as tog:eth.er with the other ones. 

the execution or pure PROLOG 
lmprovint the e!t'iflency or . 1 To this end we 

h t t'o l l ows) l s our g:oa . . 
pror;ra.ms (simply prog:rams in w a. a.bout any g:iven protra.m th.at. ts 

to use some informai.. ton Tht' s type or informatlon propose l . s or the prot;ram. 
computed by a. static ana Y!l . t. of the protram, see 
is orten called a.n abstra.ct tnterpreta ton lied to the 
(Son86,Mel861, where a.bstract interpret~tion~ m:~:s ~p:e ro rurther, 

d the construc t ton o l 
occur-check problem an d as the base or severa 

. · r rma.tion can be use 
showint that thts tn o . . . the execution or protrams. 
dirrerent techniques t'or op~tmtzt~t is consists or computint, for each 

. R.outhly, the statte ana ys t or pairs or con.terts «>(L) 
l or a pror;ram, a se a.m 

l i tera.l L or the c a.uses L . the proof-trees or the protr 
that represents all occurrences o! tn or 1 in a proor-tree, there 

• ror anY occurrence . t. n 
in the rollowint sense. sents the instantta. to 

) «>(L) such tha.t St repre 't ·s 
is a couple (s1,s2 E ts its insta.ntiation when. l l 

ted a.nd s: represen ntint or 1 vhen it Ls crea r 1 the context s or L represe 
sa.list'ied. For an insta..ntla.llon. ~ o. . which va.ria.bles or L are 
~ contains two types or tnrorma.tton. (t) . ta.ntiated by ~ to 
~ '') which variables or L are tns . ·n 
tround by ~. a.nd (u t ly it is n.ot posstble, t 

values sha.rint some va.ria.ble. Unrortunate that represent precisely all 
th pa.lrs or contex s . t· n tenera.l, to compute e can construct an approxtma lO 

occurrences or a litera.l. However one r lty conta.ins enouth 
oC this set. Approximat!on that, ~o~e.u ~he execntion or the 

ror bein* userul in optlmlztnt information .. 
pro tram. 

1 LITP Parls VII 
1, L.A.226 C)IRS · 

2 Unlver•llé de Borde&UX L.A.226 CNRS. 
3 Dip. di Matematica, Univ. di Padova e 



116 

As alrP.a.rly mentioned, the information that we propose to 
compute ror any tiven protr:un, is very close to t~at computed in 
(Son86l, but, in addition to the difference in the domain of 
application, oar approach dtrrers !rom Lhat of/ {Son86) for one 
imporlanl aspecl. ln (Son86l contexts are used in a stalic way, i.c., 
the tests or occur-check tnserted in a clause do not depend on the 
particular occurrence or the clause. In contrast to this, we use our 
contexts dynamicalty, in the sens·e Lhat, whenever a literal L is 
called, associaled lo L one fi,nds its context that gives some 
information about t.he current i~:~Lantia.tlon of L, viz., (i) and (ii) 

above; information that would be too expensive to collect direètty 
from the current instantiation and that can be useful in severa! ways, 
as explained below Clearly, dirferent occurrences or L will have 
different contexts taken rrom a rinlte sel computed during the static 
analysis. This technique of dynamically using information computerl 
statically is a classica! one in the design or evaluators ror 
attribute r;rammars [Rii8J,Fil86]. In attribute grammars one computes 
statically several orders or the atlributes of each nonterminal X and 
the evaluator dynamically chooses one order for each occurence or X. 

Due to the restriction on the length of the paper, we omit the 
description of the static analysis (lentthy and technical) and 
concentrale on the optimizations that can be obtained by usinr; the 
information computed by such a static analysis. This is possible since 
the inlerested reader may find in [Son86l a program analysis very 
close to that needed here. The static analysis that we propose and its 
dirrerences and improvemenls w.r.t. that of [Son86l wtll be the topic 
or a future publication. 

The optimization techniques studied are the AND-parallet 
execution or ·lor;ic progra.ms (Cha.8Sa, DeG84J, the in te l t ice n t 
backtrackinr; (Bru84,Cod86a,Cox64,Mat8S,Pie82l a.nd the optimization or 
memory mana.cement in the sense or (War77l. Fora. simpte AND-pa.ra.llel 
execution or a. tor;ic prorra.m it is necessa.ry to know, ror ea.ch catl or 
a clause, which of its literals share some variables. Contexts contain 
P.Xa.ctly this type or inrormation. A similar information is necessary 
ror doint lntelllr;ent backtra.ckinr;, i.e., ror not redoint dedu.ctions 
which are lndependent or the lfteral where the fallure occurred. 
Finally, contexts ca.n be used for detectinr;, ror each call or a. clause 
c, the .v.a.ria.bles or c that can be put into a local stack where they 
are destroyed as soon as no more choice is lert below c. In CWar7Tl 
this technique is applied ror optlmizinc a Proloc compiler. 

lt is important lo undersla.nd thal the static ana.lysis thal we 
put rorward can be done both beCore the interpretation and durint the 
compilation or a locic prorram. The inCormation produced can be used 
ror optimizinr; the interpretation as well as ror ceneratint erricient 
code. 
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is orcanized as follow. tn Section l we 
The rest or the paper definitions. 

• Section 2 conlains the new 
recall soa~ usual concep.s. h d ror Lhe 3 optimization 

describes how contexts can e use 
Section 3 Some concludine rema.rks close the paper. 
methods cited above. 

1 Prel ilninarics 

The rea.der is ass~med to 
concepts or locic procra.mminc; ror an 
for insta.nce (Apt82,Llo84l. 

be ramiliar with the classica\ 
inlroduction to the subject see 

. t gra.m) i s a sequence A lode prou:a.m p (or JUS pro . 
--- A (IX > o) , A o 1 s (A t82l or the rorm Ao <- At • · · · • < -

or definite clauses 
called the nea.d or 

P A tl bodY or tlle clause. 
the ctause and At•···• c: le B B o: 2. 1. Lel c be a 

l or the rorm <- 1• ...• <(J h 
A L2.Ù is a c ause . C 1 1 <c 1·> denotes the j-l 

l t h e n (Or J E ' IX ' ' 1 

definite clause or a toa • . h L) lf c is a clause then <c,O> 
(b l. t ral for s or . p 

literal or ils body - t e[ r 11 b-literals or the clauses or 
is its head. LIT(P,G) is the set o a t clause or a goal, Var(t) 

lr t . a term an a om, a 
and or the goal G. ts . '. 1 a subst:itution cr is a 
is the set or variables a.ppea.rtnc tn t. As usua 

finite sel or pairs: 

~here all pairs have different firsl components and 
Var(t,) contains xi ror some i E {l,nl.. . 
lf V is a set or variables and a a subsltlutton then 

forno j E [l,nl 

X i E V } 

p we mean ils 
In thls article with execution or a goal G in ~ proc~amused is that 

1 sense, i.e., the seleclton ru e 
execution in the Pro ~t rt-most literal or the current coa.l and 
or expanding each t&me the le h h t·n p Thls process can be 

. d . th order t ey ave • 
Lhe clauses are trte tn e SLD-tree see (Apt 82]. In what 
viewed as a depth-first search of an ' r p a.nd G. The 
Collows we will call this tree the SLD-t~ee oor G round by this 

Correspondinc to the rerutat ons 
substitutions r p and G 

called the answer substitutiçns 9 • . 
sea.rch process are . the SLD-tree or p and G, where no ls 
Consider a.ny path no.··· ,nk t n 1 t We llke to 

node Or this path is labeled by a reso ven • . 
t~e root: each h each t 1 1s a 

a sequence (to,<ro) • ••• , (llo<fk) • w ere . "d to 
view such a path as l't tion that ts sal 

P and G (Cla79l and <rt is a subs l u 
pro~C-LtP,P, or _ - - r 11 ws 
be usociatf!d to LI· l.ach couple (t,,<rt) ls as o o • 
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r 

fig. t 

IC the coal G is <-B ·B . . . I • •• • then lo ts· ... th.e t ree h 
ts the empty substitulion. Nodes r . ,. s ow~ in rtr. ! 
r.ode r) are called t, •• ,r., or lo (r, ts lhe i-th 

~ beca.us~ they m t t· 
couple (t,,<rt) is obtain d f ,, us s tll be expanded e rom (t 1 a ) b h . • 
of lt-1• la.beled by . -t• t-t Y c oostnc a.n open 

h 
' say, <c,)>, a.nd expa.ndinc ·t· 

c ooses a. cla.use c' or p a.nd l • more precisely., 
obta.ined (rom t unirles lts head with <rt-t(<c j)) t 

th 
1-1 e..s .shown in ri.r 2 d . • • 

e m.r.u. of the expa.n . • ' a.n <rt t.s obtained compo 
saon .slep to <rt-l· 

.. ;C"?\ ... 
fig. 2 

A node or a proof-tree with tT~ litera.t rtr. 2, is ca.lled clos .. !:! " t ., . s, see n arter expa.Asi.o.a 
h ·-···cose .. node ts sat•sri d ·c 

a.ve open nodes a.s descend:a.. .o; l i t does 
sa.ys tha.t the nodes nts. In a.n. exp:a..nsion a.s that or t'i.:;. 2 

n-~d . . n,, ... ,n.c a.re cr<:atel'! .l prnoC-t . · " es 1 s sa t d t o be • • .. ... ree Wl thout open_ 
çomplete. 

2 Ne~ Cefiniticns 

Definition 1. Let p be 
<c,j> € LIT(P,G) a a. pro:;ram a.nd G 
roa.l lr . context or (ç,f> (a.nd or the cla.a.se 

c =G) ls a triple (W • sets such "that W s = ,B,E), wh.ere W and 
alt b-t·t u B = Va.r(c) andE C Var(c)t. Th.e set 

l erals ot' p and G is CON(P,G) G 

a go a t. 
c or tlt' 

B are di.sjoi~ 
o C contex:ts 
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lntuitlvely, a context or <c,j> represents a sltua.tion or an instance 
ot c in a proof-tree t: the var1ables in B are tround (these are 
ca.lled l>la.ck), those in W are not g:round (they are called wht te) and 
(X,Y) E E meLns tha.t a.t some moment or the construction or t the 
v&lue; of X a.r.d Y ha.ve sha.red a.t lea.st one va.rla.ble. Ob.serve that H 
(X,Y) E E a.nd, ror insta.nce, X is black that means that in the 
substltution a.ssocia.ted to t, X and Y do not sha.re any varia.ble 
a_nymore, but that they did in the substitution correspondint to 

previous expa.nsion stop. 
A context of <c,j> is sa.ld to be on Va.r(c). For a.ny 2 contexts 

(Wt,Bt,Et) a.nd St E (Wt,Bt,E1 ) of two b-llterals of one clause 
(or or the ,oa.l) we sa.y tha.t s 1 s;.onta1ns s 1 , s 1 .:2. s:z, 1! E1 .:2. Et and 
B

1 
.:2.:»

2
, we a.lso sa.y that s 1 !PProxtmates s 2 , s 1 > St• tr Et .:2. Et and 

B
1 
~ Bt- Moreover, s 1 u St is the context (W,B,E), where B = B1 u Bt 

W= Var(c)-B a.nd E= E
1 

u E1 , and s 1 v .St is the context (W' ,B' ,E') 
where B' : B1 n Bt• W' = Var(c)-B' a.nd E' = E1 u Et· 
We will otten re,a.rd contexts as ,ra.phs, thus ta.lklnt a.bout white and 
bla.ck nodes and of pa.ths betwoen 2 nodes. Contexts are vory closo 

to the A-substitutions of (Son56J. 
a.ny subst1tution ~ , let V be the set of flrst compon.ents of the 

couples or <r- Th.e context corresppndln' to ~ ls ~(~) = (W,B,E), whero 
x € B lH ~(x) ls tround, W= V-B a.nd (x,y) E E it( <r(X) a.nd <r(Y) 

share some varia.ble. 

(i) 
(ii) 

Deflnltlon 2. For a ,tven pro,ram P a.nd coa.l G, 
a s;.ontext-rela.tion is a. rela.tion e c LIT(P,G)xCON(P,G)

1
, 

~ a.nd ~ s;.gntext-prolection~ a.re runctions or type 
LIT(P,G) x CON(P,G) x P-> CON(P,G), usually up and 
context-projectlons are denoted by jn a.nd .tu, respectively. 

down 
o 

Deflnltlon 3. Let P be a pro,ra.m · a.nd G a. goal, a. 
~pntext-descrlptlon for P a.nd G is a. triple D E (~.LU,jU), where ~ is 
a. context-relation a.nd .tu a.nd jU are down a.nd up context-projectlons 
!or P and G such that they satis!y the rollowin' conditlon: 
conslder a.ny <c,j> € LIT(P,G) a.nd let <c' ,O> be uniria.ble with <c,j) 
where c• :c Ao <- A 1 ••• A.c E P, lot also (<c,j>,s,s') E e a.nd 
sM = LU(<c,j>,s,c•) then it must be tha.t there exlsts a.t least one 
sequence or·pairs or contexts (s 1 ,s\), •• ,(s<,s«) such that s1 = s", 
!or ea.ch 1 € (l,cd (<c',i>,St 1 S''t) € 4), Cor l;;> 2 St: St-1 U S't-l> a.nd 
such th.a.t jU(<c,j>,s« u s~,c') = s'. 
A sequence or pa.lrs or contexts e..s above is sa.Ld to be relatjve to Sl 

~··o 

A context-descrlptlon !or P a.nd G ca.n be used to associate contexts to 
the nodes or a.ny proor-tree or P and G as explained below. 
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in l a. comp ete proor-tree ror every tnternal 
contexts are riven: an input and an output one de~oted node n two 
OUT(r.) respectively. ln an incomplete proof'-t • ·il lN(n) and l . ree a ancestors f h 

eft-most open node have only the input context d 11 ° t e left r th an a nodes z.• •h 
o ese nodes have both input and output context . ~ ~·e 

~=7~!:!~' nodes have nothing. The method is described ind:~t7!:~; t~~ 
,,, 

(i) At the betinninr 
i s as i n r i'. 1 • 
empty context on 

the proo,~tree for a riven roal G = 
lN(rx) is derined to be >.c, where 

Var(G), Le., (Var(G),J!S',.I!l')-

<- Bt•··.,,Bc: 
ÀG is the 

(ii) ts expanded by uniryin~ Assume thal the proof-tree · 
(left-most) open node n labeled < - • 
We need to distincuish two cases: 
l) c' has ~~pty body 

C,J> with the head <c' ,O>. 

2) c' has a t leas t o ne l i teral in i ts body. 

the 

l) One can compule OOT(n) - jn (< · • the s t·,.. d - c,J>,>-e•,c) and can propacate it to 
a ts.te ancestors or n: let n •.• b is th r th r - 1• ,nk e these nodes, where nx 
e a er o n, n2 ts the father of n 1 and so 0 · 

the coup le ( <c• n <c O>) r n. n1 t s labe led by , , , or some r, 
OUT(nt) = jn(<c-,r>,lN(n) u OUT(n),c) 

For each i r C2 kl OUT( " ' , n,) is computed in a similar way lf - h 
rithl-most s t · · nk lS t e ono r, l.e. Bo:, then the proor-tree is complete and 
are done, otherwlse one has to compute the in t we n' ~t th · d. pu context or the node 

~ e l~ tale richt or nk: 
IN(n') = IN(nk) u OUT(nk) 

2) Let n1 be the lert-most son oC n: 
IN(n1) = !n(<c,j>,IN(n),c') o 

Definltlon 4. For a p prorra.m and a t G 
context-description D = (~,!U,jU) for p and G is goa ' a 
Collowinc condition holds· r complete ir the 
consider any node n, let <c:j> ::da~~.:~~P!:t~h=r~:~-tree t o( p a.nd G 
and ~· be the substitutions that were current w els or n and let ~ 
satisri.ed, respectively, it must be that lN~e~ n was expa.nded an.d 
IN(n) u OUT(n) ~ ~(~'/Va.r(c)) O n > ~(~/Var(c)) a.nd 

Cind a complete context-description 
an.d _a roa.l G: it surrices that ~ 

<c,J> the triple (<c,j>,se,Se), where 
that ror each clause c'unitiabte t < .> 

i ( 
. o c,J 

No te t ha. t i t i s eas:y, t o 
D = <~.!u,jn) ror a prorram p 
contains ror each b-literal 
Se = (Var(c),~,Var 2 (c)), and 
!n(<c,j>,sc,c') = Se• and 1f <c • J) • Se• ,c') = Se· Clea.r ty such a 

of no use ror optimizint the execution or G in 
P7ssimistic picture or the real situation.lt is 

description D would be 
P because· i t l s a too 
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not dtrricult to device an alcorlthm that computes more r~allstic 
context-descriptions. Such an alrorilhm can be found in CSon86l. 

ihe idea or usinr a context-description D = (~,!U,jU) ror 

optimizint the execution or programs is simple: when expandint a node 
'n labeled by <c,j> or a proor-tree by means or a clause c' 
Ao <- A

1
, ••• ,Ac, ('rom IN(n) and !n we know 1Nn(n 1 ) a.nd then, rrom the 

context-relation ~ one can construct all sequences or pairs or context 
(s

1
,s

1
'), ••• ,(sc,s~) relative to s 1 and c', cf. Def 3. In this way one 

has an overview or all the possible rela.tions amont the variables or 
c' tha.t ma.y exist in the deductions below n. Such inrorma.tion is the 

base or man:Y optimization techniques. 
In what rotlows we consider three or them : AND-parallel execution o! 
progrLms tCon85,DeG84l, intellicent backtrackint (Cha65b,Pie82,Cod86al 

and rinally a space savint technique. 

The execution or locic procrams can be improved ir one examines in 
pa.rallel alternative solutlons (OR-parallelism) and/or the subparts or 
one solution (AND-pa.rallelism). In the case or AND-paralle1ism, before 
expandint in parallel litera.ls or one clause one would like to be sure 
that they do ·ne t share any variable, otherwise -a variable bindint 
con!licl may arise ir the dirterent processes instantiate the same 
variable to different values. Two literals or an instance or a clause 
tha.t satisCy this property are called independent. Clearly the slmple 
ana.lysis o! one clause is not sufficent to know whether, when the 
clause is used, any 2 b-literals will be independent. ExampLe 1 

explatns this phenomenon. 

Example 1 Conslder the clause c: p(X,Y) <- p(X),q(Y). The two 
b-llterals or c have no va.riable ln common but ir c is used in a proor 
tree with the current substltution ~ such that ~(X)= r('Z) and 
~(Y) = t(Z), it is clear that the two b-literals or c cannot be solved 

in parallel (without ractnt possible conrlicts) O 

At this point it should be already evident that contexts are 

exactly the inrormation one needs ror solvint the type or problem 
shown in Ex. 1. Let us see how this is done. Let P and G be a program 
and a roa.l· and D = (~,!n,jT!) a complete context-description ror them. 
Consider the proor-tree t whose lert-most open node n is labeled by 
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<c,j> and assume that the context IN(n) is s. Assume also that the 
expansion or n usinc the clause c• Ao <- A1 ••• A< succeeds a.nd that 
ln(<c,j>,s,c~) =sa- One wants to know the subsets or b-lilerals or c' 
that can be executed in parallel in alt computatlons that may solve 
<c, j >. 1 

Due to the fact tha.t the static analysis is Mued on the 
standard PROLOG selection rule (i.e., the lert-mosl literal !s 
chosen), see CSon86l, with the context-description computed by lhis 
analisys one ca.n "parallelize" a clause as c• only in the sense that 

its body can be divided in croups, A 1 ,.~~A~c 1 >; Aa(l)+l•···A~c:>; •. ; 
Am(k)•I•··•A<i such that the literAls or .each croup can be executed in 
parallel, but the troups must be exe~uted sequentially in the order 
that they have in c•. '.•' 

We rive two methods for doinc a correct -slicing" o( c' : a 
simple one called the backward roethod and a smarter one called the 
rorward method. Let us first define the !ollowinc contexts : 

• J J • J 
Let (.st,Sl ), •• ,(s<,s< ), j€(1,ml, be a.ll sequences or pairs or 
contexts relative 'to s 1 and c'. For k 40 Cl,c:l the k-th contert Sk fQr 
s, and c' is as follows : sk = v<sl / j€(l,mJ}. The rinal context (or 
_s, and c' is sr 1 ,. = V{s~ u s:J / j€(1,m)}. 
Two l i teral s Ak and A1 are (orward independent w. r. t. a conte x t s, u· 
in s lhere i.s no path (po.sslbly empty) between two whlte varlables X 
and Y of Ak and A 1 respectively. 
Ak and AJ are backward independent w.r.t. s ir in s there is no path 
between (any) two variables X and Y or Ak and AJ, respectively. 

The fir.st ~slicinc- method is as Collows : the body o! c' is 
divided into croups A 1 , •• ,A=(l); ••• ;Am(k)•t•··•A«; .such that the 
literals or each :roup are palrwise backward independent w.r.t • .Srtn 
(the final cont.ext Cor s 1 and c• ). 
Clearly, this method is very pes.simistlc because the sliclng 1s done 
usinc the last context srtn· Therefore one may expect it to be not 
very interestinc in practice. 

An improved method is the Collowinc : the body or c' i.s sticed 
into croup.s a.s above where the Cir.st croup i.s the maximal preflx or 
the body or c• such that alt lts literals are palrwi.se forward 
independent w.r.t. s 1 , those or the .second croup are alt palrwlse 
forward independent w.r.t. the (m(l)+l)-th context (or s 1 and c' and 
so on !or ali other groups. 

Ex5mple 2. Let P and G be a program a.nd a goal and D be a 
complete context-description ror them. Con.slder an occurrence or a 
eluse c•: Ao(X,Y,Z) <- A1 (X) A2 (Y,Z) A3 (X,Y) A4 (X,Z), in a. proof-tree, 
and le t n, be the node labe led by At, i€(0,4]. Assume t ha t 
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Y Z))) and let D be such that the contexts 1N(n 1 ) = s1 =(<X,Y,Z>,.,{( , 
, and c' are as follows: s 2 , s 3 , s 4 , and .Sctn ~or s1 

:;
2 

= ({Y,Z>,<X>,<(Y,Z)}), s 3 = .s 4 = (<Z>,<X,Y>,<(Y,Z)}) and 

Sfin = <•.<X,Y,Z>,<(Y,Z))). 
The backw;.rd me t h od s l i ce s the body o C c' i n 
The rorwa.rd method slices it in only 2 croups 

3 groups: A1//A2&A3&A.c. 
A1//A2&A3//A.c· O 

Assume, ror .simplicity, that c• has been sliced (u.sinc either method) 
into only two croups : Atr···A~ and ~+t•··•A<- For the methods to 
work at the execution or each literAl one must know its input context. 
Il is not di!flcult to see tha.t rrom St one can rind a convenient 
input oontext ror each A1 , ••• ~. One can also see that, when the 
executton or Al, •• ,A. is completed, mercing sx with the output 

r • • produces the input context needed for the contexts o At••·•n•• 
execution or Ac+l•··•A<-
We stress the ract that ror both the methods described 
slicin' ot a. cla.u.se c• is done .stat.ically because it depends 
c• and on the input context .s 1 , taken (rom a finite set. 

l31 lntelligent Backtrackina 

above the 
only on 

Con.sider a pro,ra.m p and a ,oat G. As mentioned in sect.2, the 
execution or G in P consists in traversint the SLD-tree or P and G in 
a depth-rirst fashion. This is implemented as Collows : when a node, 
.say n, is round that cannot be expanded (all clauses have alrea~y been 
tried) one backtracks to the !ir.st ancestor n' or n that sttll has 
some alternative.s lo be tried, i.e., inexplored path.s in the SLD-tree. 

In Proloc one applies this backtrackinr; method systemati~al~y, 
even when the remaining alternatives o! n' have no chance or modtfytnr; 
the causes or the railure or n. Several methods ha.ve been proposed for 
improvtnr this nalve backtrackin,, most or the.se techniques, 
cBru84,Cod86a&b,Cox84,Mat85,Pie82l, are dynamic ln the sense that all 
the work is done durint the execution/interpretation or a pro,ram. 
R.oughly, these methods consi.st in connecting each ··~ieee .. ~r the 
compuLed substitution with the expansion that has caused ll. lt ts not 
sure that the.se techniques really brint an improvement: the extra 
computation they require may be more expensive than the useless 
expansions that they allow to skip, see also (Bru84,Cha85bl for some 
statistics. (n contrast to the heaviness or the dynamic methods 
(Cha85bl propose a much simpler stalle technique that is descrlbed in 

examp le ::1. 
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Exomple 3 Considera prorram P and a goal G: <- p(X),q(Y),w(X) 
a:td assume that in a proo(-tree the son r.., or the root, labeled by 
w(X), Cails:: one has to backtrack to the rirst node (with some 
unexplored alternatives) to the leCt o( r 3 that has a chance or 
modiryinc the current value or the variable X. lt i~ easy to see that 
no descendent or r 2 satisries this condition, q(Y) may modiry the 
value or Y but not that or X! Hence one can saCely backtrack to the 
rirht-most descendent or r 1 that has some untried alternatives. 
Ass~me now to have the clause p(X,Y) <- q(X),w(Y). Ir (the instance 
or) w(Y) fai!s due to one oC iti'" descendents, one may wn.nt to 
backtrack direclly lo the rathir;· but this may imply lhat some 
existinc. answer .s:ubstitutions are'.never round ir the current values or 
X and Y have some variable in common. Clearly, such an inrormalion is 
contained in a complete context-description or the procram.o 

The need or context-descriptions 
eventhouch no detail is civen there 
constructed and used. 

is mentioned 
abou t the 

also in 
way they 

CCha8SbJ 
could be 

Let us see the method that we propose: Let P be a program and 
G the_ goal and consider an insta.n.ce or a clause c: Ao <- A

1
, ••• ,Ac of 

P in a proor-tree or Gin P, where n 0 , ••• ,nc are the nodes containing 
<c,O>, •• ,<c,a>, respectively. Assume that n 1 rails ror i E (l,al. 
A backtracktnt: node (b-node ror short) is any nk, k E (l,i-1] such 
that either there is a variable X or n 1 such that X is white in IN(nk) 
and black in OUT(nk), or in IN(n 1 ) there is a path between a white 
variable X or n 1 and Y or nk (includint the case X= Y). One must 
backtrack to the ritht-most descendent (with alternatives) or the 
ritht-most b-node or n 1 • The remainint b-nodes, ir any, must be kept 
in a set, called B(n0 ), assoch.ted to n 0 • B(n0 ) is useful in case some 
other node nr, rE Cl,al rails, i.e., it is not the rirst time that a 
node in <n 1 , •• ,n.} ratls. 

Thus, in reneral, iC n 1 ratls one computes its b-nodes using 
lN(n 1), •• , IN(n 1), chooses the tltht-most node nk, k E Cl,i-ll a.monc 
them and the nodes in B(n0 ) and updates B(no) addint to it the 
remainint b-nodes or n 1 • B(n0 ) is setto e when n 1 , •• ,nc are created 
and it is set arain to e when n 0 ts satisCied. 

One needs to store the remainlnr 
guarantee the completeness or the 
backtrackinr. This need is already 
CBru84,Cod86bl, whereas in CCha85b]1t 
the accuracy or the backtracking, 
pessimistic b-nodes. 

b-nodes in B(n0 ) ln order to 
method w.r.t. the naive 

present in the dynamic method or 
is avoided, at the expence or 
by statically computing the most 
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as usual, a prorram P, a goal G, and a 
ExcmPie 4. Consider, As .. r"~e that the clause c': · D ror P and G. ~ 

complete context-descriptlon or p occurs in a proof-tree t 
A (X W)<- At(W) A:(Y) A<J(Y,Z) A,(X,Y), or t, i..-(0,4]. Let n, be the 0 

' · · t A 1 a be l s n ode n t "" 
and that each preatca e t and assume that it has no more aiternatives 

left-mos~ open ~:~~s~rA!sume also that IN(n,), iet1,4l, are as 

to try, t.e., An, = (<X,Y,W,Z>,~,<(X,W)>), IN(n2) : (<X,Y,Z>,<W>, 
follows: IN( x) ., y Vi} <(X W)}), a.nd IN(n") = (<X>,<Y,W,Z>, 
<(X.W))), IN(n3) = (<X, .. >,< ' ' ' 
<(X,W)}). and n2- Node n3 is not a b-node because 
Node n, has two b-nodes nA: share, is alrea.dy bla.ck in IN(n3)· O 
tne variable Y, that A3 a.nd , 

· when a b-node n is 
The "'method just presented has a limi tat ton: n tha.t has 

. . ht-most descendent n' or 
chosen one ba.cktracks to the rtr; l'k t choose the descendent or 

t• One would 1 e o 
some untried alterna tv~s- intellirent way, in the sense, that 
n to which to ba.cktrack ln a more t d in n' wili cha.nr;e the 
it is not sure that chanr;int the subtree roo e 

bl or the literals in n. 
values or the varia. es in this way seems not too dif~icu~t. 

Extendìnr; ou.r method odiCy the uniCtcatton 
d rollows: one may m . 

Rouchly, i.t can be one as th t in case of railure in untrytnr; two 
alr;orlthm in such a way 'a '·r· s the variables or c and c' the 
literals <c,j> and <c',O>, it spect te r ·t re tn a.dditi.on to this 

r h . h have caused the at u • 
actual values o w te r t es that works as rollows. . cedure on proo - re 
one needs a recurstve pro . d < • O> where c' has the rorm 
Consider a node n labeled by <c,J> da.n :r;iv;s in n with a subset v 

A tha.t the proce ure " 
Ao <- Al, •• ,A<· ssume . d the rir;ht-most son n, such t~at, tf one 
or Var(c). One wants to rtn . values or some variables in V 
chanr;es the subtree rooted in tl, the 

may cha.nr;e. the set v• or variables or c' 
The procedure must constru:~ V. Two variabtes X and y or c• 

that are dependent on some va.ria.b~es the rollowint holds: let cr b_e the 
re (iependent 1 r y 

a.nd c, resp., a • 3 a term t. such that either it cont.atns 
m.g.u. or <c,j.> and <c ,O>, 't. contains X a.nd is such that 

· }; that a-(X) = a(t) • or 1 . . '-otd~ we 
and ts sue. the second possibtltty only " ~, 
cr(Y) = a(t). ln the case that 
say that X ls useful ror Y. 

Example s. Consider 
Ao(X,r(Z,Z),Z,b) with the head 
At(W,r;(Y),W') A:(W,W' ,r;(Y')). 
are dependent .a 

the unirication or the b-literal 

0 r the c l ause c• : Ao CC (W) • y' a, Y') <­
Va.riable W is useful ror X, and y and Z 

Le t 
the node n1 

O v• is deCined, 
to Our re cursive procedure. nce 

us :;o ba.ck h that in 
is clearly the rir;ht-most node in <nt, •• ,nc> sue 
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lN(nj) there is a. path (possihl'' empty) b • etween 2 whites vartable• v 
a nd Y s. t. X € A· a n d Y V' L t v .. "' 1 E • e i be llte set or va.riables [ 
X abuve. One rousl recursivel•· Cl<!! lle d 

0 
Ai as 

V
. • a proce ure anni wilh ,. parameter 

The recursive cali stops when a terminai node is found or wh . 
in a node n such tha.t no scn o[ n can be selecled, en tl is 
Abon~ rules. The nocle at l(•l\ich it stons . h a.ccordin:: lo tlte . . ,. 's w, ere one has to backt k 

A s l m l l A r r e c u r .s i v e P r o c e d u re i .s d t: s c r i be d i n r a c .• 
mcthnd or <Dem85). The information tha.t directs the r ~he ~acktracking 
method or CD 851 · · · ·· e ursron in the 

' em. t!\ atso compttle:~ sll'.ticatly, but, in contra.st with 
ocr conte.xt-de.scrtpttons, consi~·ts in properties l 
s:~.t~sfy anc!, thus, the method co('!\ Le a.pplied lo a ~ea.sttrtht'cetpdroz;ram must 
lo•tc e f<t.mi 1:~-;' or 

.. pro~rams, lllat introduced in (Der·B:ll. In {Dem85J · · 
bAcktracksng i.s done tocetlter with A.~D-parallel executi•n tntetlt;ent 
lo see that the backt 'k. . 

0 
• l t i s ea.sy .· ra.c tnt lechntque presented above i.s compatibte 

?.tth the methods of ruidint the AND-paralleli.sm 
a. bo ve : any b-node n .. or a node n,. t" s de.scr i bed in (Al " not independent or n d 
nt a.nd nL a.re executed i an ·hence .. .sequenlially. 

Cl Space-saving techniques 

The distinction bet~een rtobal and local h b variables or a clau.sP_ 
l.s een made in CWar77 J w i t h the 0 r e!'Cici<'!ncy r th goal optimizint the spac:<'! 

instance or o e exec~tion or compiled Prolog programs. Consid<'!r the 
a clau.se c 1n lhe schematic proor-tree .sho-n w in fi.t.3. 

a. 

th1t no i.s .sati.sfied d th an at in the subtrees r:>.Jte.J in 
~~~~-,ne there are no unexplored alternative.s. The vari~bles o( c 

are 'not needed for in.stantiatin:; any variable or c can be tilrovm. 
~~~r. bec1use they. will not be re!erenced anymore. We ,
101 

~ Cl.ll the:n th.e 
• r~, .. r.o:nc~d va.rtable.s or this or occurrence c' [t '1TO:tl·1 be 

C1n~~3i~n: to kee~ the.se variable.s · 1n a (local) stack diU'ere.:t.: 
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that or the referenced va.riables, in arder to recover the space they 
occupy as soon as the above described situation o! c• occurs. 

A subset or the unreferenced variables or all occurrences or a 
cla.use c' are the .l..2.llJ.. variables or c• as defined in [War77l: local 
are the varlables that have multiple occurrences in c• with at least 
one in the body and none in a compound term. 

A complete context-description allows to distin&uish another 
sub.set of the unreferenced variables of any occurrence or a clause c' 
in a proof-tree : the subset or its unimportant variables. Clearly, 
different occurrences of c• may ha.ve different sets cf unimportant 

·variables. 
.consider the proof-tree obtained rrom that or fig.J by makint nao•••n« 
·open atain~ The subset or the unlmportant variables of c• is defined 

as rollows. Let V be the .sel or varh.bles of c• that are uset'ul (see 
the end of point (13))t'or .some variable or c. V' is obtained 
eliminatint t'rom V èach variable X such that every variable or c, for 
which X is uset'ul, is black in lN(no)· Finally, consider the rinal 
context srt~ for IN(n 1 ) and c•; a variable X or c• is uniroporta.nt (t'or 
the con.sidered occurrence or c') ir there is no path (possibly empty) 
in Srtn between x and a variable or V'. 

Example 6. Recall example 5 and assume that the literal <c,j> 
occur.s in a proof-tree and tha.t it. is expanded usi.nr; clause c•. As 
usua.l, the nodes or this occurrence are n 0 , n 1 , and n 2 • Only var!able 
W or c• is useC'ul for a va.riable or c, viz., C'or X. Hence, l.t' in 
IN(n

0
) X is black, a.ll variables of c• are unimportant, whereas, ir X 

is not black, then one mu.st look at the final context. srtn for IN(n 1 ) 

and c'. Assume that srtn =({W'},{Y,Y' ,W},{(W,W')}). in this case only 
Y and Y' are unimporta.nt ror the occurrence or c•. a 

Observe that in :eneral local and unimportant varia.bles are 
incomparable sets. In practice, one cando the followint: when a node 
no is expa.nded by means of a clause c' • one can put in a special stack 
the iocal and the unimportant variables (this tast set depends on 
IN(n

1
) and on c' only). Obviou.sly followint (War77l void and temporary 

variables will not ever appear on th!.s local stack and wi.ll be thrown 

away after unit'ication. 

Ccnclusicn We have described a cenera.l method or usinr; 
statica.lly collected information t'or optiml:int the execution or iocic 
prorram.s. The most important features of this method are that it use.s 
the .statte information ln a dynamic way and that the s~ information 
is the basis or all the considered optimization techniques. 



128 

In the future we intend to rormally derine an alcorithm ror 
computinc complete context-descriptions closer to the reality than 
those or the alcorithm or (Son86l. The goal beift that or rurther 
exploitinc the optimization techniques presented here (and eventualiy 
new ones). It is in our plans to implement this ~lcorithm in order to 
test it acainst real lire procrams. 
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