
114

[Ghel 86J

[Ghel 87]

[Hog 81]
[Hog 84]
[Par 83]

[Sato 34]

[She 84]

[She 85]

[Tak 86]

[Tarn 83]

[Tam 84]

[vanE 76]

[Ven 84]

[Vie 86]

[Zan 87]

S. Ghelfo, G. Levi, A partial evaluator for metaprograms in a multiple theories
ianguage, ESPRIT Project EPSILON Report (October 1986).
S. Ghelfo, G. Levi, G. Sardu, Un valutatore parziale per metaprogrammi in un
linguaggio logico cou teorie multiple, GULP '87, 1987.
C.J. Hogger, Derivation ofLogic Programs, JACM 2~. N.2 (1981) pp. 372-392.
C.J. Hogger, Introduction to Logic Programming, Academic Piess 1984.
H. Partsch, R. Steinbruggen, Program Transformation Systems, ACM Computing
Surveys 15, N.3 (1983) pp. 199-236.
T. Sato, H. Tamak.i, Transformational Logic Program Systhesis, Proc. Int'l Ccnf. on
Fifth Gen. Computer Systems (1984) pp. 195-201.
J. C. Shepherdson, Negation as Failure : a comparison of Clark's Completed Data
Base and Reiter's Closed World Assumption, J. Logic Prograrnming, l, pp. 1-48
(1984).
J. C. Shephcrdson, Negation,~ Failure II , J. Logic Prograrnming, 3, pp. 185:202
(1984). . '
A. Takeuchi, K. Furukawa, Partial evaluation of Prolog programs an d its application
to meta prograrnming, in H. J. Kugler (ed.): Information Processing 86, Dublin,
Ireland, North-Holland, pp. 415-420, 1986.
H. Tamaki, T. Sato, A Transformation System for Logic Programs which Preserves
Equivalence, ICOT TR-018 (1983).
H. Tamaki, T. Sato, Unfold l fold transformation ol logic programs , Proc. Sec. Int'l
Logic Progr. Conf. Upssala, pp.127-138, 1984.
M.H. van Emden, R.A. Kowalski, The Semantics of Predicate Logic as a
Programming Language, JACM 23, N.4 (1976) pp.733-742.
R. Venken, A Prolog meta-interpreter for partial evaluation and its application to source
to source transformation and query-optimization, in T. O'Shea (ed.) : ECAI84,
North-Holland, pp. 91-104, 1984.
L. V ielle, Recursion in Deductive Databases : A DB-Complete Proof Procedure Based
on SLD-Resolution, Technical Report Kb-15 (1986).
C. Zaniolo, D. Saccà, Rule Rewriting Methods for Efficient Implementations of Horn
Logic, Proc. CREAS, Austin, 1987.

1 c. Codognet. MM.
.,

Corsini •
3

G. Filé

115

. ure PROLOG protrams is used as the
Abs~ract A statte anatysts ~r P r ptimizint the execution or

r t tecluuque5 or o . th
common basis or dif eren the information computed durtn_t e w describe how i an t,hese prog:rams. e usef\ll for executint l tn.

· r a pro &:: r a..m l s · n d t n a static ana)ysts 0 intetlirent backtracktnt. a
. •"'D-pa.ra.lle. l fashion, performint be appl ied alone a.s
~· E h or tke teckniques can . s ace erricienl.. wa.y. ac
w:lt as tog:eth.er with the other ones.

the execution or pure PROLOG
lmprovint the e!t'iflency or . 1 To this end we

h t t'o l l ows) l s our g:oa . .
pror;ra.ms (simply prog:rams in w a. a.bout any g:iven protra.m th.at. ts

to use some informai.. ton Tht' s type or informatlon propose l . s or the prot;ram.
computed by a. static ana Y!l . t. of the protram, see
is orten called a.n abstra.ct tnterpreta ton lied to the
(Son86,Mel861, where a.bstract interpret~tion~ m:~:s ~p:e ro rurther,

d the construc t ton o l
occur-check problem an d as the base or severa

. · r rma.tion can be use
showint that thts tn o . . . the execution or protrams.
dirrerent techniques t'or op~tmtzt~t is consists or computint, for each

. R.outhly, the statte ana ys t or pairs or con.terts «>(L)
l or a pror;ram, a se a.m

l i tera.l L or the c a.uses L . the proof-trees or the protr
that represents all occurrences o! tn or 1 in a proor-tree, there

• ror anY occurrence . t. n
in the rollowint sense. sents the instantta. to

) «>(L) such tha.t St repre 't ·s
is a couple (s1,s2 E ts its insta.ntiation when. l l

ted a.nd s: represen ntint or 1 vhen it Ls crea r 1 the context s or L represe
sa.list'ied. For an insta..ntla.llon. ~ o. . which va.ria.bles or L are
~ contains two types or tnrorma.tton. (t) . ta.ntiated by ~ to
~ '') which variables or L are tns . ·n
tround by ~. a.nd (u t ly it is n.ot posstble, t

values sha.rint some va.ria.ble. Unrortunate that represent precisely all
th pa.lrs or contex s . t· n tenera.l, to compute e can construct an approxtma lO

occurrences or a litera.l. However one r lty conta.ins enouth
oC this set. Approximat!on that, ~o~e.u ~he execntion or the

ror bein* userul in optlmlztnt information ..
pro tram.

1 LITP Parls VII
1, L.A.226 C)IRS ·

2 Unlver•llé de Borde&UX L.A.226 CNRS.
3 Dip. di Matematica, Univ. di Padova e

116

As alrP.a.rly mentioned, the information that we propose to
compute ror any tiven protr:un, is very close to t~at computed in
(Son86l, but, in addition to the difference in the domain of
application, oar approach dtrrers !rom Lhat of/ {Son86) for one
imporlanl aspecl. ln (Son86l contexts are used in a stalic way, i.c.,
the tests or occur-check tnserted in a clause do not depend on the
particular occurrence or the clause. In contrast to this, we use our
contexts dynamicalty, in the sens·e Lhat, whenever a literal L is
called, associaled lo L one fi,nds its context that gives some
information about t.he current i~:~Lantia.tlon of L, viz., (i) and (ii)

above; information that would be too expensive to collect direètty
from the current instantiation and that can be useful in severa! ways,
as explained below Clearly, dirferent occurrences or L will have
different contexts taken rrom a rinlte sel computed during the static
analysis. This technique of dynamically using information computerl
statically is a classica! one in the design or evaluators ror
attribute r;rammars [Rii8J,Fil86]. In attribute grammars one computes
statically several orders or the atlributes of each nonterminal X and
the evaluator dynamically chooses one order for each occurence or X.

Due to the restriction on the length of the paper, we omit the
description of the static analysis (lentthy and technical) and
concentrale on the optimizations that can be obtained by usinr; the
information computed by such a static analysis. This is possible since
the inlerested reader may find in [Son86l a program analysis very
close to that needed here. The static analysis that we propose and its
dirrerences and improvemenls w.r.t. that of [Son86l wtll be the topic
or a future publication.

The optimization techniques studied are the AND-parallet
execution or ·lor;ic progra.ms (Cha.8Sa, DeG84J, the in te l t ice n t
backtrackinr; (Bru84,Cod86a,Cox64,Mat8S,Pie82l a.nd the optimization or
memory mana.cement in the sense or (War77l. Fora. simpte AND-pa.ra.llel
execution or a. tor;ic prorra.m it is necessa.ry to know, ror ea.ch catl or
a clause, which of its literals share some variables. Contexts contain
P.Xa.ctly this type or inrormation. A similar information is necessary
ror doint lntelllr;ent backtra.ckinr;, i.e., ror not redoint dedu.ctions
which are lndependent or the lfteral where the fallure occurred.
Finally, contexts ca.n be used for detectinr;, ror each call or a. clause
c, the .v.a.ria.bles or c that can be put into a local stack where they
are destroyed as soon as no more choice is lert below c. In CWar7Tl
this technique is applied ror optlmizinc a Proloc compiler.

lt is important lo undersla.nd thal the static ana.lysis thal we
put rorward can be done both beCore the interpretation and durint the
compilation or a locic prorram. The inCormation produced can be used
ror optimizinr; the interpretation as well as ror ceneratint erricient
code.

117

is orcanized as follow. tn Section l we
The rest or the paper definitions.

• Section 2 conlains the new
recall soa~ usual concep.s. h d ror Lhe 3 optimization

describes how contexts can e use
Section 3 Some concludine rema.rks close the paper.
methods cited above.

1 Prel ilninarics

The rea.der is ass~med to
concepts or locic procra.mminc; ror an
for insta.nce (Apt82,Llo84l.

be ramiliar with the classica\
inlroduction to the subject see

. t gra.m) i s a sequence A lode prou:a.m p (or JUS pro .
--- A (IX > o) , A o 1 s (A t82l or the rorm Ao <- At • · · · • < -

or definite clauses
called the nea.d or

P A tl bodY or tlle clause.
the ctause and At•···• c: le B B o: 2. 1. Lel c be a

l or the rorm <- 1• ...• <(J h
A L2.Ù is a c ause . C 1 1 <c 1·> denotes the j-l

l t h e n (Or J E ' IX ' ' 1

definite clause or a toa • . h L) lf c is a clause then <c,O>
(b l. t ral for s or . p

literal or ils body - t e[r 11 b-literals or the clauses or
is its head. LIT(P,G) is the set o a t clause or a goal, Var(t)

lr t . a term an a om, a
and or the goal G. ts . '. 1 a subst:itution cr is a
is the set or variables a.ppea.rtnc tn t. As usua

finite sel or pairs:

~here all pairs have different firsl components and
Var(t,) contains xi ror some i E {l,nl.. .
lf V is a set or variables and a a subsltlutton then

forno j E [l,nl

X i E V }

p we mean ils
In thls article with execution or a goal G in ~ proc~amused is that

1 sense, i.e., the seleclton ru e
execution in the Pro ~t rt-most literal or the current coa.l and
or expanding each t&me the le h h t·n p Thls process can be

. d . th order t ey ave •
Lhe clauses are trte tn e SLD-tree see (Apt 82]. In what
viewed as a depth-first search of an ' r p a.nd G. The
Collows we will call this tree the SLD-t~ee oor G round by this

Correspondinc to the rerutat ons
substitutions r p and G

called the answer substitutiçns 9 • .
sea.rch process are . the SLD-tree or p and G, where no ls
Consider a.ny path no.··· ,nk t n 1 t We llke to

node Or this path is labeled by a reso ven • .
t~e root: each h each t 1 1s a

a sequence (to,<ro) • ••• , (llo<fk) • w ere . "d to
view such a path as l't tion that ts sal

P and G (Cla79l and <rt is a subs l u
pro~C-LtP,P, or _ - - r 11 ws
be usociatf!d to LI· l.ach couple (t,,<rt) ls as o o •

118

r

fig. t

IC the coal G is <-B ·B . . . I • •• • then lo ts· ... th.e t ree h
ts the empty substitulion. Nodes r . ,. s ow~ in rtr. !
r.ode r) are called t, •• ,r., or lo (r, ts lhe i-th

~ beca.us~ they m t t·
couple (t,,<rt) is obtain d f ,, us s tll be expanded e rom (t 1 a) b h . •
of lt-1• la.beled by . -t• t-t Y c oostnc a.n open

h
' say, <c,)>, a.nd expa.ndinc ·t·

c ooses a. cla.use c' or p a.nd l • more precisely.,
obta.ined (rom t unirles lts head with <rt-t(<c j)) t

th
1-1 e..s .shown in ri.r 2 d . • •

e m.r.u. of the expa.n . • ' a.n <rt t.s obtained compo
saon .slep to <rt-l·

.. ;C"?\ ...
fig. 2

A node or a proof-tree with tT~ litera.t rtr. 2, is ca.lled clos .. !:! " t ., . s, see n arter expa.Asi.o.a
h ·-···cose .. node ts sat•sri d ·c

a.ve open nodes a.s descend:a.. .o; l i t does
sa.ys tha.t the nodes nts. In a.n. exp:a..nsion a.s that or t'i.:;. 2

n-~d . . n,, ... ,n.c a.re cr<:atel'! .l prnoC-t . · " es 1 s sa t d t o be • • ree Wl thout open_
çomplete.

2 Ne~ Cefiniticns

Definition 1. Let p be
<c,j> € LIT(P,G) a a. pro:;ram a.nd G
roa.l lr . context or (ç,f> (a.nd or the cla.a.se

c =G) ls a triple (W • sets such "that W s = ,B,E), wh.ere W and
alt b-t·t u B = Va.r(c) andE C Var(c)t. Th.e set

l erals ot' p and G is CON(P,G) G

a go a t.
c or tlt'

B are di.sjoi~
o C contex:ts

119

lntuitlvely, a context or <c,j> represents a sltua.tion or an instance
ot c in a proof-tree t: the var1ables in B are tround (these are
ca.lled l>la.ck), those in W are not g:round (they are called wht te) and
(X,Y) E E meLns tha.t a.t some moment or the construction or t the
v&lue; of X a.r.d Y ha.ve sha.red a.t lea.st one va.rla.ble. Ob.serve that H
(X,Y) E E a.nd, ror insta.nce, X is black that means that in the
substltution a.ssocia.ted to t, X and Y do not sha.re any varia.ble
a_nymore, but that they did in the substitution correspondint to

previous expa.nsion stop.
A context of <c,j> is sa.ld to be on Va.r(c). For a.ny 2 contexts

(Wt,Bt,Et) a.nd St E (Wt,Bt,E1) of two b-llterals of one clause
(or or the ,oa.l) we sa.y tha.t s 1 s;.onta1ns s 1 , s 1 .:2. s:z, 1! E1 .:2. Et and
B

1
.:2.:»

2
, we a.lso sa.y that s 1 !PProxtmates s 2 , s 1 > St• tr Et .:2. Et and

B
1
~ Bt- Moreover, s 1 u St is the context (W,B,E), where B = B1 u Bt

W= Var(c)-B a.nd E= E
1

u E1 , and s 1 v .St is the context (W' ,B' ,E')
where B' : B1 n Bt• W' = Var(c)-B' a.nd E' = E1 u Et·
We will otten re,a.rd contexts as ,ra.phs, thus ta.lklnt a.bout white and
bla.ck nodes and of pa.ths betwoen 2 nodes. Contexts are vory closo

to the A-substitutions of (Son56J.
a.ny subst1tution ~ , let V be the set of flrst compon.ents of the

couples or <r- Th.e context corresppndln' to ~ ls ~(~) = (W,B,E), whero
x € B lH ~(x) ls tround, W= V-B a.nd (x,y) E E it(<r(X) a.nd <r(Y)

share some varia.ble.

(i)
(ii)

Deflnltlon 2. For a ,tven pro,ram P a.nd coa.l G,
a s;.ontext-rela.tion is a. rela.tion e c LIT(P,G)xCON(P,G)

1
,

~ a.nd ~ s;.gntext-prolection~ a.re runctions or type
LIT(P,G) x CON(P,G) x P-> CON(P,G), usually up and
context-projectlons are denoted by jn a.nd .tu, respectively.

down
o

Deflnltlon 3. Let P be a pro,ra.m · a.nd G a. goal, a.
~pntext-descrlptlon for P a.nd G is a. triple D E (~.LU,jU), where ~ is
a. context-relation a.nd .tu a.nd jU are down a.nd up context-projectlons
!or P and G such that they satis!y the rollowin' conditlon:
conslder a.ny <c,j> € LIT(P,G) a.nd let <c' ,O> be uniria.ble with <c,j)
where c• :c Ao <- A 1 ••• A.c E P, lot also (<c,j>,s,s') E e a.nd
sM = LU(<c,j>,s,c•) then it must be tha.t there exlsts a.t least one
sequence or·pairs or contexts (s 1 ,s\), •• ,(s<,s«) such that s1 = s",
!or ea.ch 1 € (l,cd (<c',i>,St 1 S''t) € 4), Cor l;;> 2 St: St-1 U S't-l> a.nd
such th.a.t jU(<c,j>,s« u s~,c') = s'.
A sequence or pa.lrs or contexts e..s above is sa.Ld to be relatjve to Sl

~··o

A context-descrlptlon !or P a.nd G ca.n be used to associate contexts to
the nodes or a.ny proor-tree or P and G as explained below.

120

in l a. comp ete proor-tree ror every tnternal
contexts are riven: an input and an output one de~oted node n two
OUT(r.) respectively. ln an incomplete proof'-t • ·il lN(n) and l . ree a ancestors f h

eft-most open node have only the input context d 11 ° t e left r th an a nodes z.• •h
o ese nodes have both input and output context . ~ ~·e

~=7~!:!~' nodes have nothing. The method is described ind:~t7!:~; t~~
,,,

(i) At the betinninr
i s as i n r i'. 1 •
empty context on

the proo,~tree for a riven roal G =
lN(rx) is derined to be >.c, where

Var(G), Le., (Var(G),J!S',.I!l')-

<- Bt•··.,,Bc:
ÀG is the

(ii) ts expanded by uniryin~ Assume thal the proof-tree ·
(left-most) open node n labeled < - •
We need to distincuish two cases:
l) c' has ~~pty body

C,J> with the head <c' ,O>.

2) c' has a t leas t o ne l i teral in i ts body.

the

l) One can compule OOT(n) - jn (< · • the s t·,.. d - c,J>,>-e•,c) and can propacate it to
a ts.te ancestors or n: let n •.• b is th r th r - 1• ,nk e these nodes, where nx
e a er o n, n2 ts the father of n 1 and so 0 ·

the coup le (<c• n <c O>) r n. n1 t s labe led by , , , or some r,
OUT(nt) = jn(<c-,r>,lN(n) u OUT(n),c)

For each i r C2 kl OUT(" ' , n,) is computed in a similar way lf - h
rithl-most s t · · nk lS t e ono r, l.e. Bo:, then the proor-tree is complete and
are done, otherwlse one has to compute the in t we n' ~t th · d. pu context or the node

~ e l~ tale richt or nk:
IN(n') = IN(nk) u OUT(nk)

2) Let n1 be the lert-most son oC n:
IN(n1) = !n(<c,j>,IN(n),c') o

Definltlon 4. For a p prorra.m and a t G
context-description D = (~,!U,jU) for p and G is goa ' a
Collowinc condition holds· r complete ir the
consider any node n, let <c:j> ::da~~.:~~P!:t~h=r~:~-tree t o(p a.nd G
and ~· be the substitutions that were current w els or n and let ~
satisri.ed, respectively, it must be that lN~e~ n was expa.nded an.d
IN(n) u OUT(n) ~ ~(~'/Va.r(c)) O n > ~(~/Var(c)) a.nd

Cind a complete context-description
an.d _a roa.l G: it surrices that ~

<c,J> the triple (<c,j>,se,Se), where
that ror each clause c'unitiabte t < .>

i (
. o c,J

No te t ha. t i t i s eas:y, t o
D = <~.!u,jn) ror a prorram p
contains ror each b-literal
Se = (Var(c),~,Var 2 (c)), and
!n(<c,j>,sc,c') = Se• and 1f <c • J) • Se• ,c') = Se· Clea.r ty such a

of no use ror optimizint the execution or G in
P7ssimistic picture or the real situation.lt is

description D would be
P because· i t l s a too

121

not dtrricult to device an alcorlthm that computes more r~allstic
context-descriptions. Such an alrorilhm can be found in CSon86l.

ihe idea or usinr a context-description D = (~,!U,jU) ror

optimizint the execution or programs is simple: when expandint a node
'n labeled by <c,j> or a proor-tree by means or a clause c'
Ao <- A

1
, ••• ,Ac, ('rom IN(n) and !n we know 1Nn(n 1) a.nd then, rrom the

context-relation ~ one can construct all sequences or pairs or context
(s

1
,s

1
'), ••• ,(sc,s~) relative to s 1 and c', cf. Def 3. In this way one

has an overview or all the possible rela.tions amont the variables or
c' tha.t ma.y exist in the deductions below n. Such inrorma.tion is the

base or man:Y optimization techniques.
In what rotlows we consider three or them : AND-parallel execution o!
progrLms tCon85,DeG84l, intellicent backtrackint (Cha65b,Pie82,Cod86al

and rinally a space savint technique.

The execution or locic procrams can be improved ir one examines in
pa.rallel alternative solutlons (OR-parallelism) and/or the subparts or
one solution (AND-pa.rallelism). In the case or AND-paralle1ism, before
expandint in parallel litera.ls or one clause one would like to be sure
that they do ·ne t share any variable, otherwise -a variable bindint
con!licl may arise ir the dirterent processes instantiate the same
variable to different values. Two literals or an instance or a clause
tha.t satisCy this property are called independent. Clearly the slmple
ana.lysis o! one clause is not sufficent to know whether, when the
clause is used, any 2 b-literals will be independent. ExampLe 1

explatns this phenomenon.

Example 1 Conslder the clause c: p(X,Y) <- p(X),q(Y). The two
b-llterals or c have no va.riable ln common but ir c is used in a proor
tree with the current substltution ~ such that ~(X)= r('Z) and
~(Y) = t(Z), it is clear that the two b-literals or c cannot be solved

in parallel (without ractnt possible conrlicts) O

At this point it should be already evident that contexts are

exactly the inrormation one needs ror solvint the type or problem
shown in Ex. 1. Let us see how this is done. Let P and G be a program
and a roa.l· and D = (~,!n,jT!) a complete context-description ror them.
Consider the proor-tree t whose lert-most open node n is labeled by

122

<c,j> and assume that the context IN(n) is s. Assume also that the
expansion or n usinc the clause c• Ao <- A1 ••• A< succeeds a.nd that
ln(<c,j>,s,c~) =sa- One wants to know the subsets or b-lilerals or c'
that can be executed in parallel in alt computatlons that may solve
<c, j >. 1

Due to the fact tha.t the static analysis is Mued on the
standard PROLOG selection rule (i.e., the lert-mosl literal !s
chosen), see CSon86l, with the context-description computed by lhis
analisys one ca.n "parallelize" a clause as c• only in the sense that

its body can be divided in croups, A 1 ,.~~A~c 1 >; Aa(l)+l•···A~c:>; •. ;
Am(k)•I•··•A<i such that the literAls or .each croup can be executed in
parallel, but the troups must be exe~uted sequentially in the order
that they have in c•. '.•'

We rive two methods for doinc a correct -slicing" o(c' : a
simple one called the backward roethod and a smarter one called the
rorward method. Let us first define the !ollowinc contexts :

• J J • J
Let (.st,Sl), •• ,(s<,s<), j€(1,ml, be a.ll sequences or pairs or
contexts relative 'to s 1 and c'. For k 40 Cl,c:l the k-th contert Sk fQr
s, and c' is as follows : sk = v<sl / j€(l,mJ}. The rinal context (or
_s, and c' is sr 1 ,. = V{s~ u s:J / j€(1,m)}.
Two l i teral s Ak and A1 are (orward independent w. r. t. a conte x t s, u·
in s lhere i.s no path (po.sslbly empty) between two whlte varlables X
and Y of Ak and A 1 respectively.
Ak and AJ are backward independent w.r.t. s ir in s there is no path
between (any) two variables X and Y or Ak and AJ, respectively.

The fir.st ~slicinc- method is as Collows : the body o! c' is
divided into croups A 1 , •• ,A=(l); ••• ;Am(k)•t•··•A«; .such that the
literals or each :roup are palrwise backward independent w.r.t • .Srtn
(the final cont.ext Cor s 1 and c•).
Clearly, this method is very pes.simistlc because the sliclng 1s done
usinc the last context srtn· Therefore one may expect it to be not
very interestinc in practice.

An improved method is the Collowinc : the body or c' i.s sticed
into croup.s a.s above where the Cir.st croup i.s the maximal preflx or
the body or c• such that alt lts literals are palrwi.se forward
independent w.r.t. s 1 , those or the .second croup are alt palrwlse
forward independent w.r.t. the (m(l)+l)-th context (or s 1 and c' and
so on !or ali other groups.

Ex5mple 2. Let P and G be a program a.nd a goal and D be a
complete context-description ror them. Con.slder an occurrence or a
eluse c•: Ao(X,Y,Z) <- A1 (X) A2 (Y,Z) A3 (X,Y) A4 (X,Z), in a. proof-tree,
and le t n, be the node labe led by At, i€(0,4]. Assume t ha t

123

Y Z))) and let D be such that the contexts 1N(n 1) = s1 =(<X,Y,Z>,.,{(,
, and c' are as follows: s 2 , s 3 , s 4 , and .Sctn ~or s1

:;
2

= ({Y,Z>,<X>,<(Y,Z)}), s 3 = .s 4 = (<Z>,<X,Y>,<(Y,Z)}) and

Sfin = <•.<X,Y,Z>,<(Y,Z))).
The backw;.rd me t h od s l i ce s the body o C c' i n
The rorwa.rd method slices it in only 2 croups

3 groups: A1//A2&A3&A.c.
A1//A2&A3//A.c· O

Assume, ror .simplicity, that c• has been sliced (u.sinc either method)
into only two croups : Atr···A~ and ~+t•··•A<- For the methods to
work at the execution or each literAl one must know its input context.
Il is not di!flcult to see tha.t rrom St one can rind a convenient
input oontext ror each A1 , ••• ~. One can also see that, when the
executton or Al, •• ,A. is completed, mercing sx with the output

r • • produces the input context needed for the contexts o At••·•n••
execution or Ac+l•··•A<-
We stress the ract that ror both the methods described
slicin' ot a. cla.u.se c• is done .stat.ically because it depends
c• and on the input context .s 1 , taken (rom a finite set.

l31 lntelligent Backtrackina

above the
only on

Con.sider a pro,ra.m p and a ,oat G. As mentioned in sect.2, the
execution or G in P consists in traversint the SLD-tree or P and G in
a depth-rirst fashion. This is implemented as Collows : when a node,
.say n, is round that cannot be expanded (all clauses have alrea~y been
tried) one backtracks to the !ir.st ancestor n' or n that sttll has
some alternative.s lo be tried, i.e., inexplored path.s in the SLD-tree.

In Proloc one applies this backtrackinr; method systemati~al~y,
even when the remaining alternatives o! n' have no chance or modtfytnr;
the causes or the railure or n. Several methods ha.ve been proposed for
improvtnr this nalve backtrackin,, most or the.se techniques,
cBru84,Cod86a&b,Cox84,Mat85,Pie82l, are dynamic ln the sense that all
the work is done durint the execution/interpretation or a pro,ram.
R.oughly, these methods consi.st in connecting each ··~ieee .. ~r the
compuLed substitution with the expansion that has caused ll. lt ts not
sure that the.se techniques really brint an improvement: the extra
computation they require may be more expensive than the useless
expansions that they allow to skip, see also (Bru84,Cha85bl for some
statistics. (n contrast to the heaviness or the dynamic methods
(Cha85bl propose a much simpler stalle technique that is descrlbed in

examp le ::1.

124

Exomple 3 Considera prorram P and a goal G: <- p(X),q(Y),w(X)
a:td assume that in a proo(-tree the son r.., or the root, labeled by
w(X), Cails:: one has to backtrack to the rirst node (with some
unexplored alternatives) to the leCt o(r 3 that has a chance or
modiryinc the current value or the variable X. lt i~ easy to see that
no descendent or r 2 satisries this condition, q(Y) may modiry the
value or Y but not that or X! Hence one can saCely backtrack to the
rirht-most descendent or r 1 that has some untried alternatives.
Ass~me now to have the clause p(X,Y) <- q(X),w(Y). Ir (the instance
or) w(Y) fai!s due to one oC iti'" descendents, one may wn.nt to
backtrack direclly lo the rathir;· but this may imply lhat some
existinc. answer .s:ubstitutions are'.never round ir the current values or
X and Y have some variable in common. Clearly, such an inrormalion is
contained in a complete context-description or the procram.o

The need or context-descriptions
eventhouch no detail is civen there
constructed and used.

is mentioned
abou t the

also in
way they

CCha8SbJ
could be

Let us see the method that we propose: Let P be a program and
G the_ goal and consider an insta.n.ce or a clause c: Ao <- A

1
, ••• ,Ac of

P in a proor-tree or Gin P, where n 0 , ••• ,nc are the nodes containing
<c,O>, •• ,<c,a>, respectively. Assume that n 1 rails ror i E (l,al.
A backtracktnt: node (b-node ror short) is any nk, k E (l,i-1] such
that either there is a variable X or n 1 such that X is white in IN(nk)
and black in OUT(nk), or in IN(n 1) there is a path between a white
variable X or n 1 and Y or nk (includint the case X= Y). One must
backtrack to the ritht-most descendent (with alternatives) or the
ritht-most b-node or n 1 • The remainint b-nodes, ir any, must be kept
in a set, called B(n0), assoch.ted to n 0 • B(n0) is useful in case some
other node nr, rE Cl,al rails, i.e., it is not the rirst time that a
node in <n 1 , •• ,n.} ratls.

Thus, in reneral, iC n 1 ratls one computes its b-nodes using
lN(n 1), •• , IN(n 1), chooses the tltht-most node nk, k E Cl,i-ll a.monc
them and the nodes in B(n0) and updates B(no) addint to it the
remainint b-nodes or n 1 • B(n0) is setto e when n 1 , •• ,nc are created
and it is set arain to e when n 0 ts satisCied.

One needs to store the remainlnr
guarantee the completeness or the
backtrackinr. This need is already
CBru84,Cod86bl, whereas in CCha85b]1t
the accuracy or the backtracking,
pessimistic b-nodes.

b-nodes in B(n0) ln order to
method w.r.t. the naive

present in the dynamic method or
is avoided, at the expence or
by statically computing the most

125

as usual, a prorram P, a goal G, and a
ExcmPie 4. Consider, As .. r"~e that the clause c': · D ror P and G. ~

complete context-descriptlon or p occurs in a proof-tree t
A (X W)<- At(W) A:(Y) A<J(Y,Z) A,(X,Y), or t, i..-(0,4]. Let n, be the 0

' · · t A 1 a be l s n ode n t ""
and that each preatca e t and assume that it has no more aiternatives

left-mos~ open ~:~~s~rA!sume also that IN(n,), iet1,4l, are as

to try, t.e., An, = (<X,Y,W,Z>,~,<(X,W)>), IN(n2) : (<X,Y,Z>,<W>,
follows: IN(x) ., y Vi} <(X W)}), a.nd IN(n") = (<X>,<Y,W,Z>,
<(X.W))), IN(n3) = (<X, .. >,< ' ' '
<(X,W)}). and n2- Node n3 is not a b-node because
Node n, has two b-nodes nA: share, is alrea.dy bla.ck in IN(n3)· O
tne variable Y, that A3 a.nd ,

· when a b-node n is
The "'method just presented has a limi tat ton: n tha.t has

. . ht-most descendent n' or
chosen one ba.cktracks to the rtr; l'k t choose the descendent or

t• One would 1 e o
some untried alterna tv~s- intellirent way, in the sense, that
n to which to ba.cktrack ln a more t d in n' wili cha.nr;e the
it is not sure that chanr;int the subtree roo e

bl or the literals in n.
values or the varia. es in this way seems not too dif~icu~t.

Extendìnr; ou.r method odiCy the uniCtcatton
d rollows: one may m .

Rouchly, i.t can be one as th t in case of railure in untrytnr; two
alr;orlthm in such a way 'a '·r· s the variables or c and c' the
literals <c,j> and <c',O>, it spect te r ·t re tn a.dditi.on to this

r h . h have caused the at u •
actual values o w te r t es that works as rollows. . cedure on proo - re
one needs a recurstve pro . d < • O> where c' has the rorm
Consider a node n labeled by <c,J> da.n :r;iv;s in n with a subset v

A tha.t the proce ure "
Ao <- Al, •• ,A<· ssume . d the rir;ht-most son n, such t~at, tf one
or Var(c). One wants to rtn . values or some variables in V
chanr;es the subtree rooted in tl, the

may cha.nr;e. the set v• or variables or c'
The procedure must constru:~ V. Two variabtes X and y or c•

that are dependent on some va.ria.b~es the rollowint holds: let cr b_e the
re (iependent 1 r y

a.nd c, resp., a • 3 a term t. such that either it cont.atns
m.g.u. or <c,j.> and <c ,O>, 't. contains X a.nd is such that

· }; that a-(X) = a(t) • or 1 . . '-otd~ we
and ts sue. the second possibtltty only " ~,
cr(Y) = a(t). ln the case that
say that X ls useful ror Y.

Example s. Consider
Ao(X,r(Z,Z),Z,b) with the head
At(W,r;(Y),W') A:(W,W' ,r;(Y')).
are dependent .a

the unirication or the b-literal

0 r the c l ause c• : Ao CC (W) • y' a, Y') <­
Va.riable W is useful ror X, and y and Z

Le t
the node n1

O v• is deCined,
to Our re cursive procedure. nce

us :;o ba.ck h that in
is clearly the rir;ht-most node in <nt, •• ,nc> sue

126

lN(nj) there is a. path (possihl'' empty) b • etween 2 whites vartable• v
a nd Y s. t. X € A· a n d Y V' L t v .. "' 1 E • e i be llte set or va.riables [
X abuve. One rousl recursivel•· Cl<!! lle d

0
Ai as

V
. • a proce ure anni wilh ,. parameter

The recursive cali stops when a terminai node is found or wh .
in a node n such tha.t no scn o[n can be selecled, en tl is
Abon~ rules. The nocle at l(•l\ich it stons . h a.ccordin:: lo tlte . . ,. 's w, ere one has to backt k

A s l m l l A r r e c u r .s i v e P r o c e d u re i .s d t: s c r i be d i n r a c .•
mcthnd or <Dem85). The information tha.t directs the r ~he ~acktracking
method or CD 851 · · · ·· e ursron in the

' em. t!\ atso compttle:~ sll'.ticatly, but, in contra.st with
ocr conte.xt-de.scrtpttons, consi~·ts in properties l
s:~.t~sfy anc!, thus, the method co('!\ Le a.pplied lo a ~ea.sttrtht'cetpdroz;ram must
lo•tc e f<t.mi 1:~-;' or

.. pro~rams, lllat introduced in (Der·B:ll. In {Dem85J · ·
bAcktracksng i.s done tocetlter with A.~D-parallel executi•n tntetlt;ent
lo see that the backt 'k. .

0
• l t i s ea.sy .· ra.c tnt lechntque presented above i.s compatibte

?.tth the methods of ruidint the AND-paralleli.sm
a. bo ve : any b-node n .. or a node n,. t" s de.scr i bed in (Al " not independent or n d
nt a.nd nL a.re executed i an ·hence .. .sequenlially.

Cl Space-saving techniques

The distinction bet~een rtobal and local h b variables or a clau.sP_
l.s een made in CWar77 J w i t h the 0 r e!'Cici<'!ncy r th goal optimizint the spac:<'!

instance or o e exec~tion or compiled Prolog programs. Consid<'!r the
a clau.se c 1n lhe schematic proor-tree .sho-n w in fi.t.3.

a.

th1t no i.s .sati.sfied d th an at in the subtrees r:>.Jte.J in
~~~~-,ne there are no unexplored alternative.s. The vari~bles o( c 

are 'not needed for in.stantiatin:; any variable or c can be tilrovm. 
~~~r. bec1use they. will not be re!erenced anymore. We ,
101

~ Cl.ll the:n th.e
• r~, .. r.o:nc~d va.rtable.s or this or occurrence c' [t '1TO:tl·1 be

C1n~~3i~n: to kee~ the.se variable.s · 1n a (local) stack diU'ere.:t.:

127

that or the referenced va.riables, in arder to recover the space they
occupy as soon as the above described situation o! c• occurs.

A subset or the unreferenced variables or all occurrences or a
cla.use c' are the .l..2.llJ.. variables or c• as defined in [War77l: local
are the varlables that have multiple occurrences in c• with at least
one in the body and none in a compound term.

A complete context-description allows to distin&uish another
sub.set of the unreferenced variables of any occurrence or a clause c'
in a proof-tree : the subset or its unimportant variables. Clearly,
different occurrences of c• may ha.ve different sets cf unimportant

·variables.
.consider the proof-tree obtained rrom that or fig.J by makint nao•••n«
·open atain~ The subset or the unlmportant variables of c• is defined

as rollows. Let V be the .sel or varh.bles of c• that are uset'ul (see
the end of point (13))t'or .some variable or c. V' is obtained
eliminatint t'rom V èach variable X such that every variable or c, for
which X is uset'ul, is black in lN(no)· Finally, consider the rinal
context srt~ for IN(n 1) and c•; a variable X or c• is uniroporta.nt (t'or
the con.sidered occurrence or c') ir there is no path (possibly empty)
in Srtn between x and a variable or V'.

Example 6. Recall example 5 and assume that the literal <c,j>
occur.s in a proof-tree and tha.t it. is expanded usi.nr; clause c•. As
usua.l, the nodes or this occurrence are n 0 , n 1 , and n 2 • Only var!able
W or c• is useC'ul for a va.riable or c, viz., C'or X. Hence, l.t' in
IN(n

0
) X is black, a.ll variables of c• are unimportant, whereas, ir X

is not black, then one mu.st look at the final context. srtn for IN(n 1)

and c'. Assume that srtn =({W'},{Y,Y' ,W},{(W,W')}). in this case only
Y and Y' are unimporta.nt ror the occurrence or c•. a

Observe that in :eneral local and unimportant varia.bles are
incomparable sets. In practice, one cando the followint: when a node
no is expa.nded by means of a clause c' • one can put in a special stack
the iocal and the unimportant variables (this tast set depends on
IN(n

1
) and on c' only). Obviou.sly followint (War77l void and temporary

variables will not ever appear on th!.s local stack and wi.ll be thrown

away after unit'ication.

Ccnclusicn We have described a cenera.l method or usinr;
statica.lly collected information t'or optiml:int the execution or iocic
prorram.s. The most important features of this method are that it use.s
the .statte information ln a dynamic way and that the s~ information
is the basis or all the considered optimization techniques.

128

In the future we intend to rormally derine an alcorithm ror
computinc complete context-descriptions closer to the reality than
those or the alcorithm or (Son86l. The goal beift that or rurther
exploitinc the optimization techniques presented here (and eventualiy
new ones). It is in our plans to implement this ~lcorithm in order to
test it acainst real lire procrams.

Referencets

(Apt 82l

Cflru 84]

K.R. Apt, M.H. Van E~en. Contributions to the theory or
locic procramminc; JÀCM vol.29 (1982),841-662. '
M. 8ruynooshe, L.M. Pereira. Deduction revision by intel-
licent backtrackinc; lmplementations or Prolog, Campbell
(ed.), Ellis Horwood (1984), 194-215.

(Cha 85al JH. Chang, A.M. De6Paln, D. OeGroot. AND-Parallelism or
locic procrams based on a static data dependency analysis;
Dicest or papers or COMPCON Sprint' 85, (1985), 218-225.

CCha 85bl JH. Chans, A.M. Oe6paln. Semi-intellitent backtrackint or
Proloc based on a static data dependency analysis;
lnt. Symp. on Locic Procramming (1985), 10-21.

CCla 791 K.L. Clark. Predicate locic as a computational !ormalism;
Research report, Dept. or •computinc, Imperial Collere,
Lon.don (1979).

CCod 86al C. Codognet, P. Codosnet, G. Fllé. A very !ntelligent back­
trackinc method for logic programs; ESOP, Saarbruck, LNCS
213 (1986), 315-326.

CCod 85bl C. Codownet, P. Codognet, G. Filé. Backtrackinr intelligent
en procrammation locique; Symposium sur la procrammation en
locique, CNET, Trecastel (1986).

!Con 851 J.S. Connery, O.F. Kibfer- AND-Parallelism and nondetermi­
nism in locic procrams; New generation computinc. vol. J
(1985). 43-70.

CCox 841 P.T. Cox. Findint intelllcent backtrack points ror intel­
licen.t backtrackinc; lmplementations or Prolog, op. cit.,
216-233.

CDeG 84]. D. DeGroot. Restricted AJ·m-Paralleltsm; Proc. or the lnt.
Conr. o (1984),
471-478.

CDem 85] P. Oembinski, J. Maluszyn5kl- AND-Parallelism wlth intel­
licent backtrackinc ror ann.oted locic procrams; lnt. Symp.
on. Locic Procrammint (1985), 29-38.

CDer 851 P. Deran:sart, J. Maluszrnskl- Relatinc lo_cic prorrams a.nd
attribute crammars; J. Locic Programming, vol. 2 (1985),
119-1!5!5.

(Fil 861

(L lo 841

[Ma t 85l

(Me 1 861

[Pie 821

(Ri i 831

rson 861

(War 771

129

d · ental evaluators Cor attribute é Cl ·cal an a.ncrem
G. fil . asu -th CAAP LNCS 214 (1986), 112-126.
trammars; Proc. 11 •

d Foundations of lotic pro,ramminc.
J. W. Lloy • • . in Swmbolic Computation, (1984).
S incer Veriac seraes ,_
pr . j t ykows'ki. lntell !.tent backtrackint in

S. ~twan: Td.dp et;:~. IEEE PAMl vol.1 no.6, (Nov 1985)
pian-baseu e uc • • p 1 s ·

Il" h Abstract interpretation or ro Ot program'
C. S. Me 1

6
• • • q LNCS 225 (1986), 463-474-

I t C nf on Lo,lC Programmtnb.
n •• o • Ex onential i.mprovement or

T. Pietr~rkowskl, S. Matwin- P strategy for plan-based
exhaus t i ve backtrackint • a '"'3 239

. h CADE •NCS 138 (1982), 2•- •
deductaon; 6-t • ... s· a way to character i-

.H. Rli6 Niel5on. Comput~tion sequen:~s: Acta Informatica 13
ze subclasses or attrabute tramm •

(1983), 255-268. i t tion
d An application or abstract nterpre a

H Sondergacr • 1 • ESOP, Saarbruck,
o~ lo&ic programs: occur check reduct on,

LNCS 213, (1986), 3 21 - 338 • · · predicate lor;ic
1 t"ng Prolot - Comp1l1nt o. Warren- Imp emen t ~ 9 and 4 o Department or

Research reports ~ •
programs; lntet•·.·t·.,.ence, University of Edinburgh, (1977).
Ar t i f i c i a l ., ..

