
Abstract

THE CONCEPT OF EXCEPTION HANDLING IN VIP PROLOG

Susi Dulli*), Eva Kilhn**)

*) Facolta'.di Statistica
Universita' di Padova
Italy-35100 Padova

on leave at **)

**) Technical University of Vienna
Argentinierstr. 8/3/9
Austria-1040 Vienna

195

This paper describes a new proposal for an exception handling mechanism for a Prolog
Interpreter (the VIP interpreter is a superset of DEC-10 Prolog characterized by module
concepts and global variables. It runs the naive reverse on a standard MC68020
microprocessor with 50 KLIPS, on a 16 MHZ MC68000 withl5 KLIPS, and on a 8
MHZ Inte180286 with 12 KLIPS).
The paper is organized as follows: a brief introduction addresses the issue of exceptions.
Section l describes the exception handling mechanisms as they are in the existing
implementations of Prolog, Section 2 discusses the centrai issues.in exception handling
schemes, while a new proposal together with its implementation for the VIP Prolog is
given in Section 3. Examples are in Section 4.

INTRODUCTION
The events or conditions that a program encounters during its execution can be classified
as either usual or exceptional. Examples of exceptional conditions include the following: a
subprogram discovers that some values of parameters can cause the execution of an illegal
division by zero; a storage allocator runs out of storage to allocate; a protocol error is
caught during reception of a message on a transmission line. All these are considered
anomalous conditions and the abilìty to deal with them is generally called exception
handling. Indeed we may define i t as a methodology to obtain reliability which consists of
considering a priori every eventual situation of "malfunctioning" and providing tools
(mechanisms, constructs etc.) to handle these situations and to recover the program. The
language should make it possible to trap undesired events (arithmetic overflows, invalid
input, null determinant) and to specify suitable response to such events. It is common use
in conventional programming languages, to divide a program into several units in order to
obtain a program that fullfilles the demand on structured progra,.-nming. Generally units
handle the usual events and can detect the occurence of anomalous conditions

196

(exceprions). The occurence of an exception transfers control to an appropriate urli t, called
an exceprion handler, that deals \Vith the exception.
Earlier programming la.'1guages provide a primitive exception handling (mainly tr...rough
labels and parameter passing), while recent ones provide ad hoc features. PL/1 was the
first language to provide an explicit construct for ~xception handling, while later
languages included them in their design as advanced facilities. Functionallanguages too,
did not ignore this issue [Harp86], [HMQM86]. Recently also some implementations of
Prolog [Prologl], [Prolog2], [MProlog],considered exception handling, but due to the
fact that Prolog identifies a differenr paradigm in the field of programmino- lammages,
existing exception handling meç~anisms cannot easily be adapted.

0
e

Section l. EXCEPTION·'HANDLING IN PROLOG
We will here briefly review the exception handling features offered by some
implementations of Prolog.

Prolog-1 version 2.0 of 8086 includes error handling primitives to recover programs
fro~ some errors. The error handling mechanism consists of a new system state flag
which can be set to ~is~ble the normal m~hanism of printing a n;tessage and entering a
break state. When th1s 1s done, a !;;Oal whtch generates an error fails, but causes the side
effect of setting an error number variable, which can in turn be examined as a system
state. The user is free to examine the error number, and either to resume execution
(ignoring the error, outputting a message and continue), or to abort execution at bis
discretion.

Prolog-2 also has facilities for handling errors. More exactly Prolog-2:
-provides a default error handler
-allows the user to define errors and to decide how they will be handled
-enable~ to switch off the error handler completely, wether if it is the one supplied by the
system 1tself or by the user. The error handler, an external module that may be altered or
replaced, determines what action is available after the error, presenting a menu of options
(abort, break, exit, fail, help, retry, trace).
No matter whether user or system defined, in Prolog-2 there are four kinds of errors
(numbered from O to 3), depending on their seriousness. The user can also add new
errors that the interpreter will recognize, but only within the 0-3 scale. lf the error is type
O, l, or 2 an error-window containing the menu of options appears; of course fora type 3
error (fatai error) the return to the operating system will be forced. When the interpreter
detects an error, Prolog-2 does the following: it recognizes the kind of error (0-3), finds
the appropriate error-number, passes this information on to the error-handler and invokes
the user defmed handler or, if any, the default one.

MPROLOG allows the user to handle errors by defining predicates to take over from the
on~oing process. More pr:cisely the progr~mer may define error-handling predicates
wh~ch catch errors ~ therr ~ (as usual m any other language), or by protecting a
reg10n of the program (by location).
When an error occurs, MPROLOG will execute the predicate that the programmer has
specified for the given type of error. Since more than one error-handler is allowed for the
same error, MPROLOG will obey the youngest error-handler. The error-handler itself
may succeed or fail. If it succeeds, then MPROLOG resumes execution using the
predicate that it would bave executed had the error not occurred in the frrst place.
Otherwise, i.e. if the error-handler itself fails, MPROLOG resumes execution with the
failure of the evalu~tion causing the error.

197

The user may request that MPROLOG propagates the error to an outer leve! of program
execution by using the predicate "raise-error", which causes the evaluation of the
predicate "error-protect". Note that for those situations where error-handling cannot be
treated by error type, MPROLOG propagates the error in any case to the nearest
surrounding evaluation of the predicate, "error-protect".

Section 2. GENERAL DISCUSSION ON EXCEPTIONS IN PROLOG
The main issues in exception handling schemas concern:

• how is an exception declared
Not every language that handles exceptions declares them. A declaration is very useful as
it def"mes the scope, that is the validity range, of an exception. Static checks may be
provided during compile time.

• how is an exception raised
exceptions may be signalled and handled at two levels:

- in the language (so-called default or predefined or system defined)
- in the program (user defined)

During the execution of the program, if an exception arises, it may be signalled:
- automatically (for predefined. exceptions an implicit test is provided by the interpreter or
compiler) ·
-explicitely (for user defmed exceptions, an explicit and appropriate construct has been
provided by the language)
It may be possible to raise the same exception many times in the same program; i t is just a
matter of overloading.

• how do we specify the action to be executed after the signaUing of an
exception (exception handler)
The mechanism which is able to handle the exception is called exception handler. It is to
the handler that the contro! flow is transferred after the signalling of an exception.
Generally the scope of the handler depends on the granularity of the language.
In logic programming languages, we may distinguish:
- an irnplicit approach: There is no real recovery provided, since a system state is entered
after the occurence of an exception and the handler can either abon the execution or ignore
the exception. This mechanism is provided by Prolog-1 and treats only
'escape'exceptions (see [Good75] for more detail about the term 'escape').
-an explicit approach: the handler consists of a predicate which is the new goal to take
over from the ongoing process. This new goal itself may succeed or fail, providing
resumption in any case (like in MProlog) or presenting a menu of options like in Prolog-
2. It is worth to notice that while traditional programming languages like Ada, Clu, Chili,
consider only 'escape' exceptions, logica! programming languages offer a complete
treatment of exceptions. Infact they deal also with 'retry' [CoDu82a] exceptions (in
Prolog-2 there is the possibility to recover from some hardware error) and 'notify'
[CoDu82b] ones (a real recovery is obtained when the bad goal is substituted by a
succeeding one and the execution continues with the evaluation of the predicate as if no
error occurred).

• how is an exception bound to the handler {dynamically or statically)
The binding is the mechanism that associates the signalling of an exception to the
corresponding handler. In logic programming languages we may bave

198

- a sratic trearment Q,fexcemions: this means that no recovery can be provided, because no
jump to another piace in the proof tree can be performed on resumption. The following
possibilities can be considered:
a} abort: causes the abandon of the program current activity, and the return to the toplevel
interpreter. The whole proof tree is dropped, no depugging can longer be done.
b) local jump: Continuation through evaluation of the next current goal by execution of the
right or left branch of the proof tree. No resumption is possible because no scope has
been involved, and the kind ofrecovery is somehow just 1ocal':
b. l.) immediate left: causes normal backtracking
b.2.) immediate right: causes,.normal continuation

r' ""1

- a dynamical rreatrnent (},fexceynions: this means that there is a real possibility to recover
the progran1 since a new1cope may be defmed marking the exception definition. In other
words the state of the database is changed as before, but a jump to the mark can be
performed so that the recovery can be done at the beginning of the scope as well as before
or after the actual goal. More precisely the following possibilities are available (case a and
case b are the same as in the static treatment):
a) abort
b) local iump: (immediate leftl immediate right)
c) global jump: a jump to the piace where the mark-goal can be found (on the goalstack) is
performed. Continuation means evaluation of the right or left goal besides the mark-goal.
Resumption is possible because some scope has been involved, the kind of recovery is
'global', because the whole prooftree is involved.
c. l) dynamicalleft: causes backtracking to the mark-goal (including the mark-goal)
c.2.) dynamical right: causes backtracking to the mark-goal (not including the mark-goal)
and continuation with the right logica! successor of mark-goal

- where does the contro) flow after an exception is handled
In logical programming languages considering the contro! flow after the handler has
fmished his task means to look at which branches of the proof tree shall remain. After the
occurrence of an exception the following may occur:
a) abon: There is no succeed or fail, just this command causes the interpreter to abort
execution forcing a return to the operating system. It is generally performed for
unrecoverable errors and therefore it causes a Prolog session to terminate.
Example: exceeding maximum number of allowable atoms.
b) continuation: executing the next goal at the left or right side of the predicate where
exception occurred; it corresponds to replacing the whole subtree, where the exception
occurred, by fail or by true respectively.
d) re~~mpt~o!l with. a recovery of the goal. ~in~e there exists a mark on the exception
definmon, 1t 1s poss1ble to define a scope wh1ch 1s the whole proof tree that dynamicallv
follows. It corresponds to substituting the whole subtree dynamically below the mark by
true or fail.

In what follows we regroup the above centrai issues according to the adopted solutions,
identifying in such a way 4 different model-groups. The first three groups serve to
motivate the fourth which overcomes the deficiencies of the previous ones combining
their advantages.
The new mechanism we propose in the following Section 3 can be considered in the
context of the fourth of these model-groups.

interpreter :-
select _step (Focus,Type,Condition),
knowledge _source(Name,Type,Condition),
execks (Name,Focus),
! 1 interpreter.

Un ciclo di questo tipo e' stato utilizzato nel sistema esperto per la fusione dati, sopra
citato [5].

Q?ntrQilo Knowledge-sche<iuling.

Le caratteristiche di questo tipo di controllo sono:

- un KS opera cambiamenti su una o piu' parti del blackboard

- ogni KS specifica il contributo che puo' offrire rispetto al nuovo stato della soluzione
e di conseguenza ne viene selezionato uno

- il controllo sceglie un insieme di oggetti del blackboard come argomenti
dell'attivazione del KS selezionato.

Interprete relativo:

interpreter :-
select _source (knowledge _source(N ame1Type,Condition))1
select_object (Name,Focus),
execks (Name,Focus),
! 1 interpreter.

E' possibile definire controlli di tipo diverso; potrebbe essere per esempio
interessante dotare il sistema di un modulo che gestisca un backtracking intelligente,
utilizzando il meccanismo di ereditarieta' tra i mondi. Si osservi che una caratteristica
molto potente dell'architettura e'la possibilita' di contenere piu' moduli di controllo da
poter attivare in fasi diverse dell'elaborazione.

199

200

Deletion of marks is done automatically on backtracking. Exception raising can be done
by <L'l extra command. The resumption may referto the piace of marking.

/

Advantages: System and user defined exceptions c~ be treated in a uniform way.
Exception-definitions remain valid aftér a query has finished. A list of
exceptions can be given by the system. The state of exceptions can be
saved. Recovery can be done in a global way, as ajump can be performed
everywhere. Marks are automatically backtracked and need no
housekeeping.

Disadvantages: The cleaning up ,of definitions must be done by the user, but an existing
definition is n6 burden, if there exists no mark for i t.

':•1 ';;:

This approach seems so promising that we choose i t for our proposal.

Section 3. EXCEPTION HANDLING IN VIP
Similary to what happens for MProlog, Prolog-1, Prolog-2, the VIP system [Kral87] too
recognizes the importance of the ability to deal with exceptions and requires a mechanism
for it. We therefore designed a new mechanism for dealing with exception handling in
VIP, based on the idea of taking advantage of both statical and dynamical treatment of
exceptions (see section 2.4.) yielding as a consequence an hybrid behaviour.
In order to give a clear description of the proposed mechanism we distinguish three
components encompassing static versus dynanlic features and the exception handler.

Section 3.1. STA TIC PART OF VIP EXCEPTION M O DEL

Definition: -
The command for defining an exception is

def_exceptionOException_name,Action_predicare)

For example:
def_exception(file_write_error, wrirescratch(Text)).
where writescratch is defined as
writescratch(X) :- rell(scratchfùe), write(X).

The def_exception command performs a mapping between the name of the exception and
the action to be performed by the handler. This means that def_exception forms the static
part of our exception model. New definitions are added to the be"ginning of the Prolog
database, changing the state of the database. Overloading is thus automatically performed
as the handler just invokes the first definition that he finds in the database.
Def_exceptionis is used as a command:

?- def_exceptionOE,A).

From now on the state of the VIP system becomes aware of the new definition. To get
information about the existing exceptions the command

?- ask_exceptions(X,Y).

may be used that giyes static information about ali system and user defined exceptions in
the VIP system.

201

~XCkl?tion name may be:
- a reserved name of a system exception. The default system action provided for this
exception is then overloaded by the action provid~ by the user. . . .
- a user defined term that is not a member of the list of system excepuon names. This kind
of exception can never be raised by the systém. If the term is a structure with arity gre~ter
or equal to one, then va.L"-iable argum~nts are local to the claus~ where tl_le def_e_xcepuon
goal appears. This ~ may serve to mterchange arguments Wlth the actton predicare and
wit.~ the place of ra.J.smg (see figure 1). . . . , ,
- a Prolog variable at at the moment of defimt10n. Th1s serves as a catch a11 for ali
exceptions in the system.

,8ction predicate may be any (backtrackable) Prol~g predicare. The handler ~es to satisfy
this predicate. The control flow then de~nds o~ failure or succe~s of the predicau:.
Action predicare can either be defined directly m the def_excepuon command, or 11 can be
the head of a Prolog clause. Parameters that appear in the action goal are considered local
to the clause where def_exception appears.

Example: def_exception(overflow, (actionl :- write(error)).

is exactly the same as:

def_exception(overflow, actiou2).
actiou2 :- wrire(error).

Action_predicate supports parameter passing (see figure 1).

Deletion:
For deletion we provide the command:

revoke_exceptionOException_name, Action_predicare).

The frrst exception, the definition of which is unifiable with the arguments of the revoke
command, is dropped.

Raising: . .
An exception may be raised by the system or .bY the user. Th~ system automaucally 1s
aware of exceptions while the user needs a spectal command for 1t:

raise_exceptionOException_name).

For example:
ground(I) :- int(I), !.
ground(I) :- atom(I), !.
ground([HIT]) :- ground(H), ground(T).
ground(S) :- S = .. L, ground(L).
ground(T) :- write(T), raise_exception(notground).

testground(X) :- def_exception(notground, diagnostics), ground(X).

where the action predicate diagnostics is defined as:

202

diagnostics :- write('term is not ground, abon ... '), abon.

If testground is staned with a nonground term then the exception notground is raised, an
error message is written to standard output, and the pròof is aboned.

Remark: as mentioned above, Exception_name can be an arbitrary Prolog term, thus
enabling the user to pass arguments.

Section 3.2. DYNAMIC PART OF VIP EXCEPTION MODEL

Marking:
In order to be able to perform resumption we provide the built-in predicate

mark(Mark).

Mark can be any Prolog term. It has nothing in common with Exception_names defined in
the system. The aim is just to mark the piace where the contro l flow shall go on, after the
handler has executed an Action_predicate. The marked scope is the whole proof tree that
dynamically follows.

Overloading of marks for the same name is allowed : the youngest definition is valid. On
backtracking older definitions are detected.

The mark can be seen as the label of a goto-command. The jump is defined by the user in
the_body of !be Action_predicate: There are two goals that can be used in the body of the
actwn predicate: abon or resume. Abon causes that the whole proof is aboned, it
normally exists as a standard built-in predicate in common Prolog systems. The task of
resume is to jump to the mark defined somewhere before in the proof tree by means of
mark:

resume(Mark, true).
resume(Mark, fai!).

The exact description for the semantics of the arguments for resume is given in section
3.3. Marking suppons parameter passing (see figure 1).

Deletion:
The mark command needs no extra command for deletion. It is automatically deleted on
backtracking by the VIP interpreter.

Raising:
For raising an exception with a dynamic mark we may use the same command as before.
For the user there is no difference in raising exceptions in the static or dynamical model.
Raise_exception suppons parameter passing:

programmazione logica, che avvenano la mancanza di un ambiente ben strutturato e
soprattutto flessibile per facilitare lo sviluppo di programmi intelligenti.

La generalita' della shell deriva dal fatto che in letteratura non esiste un numero di
blackboard shells realizzate in Prolog tale da definire un modello preciso dell'ambiente
e delle sue funzionalita'. Inoltre, storicamente, la progettazione dei blackboard
framevork esistenti e' stata pilotata dalle applicazioni; sembra quindi ragionevole
sviluppare un nucleo minimale di funzionalita' da arricchire, se necessario, con altri
strumenti o con nuovi componenti, sulla base dell'esperienza derivata dall'utilizzazione
dell'architettura per la soluzione di diversi problemi reali.

Un altra ragione e' quella che il Prolog [4,11] a differenza di altri linguaggi usati
per l'Intelligenza Artificiale, come il Lisp, e' di per se' un potente formalismo per la
rappresentazione della conoscenza; e' possibile definire con poco sforzo dei motori

inferenziali ad hoc e formalismi diversi per la rappresentazione della conoscenza.

Si da' ora una descrizione dettagliata dell'ambiente: la prima pane e' una
descrizione logica, sono cioe' specificati i tipi dei componenti del sistema e le possibili
interazioni tra essi, la seconda pane descrive come questa struttura logica e' legata al
modello a blackboard ed al linguaggio logico Prolog.

2.1 La struttura logica dell'ambiente

L'ambiente e' composto da due tipi di componenti principali (attivi e passivi) e da
uno o piu' moduli di controllo che specificano il modo in cui i componenti devono
essere usati.

I componenti passivi si dividono in due tipi: quelli statici sono usati per realizzare la
memoria a lungo termine e possono essere modificati solo a livello del controllo; i
componenti dinamici realizzano la memoria a breve termine, permettono ai
componenti attivi di comunicare tra loro e contengono lo stato attuale della soluzione.
I componenti attivi contengono la conoscenza di dominio e cooperano scambiandosi
informazioni attraverso la memoria a breve termine; questi componenti contengono la
conoscenza operativa sul dominio.

n controllo fornisce tutti i meccanismi per gestire l'attivazione dei componenti attivi
sulla base delle informazioni contenute nei componenti passivi, ed i meccanismi per la
gestione dei componenti passivi; e' possibile, per esempio, trasferire informazioni
dalla memoria a breve termine a quella a lungo termine.

203

204

dynarrùc left: do_something :- v.Tite('this was the wrong way'),
write('continue with b),
resume(xxx, tl1Ie).

dynarrric right: do_something:- write('retry c'),
resume(xxx; fail).

Section 4. EXAMPLE , ,,
In this section an example is' given in order to illustrates the use of the structure.

\•1 ';:

Example 1: W e show how the concept of transactions can be implemented with the help
of VIP exceptions in a more elegant way. A trar1saction consists of preconditions, that
must be fulfilled before the main part of the transaction can be performed. Secondly, the
main part of a transaction consists of database commands. Lastly a transaction holds
postconditions, that must be checked, after the main part has been executed. If one
postcondition fails, the whole transaction must be undone. In our example we assume a
predicate 'undo(Goal)' that is able to rollback a goal. Furthermore we do not consider the
case, that a database command may fail.

/* static part *l
def_exception(rollback, clean_up).
clean_up :- (computed(X), undo(X), fail);

(retractall(computedU), resume(undomark, fail)).

l* dynamic pan *l
transaction(PreconditionList, DB_CommandList, PostconditionList) :­

mark(undomark),
trans(PreconditionList, DB_CommandList, PostconditionLìst).

trans(Pre, Com, Post) :- test(Pre),
execute(Com),

test(O).
test(Post).

test([HIT]) :- call(H), test('!).
testU :- raise_exception(rollback).
execute(O).
execute([HfT]) :- call(H), asserta(computed(H)), execute('I).

The execute predicate protocolls its work, by inserting every called goal to the Prolog
database. The action-predicate clean_up can then use this information to perform the
rollback.

Exarnple 2: W e expand the above example by providing an exception for the case that the
disk is full. The desired resumption is to clear files, that are no longer used, on the disk,
and then to retry the whole transaction. Information about what files may be cleared is
interactively interrogated from the user. This example shows how parameters can be
passed from the piace of raising to the handler. In our case this information comprises the
name of the disk that has run out of space.

l* stati c part *l .
def exception(diskfull(Disk.~ame), try_clear_flle(DiskName)).
try clear file(DiskName) :- write(DiskNaine),

- - , write('is full, what shall I clear ? '),
readfùenamelist(Flist),
dropfùes(Flist),
resume(undomark, true).

l* dynamic p an *l
... , dbask(result(A,B,C) :- relationl(A,B,C)),

dbinsert(relation2(A,B,C),
', dbinsert(relation3(C,B,A), ...

l* dbLTJ.sert raises the exception:

raise_exception(diskfull(floppy _l))

205

if there is no space to write on the floppy disk. Resumption is pe~ormed undoing the last
transaction, making space on disk, and retrying the whole transacnon */

CONCLUSIONS . · h· · edf< 1 ·
In this paper we presented a new structure for excep?on han~mg wh1c 1s su1t or og~c
programming languages and supports the constructlon of rehable software. Compared t?
similar constructs of existing languages, like Prolog-1, Prolog-2 and MPROLOG xt
provides considerable advantages such as: . . .
STATIC DEFINITION: the explicit declaration of excepnon supports co!lv.ennonal ~u:nc
checking, and allows one to catch undeclared exceptions. Moreover the listmg of ex1st1ng
exceptions is available.
DYNAlvflCAL TREATMENT: it is the only approach that offers a real recovery of the
program from errors. .
PARAMETER PASSING: the presence of paramete~s associ~ted·to excepnons may. be
useful for the treatment, since they may supply mformauon '?n how an except10n
occurred. In VIP we previde two mechanisms for parameter passmg: from ~~ place of
marking to the place of raising (and vice versa), and from the place of ra1smg to the
handler (and vice versa). .
COMPLETENESS OF TREATMENT: the VIP exceptio~ mechamsm co~ers ali. the
features that appeared separately in other implementat10ns. Moreover 1t prov1des
parameter passing and an explicit propagation. . .
DEFAULT EXCEPTIONS: they do not contrast Wlth our structure.Th~rr handlers may be
infact overridden by an explicit handler associated to the same except10n name. In such a
way it is possible to disable default exception~ and conseque~tely to allow the user ~o
define different handlers for predefined excepnons. Furth~r umqueness of. ti:e handler 1s
ensured, since a mapping between the name of the exceptlon and the exphcltely defined
handler (action predicate) is created.

As we can deduce from the brief review of the existing exception handling mechanisms
in logic programming Ianguages, our structure is. much more powerful than the o ne
offerred by using an implicit approach (Prolog-1), 1t pre.sents all the a~vantages offered
by the statical treatment (Prolog-2), and, compared w1th the dynamical treatment of

206

MPROLOG, it allows much more flexibility of the hanldler, permitting the mark to be set
everywhere in the proof tree. The best advantage of that is the realization of a clean
mechanism for .propagating exceptions. Infact, by means of a raise_exception statement
inside an action_predicate and a mark statement somewh,ere in the proof tree, we achieved
propagation in a very simple and explicit way.

References
[CoDu82a] Cocco, Dulli. A Mechanism for Exception Handling and its

VerificationRules .. ,çomputer Languages, Vol.7, 1982
[CoDu82b] Cocco, Dulli. Costrutti per la gestione delle eccezioni: confronto tra Clu,

Chill e Ada. Rivista di Informatica, vol.Xll, n.3, 1982.
[GhJa82] Ghezzi, Jazajen. Programming Language Concepts. W ilei & Sons, Inc.;

1982.
[Good75] Goodenough. Exception Handling: Issues and a proposed Notation.

C.A.C.M. vol. 18, n.12, 1975.
[Harp86] Harper. Introduction to Standard ML. ECS-LFCS-86-14, nov. 1986
[HMQM86] Harper, MacQueen, Milner. Standard ML. ECS-LFCS-86-2, march 1986.
[Kral87] Krall. Irnplementation of a high-speed Prolog Interpreter. ACM Proceedings

of the SIGPLAN 87 on Interpreters and Interpretati ve Techniques, St. Paul
.Minnesota, 1987

[1\.1Prolog] MPROLOG Language Reference, Release 1.5, Logicware, Toronto,
Nov.l984.

[Prologl] Prolog-1 8086 Reference manual, Expert Systems Limited, Oxford,
Dec.1983.

[Prolog2] Prolog-2, Technical Reference Manual, Expert Systems Limited, Oxford,
1985.

Applicazioni di un Linguaggio

Logico.+ Funzionale di _Ordine Superiore

Sommario

P.G. Bosco, C. Cecchi, C. Moiso

CSELT

Centro Studi E Laboratori Telecomunicazioni

via Reiss Romoli 274- 10148 Torino

207

Le caratteristiche di IDEAL- un linguaggio integrato logico-funzionale di ordine
superiore - sono eviden~ate nell'articolo. in due momen~,i:. (~) s'illu.stra l~
programmazi.one e~fetti':a di un si"':ufatore lo_gzco,. ~ettend<? cos1 m nsalto gli ~spetti
dei linguaggi funZionali (mancanti m quelh logiCI) che s1 rendono necessan nella
programmazione dichiarativa; (b) si mostra la "invertibilita'" dei programmi (funzionali)
IDEAL, per cui il simulatore logico e' imrnedia~;nte u~zab~e .come unfaul_t-finder!
il che mette in luce un aspetto fondamentale de1 linguaggi log1c1 (mancante m quelli
funzionali) che ancora e' di notevole interesse per la prograrnazione dichiarativa.
IDEALe' realizzato mediante compilazione in un linguaggio del I ordine, che e' Prolog
stesso se si vuoi ottenere una valutazione eager (call by value), oppure K-LEAF- un
linguaggio logico+funzionale del I ordine - se si desidera ottenere una valutazione lazy
(call by need). TI linguagio K-LEAF si traduce in codice WAM (Warren Abstract
Machine) mediante una opportuna estensione del procedimento di compilazione e
dell'insieme d'istruzioni della W AM, cosi' da implementare una regola di selezione
dinamica.

l. Introduzione

La programmazione logica e quella funzionale sono i due stili piu' diffusi di
programmazione dichiarativa ed e' tuttora in corso il dibattitito sui rispettivi pro e
contro; una soluzione per superare questa discussione e' quella di combinare i due
paradigrni e quindi sviluppare un linguaggio che contenga i loro aspetti positivi,
eliminandone gli svantaggi.

Tra le caratteristiche peculiari dei due paradigmi, una delle piu' significative
differenze tra i linguaggi funzionali e quelli basati sulle clausole di Horn e' la presenza
nei primi di costrutti di ordine superiore, un potente strumento che puo' essere sfruttato
nella cosiddetta programmazione in the large, nel sintetizzare programmi da specifiche,
ecc ..

Inoltre, i linguaggi funzionali offrono una varieta' di altri utili concetti di
programmazione (come i sistemi di tipi, le differenti strategie di riduzione, ecc.) che

