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Preface 

The Second Joint Conference on Declarative Programming GULP-PRODE'95 joins 
together the 10th Italian GULP Conference on Logic Programming and the 5th 
Spanish PRODE Congress on Declarative Programming. 

GULP-PRODE'95 was held in Marina di Vietri (Italy) at the IIASS institute on 
September 11-14, 1995, following the eight previous GULP conferences in Genova 
(1986), Torino (1987), Roma (1988), Bologna (1989), Padova (1990), Pisa (1991), 
Tremezzo (1992) and Gizzeria (1993), the three previous PRODE meetings in Tor­
remolinos (1991), Madrid (1992) and Blanes (1993), and the First Joint Conference 
on Declarative Programming GULP-PRODE'94 in Peiifscola, Spain. 
GULP-PRODE'95 has been organized by the Universita di Salerno. 

The technical program for the Conference included 43 full communications, 6 short 
communications, 4 guest lectures and 2 guest talks. The papers in this book 
are printed in their order of presentation at the Conference, with communications 
grouped into thematic sessions. The papers were selected from 56 received sub­
missions. All the papers were evaluated by at least two reviewers. The Program 
Committee met at the Universita di Salerno to select the 49 papers which are in­
cluded in this volume as full or short communications. 

In addition to the contributed papers, GULP-PRODE'95 featured four outstanding 
lectures by: Krzysztof R. Apt (CWI Amsterdam), Patrick Cousot (Ec. Nor. Sup. 
Paris), Robert A. Kowalski (Imp. CoL London), and Giorgio Levi (Univ. Pisa). 
The lecture by K. Apt was presented by Elena Marchiori. Two distinguished talks 
were also given by Dale Miller (Pennsylvania Univ.) and Luis M. Pereira (Univ. 
Nova de Lisboa). 

W e express our gratitude to all members of the Program Committee and to ali out­
side referees w ho o:ffered their expertise in the review process. We extend our sincere 
thanks to ali authors who submitted papers and to ali conference participants. 
We would also like to thank ali institutions supporting the Conference, with spe­
cial thanks to the Universita di Salerno and to the Dipartimento di Informatica e 
Applicazioni "R.M. Capocelli". Moreover, we gratefully aknowledge the broad of 
directors of the IIASS and the secretary of this institute, Ornella De Pasquale, for 
her effìcient support. 



Finally, we wish to especially highlight the contributìon of the Organizing Commìt­
tee, whose work made the Conference possìble, and gìve specìal thanks to Andrea 
F. Abate, Bruno Carpentieri, Filomena Ferrucci, Vincenzo Loia, Alfonso Sessa and 
Giuliana Vitiello. We also wish to express our deep gratefulness to the Organizing 
Committee of GULP-PRODE'94 for their previous work and experience which have 
been extremely useful. 

Maria Alpuente Frasnedo 
Maria I. Sessa 
Editors 
Salerno, June 1995 
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Foreword 

The Gruppo Ricercatori ed Utenti di Logic Programming (GULP, which stands for 
Logic Programming Researchers and Users Group ), is an affiliate to the Association 
of Logic Programming (ALP). The goals of the group are to make Logic Program­
ming more popular and to create opportunities for the exchange of experiences and 
information between researchers and users working in the field for both public and 
private organizations. 
To this purpose GULP promotes many different activities such as the exchange 
of information among its members and the organization of workshops, advanced 
schools and its annual Conference. 

Starting from 1994 our annual Conference is held jointly with the Spanish Confer­
ence PRODE on Declarative Programming. This has represented a significant step 
towards the exchange of research experience among European Latin countries. 
The main aims of the Conference are: 
l) t o serve as an occasion for those working in this area w hich are interested in 
meeting and exchanging experiences; 
2) to illustrate the current state of the art in the area through invited talks given 

well known researchers; 
3) to enable students and researchers to learn more about logic and declarative 
programming by means of introductory tutorials. 

This year we will celebrate a special anniversary, namely the first ten years of GULP 
and the tenth Conference. The previous annual conferences were held in Genoa, 
Turin, Rome, Bologna, Padua, Pisa, Tremezzo, Gizzeria Lido, and, as a GULP­
PRODE Conference, in Pefiiscola (Spain). 
The scientific program of this joint Conference GULP-PRODE includes papers from 
colleagues from severa] European countries. The large internatìonal partìcipatìon, 
considered together with the good technical quality of the papers accepted for pre­
sentation, is a further confirmation of the success of this joint event. 

On behalf of GULP I would like to thank Maria Sessa and all the other colleagues 
of the Universita di Salerno for the organization of this year Conference. 

Maurizio Martelli 
President of the GULP 



Contents 

INVITED LECTURES 

Arrays, Bounded Quantifìcation and Iteration in Logic and 
Constraint Logic Programming 
K.R. Apt 

Completeness in Abstract Interpretation 
P. Cousot 

Logica] Foundations far Multi-agent Systems 
R. Kowalski 

On the Abstract Diagnosis of Logic Programs 
G. Levi, M, Comini, and G. Vitiello 

GUEST TALKS 

Observations about Using Logic as a Specifìcation Language 
D. Miller 

Parallel Logic Programming with Extensions 
L.M. Pereira, J.C. Cunha, and L. Damas 

CONCURRENCY 

Domain Independent Ask Approximation in CCP 
E. Zaffanella 

Modeling Real-Time in Concurrent Constraint Programming 
F.S. de Boer, and M. Gabbrielli 

Extending CAML Light to Perform Distributed Computation 
J.L. Freire Nistal, B.B. Fraguela Rodriguez, and V.M. Gulias Fernandez 

A Logic Language Based on GAMMA-Like Multiset Rewriting 
P. Ciancarini, D. Fogli, and M. Gaspari 

19 

37 

39 

41 

61 

71 

89 

101 

113 

12.5 



l 

DEDUCTIVE DATABASES 

Side Effect Analysis for Logic-Based Planning 
K. Eshghi, and M. M owbray 

Downward Refìnement of Hierarchical Datalog Theories 
F. Esposito, N. Fanizzi, D. Malerba, and G. Semeram 

Integrity Constraints Evolution in Deducti~e Databases 
D. Montesi, and F. Turini 

Declarative Reconstruction of Updates in Logic Databases: 
a Compilative Approach 
M. Carboni, V. Foddai, F. Giannotti, and D. Pedreschi 

NEGATION 

An Introduction to Regular Search Spaces 
A. Momigliano, and M. Omaghi 

A Framework for a Transformational Approach to Negation 
J. Humet 

Ordered Logic and its Relationships to other Logic Programming Formalisms 
F. Buccafurri 

Analysis of SLDNF for Local CLP 
A. Bottoni 

A Semantics for the Kakas-Mancarella Procedure for Abductive 
Logic Programming 
F. Toni 

HIGHER-ORDER 

Implementing Higher-Order Term-Rewriting for Program Transformation 
in ÀProlog 
F. Arcelli, and F. Formato 

The Undefìned Function Differs from the Pointwise Undefìned Function 
W. Dosch 

139 

148 

160 

169 

183 

195 

207 

219 

231 

245 

257 

EXTENSIONS AND INTEGRATION 

LOO: An Object Oriented Logic Programming Language 
P. Mancarella, A. Raffaetri, and F. Turini 

Forum & Objects 
G. Delzanno, and M. M arielli 

T h ree-Valued Semantics for Extended Logic Programs 
P.A. Bonatti, and L. Giordano 

Constructing Logic Programs with Higher-Order Predicates 
J.F. Nilsson, and A. Hamfelt 

Petri Nets and Linear Logic: a Case Study for Logic Programming 
I. Cervesato 

APPLICATIONS 

GRAMPAL: A Morphological Processor for Spanish Implemented in Prolog 
A. Mareno, and J.M. Goiii 

A Declarative Approach to the Design and Realization of Graphic Interfaces 
D. Aquilino, D. Apuzzo, and P. Asirelli 

IMPLEMENTATIONS 

Improving the Efficiency of Dynamic Modular Logic Languages 
A. Ciampolini, E. Lamma, and P. Mello 

Lazy Narrowing on an Abstract Machine by Means of Examples 
E. Ullan-Hemandez 

Exploiting Expression- and Or-Parallelism for a Functional 
Logic Language 
W. Hans, St. Winkler, and F. Saenz 

An Effective Algorithm for Compiling Pattern Matching Keeping 
Laziness 
P. Palao, and M. Nuiiez 

A Prolog Implementation of Kem 
A. Ariosi, P. Cattabriga, and G. Governatori 

Explicìt Implementation of a Constraint Solving Mechanism in 
a Relational Programming System 
P. Bellot, O. Camp, and C. Matiachoff 

271 

283 

295 

307 

313 

321 

332 

347 

359 

371 

383 

395 

401 



LINEAR LOGIC 

A Linear Logic Programming Language with Parallel and 
Sequential Conjunction 
P. Bruscoli, and A. Guglielmi 

A Structural (Meta-Logica!) Semantics for Linear Objects 
G. Manco, and F. Turini 

THEORY AND FOUNDATIONS 

Computational Properties in Context-Sensitive Rewriting 
S. Lucas 

Minima! Set Unifìcation 
P. Arenas-Sdnchez, and A. Dovier 

A Mode! Tree Computati011 of the Strong Well-Founded Semantics 
C. Papp 

M6nadas para la Comunicaci6n de Objetos Funcionales 
J.E. Gallardo, P. Guerrero, and B. C. Ruiz 

La Potencia Expresiva de los Catamorfìsmos 
C. Gregorio, M. Nuiiez, and P. Palao 

TRANSFORMATION AND SYNTHESIS 

A Tabulation Transforma.tion Tactic Using Haske!l Arrays 
C. Pareja-Flores, R. Pena, and J.A. Veldzquez-Jturbide 

Sfntesis de Programas L6gicos: Marco Constructivo 
F.J. Galdn Morillo, and M. Toro Bonilla 

SEMANTICS 

A Transitional Semantics of Full Prolog 
P. Degano, and C. Priami 

Analysis of Pure PROLOG Programs 
G. Levi, and D. Micciancio 

409 

421 

435 

447 

459 

471 

477 

485 

497 

511 

521 

Compositionality in SLD-derivations and their Abstractions 
M. Comini, G. Levi, and M.C. Meo 

Curbing Theories: Fixpoint Semantics and Complexity Issues 
F. Scarcello, N. Leone, and L. Palopoli 

CONSTRAINTS 

A Datafìow Semantics for Constraint Logic Programs 
L. Col~ssi, E. Marchiori, and M. Marchiori 

Labeling in CLP(FD) with Evolutionary Programming 
A. Ruiz-Andino fllem, and J.J. Ruz Ortiz 

Constraint Systems for Pattern Analysis of Constraint 
Logic-Based Languages 
R. Bagnara 

Tuple Inheritance: A New Kind of Inheritance for 
(Constraint) Logic Programmi~g , . 
J.J. Moreno-Navarro, J. Garcia-Martin, and A. del Pozo-P~etro 

ANALYSIS 

Declarative Diagnosis Revisited 
M. Comini, G. Levi, and G. Vitiello 

"Optimal" Collecting Semantics for Analysis in a Hierarchy 
of Logic Program Semantics 
R. Giacobazzi 

Contributions to a Theory of Existential Termination for Definite 

Logic Programs 
G. Levi, and F. Scozzari 

A Case Study in Logic Program Verifìcation: the Vanilla Metainterpreter 

D. Pedreschi, and S. Ruggieri 

533 

545 

557 

569 

581 

593 

607 

619 

631 

643 



INVITED LECTURES 



Arrays,. Bounded Quantification and 
Iteration in Logic and Constraint Logic 

Programming 

Krzysztof R. A p t 
CWI 

P.O. Box 94079, 1090GB Amsterdam, The Netherlands 
an d 

Department of Mathematics and Computer Science 
University of Amsterdam, Plantage Muidergracht 24 

1018 TV Amsterdam, The Netherlands 

Abstract 

We claim that programming within the logic programming paradigm suf­
fers from lack of attention given to iteration and arrays. To convince the 
reader about their merits we present several examples of logic and constraint 
logic programs which use iteration and arrays instead of explicit recursion and 
lists." These programs are substantially simpler than their counterparts writ­
ten in the conventional way. They are easier to write and to understand, are 
guaranteed to terminate and their declarative character makes it simpler to 
argue about their correctness. Iteration is implemented by means of bounded 
quantification. 

l Introduction 

Any systematic course on programming in the imperative style (say using Pascal), 
fi.rst concentrates on iteration constructs ( say while or repeat) an d only later deals 
with recursion. Further, the data structures are explained fi.rst by dealing with the 
stati c data structures (like arrays an d records) an d only later with the dynamic data 
structures (which are constructed by means of pointers). 

In the logic programming framework the distinctions between iteration and re­
cursion, and between static and dynamic data structures are lost. One shows that 
recursion is powerful enough to .simulate iteration and rediscovers the latter by 
identifying it with tail recursion. Arrays do not exist. In contrast, records can be 
modelled by terms, and dynarnic data structures can be de:fì.D.ed by means of clauses, 
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in a recursive fashion ( with the exception of lists for which in Prolog t h ere is support 
in the form of built-ins and a more friendly notation). 

One of the side effects of this approach to programming is that one often uses a 
sledgehammer to cut the top of an egg. Even worse, simple problems have unneces­
sarily complex and clumsy solutions in which recursion is used when a much easier 
solution using iteration exists, is simpler to write and understand, and - perhaps 
even more important - is closer to the original specifìcation. 

In this paper we would like to propose an alternative approach to programming 
in logic programming and in constraint logic programming - an approach in which 
adequate stress is put on the use of arrays and iteration. Because iteration can be 
expressed by means of bounded quantifì~ation, a purely logical construct, the logic 
programming paradigm is not "violated''. On the contrary, i t is enriched, clarifìed 
and better tailored for the programming' needs. 

Arrays are especially natural when dealing with vectors and matrices. The use 
of dynamic data structures to write programs dealing with such objects is unnatu­
ral. We shall try to illustrate this point by presenting particularly simple solutions 
to problems such as the n-queens problem, the knight's tour, the map colouring 
problem, the cutting stock problem, and other problems involving backtracking. 

Further, by adding to the language operators which allow us to express optimiza­
tion, i.e. minimization and maximization, we can easily write programs for various 
optimization problems. 

For pedagogica! reasons we limit our attention to programs that involve iteration 
and optimization constructs. Of course, explicit recursion has its place both in logic 
programming and in constraint logic programming. One of the main purposes of 
this paper is to illustrate how much can be achieved without it. 

In the programs considered in this paper recursion is hidden in the implementa­
tion of the bounded quanfìers and this use of recursion is guaranteed to terminate. 
Consequently, these programs always terminate. As termination is one of the major 
concerns in the case of logic programming, from the correctness point of view it is 
better to use iteration instead of recursion, when a choice arises. Also, iteration can 
be implemented more efficiently than recursion (see Barklund and Bevemyr [BB93J 
for an eJ..-planation how to extend WAM to implement iteration in Prolog). 

This work has a preliminary character and can be seen as an attempt to identify 
the right linguistic concepts which simplify programming in the logic programming 
paradigm. When pre~enting this view of programming within the logic programming 
paradigm we were very much in:fluenced by the publications of Barklund an d Millroth 
[BM94], Voronkov [Vor92] and Kluzniak [Klu93]. In fact, the constructs whose use 
we advocate, i.e. bounded quantifìcation and arrays, were already proposed in these 
papers. The only, possibly new, contribution ofthis paper is a suggestion to include 
these constructs in constraint logic programming. 
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2 Bounded Quantifiers 

Bounded quantifìers in logic programming were introduced in Kluzniak [Klu91] and 
are thoroughly discussed in Voronkov [Vor92] (where also earlier references in Rus­
sian are given). They are also used in Kluzniak [Klu93] (see also Kluzniak and 
Milkowska [KM94]) in a specifìcation language SPILL-2 in which executable speci­
fìcations can be written in the logic programming style. 

Following Voronkov [Vor92] we write them as 3X E L Q (the bounded existential 
quantifìer) an d 'VX E L Q ( the bounded universal quantifier), w h ere L is a list an d 
Q a query, and defìne them as follows: 

3X E [Y 
3X E [Y 

Ys] Q +- Q{X/Y}. 
Ys] Q +- 3X E Ys Q. 

'VX E [Y l Ys] 
'VX E [] Q. 

+- Q{X/Y}, 'VX E Ys Q. 

Voronkov [Vor92] also discusses two other bounded quantifìers, writt.en as 3X c:: 
L Q and 'VX C:: L Q, where X C:: L is to be read "X is a suffix of L", which we do not 
consider here. 

To some extent the use of bounded quantifiers allows us to introduce in some 
compact form the "and" and the "or" branching within the program computations. 
This reveals some connections with the approach of Harel though w e believe 
that the expressiveness and ease of programming within the logic programming 
paradigm makes Harel's programming proposal obsolete. 

Even without the use of arrays the gain in expressiveness achieved by means 
of bounded quantifìers is quite spectacular. Consider for example the following 
problem. 

Problem l Write a program which tests whether one list is a subset of another. 

Solution 

subset(Xs, Ys) +- 'VX E Xs 3Y E Ys X= Y. 

Several other examples can be found in Voronkov Here we content 
ourselves with just one more, in which we use 
modern versions of (for m 
Godel of Hill and Lloyd [HL94]). 

Problem 2 Write a program checking the satisfiability of a Boolean formula. 

Solution We assume here that the input Boolean formula is written using 
notation, so for example (..., X, Y) ; Z stands for (..., X 1\ Y) V z. 
sa t (X) +- X, genera t e (X) . 
generate(X) +- vars(X, Ls), 'VY E Ls 3Z E [true, fail] y = z. 

DELAY X UNTIL nonvar(X). 



22 

Comments This remarkably short program uses meta-variables and a mild ex­
tension of the delay declarations to meta-variables. The delay declaration used here 
delays any cali to a meta-variable until i t becomes instantiated. vars (t, Ls) for a 
term t computes in Ls the list of the variables occurring in t. Its defì.nition is omit­
ted. vars (X, Ls) can be easily implemented using the var (X) an d uni v built-in's 
of Prolog. true and fail are Prolog's built-in's. 

In this program it is not advisable to delay the calls to negative literals until they 
become ground. Such a delay would reduce checking for satisfìability of subformulas 
which begin with the negation sign to a naive generate and test method. 

Even though this program shows the power of Prolog, we prefer to take another 
course an d use types instead of exploring ,extensions of Prolog, w hich is an untyped 
language. 

3 Arrays and Bounded Quantifiers in Logic Pro-. 
gramm1ng 

Arrays in logic programming were introduced in Eriksson and Rayner [ER84]. Bark­
lund and Bevemyr [BB93] proposed to extend Prolog with arrays and studied their 
use in conjunction with the bounded quantifì.cation. In our opinion the resulting 
extension ( unavoidably) suffers from the fact that Prolog is an untyped language. 
In Kluzniak [Klu93] arrays are present, as well, where they are called indexable 
sequences. 

More recently, Barklund and Hill [BH95] proposed to add arrays and restricted 
quantifìcation, a generalization of the bounded quantifìcation, to Godei, the pro­
gramming language which does use types. 

In the programs below we use bounded quantifìcation, arrays and type declara­
tions. The use of bounded quantifì.ers and arrays makes them simpler, more readable 
and closer to specifì.cations. We declare constants, types, variables and relations in 
a style borrowed from the programming language Pascal. The choice of notation is 
preliminary. 

We begin with two introductory examples. 

Problem 3 Check whether a given sequence of 100 integers is ordered. 

Solution 

const n = 100. 
rel ordered: array [1 .. n] of integer. 
ordered(A) ~ Iii E [1 .. n-1] A[I] ::; A[I+1]. 

l t 
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Comments This example shows that within the array subscripts terms should be 
evaluated, so that we can identify 1+1 with 2 etc. More precisely, "+" shQ.W<ÌJ:>s: 

!iewed ]l~J:~.~~~ an exte!'nall'~~c~cl.~~i!l..!~-~!l~~LM~szYJi_~ et al. [MBB+93]. 
--N ~te that th;·b~~nd~d. universal quantifìer Iii E [ 1 .. n] do es no t correspond 

to the imperative for i: =1 t o n loop. The former is executed as long as a failure 
does not arise, i.e. up to n times, whereas the latter is executed precisely n times. 
The programming construct Iii E [1 .. n] Q actually corresponds to the construct 

fori:= l to n do if-, Q then 
begin 

failure := true; exit 
end 

which is clumsy and unnatural within the imperative programming paradigm. 
(Feliks Kluzniak suggested to us the following, slightly more natural interpreta­

tion of Iii E [1. .n] Q: 

Ì:=l; 
while i ::; n cand Q do i:=i+l; 
failure := i ::; n, 

where cand is the "conditional and" counective (see Gries [Gri81, pages 68-70].)) 

Problem 4 Generate all members of a given sequence of 100 elements. 

Solution 

const n = 100. 
rel member: (*, array [1. .n] of *). 
member(X, Y) ~ 3I E [1. .n] X = Y[I]. 

Comments Here, Y is the given sequence. "*" stands for an unknown type. "=" 
is a built-in declared as 

rei =: (*, *). 
DELAY X= Y UNTIL known(X) V known(Y). 

In other words, "=" is defì.ned on any type and the calls to "=" are delayed until 
the value of one of its arguments is known, i.e. uniquely determined. If the values 
of both arguments are known, then it behaves like the usual comparison relation of 
Prolog and ìf the value of only one argument is known and the other is a, possibly 
subscripted, variable, then "=" behaves like the is built-in of Prolog. The case when 
one of the arguments is known and the other is not a variable does not arise here. 
known(X) is a built-in which holds when its argument is uniquely determined. It 
corresponds to ground (X) in Prolog. 

This example shows the usefulness of polymorphic types in the presence of arrays. 
The bounded existential quantifì.er 3I E [1 .. n] implements backtracking and has 
no counterpart within the imperative programming paradigm .. ~-·---~ 
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Problem 5 Arrange three l 's, three 2's, ... , three 9's in sequence so that for a1l 
i E [1, 9] there are exactly i numbers between successive occurrences of i (see Coelho 
and Cotta [CC88, page 193]). 

Solution 

rel sequence: array [1 .. 27] of [1 .. 9] . 

sequence (A) f-- VI E [1 .. 9] :JJ E [1 .. 25-2I] 
(A[J] = I, A[J+I+1] I, A[J+2I+2] = I)). 

Comments The range J E [1 .. 25-2I] comes from the requirement that the 
indices J, J+I+1, J+2I+2 should lie wit~n [1.. 27]. Thus J+2I+2 :=:; 27, that is 
J :=:; 25-2I. 

Problem 6 Generate a1l permutations of a given sequence of 100 elements. 

First we provide a solution for the case when there are no repeated elements in 
·the sequence. 

Solution l 

const n = 100. 

rei permutation: (array [1 .. n] of *, array [1. .n] of *). 

permutation(X, Y) <-- VI E [1. .n] 3J E [1. .n] Y[J] = X[I]. 

Here, X is the given sequence. Alternatively, 

permutation(X, Y) f-- VI E [1. .n] member(X[I], Y). 

Comments Note the similarity in the structure between this program and the 
one that solves problem L This program is incorrect when the sequence contains 
repeated elements. For example for n = 3 and X:= O, O, 1, Y: = O, 1, i is a possible 
answer. 

To deal with the general case we use local array declarations and reuse the above 
program. 

Solution 2 

const n = 100. 

relpermutation: (array [1 .. n] of*, array [1 .. n] of*). 
permutation(X, Y) <--

var A: array [1. .n] of [1. .n]. 
VI E [1. .n] 3J E [1. .n] A[J] I, 
VI E [1. .n] Y[I] = X[A[I]]. 
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Comments This solution states that A is an onto function from [1 .. n] to [1 .. n] 
an d t ha t a permution of a sequence of n elements is obtained by applying the function 
A to its indices. 

Next, consider two well-known chess puzzles. 

Problem 7 Place 8 queens on the chess board so that they do not check each other. 

First, we provide a naive generate and test solution. It will be of use in the next 
section. 

Solution l 

const n= 8. 
type board: array [1 .. n] of [1. .n]. 
rei queens, generate, safe: board. 

queens (X) f-- generate (X) , safe (X) . 

genera t e (X) <-- VI E [1. . n] :JJ E [1. . n] X [I] = J. 

safe(X) <-- VI E [1 .. n] VJ E [I+1 .. n] 
(X[I] =f. X[J], X[I] =f. X[J] + (J-I), X[I] =f. X[J] + (I-J)). 

Comments To improve readability board is explicitly declared here as a type. 
Declaratively, this program states the conditions which should be satis:fied by the 
values chosen for the queens. "=f." is a built-in declared as 

rei =f. : C* , *) . 

In this section we use it only to compare terms with known values. Then "=/=" 
behaves like the usual arithmetic inequality relation of Prolog. A more generai 
usage of "=f." will be explained in the next section. 

Next, we give a solution which involves backtracking. 

Solution 2 

const n = 8. 
type board: array [1 .. n] of [1 .. n]. 
rei queens: board. 

queens(X) f-- VJ E [1 .. n] 3K E [1 .. n] 
(X [J] = K, 

VI E [1.. J-1] 
(X[I] =f. X[J], X[I] =f. X[J] + (J-I), X[I] =f. X[J] + (I-J))). 
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Comments Declaratively, this program states the conditions each possible value 
K for a queen placed in column J should satisfy. 

Problem 8 Knight's tour. Find a cyclic route of a knight on the chess board so 
that each fìeld is visited exactly once. 

Solution We assign to each fìeld a value between l and 64 and formalize the 
statement "from every fìeld there is a "knight-reachable" field with the value one 
bigger". By symmetry we can assume that the value assigned to the fìeld X [1, 1] 
is 1. Taking into account that the route is to be cyclic we actually get the following 
solution. 

const n = 8. 
type board: array [1 .. n, 1 .. n] of [1 .. n 2]. 

rei knight : board. 
go_on: (board, [1 .. n], [1 .. n]). 

knight(X) +- 'v'I E [1. .n] 'v'J E [1. .n] go_on(X, I, J), X[1, 1] 1. 

go_on(X, I, J) +- 3I1 E [1. .n] 3J1 E [1 .. n] 
(abs((I-I1)·(J-J1)) = 2, X[I1, J1] = (X[I, J] mcd n 2 ) + 1). 

DE1AY go_on(X, I, J) UNTI1 kno~(X[I,J]). 

Comments Note that the equation abs (X · Y) = 2 used in the defìnition of go_on 
has exactly 8 solutions, which determine the possible directions for a knight move. 
Observe that each time this cali to "=" is selected, both arguments of it are known. 
The efficiency of go_on coulci of course be improveci by explicitly enumerating the 
choices for the offsets of the new coordinates w.r.t. the old ones. 

The behaviour of the above program is quite subtle. First, thanks to the cielay 
declaration, 64 constraints ofthe form go_on(X, I, J) are generateci. Then, thanks 
to the statement X [1, 1] = 1, the :first of them is "triggered" which one by one 
activates the remaining constraints. The backtracking is carried out by choosing 
different values for the variables Ii and J1. The delay declaration is not needed, 
but without it this program would be hopelessly inefficient. 

It is interesting to note that in Wirth [Wir76], a classical book on programming 
, in Pascal, the solutions to the last two problems are given as prototypical examples 
'· li of recursive programs. Here recursion is implicit. 

We conclude this section by one more program. It will be needed in the next 
section. 

Problem 9 Let m = 50 and n = 100. Determine the number of different elements 
in an array X: array [1 .. m, 1 .. n] of integer. 
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Solution 

const m= 50. 
n = 100. 

type board: array [1. .m,1 .. n] of integer. 
rei count : (board, natura!) . 

count (X, Number) +-

Number = m · n -
#(I, J: I E [i..m], J E [i..n]: 

) . 

(3K E [1. .I-1] 31 E [1. .n] X[I,J] = X[K,L]) 
% X[I,J] occurs in an earlier ro~ 

V (:31 E [1 .. J-1] X[I,J] = X[I,L]). 
% X[I,J] occurs earlier in the same ro~ 

Comments In this program we used the countin.g_5!,1];aA~iJi:~!.j~tJ:g!Ì,J;t~cl_j:!LQri<ès 
[Gri81, page 74] and adopted in Klu~~-ak [Klu93] in the speci:fication language 
SPILL-2. In general, given lists 11, 12, the term #(I, J: I E 11, J E 12: Q) 
stands for the number of pairs (i, j) such that i E 11, j E 12 an d for which the 
query Q{I/ i, J l j} succeeds. It is possible to a voi d the use of the counting quantifìer 
a t the expense of introducing a local array of type bear d. This alternative program 
is more laborious to write. 

This concludes our presentation of selected logic programs written using arrays 
and boundeci quantifìers. Other examples, including those involving numerical com­
putation can be founci in Barklund and Millroth [BM94]. 

4 Arrays and Bounded Quanti:fi.ers in Constraint 
Logic Programming 

We now present some constraint logic programs. These are constraint programs 
with .. :finite domains in the style of van Hentenryck [vH89]). Each of them has a 
simil~~ p~ft;~~~nstraints are fìrst generateci, and then resolved after the possible 
values for variables are successively generateci. To clarify their use we provide here 
alternative solutions to two problems discussed in the previous section. 

Problem 10 Solve problem 7 by means of constraints. 

Solution 

const n= 8. 
type board: array [1 .. n] of [1 .. n]. 
rel queens, safe, generate: board. 



queens (X) <---- safe (X) , generate (X) . 

safe(X) <---- VI E [1 .. n] VJ E [I+1 .. n] 
(X[I] =f. X[J], X[I] =f. X[J] + (J-I), X[I] =f. X[J] + (I - J)). 

generate (X) <---- VI E [1. . n] 3J E dom(X [I]) X [I] = J. 

Comments Here dom(X), for a (possibly subscripted) variable X, is a ~ 
Il which denotes the list of current values in t~ domain of X, say in the ascending 
~ arder. The value of dom(X) can change only by decreasing, by executing a constraint, 

so in the above program an atom of the form X =f. t . 
The relation "=f." was used in the previous section only in the case when both 

arguments of it were known. Here we generalizes its usage, as we now allow that 
one or both sides of it are not known'. In fact, "=f." is a built-in defìned as in 
van Hentenryck [vH89 , pages 83-84], though generalized to arbitrary non-compound 
types. 

We require that one of the following holds: 

• Both sides of "=f." are known. This case is explained in the previous section. 

• A t most one of the sides of "=f." is known and one of the sides of "=f.", denoted 
below by X, is either a simple variable or a subscripted variable with a known 
subscript. 

In the second case X =f. t is defìned as follows, where fora term s, Val( s ) stands 
for the set of its currently possible values : 

ifVal(X) n Val(t) = 0 then succeed 
elseifVal (t) is a singleton then% t is known, so X is not known 

begin dom(X) := dom(X) - Val(t);% dom(X) =f. 0 
if dom(X) = {f} then X: = f 

end. 

If neither Val (X) n Val (t) = 0 n or Val (t) is a singleton, then the execution of X 
=f. t is delayed. We treat t =f. X as X =f. t . 

So for example in the program fragment 

type bool: [false, true] . 
var B: bool. 

A: array [1 .. 2] of bool. 

A[1] =f. A[2], A[1] =f. B, B = true . 

the constraints A [1] =f. A [2] an d A [1] =f. B are :first delayed an d upon the exe­
cution of the atom B = true the variable A [1] becomes false and A [2] becomes 
true. 
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In turn, in the case of the program given above the execution of an atom of the 
form X [I] = J for some I, J E [1 . . n] can affect the domains of the variables X [K] 
for K E [I+1 .. n] 

This solution to the 8 queens problem is a forward checking program (see van 
Hentenryck [vH89, pages 122-127]). Note the textual similarity between this pro­
gram and the one given in solution l to problem 7. Essentially, ~he calls to the 
safe and generate relations are now reversed. The generate relahon corresponds 
to the labeling procedure in van Hentenryck [vH89]). In the subsequent programs 
the defìnition of the generate relation is always of the same format and is omitted. 

Probiem 11 Solve problem 6 by means of constraints . 

Solution 

const n = 100. 

rei permutation: (array [1. .n] of *, array [1. .n] of *) . 
permutation(X, Y) <--

type board: array [1 .. n] of [1 .. n] . 
rei one_one, generate: board . 

one_one (Z) <---- VI E [1. . n] VJ E [I +1 .. n] Z [I] =f. Z [J] . 

var A: board. 
one_one(A), generate(A), 
VI E [1. .n] Y[I] = X[A[I]]. 

Comments In this solution, apart from the local array declaration, we also use 
local type and relat ion declarations. The effi.ciency w.r.t. to the logic programming 
solution is increased by stating, by means of the call to the one_one relation, that 
A is a 1-1 function. This replaces the previously used statement that A is an onto 
function. The call to one_one generates n · (n- 1)/2 = 4950 constraints. 

We conclude this section by dealing with another classic problem - that of 
colouring a map. 

P robiem 12 Given is a binary relation neighbour between countries. Colour a 
ma p in su eh a way that no two neighbours ha ve the same color. 

Soiution 

type color: [blue, green, red, yellow]. 
countries: [austria, belgium, france, italy, .. .] . 

rei map_color , constrain, generate : array countries of color. 
neighbour: (country, country). 

map_color (X) <---- constrain(X), generate(X). 
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constrain(X) ,_ VI E countries VJ E countries 
neighbour(I,J) -t X[I] =/: X[J]. 

Comments We interpret here P -t Q as follows: 

(P-> Q) <- P, Q. 
(P -t Q) ,_ -,p. 

so like the IF P THEN Q statement of Godel. N o te that in the above program at 
the moment of selection of the P -t Q statement P is ground. Obviously, an efficient 
implementation of P -t Q should avoid the reevaluation of P. 

Thus the constrain relation generates h ere the constraints of the form X [I] =/: 
X [J] for ali I, J such that neighbour (I ;J). 

5 Adding Minimization and Maximization 
Next, we introduce a construct allowing us to express in a compact way the require­
ment that we are looking for an optimal solution. To this end we introduce the 
minimization operator Y = fLX: Q which is defined as follows: 

Y = fLX:Q <- Q{X/Y}, -.(3X ( X < Y, Q)). 

W e assume here that X and Y are of the same type and that < is a built-in ordering 
on the domain of the type of X and Y. The existential quantifìer 3X Q is defined by 
the clause 

3XQ <-Q. 

The efficient implementation of the rninirnization operator should make use of 
memoization (sometimes called tabulation) to store the solutions to the query Q 
found during the successive attempts to fìnd a rninimal one. 

A dual operator, the maximization operator Y = l/X: Q, is defined by: 

Y = l/X: Q ,_ Q{X/Y}, ..., (3X ( X > Y, Q)) . 

As before we assume that > is a built-in ordering on the domain of the type of X an d 
Y. In Barklund and Hill [BH95] the rninirnization and the maxirnization operators are 
introduced as a form of arithmetic quantifiers, in the style of the counting quantifier 
introduced earlier. The above two clauses show that they are derived concepts. 

The following simple example illustrates the use of these constructs. 

Problem 13 Find a rninimum and a maximum of a given sequence of 100 integers. 
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Solution 

const n = 100. 
rei min_and...max: (integer, integer, array 
min_and...max(Min, Max, A) ,_ 

Min = fLX: 3I E [1. .n] X = A[I], 
Max = 1/X: 3I E [1. .n] X = A[I]. 

[1. . n] of integer) . 

Next, we use these two operators in two constraint programs. 

Problem 14 The cutting stock problem (see van Hentenryck [vH89, pages 181-
187]). There are 72 configurations, 6 kinds of shelves and 4 identica! boards to be 
cut. Given are 3 arrays: 

Shelves: array [1.. 72, 1.. 6] of natura!, 
Req: array [1 .. 6] of natura!, 
W aste: array [1 .. 72] of natura!. 

Shel ves [K, J] denotes the number of shelves of kind J cut in configurati o~ K, 
Wast e [I] denotes the w aste per board in configuration I an d Re q [J] the reqmred 
number of shelves of kind J. The problem is to cut the required number of shelves 
of each kind in such a way that the total waste is rninirnized. 

Solution We represent the chosen configurations by the array 
Conf: array [1 .. 4] of [1 .. 72] 

where Conf [I] denotes the configuration used to cut the board I. 

rel sol ve: (array [1. . 4] of [1. . 72] , natura!) · 
generate: array [1 .. 4] of [1. . 72] . 

sol ve ( Conf, Sol) <-
Sol= fLTCost: 

% Sol is the minimal TCost such that: 
VI E [1 .. 3] Conf[I] $ Conf[I+1], 

% symmetry bet~een the boards 
VJ E [1..6] :Ef:

1 
Shelves[Conf[I],J] > Req[J], 

% enough shelves are cut 
TCost = :Ej=1 Waste[Conf[I]], 

% TCost is the total ~aste 
generate(Conf). 

Comments In this program we used as a shorthand the sum notation ":E " 
In generai it is advisable to use the sum quantifier (see Gries [Gri81, page 72]), 
which allo~s us to use :E~=k t as a term. The sum quantifier is adopted in SPILL-2 
language of Kluzniak [Klu93]. Kluzniak's notation for this expression is: (S I: k 
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::; I :S: l: t). The interpretation of the constr,;nts of the .ror X < t X > t _ _ ~ l'ID , 

or X = t is similar to that of X =1- t and is omitted. 

We conclude by solving the following problem. 

Problem 15 Let m = 50 anci n = 100. Given is an array Co which assigns to each 
pix:el on an m by n boarci a colour. A region is a maximal set of adjacent pixels that 
have the same colour. Determine the number of regions. 

In the program below we assign to the pixels belonging to the same region the 
same natural number, drawn between l and m·n. If we maximize the number of so 
useci natural numbers we obtain the ciesired solution. 

Solution 

const m = 50. 
n= 100. 

type color: [blue, green, red, yellow]. 
pattern: array [1. .m, l. .n] of color. 
board: array [1 .. m, 1 .. n] of [1 .. m·n]. 

rel pixel: (pattern, natural). 
no: (pattern, board). 
generate: board. 
count : (board, natural) . 

pixel C Co, Sol) ;-- Sol = vNumber: 
var X: board. 
no(Co, X), generateCI), count(X, Number). 

no (Co, X) ;-- 'v'I E [1. .m] 'v'J E [1. .n] 
c 
(I < m --+ 

(J < n --+ 

) . 

(Co [I, J] 
(Co [I, J] 

Co[I+1,J] H 

Co[I,J+1] H 

X [I, J] 
X [I, J] 

X[I+1,J])), 
X[I,J+1] )) 

Comments The count relation is defineci in the solution to problem 9. In the 
above program first 2m · n - (m + n) = 9850 constraints are generateci. Each of 
them cieals with two adjacent fielcis and has the form of an equality or inequality. 
Then the possible values for the elements of X are generateci and the number Number 
of so useci natural numbers is counted. The maximum value for Number is then the 
desireci solution. 

The resulting program is probably not efficient, but stili it is interesting to note 
that the problem at hanci can be solved in a simple way without explicit recursion. 
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6 Conclusions 

W e ha ve presented here severallogic and constraint logic programs that use bounded 
quantification and arrays. We hope that these examples convinced the readers about 
the usefulness of these constructs. W e think that this approach to programming is 
especially attractive when dealing with various optimization problems, as their speci­
fications often involve arrays, bounded quantification, summation, and minimization 
and maximization. Constraint programming solutions to these problems can be eas­
ily written using arrays, bounded quantifiers, the sum and cardinality quantifiers, 
and the minimization and maximization operators. As examples let us mention the 
stable marriage problem, various timetabling problems and integer programming. 

Of course, it is not obvious whether the solutions so obtained are efficient. We 
expect, however, that aiter an addition of a small number of built-in's, like deleteff 
and deleteffc of van Hentenryck [vH89, pages 89-90], it will be possible to write 
simple constraint programs which will be comparable in efficiency with those written 
in other languages for constraint logic programming. 

When introducing arrays we were quite conservative and only allowed static 
arrays, i.e. arrays whose bounds are determined at compile time. Of course, in 
a more realistic language proposal also open arrays, i.e. arrays whose bounds are 
determined at run-time should be allowed. One might also envisage the use of 
:flexible arrays, i.e. arrays whose bounds can change at run-time. 

In order to make this programming proposal more realistic one should provide 
a smooth integration of arrays with recursive types, like lists and trees. In the 
language SPILL-2 of Kluzniak [Klu93] types are present but only as sets of ground 
terms, and polymorphism is not allowed. Barklund and Hill [BH95] proposed to 
add arrays to Godei (which does support polymorphism) as a system module. We 
would prefer to treat arrays on equal footing with other types. 

W e noticed already that within the logic programmi.:rrg paradigm the demarkation 
line between iteration and recursion differs from the one in the imperative program­
ming paradigm. In order to better understand the proposed programming style one 
should first clarify when to use iteration instead of recursion. In this respect it is 
useful to quote the opening sentence of Barklund and Millroth [BM94]: "Programs 
operating on inductively defined data structures, such as lists, are naturally defined 
by recursive programs, while programs operating on "indexable" data structures, 
such as arrays, are naturally defined by iterative programs". 

We do not entirely agree with this remark. For example, the "suffix" quantifiers 
mentioned in Section 2 allow us to write many list processing programs without 
explicit use of recursion (see Voronkov [Vor92]) and the quicksort program written 
in the logic programming style is more natural when written using recursion than 
iteration. 

The single assignment property of logic programming makes certain programs 
that involve arrays (like Warshall's algorithm) obviously less space efficient than 
their imperative programming counterparts. This naturally motivates research on ef-
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fì.cient implementation techniques of arrays within the logic prograrnming paradigm. 
Finally, a comment about the presentation. We were quite informai when ex­

plaining the meaning of the proposed language constructs. Note that the usuai 
defì.nition of SLD-resolution has to be appropriately modifì.ed in presence of ar­
rays an d bounded quantifì.cation. For example, the query X [ 1] = O, \ii E [ 1 .. 2] 
X [I] =f. O fails but this fact can be deduced only when the formation of resolvents 
is formally explained. To this end substitution for subscripted variables needs to 
be properly defì.ned. One possibility is to adopt one of the defì.nitions used in the 
context of verifì.cation of imperative programs (see Apt [Apt81, pages 460-462]). W e 
leave the task of defìning a formai semantics to another paper. 
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Abstract interpretation [l] is a method for designing hierarchies of se­

mantics as well as specifications of program analyzers by approximation of 

these semantics. Because of undecidability problema su eh as the termination 

problem, abstract interpreta.tion based program analysis methods are fundar 

mentally incomplete. Moreover implementation techniques such as the use 

of widenings/narrowing to speed up convergence of iterative fixpoint compu­

tation methods give the impression that the result of the analysis performed 

by the abstract interpreter is not at ali predictable by the user. 

This is in contrast with methods such as set-based analysis à la Heinze or 

type inference à la Milner which look different from abstract interpretation, 

for which numerous completeness results have been published and for which 

the result of the analysis can be predicted by the user, at least in principle, 

through the use of a rule-based inference system. 
It has been shown recently that both set-based analysis [2] and type­

inference [3] are abstract interpretations. Set-based analysis uses a finite 

abstract symbolic domain for each particular program ( although it is an infi­

nite domain when considering ali possible programs). The unification based 

type-inference algorithm uses an infinite abstract domain together with a 

rather naive widening operator (which may not look natural to some users). 

•This work was pa.rtly supported by F.sPRIT "ARA 8130 LOM A PS. 



This clearly shows that when one speaks of the fundamental incompleteness 
?f abstract interpretation in contrast with the relative completeness of type 
mference systems, one cannot speak of the exactly same notions. 

After a brief introduction to basic abstract interpretation notions the 
purpose of the talk is to solve this apparent contradiction by elimin~ting 
~uperfiu~us di~erences in presentation of program analysis methods an d by 
mtroducmg a hierarchy of different and partially comparable notions of com­
plete~es~. This explai~s the various acceptations ofthe notion with regard to 
:fixp01nt mferencejfus10n, computer representation of the abstract domain 
computability ofthe abstract property transformer, (iterative) fixpoint com~ 
putation, rule-based inference algorithm, convergence acceleration, etc. Nu­
merous examples are provided in th,!! context of Jogic programming with a 
few incursions in functional programming. 
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I will summarise the current status of my work with Francesca Toni, Fariba Sadri, 
Jacinto Daviia, Ber Permpoontanaiarp, Eric Fung and Gerhard Wetzel on developing 
logical foundations for multi-agent systems. 

The core of these foundations is a new approach to logic programming which uni­

fies abductive logic programming and constraint logic programming. This approach 
allows predicates to be defined in the usuallogic programming manner, augmented 
with integrity constraints, which are properties of the definitions. Predicates are 
executed backwards using the definitions, as well as forwards using the integrity 
constraints. The approach is being developed both to serve as the inference engine 
for individuai agents and as a programming language paradigm in its own right. 
Applications of the approach to operations research problems are also being inves­
tigated. 

Integrity constraints are also used to obtain activity and reactivity in individuai 
agents. Observations, which update the knowledge base of an agent, are checked for 
consistency with the integrity constraints. Integrity checking generates new goals, 

some of which may be converted into actions to be executed by the agent. 

The overall observation-reasoning-action cycle is controlled by a resource-bounded 
metalogic program. The resource bound allows the reasoning and planning compo­
nent of the cycle to be interrupted at any time to obtain an executable approxima­
tion to a plan which achieves the agent's goais. The representation of actions and 
temporal relationships is formulateci in a version of the event calculus. 

An agent's plans can contain actions to be performed by the agent itself, as well 
as actions to be performed by other agents. Moreover, actions can be speech acts, 
in generai, and can convey information or requests from one agent to another, in 
particular. Agents can use such speech acts to coordinate their actions. We have 
begun to investigate the use of argumentation theory to provi de a framework for such 
speech acts . In addition, we intend to investigate the applicability of concepts from 
deontic logic (the logic of obligation, prohibition and permission) to the problem of 
regulating interaction among agents. 
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Abstract 

Abstract diagnosis of logic programs is an extension of declarative diagnosis, 
where we dea! with specincations of operational properties, which can be 
characterized as abstractions of SLD-trees (observables). 
We introduce a simple and efficient method to detect incompleteness errors, 
which is based on the application of the immediate consequences operator to 
the specincation. The method is proved to be correct and complete whenever 
the immediate consequences operator has a unique nxpoint. We prove that 
this property is always satisned if the program belongs to a large class of 
programs (acceptable programs). We then show that the same property can 
be proved for any program P, if the observable belongs to a suitable class of 
observables. We nnally consider the problem of diagnosis of incompleteness 
for a weaker class of observables, which are typical of program analysis. 

l Introduction 

Abstract diagnosis [9, 11] is a combination of three known techniques, i.e., al­
gorithmic (declarative) diagnosis (debugging) [25, 18, 21, 15], the s-semantics ap­
proach to the definition of program denotations modeling various observable behav­
iors [16, 17, 20, 4, 3], and abstract interpretation [12, 13, 14]. 

The diagnosis problem can formally be defined as follows. Let P be a program, 
[P], be the behavior of P w.r.t. the observable property a, and Ia be the specifi­
cation of the intended behavior of P w.r.t. a. The diagnosis consists of comparing 
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[P], and Ia and determining the "errors" and the program components which are 
sources of errors, when [P]" =/= Io:· 

The above formulation is parametric w.r.t. the observable a, which is considered 
in the specification I, and in the actual behavior [P]". 

Declarative diagnosis is concerned with model-theoretic properties rather than 
with the operational behavior. The specification is therefore the intended declarative 
semantics of the program, which is the least Herbrand m o del in [25

1 
21] 

1 
an d the set 

of atomic logica! consequences in [18]. 
Abstract diagnosis is a generalization of declarative diagnosis 1 where we consider 

operational properties. An observable is any property which can be extracted from a 
goal computation 1 i.e. 1 observables are ,abstractions of SLD-trees. Examples of useful 
observables are computed answers, finite failures and cali patterns (i.e., procedure 
calis selected in an SLD-derivation). Other examples come from program analysis, 
e.g. depth(l)-answers (i.e., answers containing terms whose depth is :::; l), types, 
modes and ground dependencies. As we wili discuss later, the relation among the 
observables can naturaliy be understood in terms of abstract interpretation. 

Here are some motivations for abstrad diagnosis. 

• The most natura! abstract diagnosis for positive logic programs is diagnosis 
w.r.t. computed answers, which leads to a more precise analysis, since declar­
ative diagnosis is related to correct answers only. 

• Diagnosis w.r.t. finite failures aliows us to verify another relevant behavior, 
which has also a logica] interpretation. 

• Less abstract observables, such as cali patterns, can be useful to verify the con­
tro] and data flow between different procedures1 as we usualiy do in interactive 
debugging. For example, the intended behavior that we specify might be a set 
of assertions ofthe form "the execution of the procedure call p(t1 1 

••• , t n) leads 
to the procedure call q( S1, ... , sm)". 

• Diagnosis w.r.t. depth(l)-answers makes diagnosis w.r.t. computed answers 
effective, since both I" and [P]" are finite. 

• Diagnosis w.r.t. types allows us to detect bugs as the inadmissible calls in [24]. 
If I" specifies the intended program behavior w.r.t. types, abstract diagnosis 
boils down to type checking. 

• Diagnosis w.r.t. modes and ground depenciencies allows us to verify other 
partial program properties. 

In declarative diagnosis, the specification is usually assumed to be given by means 
of an oracle. This approach is feasible even in abstract diagnosis. However, since 
our method can handle abstractions, we can easily come out with finite observable 
behaviors and specify them in an extensional way. 
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The idea of combining abstract interpretation and debugging was first proposed 
in [5], where abstract interpretation techniques are used to statically determine the 
origin of bugs in higher-order imperative languages. The result is a set of correctness 
conditions expressed in terms of assertions. 

Our theory of abstract diagnosis is built on an algebraic semantic framework for 
positive logic programs [7, 8], based on the formalization of observables as abstrac­
tions. A complete description of the framework is outside the scope of this paper. 
In Section 2 we summarize the main properties of the framework. We will con­
sider h ere an important class of observables ( denotational observables) with strong 
semantic properties. The diagnosis problem and the diagnosis algorithms for deno­
tational observables introduced in [9] are considered in Section 3. We show that the 
existing declarative diagnosis methods can be reconstructed as instances of abstract 
diagnosis w.r.t. denotational observables. As in the case of declarative diagnosis, 
incorrect clauses can be detected by applying an immediate consequences operator 
to the specification. The first contribution of this paper is a method to detect in­
completeness errors, which is similar to the incorrectness detection method, since i t 
is based on the application of the (abstract) immediate consequences operator TP,<> 

to the specification. The main result is that this method is correct and complete, 
if TP,a has a unique fixpoint. In Section 4 we show that this is the case for a large 
class of programs (acceptable programs). Acceptable programs were defined in [2] 
to study termination andali the pure PROLOG programs in [26] are reported to be 
acceptable. The same property is then shown (Section 5) to hold for all programs 
and for any observable a belonging to a suitable class of denotational observables. 
We finaliy consider in Section 6 the problem of diagnosis of incompleteness for a 
weaker class of observables (which are calied semi-denotationaD. Semi-denotational 
observables are typicaliy the properties used in program analysis. 

2 Observables 

We consider pure logic programs with the PROLOG (leftmost) selection rule. 
We assume the reader to be familiar with the notions of SLD-resolution and SLD­
tree ( see [22, l]). The theory of observables [7, 8] is based on a kernel semantics for 
SLD-trees. The kernel semantics is given by two separate constructions, i.e., 

• a definition in denotational style, 

• a definition given in terms of a transition system. 

Both definitions are expressed in terms of three semantic operators @, EEì and t><L 

which are the semantic counterparts of the syntactic operators /\, V and r-. The 
denotational and operational definitions are equivalent. Moreover, there exists a 
goal-independent program denotation which has the foliowing properties: 

• it can be defined in terms ofthe transition system (top-down definition O( P)), 
by considering the set of SLD-trees for most generai atomic goals. 
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• it can be obtained from the denotational defìnition (bottom-up defìnition 
:F(P)), by taking the least fìxpoint of the operator Tp (the denotational se­
mantics of P). 

• O(P) = :F(P). 

• the denotation is correct and minima], i.e., P1 ;::-;; P2 ~ O(P1 ) = O(P2), 
where ;::-;; is the observational program equivalence induced by SLD-trees. 

• the denotation is AND-compositional, i.e., we can derive the SLD-trees for 
any (conjunctive) goal from O(P). 

• the denotation is OR-compositional, i.e., we can derive from O(P1 ) and O(Pz) 
the denotation of P1 U P2. 

Observables are abstractions of SLD-trees. More precisely, an obser-vable is a 
function a from the domain of SLD-trèes n to an abstract domain V, which pre­
serves the partial orders. a is an abstraction function according to abstract interpre­
tation, i.e., t h ere exists a function ì ( concretization) from V to n, such tha.t (a, ì) is 
a Galois insertion. The theory of abstract interpretation tells us that we can defìne 
the most precise abstract version fa of each semantic operator f as fa = a o f o ì· 
Now we can obtain an a.bstract transition system and an abstract denotational def­
inition from the ones of the kernel semantics, by simply replacing the operators @, 

EB and l><l by their most precise abstract versions @0 , ffia and l><l0 • We obtain two 
abstract (goal-independent) program denotations: the top-down denotation 0 0 (P) 
and the bottom-up denotation :Fa(P). 

[8] gives a classifìcation of observables, where each class is characterized by a set 
of simple axioms relating a, /, @, EB and l><l. 

• per-fect obser-vables. For perfect observables we can compute on the abstract do­
main, both operationally and denotationally, without losing precision. In par­
ticular, the abstract denotations are precise, i.e.,00 (P) = Fa(P) = a(O(P)). 
Perfect observables have all the properties of the kernel semantics. Computed 
resultants is an example of a perfect observable. 

• denotational obser-vables. The abstract denotations are not precise. However, 
we can take the most precise approximation TP,a of the T p operator an d use i t 
in the denotational defìnition. The resulting abstract denotational semantics is 
now precise, as is the case for the bottom-up denotation TP,a t w= a(O(P)). 
Denotational observables have all the properties of the kernel semantics (re­
stricted to the bottom-up denotations), apart from OR-compositionality. The 
abstract transition system cannot be made precise. Examples of denotational 
observables are: partial answers, call patterns, computed answers, correct an­
swers, ground instances of computed answers. Some of the specialized bottom­
up operators TP,a = aoTpoì are existing "immediate consequences operators". 
In particular, 
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If q; is the observable "ground instances of computed answers", Tp,q, is the 
ground operator defìned in [27] (and :Fq,(P) is the least Herbra.nd mode!). 

- If 1/J is the observable "correct answers", Tp,..p is the non-ground operator 
fìrst defìned in [6] (and :F..p(P) is the least term model). 

If ç is the observable "computed answers", TP,f. is the s-semantics operator 
defìned in [16]. 
If T) is the observable "cali patterns", Tp, 17 is the cali patterns operator 
defìned in [20]. 

Perfect observables are also denotational. 

• opemtional obser-vables. These are observables for which we can systematically 
derive a precise abstract transition system, while the denotational semantics 
is not precise. This class is not relevant to our approach to diagnosis, which 
is based on TP,cx· 

• semi-pe1ject obser-vables. The top-down and bottom-up denotations are equiv­
alent, yet they are not precise, i.e., Ocx(P) = :Fcx(P) t a(O(P)), where ::S is 
the partial order relation on the abstract domain. Both the top-down and the 
bottom-up abstract computations are correct according to abstract interpreta­
tion theory, i.e., there is a loss of precision due to approximation. Semi-perfect 
observables have all the properties of the kernel semantics. 

• semi-denotational obser-vables. By taking the most precise approximation TP,a 
of the T p operator, we obtain a bottom-up abstract denotation which is more 
precise of the top-down abstract denotation, yet is less precise than the ab­
straction of the concrete denotation, i.e., a(O(P)) ::S TP,cx t w ::S Oa(P). 
Semi-denotational observables have the same properties of denotational ob­
servables, apart from the precision. Examples of semi-denotational observables 
are severa! domains used to abstract substitutions in the framework of program 
analysis ( types, groundness dependencies, etc.). Semi-perfect observables are 
also semi-denotational. 

Our basic theory of abstract diagnosis will be developed for denotational observ­
ables. In Section 6 we will mention how it can be extended to semi-denotational 
ohservables. 

We show two of the TP,cx operators that will be later used in the examples. 

• ( computed answer substitutions) 

Tp,ç(I) = { (p(X), rJ) l 
l. X is a tuple of new distinct variables 
2. p( t):- PI(~), ... ,pn({n) E P 
3. (p;(X;), rJ;) E I, l ::; i ::; n, 
4. {) = mgu ((p(f),pi(fi), ... ,pn(Fn)), 

(p(X),pl(XI)rJl, · · · ,pn(Xn){)n)) }. 
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• (1-answers with depth) 

Tp:::.(I) = { (p(X),iJ,m) l 
l. .X is a tuple of new distinct variables 
2. p( t):- P1(f1), ... ,pn(t:) E P 
3. (p;(X;), iJ;, m;) E I, l ::; i::; n, 

4. {) = mgu ((p(t),p1 (t~), ... ,pn(t:)), 

(p(X),pJ(XJ)iJJ, .. · 1 Pn(Xn)iJn)) 
5. m = l + m1 + ... + mn ::; l } . 

Abstract diagnosis w.r.t. denotational observ­
ables 

Let P be a program. If Q is a denotational observable, we know that the actual 

and the intended behaviors of P for all the goals are uniquely determined by the 

behaviors for most genera] goals. The following Definitions 3.1 and 3.2 extend to 

abstract diagnosis the definitions given in [25, 18, 21] for declarative diagnosis. In 

the following Ic. is the specification of the abstraction of the intended behavior of 

program P for most generai atomic goals w.r.t. the denotational observable Q (i.e., 

I"' is the specification of the intended Q(O(P))). The actual abstract semantics of 

the program P is the abstract bottom-up denotation Frx(P) = TP,C< t w, since Q is a 

denotational observable. In the case of denotational observables we can assume the 

partial order on the abstract domain to be ç (set inclusion). 

Definition 3.1 

~- P is partially correct w.r.t. Irx, if Fo:(P) ç Ia. 

n. P is complete w.r.t. I"'.' ifia ç Fa(P). 

m. P is totally correct w.r.t. Ia, if :F"'(P) =Io.. 

If P is not totally correct, we are left with the problem of determining the errors, 
which are based on the symptoms. 

Definition 3.2 

~- A n incorrectness symptom is an element O' such that O' E F,,( P) an d O' tf_ Irx. 

n. An incompleteness symptom is an elementO' such that O' E Irx and O' tf. Frx(P). 

Note that a totally correct program has no incorrectness and no incompleteness 

symptoms. Our incompleteness symptoms are related to the insufficiency symp­

toms in [18), which are defined by taking gfp (T p) instead of lfp (T p) as program 

semantics. The two definitions, even if different, turn out to be the same for the 
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dass of programs we are interested in (see the acceptable programs in Section 4). 

Ferrand's choice is motivated by the fact that gfp (T p) is related to finite failures. 

The approach of using two different semantics for reasoning about incorrectness 

a.nd incompleteness has been pursued in [19], leading to an elegant uniform (yet 

non-effective) characterization of correctness an d completeness. 

It is worth noting that we can reconstruct the usual definitions of declarative di­

agnosis within our more genera] framework, thus showing that the use of declarative 

specifications can also be motivated by operational arguments (i.e., the declarative 

semantics are goal-independent denotations corresponding to suitable denotational 

observables). In particular, 

e the observable cf; (ground instances of computed answers) gives us the declar­

ative diagnosis based on the least Herbrand mode! [25, 21]; 

o the observable 7./J ( correct answers) gives us the declarative diagnosis based on 

the least term mode] [18]. 

It is straightforward to realize that an element may sometimes be an (incorrect­

ness or incompleteness) symptom, just because of another symptom. The diagnosis 

determines the "basic" symptoms, and, in the case of incorrectness, the relevant 

clause in the program. This is captured by the definitions of incorrect clause and 

uncovered element, which are related to incorrectness and incompleteness symptoms, 

respectively. 

Definition 3.3 Jf there exists an element O' such that O' t/. Irx and O' E T{c},e<(Irx), 

then the clause c E P is incorrect o n O'. 

Informally, cis incorrect on a, if i t d eri ves a wrong observation from the intended 

semantics. T{c},a is the operator associateci to the program {c}, consisting of the 

clause c only. 
The following theorem shows the relation between partial correctness (Defini­

tìon 3.1) and absence of incorrect clauses (Definition 3.3). The theorem shows the 

feasibility of a diagnosis method for incorrectness based on the comparison between 

Io_ and TP,C<(Irx) and does not require to actually compute the denotation :F"'(P) 

(ì.e., the least fixpoint of TP,a)· Note that the second part of the theorem asserts 

that there might be incorrect clauses even if there are no incorrectness symptoms. 

In other words, if we just look at the semantics of the program, some incorrectness 

bugs can be "hidden" (because of an incompleteness bug). 

Theorem 3.4 lf there are no incorrect clauses in P according to Definition 3.3, 

then P is partially correct w. r. t. a according t o Definition 3.1 (hence there are no 

incorrectness symptoms). The converse does not hold. 

Pro o f. 
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1. If TP,a(Ia) ç Ia, then Ia is a pre-fixpoint of TP,a· Since :Fa( P) = lfp (TP.a) 
[7], by Tarski's theorem :Fa( P) ç Ia. 

If TP,a(Ia) g; Ia, then for some element cr, cr E TP,a(Ia) and cr t/. Ia. Hence, 
there exists a clause c in P such that cr E T{c},a(Ia)· Therefore cis incorrect. 
Otherwise, if TP,a(Icx) ç Icx for all c E P and cr E T{c},cx(Ia). then cr E 
TP,a(Ia)· Hence cr E Io-. 

11. Consider the program P = {p :-r.} and the specification Iç = { (r, r::) }. P 
is partially correct because :Fç (P) = 0 ç Iç. However the only clause of P is 
incorrect because {(p, r:;)} E TP,<.(Iç) - Iç. 

Ili 

As in the case of declarative diagnosis, handling completeness turns out to be 
more complex, since some incompletnesses cannot be detected by comparing Ia and 
TP.a(Ia)· One would like to base the diagnosis on the following definition. 

Definition 3.5 An element cr is uncovered if 

Informally, cr is uncovered if there are no clauses deriving it from the intended 
semantics. 

The following proposition shows that we cannot base the diagnosis of incom­
pleteness on the detection of uncovered elements. 

Proposition 3.6 There exist a program P, a denotational observable o: and a spec­
ification Ia, such that 

z. there are no uncovered elements in P, 

iz. P is no t complete w. r. t. Ia (i. e., there exist incompleteness symptoms). 

Proof. Consider the program P = { p(x) :-p( x).} and the specification Iç 
{ (p(x),r:;) }. Then TP.ç(Iç) = { (p(x),r:;) }, while :Fç(P) = 0. 111 

However, the following theorem shows that the diagnosis of incompleteness can be 
based on Definition 3.5 if the operator TP.o has a unique fixpoint. 

Theorem 3. 7 Assume Tp, 01 has a unique fixpoint. Jf there are no uncovered ele­
ments, then P is complete w.r.t. Ia (hence there are no incompleteness symptoms). 
The converse does not hold. 

Proof. 

1. If Ia ç TP,cx(Icx), then Ia is a post-fixpoint of TP,a· By Tarski's theorem, 
Ia ç gfp (TP,a). Since :Fa(P) = lfp (TP,a) [7] and gfp (TP,a) = lfp (TP,a), the 
thesis holds. 

49 

11. Consider the program P = {p :-r., r.} and the specification Iç = {(p, r::) }. 
p is complete because :Fç(P) = { (p,r::), (r,r:;)} ::) Iç. However the element 
(p, r:;) is uncovered because Tp,diç) = { (r, r::) }. 

Il 

In the next two sections we will consider two large classes of programs and de­
notational observables, for which TP,cx has a unique fixpoint. For these programs 
and observables, the diagnosis of incompleteness is as simple as the one for incor­
rectness. Note that, if TP,a has a unique fixpoint, lfp (TP,cx) = gfp (TP.c;)· Hence our 
incompleteness symptoms correspond to the insuffì.ciency symptoms in [18]. 

The foliowing corollary is a justifìcation of the overali diagnosis method. 

Corollary 3.8 Assume TP,c; has a unique fixpoint. Then P is totally correct w. r.t. 
Icx, if and only if there are no incorrect clauses an d uncovered elements according io 
definitions 3.3 and 3.5. 

If the abstraction o: guarantees that for each most generai atomic goal we have 
fìnitely many observations, then the specifìcation is finite and our diagnosis is ef­
fective. In such a case, as already mentioned, Icx can be specified in an extensional 
way and there is no need for the oracle. 

4 A bstract diagnosis of acceptable programs 

We consider here the abstract diagnosis of programs belonging to the class of 
acceptable programs [2], whose definition is given below. It is worth noting that ac­
ceptable programs are the left-terminating programs, i.e., those programs for which 
the SLD-derivations of ground goals (via the leftmost selection rule) are finite. As 
a.lready mentioned, most interesting programs are acceptable ( all the pure PRO­
LOG programs in [26] are acceptable). The same property holds for most of the 
"wrong" versions of acceptable programs, since most "natura!" errors do not affect 
the left-termination property. 

Definition 4.1 [2] A leve! mapping fora program P is a function l· l : Bp --t N 
from ground atoms to natura! numbers. Let l · l be a level mapping for P and I be a 
(no t necessarily Herbrand) m od el of P. P is acceptable w. r.t. 1·1 an d I, if for every 
clause a :- b1 , .•. bn in Ground( P) the following implication holds for i E [l, n]: 

I ~ A};;;,~ bj ===?- la l > lb;l. 
One relevant technical property of acceptable programs is that the ground immediate 
consequences operator has a unique fìxpoint [2]. We have proved the following 
theorem, which tells us that the same property holds forali the operators TP,a, such 
that o: is a denotational observable (SLD-trees, cali patterns, answers with depth, 
l-answers with depth, correct and computed answers, ground instances of computed 
answers, etc.). W e first need some additional definitions and lemmata. In the 
following, T p denotes the immediate consequences operator of the kernel semantics. 
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Definition 4.2 A norm far a pragmm P an R is a functian 11·11 : R -+ N such that 
far every n the set {x E R l /lxii = n} is finite. A pragmm P is 7?-acceptable, if 
there exists a narm s.t. far ali c E P and ali finite I E R 

Lemma 4.3 Every a.cceptable pragmm P is R-acceptable. 

Proof. Wejust need to define //Xl/= max{/G19/*I (G,19,b,cl) E X,19}, where 
1·1 is the leve) mapping of P and /BI*= min { /B'l,b//'l,b is grounding for B }. 111 

For every observable o: and each n we can define a "projection" function 7in,a(I) = 
o: 0 7i n ° ì, w h ere 7i n (I) = { x E I l Il x Il =F n } . The functions 7i n,o are well defined if 
o: is a denotational observable. 

Lemma 4.4 Lei P be an acceptable pragmm and o: be a denatatianal abservable. 
Then 

7Tn,a O Tp,Oc = 7Tn,o O TP,o O (L 1Ti,o)· 
i<n 

Proof. For every n, every I and for all m ~n, the sets (7rn o Tp o 7im)(I) are 
empty, because //Tp(I)/1 > //I/1 by hypothesis . Thus Ttn o Tp = 1in o Tp o"· "'· L.Jt<n • 
Then for every a 

which is the claim. 

0:07inOìOO:OTpoì 

0:07Tn0Tpoì 

ao(TtnoTpo L";) o! 
i<n 

= 1in,o O TP,o O L 1ii,o 
i<n 

V/e are now ready to prove the main theorem. 

i<n 

il 

Theorem 4.5 (fixpoint uniqueness) Let P be an accepta.ble pragram and o: be a 
denatatiana.l abserva.ble. Then TP,o tw is the unique fixpaint af TP,o· 
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Proof. Clearly TP.o tw is a fixpoint. Now assume that X and Y are fixpoints. 
We show, by induction on n, that for all n, 1in,cx(X) = 1in,a(Y). 

(7io,o O TP,a)(X) 

( 1io,o o T P,o) (.l) 

( 1io,o o T p·" )(Y) 

7io,a(Y) 

Moreover, iffor alli< n 1i;,"(X) = 7i;,a(Y), then 

Hence 

nE N 

(7in,o O TP,a)(X) 

(7in,Oc O TP,Oc O (l: 1ii,a))(X) 
i<n 

i<n 

(7in,a O TP,a)(Y) 

1in,o(Y) 

nE N 

Theorems 4.5 and 3.7 allow us to perform the diagnosis of incompleteness errors 
according to Definition 3.5. 

Corollary 4.6 Let P be an acceptable pragram. Then P is totally correct w.r.t. I'" 
if and anly ifTP,cx(I"') =Io· 

It is worth noting that the property of being acceptable is undecidable. Therefore 
we do not mean the diagnosis to contain a test for acceptability. We just want to 
remark that, since all sensible programs turn out to be acceptable, the diagnosis 
algorithm based on the application of the bottom-up operator to the specification 
(both for correctness an d incompleteness) is indeed feasible. 

Note that this result applies to declarative diagnosis as well, because, as we have 
showa in Section 3, it can be explained in terms of denotational observables. 

Example 4. 7 Consider the acceptable program P of Figure l, which is an "ances­
tor" database with a missing clause ( ancestor(X, Y) :- parent(X, Y).). Consider the 
computed answer substitutions observable ç. The specification is 

Iç = { (parent(X, Y), { X/terach, Y/abraham} ), 
(parent(X, Y), { Xjabraham, Y/isaac} ), 
(a.ncestar(X, Y), { X/terach, Y/abraham} ), 
(ancestor(X, Y), { X/terach, Y/isaac} ), 
(ancestar(X, Y), { X/abraham, Y/isaac}) }, 
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ancestor(X, Y) :- ancestor(X, Z), parent(Z, Y). 
parent( abraham, isaac ). 
parent(terach, abraham). 

Figure 1: A wrong acceptable program 

TP,ç(Id = { (parent(X, Y), { X/terach, Y/abraham }), 
(parent(X, Y), { X/abraham, Y/isaac} ), 
(ancestor(X, Y), { Xjterach, Y/isaac}) }. 

The elements (ancestor(X, Y), { X/terach, Y/abraham }) and 
(ancestor(X, Y), { X/abraham, Y/isaacJ) are diagnosed as uncovered whìle the 
"derived" element ' 
(ancestor(X, Y), { X/terach, Y/isaac}) is not, even if i t is an incompleteness symp­
tom. • 

5 Abstract diagnosis of acceptable denotational 
observables 

In this section we show that Defìnition 3.5 can be used to detect incompleteness 
err?rs even for non accept~ble pr_ograms, if the observable o: satisfies a property 
wh1ch guarantees that the Jmmed~ate consequences operator has a unique fìxpoint 
( acceptable observables). 

Definition 5.1 An a-leve! mapping for a denotational observable a : R -+ D is a 
functzon l · l : D -+ N. Lei l · l be an a-level mapping, o: is acceptable w.r.t. 1 . 1 if 
for every clause c an d for all finite Icx, 

IT{c},cx(Icx)l > IIcxl· 

For eve~y ~-leve] mapping 1·1 we can defìne the norm IIXII = lo:(X)I and, therefore, 
the prOJeCtJOnS 7r n,o:· 

Lemma 5.2 Lei P be a program and o: be an acceptable denotational observable. 
Then 

1l"n,cx O TP,o: = 1l"n,cx O TP.cx O (L 1ri,cx)· 
i<n 

Theorem 5.3 Lei P be a program and o: be an acceptable denotational observable. 
Then TP,"' has a unique fixpoint. 

W e show. now that the basic SLD-trees observable (id) is indeed acceptable. 
The abstractwn can destroy thìs property. However ali the denotational observables 
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which keep some information about the length of the derivation are also acceptable. 
In particular this is the case of the Z-answers with depth observable, which has been 
proposed to achieve finite extensional specifìcations. On the other han d, correct and 
computed answers substitutions are not acceptable (as shown by the program in the 
proof of Proposition 3.6). 

Proposition 5.4 The identica! denotational observable id : R --+ R is acceptable. 

Proposition 5.5 The observable :=: is acceptable. 

Example 5.6 Consider the program P of Figure 2 which is another "wrong" versi o n 
of the "ancestor" database. This version, however, is not acceptable (the computa­
tion of the goal ?- ancestor(terach, abraham) goes into an infinite loop ). W e will 
show that the bug can be located by an acceptable denotational observable. Con­
sider fìrst the computed answer substitutions observable ç, which is not acceptable. 

Ir. = { (parent(X, Y), {X/terach, Y/abraham }), 
(parent(X, Y), { X/abraham, Y/isaac} ), 
(ancestor(X, Y), { X/terach, Y/abraham} ), 
(ancestor(X, Y), { X/terach, Y/isaac} ), 
(ancestor(X, Y), { X/abraham, Y/isaac}) }. 

Even if Tp,r_(Ir.) = Iç, the program has an incompleteness symptom, since the ele­
ment (ancestor(X, Y), { Xjterach, Y/isaac}) does not belong to Fç(P). 

Consider now the 6-answers with depth observable :=:, which is instead acceptable. 

I=.= { (parent(X, Y), { X/terach, Y/abraham }, 1), 
(parent(X, Y), { X/abraham, Y/isaac }, 1), 
(ancestor(X, Y), { X/terach, Y/abraham }, 2), 
(ancestor(X, Y), { X/terach, Y/isaac }, 4), 
(ancestor(X, Y), { X/abraham, Y/isaac }, 2) }, 

T p,=.( I=.) = { (parent(X, Y), { X/terach, Y/abraham }, 1), 
(parent(X, Y), { X/abraham, Y/isaac }, 1), 
(ancestor(X, Y), { X/terach, Y/abraham }, 2), 
(ancestor(X, Y), { X/terach, Y/isaac }, 6), 
(ancestor(X, Y), { X/abraham, Y/isaac }, 2) }. 

The diagnosis now detects the incorrect clause c2 in addition to the uncovered ele­
ment (ancestor(X, Y), { X/terach, Y/isaac }, 4). • 

6 Diagnosis of incompleteness for semi-denota­
tional observables 
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c!) ancestor(X, Y) :- parent(X, Y). 
c2 ) ancestor(X, Y) :- ancestor(X, Y), parent(Z, Y). 
c3) pare n t ( abraham, isaac). 
c4 ) parent(terach, abraham). 

Figure 2: A non acceptable program 

Semi-denotationa.l observables are meant to mode] the abstraction (with ap­
proximation) involved in program analysis ( e.g. depth( 1)-answers, types, modes, 
ground dependencies and sharing). Even the most precise abstract denotation 
Fa (P) is just an approximation ofthe abstraction of the concrete semantics. N amely 
o:( O( P)) = o:(F( P)) ::S Fa(P). The speéifìcation Ia is a speci:fìcation ofthe intended 
behavior o:( O( P)). Hence we cannot get, any information about partial correctness, 
since in genera] the following relation holds (fora complete program): 

In other words, in a partially correct and complete program, the actual program 
denotation an d the specifìcation can be different, just because of the approximation 
introduced by the semi-denotational observable. 

On the other hand, the defìnitions given in Section 3 related to completeness 
(and the corresponding diagnosis algorithm for detecting uncovered elements) are 
applicable to the case of semi-denotational observables as well, once we adapt our 
defìnitions to the partial order ::S, which is usually different from set inclusion in semi­
denotational observables. In particular, we can decide completeness by comparing 
Ia and TP,a(Ia), if P is acceptable and a is a semi-denotational observable. 

7 Conclusions 

We have shown that the theory of declarative diagnosis can be extended to 
the case where the speci:fìcation defines the intended behavior of programs w.r.t. 
operational properties which can be formalized as denotational or semi-denotational 
observables, as first suggested in [9]. The main new result w.r.t. [9] is the simple 
characterization of incompleteness in the case of acceptable programs or acceptable 
observables. 

This paper is concerned with the foundations of abstract diagnosis. Hence we 
have not dealt with the problems of designing efficient diagnosis algorithms and 
of implementing the specifìcation. Let us just mention that we can easily define 
top-down diagnosis algorithms, in the style of those discussed in [23], where the 
specification is given by an oracle, possibly implemented by querying the user. One 
such an algorithm, for the case of the computed answers denotational observable, 
is described in [10]. The top-down diagnoser uses one oracle only, and does not 

'l 

55 

require to determine the symptoms in advance. The AND-compositionality property 
of Fa( P) allows us to determine all the incorrect clauses and uncovered :Jements by 
considering just a finite set of atomi c goals (i. e., the most genera] at~m1c goals )· 

The effectivity of the diagnosers relies on our ability to handle .fìmte ap?roxJ~a­
tions of the specification. In fact, if Ia is not finite, the diagnosis JS ~nfeas1~le SIDce 
the oracle may return infinite answers to some queries. Abstract dJagnos:s allows 
us to tackle this problem, by considering abstractions (modeled by denota~wnal ob­
servables) on finite domains. One example is t.he observable 1-answer~ w1th depth 
considered in this paper, which, however, reqmres the user to reason m unaccept­
able operational terms. A second solution is to move to ~1ore nat~ral observables, 
such as depth(l)-answers, which can be modeled as a sem1-denotatw~al observable 
(in this case, however, we can only reas~n abo~t incompleteness). Fmally, we can 
resort to partial specifications as de:fìned ID [10] ID .th~ case of t~e comput.ed a~swers 
observable. Partial specifications are simply descnptwns of fimte approx1matwns of 
the intended program behavior. The theory of abstract .diagnosis can be extended 
t o parti al specifications, resulting in weaker results, wh1ch may be, however, very 
useful in the practice of diagnosis. 
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