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Cptimizatian of logic programs execution
pased on thelr static analysis

3
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an

pure PROLOG programs is used as

Abstroct A static analysis of
execution

commonr basis of different technigquex for optimizing the
programs. We describe how the infermation computed during

static analysis of a useful for executing it in
tashion, intelligent backtracking, and in a

space efficienl way. Each o© applied alone as
well as together with the other ones.

program |is

performing
{ the techniques can be

introducticn

execution of pure PROLOG
is our goal. To this end we
any given program that is
information

Improving the ctfi;iency of the

programs (simply programs in what follows)
propose to use some information about
computed by 2 static analyfis of the program. This type of
is often called an abstract interpretation of the program, Sseéc¢
(Son86,Me 1861, where abstract interpretations arve applied to the
cccur-check problem and the construction of modes . We go further,
showing that this information can be used as the Dbase of several
different techniques for optimizing the execution c¢f{ programs.
Roughly, the static analysis consists of computing, for each
literal L of the clauses of a program, a set of pairs of conlexts & (L)
that represents all occurrences of L in the proof-trees of the program
in the following sense: for any occurrence of I in a proof-iree, there
is a couple (s3,52) ¢ &(l) such that s, represents the instantiation
of l.when it ls created and sg represents its instantiation when it is
satisfied. For an {nstantiation @ of L the context s of | representing
¢ contains two types of information: (&) which varlables of L are
ground Dby o, and (£{) which gariables of Ll are instantiated by o to
values sharing some variable. Onfortunately it is not possible, in

general, to compute the palrs of contexts that represent precisely all
construct an approximation

occurrences of 2 literal. However one can

of this set. Approximation that, hopefully, contains enough
information for Ddeing useful in optimizing the execution of the
progzram.
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2 Université de Bordeanux 1,
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As already mentioned th i i
d , e informatioen that we pro

' : ' os

compute [or any given program, is very close to that ¢ ten i

{Son86), Dbut in dditi . # coputed  in

oo - s addition to the difference in° the domain

izp ication, our approach differs from that of7 {Son86) for e

‘hpozt‘nt aspect. In (SonB6] contexts are used in a static way, § e

t et-CSLS of occur-check inserted in a clause do not depend ;n‘.i-’

a

particular occurrence of the clause. In contrast to this, we use o
’ our

contexts dynamically, in the sense-.that, whenever a literal is
) is

called, associated to L i 5 giv some

‘ one finds its context th i

l ) . at tves

nformation about the current xr;;tant.i:.lion of L, viz &) and (L‘L').
B i

above; i i '
; information that would be too expensive to collect direftly

;:ome:zil?::gen; instantiation and that can be useful in several! ways,
i poxpls Contex:iot k.» Clearly,‘difrerent occurrences of | will have
imatyein S : ?n from a rxnitf set computed during the static
atieatly is a ef nx?uc of dy*amxcxlly using information computed
iritete pramma c assT?al ?ne in the design of evaluators for
aticelty Severa:s (Rii83,FilB6]). l? attribule grammars one computes
e Y ?rders of the attributes of each nonterminal X and
;a or dynamically chooses one order for each occurence of X
descript;:: tzrththrestric?ion on th? length of the paper, we omit ;he
Coseripiion ot the sta%x? a§alyszs (tengthy and technical) and
e e z optimizations that can be obtained by using the
he intetestedp r:ld:Z s:z: a{ft:ti? Lh;l?SiS. This is possible since
e in in {Son86] a program analysis ver
dirt:r::C:?atazzcgzd here. The static analysis that we propose and itz
o a poices Publicaf:z:fments w.r.t. that of (Son861 will be the topic
exccutio:heoro?:;mfzation techniques studied are the AND-parallel
Packtracking (Bri;: cprograms {Cha85a, DeGB41}, the intelttligent
bonorr oans ement ,Cod86a,Cox84,Mat8S,PieB2) and the optimization of
oy manafement fn the sense o{ (War77). For a simple AND-parallel
S e ogx? program it is necessary to know, for each call of
ecils .this ) its Flterals.share some variables. Contexts contain
for doing lnte“{pe :fbxnrormatton. A similar information is necessary
enien o dnell ::: acktracking, i.e., for not redoing deductions
Finally, congexti . en; of the literal where the failure occurred.
Ty e Lnr e uzed for detecting, for each call of a clause
o destr5§ed e of ¢ that can be-put into a local stack where they
e airere . on as ﬁo more choice Is left below c¢. In (RWar77}
[tn:que is applied for optimizing a Prolog compiler.
bet foresrd :aim::r;:nt ;o understand th?t the static analysis that we
Coapiletion op o n? oth before th? interpretation and during the
ogic program. The information produced can be used

for optimizing the int retati T
er i
- pretation as well as for generating efficient
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The rest of the paper is organized as follow. {n Section 1 we
recall some usual concepts. Section 9 contains the new definitions.
Section 2 describes how contexts can be used for the 3 optimization
methods cited above. Some concluding remarks close the paper.

{ Dreliminaries

to be familiar with the classical

The reader is assumed
introduction to the subject see

concepts of logic programming; for an
for instance {Apt82,L10B4]).

of definite clauses

A Jorgic vrozram P (or just program) is a sequence
{Apt82) ef the form Ao <~ Ap,.. .0« (x 2 0), Ag is called the head of

the clause and Ay, ....Ac the body of the clause.

A groal is a clause of the (form <- By,...:Bas & 2 1. Let ¢ be 2
definite clause or 2 goal, then for j ¢ (1,x], <c,j>, denotes the j-th
literal of its body (b-literal for short). If c is & clause then <c,0?
is its head. LIT(P,G) is thé set of all b-literals of the clauses of P
and of the goal G. I ¢ is a term, an atom, 3 ciause or a goal, Var(t)
is the set of variables appearing in t. AS usual a substitutien ¢ is a

finite set of pairs:

o = {(xg.t1)s s (Xnstad?

shere all pairs have different first components and for ne j ¢ {1,nl

Var(t,) contains x; for some i ¢ {i,nl-
I{ V is a set of variables and ¢ a substitution then g/V={(x,ty) s.t.
xi ¢ V2

execution of a goal G in 2 program P we mean its
j.e., the selection rule used is that
of expanding each time the left-most literal of the current goal and
the clauses are tried in the order they have in P. This process can be
viewed as a depth-first search of an SLD-tree, see {Apt 821. In what
follows we will call 1this tree the SLD-tree of P and G. The
substitutions corresponding to the refutations of G found by this
search process are called the answer substitutions of P and G .

Consider any path Ro,---,Rk in the SLD-tree of P and G, where ng is
the root: each node of this path is labeled by a resolvent. We like to
view such 2 path as a sequence (to,vo)....,(tk,wu). where each ty is a
proof-tree of P and G (Cla79] and ¢ is a substitution that is said to

be agsociated to t.. Each couple (t;,04) is as folliows.

fn this article with
execution in the Prolog sense,




It th i -
e goal G is <¢-B;,..B, then tgy is.tKe tree shown in fig. I as

ts Lhc CIHP( S“bstlt“tlo - NOdCS | 4 wagl of t f 13 t}le -
Y n s3r<elm [+] ( i Lh
13 3

rRode r) are

couple (Lroos) ia!l:d .gggn because they must still be expande

of t :;b;ledsbo tained from (ty.;,0¢(-;) by choosing an open ne

Choosci‘; lavee f» say, <¢,J?, and expanding it; more preci:etnu

obteiiid ooy tc of P and unifies {ts head with g(.;(<c,jd) -
t-1 ax shown in fig. 2, and R e :

the m.gz.u. of the expansion step to Ut-xt oy is obtained coampo

fig. 2

c - . .
proof~-tree with two literals, see n after expansio

fig. 2, is called =
N , closad. 2 closed node is satisCied i€ it

A node of a

cpen ] a
P nodes as descendlnts. in an e.(pi.nsio!l as that of i 2
~t

y ! fs~eeslt are grea LG i >
! he n . 2 < zated. A prool-~tree without op

2 New Cefiniticns

Definition 1 Let P
- be a k
e prozram and G !
13> ¢ LIT(P,G) a context of <c,i> (and of the clause ca ofoai;
- ‘ g

goal ir
¢ =G) {is a triple s = (¥,B,E), where W and B are disjai

sets such that W u B = Vv
c ar(c) and v z
atl b-literals of P and G is CON(PEG$ Glr(C) +The et of coatexfs
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ntuitively, =2 context of <c,j§> represents & situation of an instance
¢t ¢ in » proofl-tree t: the variables in B are ground (thess are
siled black), those in W are not greund (they are called white) and
X,Y) ¢ E means that at some moment of the construction of t the
slnes of X and Y have shared at least ome variable. Observe that if
%,Y) ¢ E and, for fnstance, X 1is black that moans that in the
abstitution associated to t, X and Y do not share any variable
snymore, but that they did in the substitutien corresponding to
some previous expansion step.

A contaxt of <c,§> is said to be on Var(c). For any 2 contexts
5y = (¥y,By1,Eq) and s = (W2,B2,Es) of two b-literals of one clause
(or of the goal) we say that s; contains ss, Sy 2 S2» {f E; o Eg and
B, 2 Bz, we ;l:$ say that s; ppproximates s3, S1 > 52 irf E;, 2 By and
By ¢ By. Moreover, 353 U s¢ is the context (W,B,E), where B = B; u Be
% = Var(c)-B and K = By u Eg, and 53 V S2 i{s the context (W ,B’ ,E")
where B = By n By, ® = Var(c)-B’ and E* = E; u Eg.

®we will often regard contexts as graphs, thus talking about white and

black nodes and of paths Dbetween 2 nodes. Contexts are very close
to the A-substitutions of {SonB61].

For any substitution ¢ , let V be the set of first components of the
couples of o. The context corresppndlnz to o Is w(s) = (¥,B,E), where

x ¢ B 10 o(x) {s ground, ¥ = V-B and (x,y) ¢ E Iff c(x) and o(¥)
share some variable.

Definitlon 2. For a givenr program P and goal G,
a context-relation is a relation & ¢ LIT(P,G)xCON(P,G)*,
up and down ggn;gz&-z:g:gg;iog; are functions of type
LIT(P,G) x CON(P,G) x P -> CON(P.,G), usually ap and
context-projections are denoted by TT and lu, respectively.

Definition 3. Let P be 2 program and G 2 goal, &

t- for P and G is a triple D = @, u,TW), where & is
a context-relation and l¥ and 17 are down and up context-projections
for P and G such that they satisfy the followlng condition:
consider any <c,J? ¢ LIT(P,G) and let <c’,0> be gnifiable with <c,§?
where e = Ao <~ A1---Ac € Fu let also (<c,3>:5,8") ¢ & end
s* = luq<e,§>,5,¢’) then {t must be that there exists at least one
sequence of pairs of contexts (S1,51)r--1(S«,S%) such that s;q = 37,
for each { ¢ (1,al (<c’ 512 ,5¢,31) ¢ &, [lor I > 2 sy = Sg-1 U F1-1» and
such that TU(<c,J?,5« U s2,¢’) = s,
A sequence of pairs of contexts as above iz said to be relative to 53

and &' . @ «

A context-description for P and G can be used to associate contexts to
the nodes of any proof-tree of P and G as explained below.
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in a 'complete proof{-tree fer every lnié,
g;;sztsr::e g;?en; an inpnt.and an output one, >deg:i:d nz:in§ t:gd
Ierttgost oﬁ:g ;::ey; In an xncomp?ete proof-tree all ancestor; of the
leftmmost op ave only the fnput context and all nodes at ¢X
ese nodes have both input and output contexts, while ;;Z

remaining nodes have nothing. The method is described inductively ’
o A L as

follows:

) §t thc.be:fnnin: the prooqﬁtree for a given goal G = ¢~ B B
is as in fig. 1. IN(ry) is defined to be X\g, where 2 e Ftne
enmpty context on Var(G), i.e., (Var(G),g,?) ¢ 15 the

i »

{i{) Assume that the proof-tree is expanded by unifyin h
(left-most) open node n labeled <(c,j> with the head <(c’ Ot the
We need to distinguish two cases: 0
1) ¢’ has capty dbody
2) ¢’ has at least one literal in its body.

1) One can compule OUT(n) T j
= TH(LC, jY s he*sC" )
0 . . R she® s and can propagate i
isct;atxsried ancestors of n : let ny,...,nyx be these nodei z:hc .
e father of n, ng is the father of n; and so0 on. nq i ’1 led be
the couple (<c™,f>,<c,0>) for some [, k st dabeled by
For ench i OUT(ng) = Tu(<c™,>,IN() u OUT(n),c)
i htfc i ¢ (2,k], 0?T(n;) is computed in 2 similar way. If ng is th
ar: dmost son of r, i.e. By, then the proof-tree is complete k1nd we
! one,. oth?rwise one has to compute the inputl context of .
n’ at the iwmmediate right of ny: °f the mode
IN(n') = IN(ny) u O0T(n
)
2) Let n; be the left-most son of n: )
IN(ny) = du(<e,§>,IN(),c") a

Definition 4. For a
i itic program P and a
?:?:cx% descrtp?l?n D= (Q,lU,TU) for P and G is gggglg::al'rc’th&
Consz:xn: condition holds: for any complete proofl-tree t of ; and é
oo q?rbanihnodebn.llet <c,j> and <c’,0> be the labels of n and let ¢
e e substitutions that were current
. _ . : when n was
satisfied, respectively, it oust be that (IN{(a) > g( /;Xpinded "
IN(n) u OUT(n) » n('Var(c)) Q Rlasiarce) and

Note that {t {s eas i
vy, to find a compl :

Not plete context- ipti
cont:?,lﬂ,Tn) for a program P and a goal G: it sutticzzsc:;::log

n 1 .

t 5 for each b-literal <c,j> the triple (<c,j> :

Se = (Var(c),#,Var?(c)) e e
e e ol ,’; , and that for each clause c’unifiable to <c,j?

s§Y:8¢5¢C T See and Tu(<ec,j>,s ’ ’
des 23>38¢,¢") = s¢- Cleart
: ;:iizioéi? would be of n? use for optimizing the execntioz o:néh ii

e is a too pgsstmistic pictnré of the real situation.It is

. Ap - Axpi---Ato
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not difficult to device an algorithm that computles wmore rgalistic
context-descriptions. Such an algorithm can be found in (Son861).

2 Optimixations

The idea of using a context-description D = @,ln,Tm for
optimizing the execution of programs is simple: when expanding a node
n - labeled oY <c,j> of =2 proof~tree by means of a clause c’
from IN(n) and ln we Xnow INn{n,) and then, from the
can construct all sequences of pairs of context
lative to sy amrd c', cf. Def 3. in this way one

ssible relations among the variables of
the

context-relation & one

(sx,sx').~»--(s‘,s;) re
has an overview of all the po
¢’ that may exist in the deductions below n. Such information is
base of many eptimization techniques.
in what follows we consider three of them : AND~-parallel execution of
programs {ConBS,DelGB4], intelligent backtracking (Cha&ﬁb.Pic82,CodSGa)

and finally a space saving technique.

Al AND-paraliclism

The execution of logic programs C3R be improved if one examines in

parallel alternative solutions (OR—parallelism) andsor the subpartis of
one solution (AND—parallelism). In the case of AND-paralleiism, before
expanding in parallel literals of one clause one would like to be sure
that they do "not share any variable, otherwise 2 variable binding
conflict may arise if the different processes instantiate the same
variable to different values. Two literals of an instance of a clause
that satisfy this property are called independent. Clearly the simple
analysis of one clause is not sufficent to know whether, when the
clause is used, any 9 b-literals will be independent. Example 1

explains this phenomeRnon.

Exsmple 1 Consider the clause C: p(X,Y) <~ p(X),q(¥)- The two
b-literals of ¢ have no variable In common but it ¢ is used in 2 proofl
tree with the current substitution © such that o) = £(7) and
c(Y) = g(2), it is clear that the two b-literals of ¢ cannot be solved
in parallel (without facing possible conflicts) O

At this point it should be already evident that contexts are
exactly the information one needs for solving the type of problem
shosn in Ex. 1. Let us see how this is done. Let P and G be a program
and a goal and D = (Q,lﬂ,Tﬂ) a complete context-description for them.
Consider the proof-tree t whose left-most open node n is labeled by




122

Lc, 1> f“d assume that the context IN(n) is s. Assume also that the
jxpans%on of n using the clause ¢’ : Ap <~ Aj...Ac succeeds and that
LE(:c,;),s,c ) = s;. One wants to know the subsets of b-literals of c?
a can be executed in parallel i
o P in all computations that may so0lve
i Due to the fact that the static analysis is bﬁscd on the
shan ard PROLOG selection rule (i.e., the left-most literal fs
c Offn). see [(SonB6], with the context-description computed by this
?ta x;ys one can “parallelize™ a clause as ¢’ only in the sense that
i L. .
: s ody ca? be divided in groups, Aj,--,Au¢1); Aaci1)41s--sAn(2)ie-}
n(kizx;..,A<. such that the literals of .each group can be executed in
parallel, but the groups must be execut i i
A ed sequenti
‘hat they have in o . o q ally in the order
. We ¢give two methods for doing a correct “slicing” of ¢ : a
;xmple one called the backwar ethod and a smarter one called the
Lc:ward me}?od. Let!us.first define the following contexts :
C: . (s1,5 ).7-,(S<.s( ), Je{il,m), be all sequences of pairs of
‘ R ::és fe¥at1vc te s; and ¢’. For k ¢l1,a) the k-th context s. for
A _ . .
; f ‘xs as followf Posy = V{Sﬁ / jell,m)y. The final context for
;; and.c IS Spya = Vi(sg u s<’ 7/ Jell,ml}).
ino i;tera?: Ay and Ay are forward independent w.r.t. a context{ s, it
s ere is no path (possibly empty) between two white variables X
and Y of Ax and A; respectively.
ﬁk and Ay are backward independent w.r.t. s if in s there is no path
etween (any) two variables X and Y of Ay and Ay, respectively.

divided TF: first “slicing™ methed is as follows : the body of ¢ is

tae

e 1n;o groups Ay, ..,An¢1)i--~iAm(k)+1r--2Ac; Such that the
i .s o each group are pairwise backward independent w.r.t. Sey
(the final context for s; and ¢’ ). )

glflrlya this method {s very pessimistic because the slicing (s done
Slnt_t e last context s;;,. Therefore one may expect it to be not

very interesting in practice.

‘ An improved method is the following : the body of ¢’ is sliced
::to groups as above where the first group is the maximal prefix of
inze b°3y of «¢* such that all 1{its literals are palrwise forward

pen e?t w.r.t. 5;, those of the second group are all palirwlse
forward independent w.r.t. the (m(1)+1)-th context for s; and ¢’ and
so on for all other groups. :

Example 2. Let P and G be a
program and a goal and D be a
2::Pletf context~description for them. Consider an occurrence of a
andselct. 4O(X,Y,Z) <~ Ay (X)) Ag(Y,Z) As(X,Y) A((X,Z), in a proof-tree,
e ny be the node labeled by Ay, igl0,4). Assume that
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IN(ny) = 3y =({X,Y,2},%,{(Y,2)}) and let D be such that the contexts
S2, S35 5S4, and Stin {or sy and c’ are as follows:
zs = ({Y,22,(X),{(Y,2))), s3 = Sq = (23,0, 0,20 and
Sein = (B {X,Y,23,CY,2))) -

The backward method slices the body of ¢’ in 3 groups: A/ 7Ag8A 3840, .
The forward method slices it in only 2 groups : Ay/7A&kA3//Aq. O

for simplicity, that c’ has been sliced (using either method)

Ascume,
into only two groups : Aj;,..,Ag and Agets--shAc- For the methods to

work at the execution of each literal one must know its input context.
It is not difficult to see that from s; one Can find a convenient
input - c¢ontext for each Aj;--,Aam- One <can also see that, when the
execution of Aj,+.,Amx 1S completed, merging sy with the output
contexts of Aj,:.,Am, produces the input context needed for the
execution of Agpegs--sfa-
We stress the fact that for both the methods described above the
slicing of & clause ¢* 1is done statically because it depends oniy on

¢’ and on the input context sy, taken from a finite set.

B} intelligent Backtracking

Consider a program P and a goal G. As wentioned in sect.Z, the
execution of G in P consists in traversing the SLD-tree of P and G in
a ’depth—tirst fashion. This is implemented as follows : when a node,
£2¥ R, is found that cannoil be expanded (all clauses have already been
tried) one backtracks to the first ancestor n’ of n that still has
some alternatives to be tried, i.e., inexplored paths in the SLD-tree.

In Prolog one applies this backtracking method systematically,
even when the remaining aiternatives of n’ have no chance of modifying
the causes of the failure of n. Several methods have been proposed for
improving this naive backtracking, most of these techniques,
[(Bru84,Cod86akb,Cox84,Mat8S5,Pie82, are dynamic in the sense that all
the work is done during the execution/interpretation of a program.
Roughly, these methads consist |(In connecting each “piece™ of the
computed substitution with the expansion that has caused it. It is not
sure that these techniques really bring an improvement: the extra
computation they require may be more expensive than the useless
expansions that they allow to skip, see also [(Bru84,Cha85b] for some
statistics. In contrast to the heaviness of the dynamic methods
{Cha83b] propose a much simpler static technique that is described im

example J.
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Ex i
ing 1ssumeuT:i: ?RC:nsxdcr a program P and a goal G: <~ P ,q(Y) w(X
oy e ot I h::oo{;tr;:ciie s:n ;; of the root, labeleé b;
rac ¢ the irs i
::;:?;Z;:d :;:e:::tives) to the left of r, tha:lr;isgoie i;;:fesome
o painr R © rrent Yalue of ic variable X. It is easy to se: thor
el Teendelt ot ;O:a:;siies this condition, q(Y)/ may modify t:z
Lihi-mest desemndiot ra of X! Hence one can safely backtrack teo the
rervme e roTneent :h £1 that has some untried alternatives.
baektra : -3 escendents, one ma w
CXistinzkani;::cii:SLFo the father, but this may implz th:?tso;:
N Y_h‘vc roups xFu;ionf aresnever found if the current values of
coninined ioe ariable in common. Clearly, such an information i
complete context~description of the program.Q '

Ihe n
eed of COXllext deSC! iptio!ls 15 wmen 5
I

Cnth ugh n l‘ ix
g1
cv [+] ] de ta ven t.lle re about t—lle way tl’lef Could be

Let us see the method
that we pro :

6 in ) ‘ propose: Let P be a
o i;_goal z?d consider an instance of a clause c: Ag <- A Pr°§’:m i

a pr - i . con
.o p(zoa)trec of G‘xn P, where ng,...,n, are the node;’con;a;n'or
. ba;k;, ii + Tespectively. Assume that n; fails for i ¢ (1,«] e

racking node (b-node for i i-11

: hort) is an i
that eith i i ) T i
Ny bllc:r ::er;U;S a vzrxab!e X of ny such that X ;s wiite,in :NE:C§
o iable % of énk), or l? IN(n() there is a path between a whi:e
backirack o ;han Y of ny (including the case X = Y) One wust
e tiao b”nodce rri:ht~mo:t descendent (with alternatives) of :;e
s st el of ng. The remaining b-nodes, if any, must be kept
2 ncée 2 er B(?o). associated to ng. B(ng) is useful in case s:p

; € e {1l,x] fails, f.e., it i i -
;;de N, R s it 15 not the first time that a

vs, {n general, it n
: fails one i
o o’ i computles its b-node
thcmx);nd. :ﬁ(nx), chooses the right-most node ny, k e (1 i-xi :;;nz
K ]

emsining b-n:de:od:s in B(no? and updates B(ng) adding to it tgg
e .o ny. B(no) is set to g when ny,..,n a

s set again to g when ng ts satisfied a re crented

One needs to sto
re the remaining b-node i
s in B
g::;:nte; the completeness of the we thod w r(ZO) i; erder to
racking. i : “bet. e i

(Bruse Coéng; Th;s nec? is already present in the dynamic mcth:;lvi

: » Whereas in (Cha85b)it is avoided, at the expenc ot

e o

the accuracy of th
i e backtracki i .
pessimistic b-nodes. cking, by statically computing the most
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as usual, a program P, a goal G, and a

example 4. Consider,
complete context-description D for P and G. Assume that the clause c’:
P in a preoof-tree t

Ao (X,¥) ¢~ Ay (W) As (YY) Aa(Y, 1) Ag(X,Y), of P occurs
and that each predicate A¢labels node ny of t, ig{0,41. Let ng be the
open node of t and assume that it has no more aiternatives

left-most

to try, i.e., Aq fails. Assume also that IN{ny), 1igll,4]), are as

follows: IN(ny) = ((X,Y,W,Z).ﬂ,((X,W))), IN(ng) = (X,Y,23,0%,

{((X,¥W))¥), IN(n3) = (X, 2}, Y, %), ((X,¥))), and IN(ng) = ((X2,4Y,W,2},

{{X, %))

Node ng has two b-nodes : ng and n,. Node n3y is not 2 b-node because
8}

the variable Y, that A3 and Ag share, is already black in IN(n3).

has a limitation: when a b-node n is
-~most descendent n° of =n that has

like to choose the descendent of
elligent way, in the sense, that
in n’ will change the

) Théfmethcd just presented

chosen one backtracks to the right
some untried alternatives. One would
n to which to backtrack in a more int
it is not sure that changing the subtree rooted

values of the variables of the literals in n.
Extending our method in this way seems not oo difficult.

Roughly, it can be done as follows: one may modify the unification
algorithm {in such a way that, in case of failure in unifying two
literals <c,j> and <c’,0>, it specifies the variables of ¢ and ¢’ the
actual wvalues of which have caused the failure. In addition to this
one needs a recursive procedure on proof~-treexs that works as follows.

Consider a node n labeled bY <c,j> and <c’,0>, where ¢’ has the form
Ag ¢~ Aj,.-Ag. Assume that the procedure arrives in n with a sudbset V
of Var(c). One wants to find the right-most son ny such that, i one
changes the subtree rooted in it, the values of some variables in V

may change.

The procedure must
that are dependent on some variables of
and ¢©, Tresp., Are dependent if the following holds: let ¢ be the
of <c,j> and <c’,0>, 3 a term t such that either it contains Y

c(X) = o(t), eor it contains X and is such that
we

construct the set V' of variables of ¢’
V. Two variables X and Y of c’

m.g-U.

and is such that
c(¥Y) = a(t). In the case that the second possibility only holds,

=

say that X its useful for Y.

of the b-literal

Examplie 5. Consider the wunification
<..

Ao(X,2(2,2),7,b) with the head of the clause c’:  Ag(L(¥W),Y,a,Y")
Ay (W, z(Y),W) Ag (W, ¥,z (Y’ ))- Variable W is useful for X, and Y and 7

are dependent.O

Let us go back to our recursive procedure. Once V* is defined,
in

the node n, is clearly the right-most node in {Ry,.-sNg}r such that
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IN(n, i i
(i) there 15 a path (possibly emply) between 2 whites variables y
s

a 4 ; 2
nd Y s.t. X ¢ Aj and Y o V', Let V; be the set of wariables
X of A‘

v

above. One must recursively ca ‘ am i
vy call the procedure on i
Ri with par
i P eter

i-
Thc recursive call stops when a lerminal!l node is foﬁnd or when | L
;:Oicnsztc: S;i: ;::: no :c§ or‘n can be. sclected according Lo‘t;;:
! ;;m;; t a%‘wn:ch it stop; is where one has tgo backtrack

e thog of (Dcmsg; r:;:r?zug pro?cdurc ix qescribed in the backtrackin;
meined of (Dcms;]a.. xnrormatxophfh§1 directs the recursion in the
o L hemss tfs also COTP“FCE statically, but, in contrast with
S3Lisly and, (hus. the method Cah be anpiicd Lo s osteictog Coam mest

L . can be applie to a restri ami |y

;:;;irziif;:msgsl:a& tatroduced fn {Der8s). in (Demsszfte?nIZT;:;eZi
e ! blz:t t?%?thcr v:t§ AND-parallel execution. It is easy
i st the b fzckxgx.tcchnxquc presented above is compatible
ods of guiding the AND-parallelism described in {al

above : - i
any b-node ny, of a node ny is not independent of n; and ‘h
nig and ny are executed sequentially. ‘ enee

€} Space-saving techniques

- bcenTizdjxfixn?éxon betw?cn Zlobal and local variadbles of a clause

Crriciomoade v ar??l_ with the goal of optimizing the space

S roieney e exec?txon of compiled Prolog progzrams. Consider th;
of a clause ¢ in the schematic proof-tree shown in fig.3.

Su - H i i

nxf??j; t:::e ::e ;s satisfied and that in the subtrees rasted in

L l:e'ROt neededoruncxplorcd_altcrnativcs. The variables of ¢~

iray. bec hol mec 'lor instantiating any variable of ¢ can be thrown

“aret’r.ncﬂd- o Y :1 I not be Yefcrcnced anymore. We call them the

conv“,.; = riables of 'thxs occurrence of ¢’ - [t wouldl be
=at=2nt to keep theseﬂyarlables in a2 (local) stack dilferza: (feam
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that of the referenced variables, in order to recover the space they
occupy as soon as the above described situation of ¢’ occurs.

A subset of the unreferenced gariables of all occurrences of a
clause ¢’ are the local variables of ¢ as defined in {®arT7l: local
are the variables that have multiple occurrences in ¢* with at least
one in the body and mone in a compound term.

A complete context-description allows to distinguish another
subset of the unreferenced variables of any occurrence of a clause c’
in a proof-tree : the subset of its unimportant variables. Clearly,
different occurrences of ¢’ may have different sets of uniwmportant

"variables.
.Consider the proof-tree obtained f{rom that of fig.3 by making hi,...R«

topen again. The subsel of the unimportant variables cf ¢’ is defined

as follows. Let V be the set of variables of ¢* that are useful (see
the end of point (B))for some variable of c. V' iz obtained
eliminating from V each variable X such that every variable of ¢, for
which ¥ is useful, is black in IN(ng)-. Finally, consider the final
context Scia for IN(n;) and ¢'; a variable X of ¢* is unimportant (for
the considered occurrence of c¢”) if there is no path (possibly ewpty)
in s¢yn between X and a variable of V°.

Exampie 6. Recall example 5 and assume that the literal <c,j?
occurs in a proof-tree and that it is expanded wusing clause c?. As
usual, the nodes of this occurrence are ng, n3, and ny. Only variable
® of ¢ is useful for a variable of ¢, viz., for X. Hence, I in
IN(ng) X is black, all variables of ¢ are unimpoertant, whereas, it X
is net black, then one must look at the final context s¢;a for IN(ny)
and ¢’ . Assume that sS¢gn =((W’),{Y,Y‘,W},{(W,W’))). fn this case only
Y and Y’ are unimportant for the occurrence of ¢*. O

Observe that {n general local and unimportant variables are
incomparable sets. In practice, one can do the following: when a node
ne is expanded by means of a clause ¢', one can put in a special stack
the local and the unimportant variables (this last set depends on
IN¢(ny) and on c' only). Obviously following (War77] void and temporary
variables will not ever appear on this local stack and will be thrown
away after unification.

Conclusion We have described a general method of wusing
statically collected information for optlmlzih: the execution of logic
programs. The most important features of this method are that it uses
the static information Iin & dynamic way and that the same Iinformation
is the basis of all the considered optimization techniques.
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In the ¢ i :
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