
r
\

PROCEEDINGS

GULP-PRODE
1995

Editors

MARIA
ALPUENTE

MARIA I.
SESSA

]oint Conferente on ·
Dlclçtive Programming

PitOCEEDINGS
Editors

MARIA ALPUENTE
MARIA I. SESSA

11-14 September 1995
MARINA DI VIETRI- ITALY

Maria I. Sessa Maria Alpuente Frasnedo (Eds.)

GULP-PRODE'95

JOINT CONFERENCE ON DECLARATIVE PROGRAMMING

Marina di Vietri sul Mare, Italy

September 11-14 1995

PROCEEDINGS

UNIVERSITA' DEGLI STUDI
DI SALERNO

Printed with the support of:

University of Salerno, Italy

Di p. Informatica e Applicazioni ~ R.M. Capocelli"
University of Salerno, Italy

Printed in Italy on July 1995 by:
POLIGRAF Press
v. Pio XI 110
84125 Salerno, Italy.

Typesetting:
Camera ready by authorsjeditors

Cover:
Pottery art of Vietri sul Mare
(private coliection)

Preface

The Second Joint Conference on Declarative Programming GULP-PRODE'95 joins
together the 10th Italian GULP Conference on Logic Programming and the 5th
Spanish PRODE Congress on Declarative Programming.

GULP-PRODE'95 was held in Marina di Vietri (Italy) at the IIASS institute on
September 11-14, 1995, following the eight previous GULP conferences in Genova
(1986), Torino (1987), Roma (1988), Bologna (1989), Padova (1990), Pisa (1991),
Tremezzo (1992) and Gizzeria (1993), the three previous PRODE meetings in Tor­
remolinos (1991), Madrid (1992) and Blanes (1993), and the First Joint Conference
on Declarative Programming GULP-PRODE'94 in Peiifscola, Spain.
GULP-PRODE'95 has been organized by the Universita di Salerno.

The technical program for the Conference included 43 full communications, 6 short
communications, 4 guest lectures and 2 guest talks. The papers in this book
are printed in their order of presentation at the Conference, with communications
grouped into thematic sessions. The papers were selected from 56 received sub­
missions. All the papers were evaluated by at least two reviewers. The Program
Committee met at the Universita di Salerno to select the 49 papers which are in­
cluded in this volume as full or short communications.

In addition to the contributed papers, GULP-PRODE'95 featured four outstanding
lectures by: Krzysztof R. Apt (CWI Amsterdam), Patrick Cousot (Ec. Nor. Sup.
Paris), Robert A. Kowalski (Imp. CoL London), and Giorgio Levi (Univ. Pisa).
The lecture by K. Apt was presented by Elena Marchiori. Two distinguished talks
were also given by Dale Miller (Pennsylvania Univ.) and Luis M. Pereira (Univ.
Nova de Lisboa).

W e express our gratitude to all members of the Program Committee and to ali out­
side referees w ho o:ffered their expertise in the review process. We extend our sincere
thanks to ali authors who submitted papers and to ali conference participants.
We would also like to thank ali institutions supporting the Conference, with spe­
cial thanks to the Universita di Salerno and to the Dipartimento di Informatica e
Applicazioni "R.M. Capocelli". Moreover, we gratefully aknowledge the broad of
directors of the IIASS and the secretary of this institute, Ornella De Pasquale, for
her effìcient support.

Finally, we wish to especially highlight the contributìon of the Organizing Commìt­
tee, whose work made the Conference possìble, and gìve specìal thanks to Andrea
F. Abate, Bruno Carpentieri, Filomena Ferrucci, Vincenzo Loia, Alfonso Sessa and
Giuliana Vitiello. We also wish to express our deep gratefulness to the Organizing
Committee of GULP-PRODE'94 for their previous work and experience which have
been extremely useful.

Maria Alpuente Frasnedo
Maria I. Sessa
Editors
Salerno, June 1995

GULP-PRODE'95
J oint Conference o n Declarative Programming

Program Chair
Maria I. Sessa U. Salerno

Program co-Chair
Marfa Alpuente Frasnedo U.P. Valencia

Program Committee
Annalisa Bossi
Luigia Carlucci Aiello
Paolo Ciancarini
Stefania Costantini
Moreno Falaschi
Pere Garda Calves
José C. Gonzalez Cristobal
Giorgio Levi
Alberto Martelli
Juan J. Moreno Navarro
Eugenio Omodeo
Catuscia Palamidessi
Inmaculada Pérez de Guzman
Ernesto Pimentel Sanchez·
Mario Rodriguez Artalejo
Domenico Sacca
Genny Tortora
Felisa Verdejo

Organizing Committee
Andrea Abate
Bruno Carpentieri
Filomena Ferrucci
Vincenzo Loia
Giuliana Vitiello

Technical Support
Alfonso Sessa

U. Calabria
U.Roma
U. Bologna
U. Milano
U. Udine
IIIA Blanes
U.P. Madrid
U. Pisa
U. Torino
U.P. Madrid
U. Salerno
U. Genova
U. Malaga
U. Malaga
U. C. Madrid
U. Calabria
U. Salerno
UNED

Ernesto Burattini
M. Celma Giménez
Nicoletta Cocco
Veronica Dahl
Gilberto Filé
Marfa J. Garda de la Banda
Marfa T. Hortala Gonzalez
Paqui Lucio Carrasco
Maurizio Martelli
Robert Nieuwenhuis
Giuliano Pacini
Dino Pedreschi
Alberto Pettorossi
Mar!a J. Ram!rez Quintana
José J. Ruz Ortiz
Roberto Serra
Franco Turini

CNR Napoli
U .P. Valencia
U. Venezia
S.F.U. Canada
U. Padova
U.P. Madrid
U.C. Madrid
U. Pafs Vasco
U. Genova
U .P. Catalunya
U. Venezia
U. Pisa
U. Roma
U. p, Valencia
U. C. Madrid
F.F. Ravenna
U. Pisa

Referees

A. F. Abate M. Gabbrielli
L. Araujo J. Garcia-Martin
F. Arcelli M. Gaspari
A. Asperti S. Greco
R. Barbuti G. Guerrini
C. Bèihm A. Guglielmi
P. Bonatti A. Herranz-Nieva
A. Bottoni C. Laneve
C.G. Brown G.A. Lanzarone
M. Bugliesi J. Levy
N. Cancedda V. Loia
A. Casanova F.J. Lopez-Fraguas
S. Castellani S. Lucas
S. Contiero P. Mancarella
M. Coppo G. Manco
A. del Pozo Prieto G. Mascari
S. Etalle M.C. Meo
M. Fabris A. Messora
F. Ferrucci M. Napoli
F. Formato M. Navarro

N. Olivetti
L. Palopoli
R. Pena
M. Proietti
J. Puyol-Gruart
A. Raffaeta
F. Ranzato
C. Renso
R. O. Rodriguez
S. Rossi
A. Rubio
S. Ruggieri
P. Rullo
A. Sanchez Ortega
F. Scozzari
U.P. Vasco
G. Vidal
J. O. Villaroja
G. Vitiello
E. Zaffanella

Foreword

The Gruppo Ricercatori ed Utenti di Logic Programming (GULP, which stands for
Logic Programming Researchers and Users Group), is an affiliate to the Association
of Logic Programming (ALP). The goals of the group are to make Logic Program­
ming more popular and to create opportunities for the exchange of experiences and
information between researchers and users working in the field for both public and
private organizations.
To this purpose GULP promotes many different activities such as the exchange
of information among its members and the organization of workshops, advanced
schools and its annual Conference.

Starting from 1994 our annual Conference is held jointly with the Spanish Confer­
ence PRODE on Declarative Programming. This has represented a significant step
towards the exchange of research experience among European Latin countries.
The main aims of the Conference are:
l) t o serve as an occasion for those working in this area w hich are interested in
meeting and exchanging experiences;
2) to illustrate the current state of the art in the area through invited talks given

well known researchers;
3) to enable students and researchers to learn more about logic and declarative
programming by means of introductory tutorials.

This year we will celebrate a special anniversary, namely the first ten years of GULP
and the tenth Conference. The previous annual conferences were held in Genoa,
Turin, Rome, Bologna, Padua, Pisa, Tremezzo, Gizzeria Lido, and, as a GULP­
PRODE Conference, in Pefiiscola (Spain).
The scientific program of this joint Conference GULP-PRODE includes papers from
colleagues from severa] European countries. The large internatìonal partìcipatìon,
considered together with the good technical quality of the papers accepted for pre­
sentation, is a further confirmation of the success of this joint event.

On behalf of GULP I would like to thank Maria Sessa and all the other colleagues
of the Universita di Salerno for the organization of this year Conference.

Maurizio Martelli
President of the GULP

Contents

INVITED LECTURES

Arrays, Bounded Quantifìcation and Iteration in Logic and
Constraint Logic Programming
K.R. Apt

Completeness in Abstract Interpretation
P. Cousot

Logica] Foundations far Multi-agent Systems
R. Kowalski

On the Abstract Diagnosis of Logic Programs
G. Levi, M, Comini, and G. Vitiello

GUEST TALKS

Observations about Using Logic as a Specifìcation Language
D. Miller

Parallel Logic Programming with Extensions
L.M. Pereira, J.C. Cunha, and L. Damas

CONCURRENCY

Domain Independent Ask Approximation in CCP
E. Zaffanella

Modeling Real-Time in Concurrent Constraint Programming
F.S. de Boer, and M. Gabbrielli

Extending CAML Light to Perform Distributed Computation
J.L. Freire Nistal, B.B. Fraguela Rodriguez, and V.M. Gulias Fernandez

A Logic Language Based on GAMMA-Like Multiset Rewriting
P. Ciancarini, D. Fogli, and M. Gaspari

19

37

39

41

61

71

89

101

113

12.5

l

DEDUCTIVE DATABASES

Side Effect Analysis for Logic-Based Planning
K. Eshghi, and M. M owbray

Downward Refìnement of Hierarchical Datalog Theories
F. Esposito, N. Fanizzi, D. Malerba, and G. Semeram

Integrity Constraints Evolution in Deducti~e Databases
D. Montesi, and F. Turini

Declarative Reconstruction of Updates in Logic Databases:
a Compilative Approach
M. Carboni, V. Foddai, F. Giannotti, and D. Pedreschi

NEGATION

An Introduction to Regular Search Spaces
A. Momigliano, and M. Omaghi

A Framework for a Transformational Approach to Negation
J. Humet

Ordered Logic and its Relationships to other Logic Programming Formalisms
F. Buccafurri

Analysis of SLDNF for Local CLP
A. Bottoni

A Semantics for the Kakas-Mancarella Procedure for Abductive
Logic Programming
F. Toni

HIGHER-ORDER

Implementing Higher-Order Term-Rewriting for Program Transformation
in ÀProlog
F. Arcelli, and F. Formato

The Undefìned Function Differs from the Pointwise Undefìned Function
W. Dosch

139

148

160

169

183

195

207

219

231

245

257

EXTENSIONS AND INTEGRATION

LOO: An Object Oriented Logic Programming Language
P. Mancarella, A. Raffaetri, and F. Turini

Forum & Objects
G. Delzanno, and M. M arielli

T h ree-Valued Semantics for Extended Logic Programs
P.A. Bonatti, and L. Giordano

Constructing Logic Programs with Higher-Order Predicates
J.F. Nilsson, and A. Hamfelt

Petri Nets and Linear Logic: a Case Study for Logic Programming
I. Cervesato

APPLICATIONS

GRAMPAL: A Morphological Processor for Spanish Implemented in Prolog
A. Mareno, and J.M. Goiii

A Declarative Approach to the Design and Realization of Graphic Interfaces
D. Aquilino, D. Apuzzo, and P. Asirelli

IMPLEMENTATIONS

Improving the Efficiency of Dynamic Modular Logic Languages
A. Ciampolini, E. Lamma, and P. Mello

Lazy Narrowing on an Abstract Machine by Means of Examples
E. Ullan-Hemandez

Exploiting Expression- and Or-Parallelism for a Functional
Logic Language
W. Hans, St. Winkler, and F. Saenz

An Effective Algorithm for Compiling Pattern Matching Keeping
Laziness
P. Palao, and M. Nuiiez

A Prolog Implementation of Kem
A. Ariosi, P. Cattabriga, and G. Governatori

Explicìt Implementation of a Constraint Solving Mechanism in
a Relational Programming System
P. Bellot, O. Camp, and C. Matiachoff

271

283

295

307

313

321

332

347

359

371

383

395

401

LINEAR LOGIC

A Linear Logic Programming Language with Parallel and
Sequential Conjunction
P. Bruscoli, and A. Guglielmi

A Structural (Meta-Logica!) Semantics for Linear Objects
G. Manco, and F. Turini

THEORY AND FOUNDATIONS

Computational Properties in Context-Sensitive Rewriting
S. Lucas

Minima! Set Unifìcation
P. Arenas-Sdnchez, and A. Dovier

A Mode! Tree Computati011 of the Strong Well-Founded Semantics
C. Papp

M6nadas para la Comunicaci6n de Objetos Funcionales
J.E. Gallardo, P. Guerrero, and B. C. Ruiz

La Potencia Expresiva de los Catamorfìsmos
C. Gregorio, M. Nuiiez, and P. Palao

TRANSFORMATION AND SYNTHESIS

A Tabulation Transforma.tion Tactic Using Haske!l Arrays
C. Pareja-Flores, R. Pena, and J.A. Veldzquez-Jturbide

Sfntesis de Programas L6gicos: Marco Constructivo
F.J. Galdn Morillo, and M. Toro Bonilla

SEMANTICS

A Transitional Semantics of Full Prolog
P. Degano, and C. Priami

Analysis of Pure PROLOG Programs
G. Levi, and D. Micciancio

409

421

435

447

459

471

477

485

497

511

521

Compositionality in SLD-derivations and their Abstractions
M. Comini, G. Levi, and M.C. Meo

Curbing Theories: Fixpoint Semantics and Complexity Issues
F. Scarcello, N. Leone, and L. Palopoli

CONSTRAINTS

A Datafìow Semantics for Constraint Logic Programs
L. Col~ssi, E. Marchiori, and M. Marchiori

Labeling in CLP(FD) with Evolutionary Programming
A. Ruiz-Andino fllem, and J.J. Ruz Ortiz

Constraint Systems for Pattern Analysis of Constraint
Logic-Based Languages
R. Bagnara

Tuple Inheritance: A New Kind of Inheritance for
(Constraint) Logic Programmi~g , .
J.J. Moreno-Navarro, J. Garcia-Martin, and A. del Pozo-P~etro

ANALYSIS

Declarative Diagnosis Revisited
M. Comini, G. Levi, and G. Vitiello

"Optimal" Collecting Semantics for Analysis in a Hierarchy
of Logic Program Semantics
R. Giacobazzi

Contributions to a Theory of Existential Termination for Definite

Logic Programs
G. Levi, and F. Scozzari

A Case Study in Logic Program Verifìcation: the Vanilla Metainterpreter

D. Pedreschi, and S. Ruggieri

533

545

557

569

581

593

607

619

631

643

INVITED LECTURES

Arrays,. Bounded Quantification and
Iteration in Logic and Constraint Logic

Programming

Krzysztof R. A p t
CWI

P.O. Box 94079, 1090GB Amsterdam, The Netherlands
an d

Department of Mathematics and Computer Science
University of Amsterdam, Plantage Muidergracht 24

1018 TV Amsterdam, The Netherlands

Abstract

We claim that programming within the logic programming paradigm suf­
fers from lack of attention given to iteration and arrays. To convince the
reader about their merits we present several examples of logic and constraint
logic programs which use iteration and arrays instead of explicit recursion and
lists." These programs are substantially simpler than their counterparts writ­
ten in the conventional way. They are easier to write and to understand, are
guaranteed to terminate and their declarative character makes it simpler to
argue about their correctness. Iteration is implemented by means of bounded
quantification.

l Introduction

Any systematic course on programming in the imperative style (say using Pascal),
fi.rst concentrates on iteration constructs (say while or repeat) an d only later deals
with recursion. Further, the data structures are explained fi.rst by dealing with the
stati c data structures (like arrays an d records) an d only later with the dynamic data
structures (which are constructed by means of pointers).

In the logic programming framework the distinctions between iteration and re­
cursion, and between static and dynamic data structures are lost. One shows that
recursion is powerful enough to .simulate iteration and rediscovers the latter by
identifying it with tail recursion. Arrays do not exist. In contrast, records can be
modelled by terms, and dynarnic data structures can be de:fì.D.ed by means of clauses,

20

in a recursive fashion (with the exception of lists for which in Prolog t h ere is support
in the form of built-ins and a more friendly notation).

One of the side effects of this approach to programming is that one often uses a
sledgehammer to cut the top of an egg. Even worse, simple problems have unneces­
sarily complex and clumsy solutions in which recursion is used when a much easier
solution using iteration exists, is simpler to write and understand, and - perhaps
even more important - is closer to the original specifìcation.

In this paper we would like to propose an alternative approach to programming
in logic programming and in constraint logic programming - an approach in which
adequate stress is put on the use of arrays and iteration. Because iteration can be
expressed by means of bounded quantifì~ation, a purely logical construct, the logic
programming paradigm is not "violated''. On the contrary, i t is enriched, clarifìed
and better tailored for the programming' needs.

Arrays are especially natural when dealing with vectors and matrices. The use
of dynamic data structures to write programs dealing with such objects is unnatu­
ral. We shall try to illustrate this point by presenting particularly simple solutions
to problems such as the n-queens problem, the knight's tour, the map colouring
problem, the cutting stock problem, and other problems involving backtracking.

Further, by adding to the language operators which allow us to express optimiza­
tion, i.e. minimization and maximization, we can easily write programs for various
optimization problems.

For pedagogica! reasons we limit our attention to programs that involve iteration
and optimization constructs. Of course, explicit recursion has its place both in logic
programming and in constraint logic programming. One of the main purposes of
this paper is to illustrate how much can be achieved without it.

In the programs considered in this paper recursion is hidden in the implementa­
tion of the bounded quanfìers and this use of recursion is guaranteed to terminate.
Consequently, these programs always terminate. As termination is one of the major
concerns in the case of logic programming, from the correctness point of view it is
better to use iteration instead of recursion, when a choice arises. Also, iteration can
be implemented more efficiently than recursion (see Barklund and Bevemyr [BB93J
for an eJ..-planation how to extend WAM to implement iteration in Prolog).

This work has a preliminary character and can be seen as an attempt to identify
the right linguistic concepts which simplify programming in the logic programming
paradigm. When pre~enting this view of programming within the logic programming
paradigm we were very much in:fluenced by the publications of Barklund an d Millroth
[BM94], Voronkov [Vor92] and Kluzniak [Klu93]. In fact, the constructs whose use
we advocate, i.e. bounded quantifìcation and arrays, were already proposed in these
papers. The only, possibly new, contribution ofthis paper is a suggestion to include
these constructs in constraint logic programming.

21

2 Bounded Quantifiers

Bounded quantifìers in logic programming were introduced in Kluzniak [Klu91] and
are thoroughly discussed in Voronkov [Vor92] (where also earlier references in Rus­
sian are given). They are also used in Kluzniak [Klu93] (see also Kluzniak and
Milkowska [KM94]) in a specifìcation language SPILL-2 in which executable speci­
fìcations can be written in the logic programming style.

Following Voronkov [Vor92] we write them as 3X E L Q (the bounded existential
quantifìer) an d 'VX E L Q (the bounded universal quantifier), w h ere L is a list an d
Q a query, and defìne them as follows:

3X E [Y
3X E [Y

Ys] Q +- Q{X/Y}.
Ys] Q +- 3X E Ys Q.

'VX E [Y l Ys]
'VX E [] Q.

+- Q{X/Y}, 'VX E Ys Q.

Voronkov [Vor92] also discusses two other bounded quantifìers, writt.en as 3X c::
L Q and 'VX C:: L Q, where X C:: L is to be read "X is a suffix of L", which we do not
consider here.

To some extent the use of bounded quantifiers allows us to introduce in some
compact form the "and" and the "or" branching within the program computations.
This reveals some connections with the approach of Harel though w e believe
that the expressiveness and ease of programming within the logic programming
paradigm makes Harel's programming proposal obsolete.

Even without the use of arrays the gain in expressiveness achieved by means
of bounded quantifìers is quite spectacular. Consider for example the following
problem.

Problem l Write a program which tests whether one list is a subset of another.

Solution

subset(Xs, Ys) +- 'VX E Xs 3Y E Ys X= Y.

Several other examples can be found in Voronkov Here we content
ourselves with just one more, in which we use
modern versions of (for m
Godel of Hill and Lloyd [HL94]).

Problem 2 Write a program checking the satisfiability of a Boolean formula.

Solution We assume here that the input Boolean formula is written using
notation, so for example (..., X, Y) ; Z stands for (..., X 1\ Y) V z.
sa t (X) +- X, genera t e (X) .
generate(X) +- vars(X, Ls), 'VY E Ls 3Z E [true, fail] y = z.

DELAY X UNTIL nonvar(X).

22

Comments This remarkably short program uses meta-variables and a mild ex­
tension of the delay declarations to meta-variables. The delay declaration used here
delays any cali to a meta-variable until i t becomes instantiated. vars (t, Ls) for a
term t computes in Ls the list of the variables occurring in t. Its defì.nition is omit­
ted. vars (X, Ls) can be easily implemented using the var (X) an d uni v built-in's
of Prolog. true and fail are Prolog's built-in's.

In this program it is not advisable to delay the calls to negative literals until they
become ground. Such a delay would reduce checking for satisfìability of subformulas
which begin with the negation sign to a naive generate and test method.

Even though this program shows the power of Prolog, we prefer to take another
course an d use types instead of exploring ,extensions of Prolog, w hich is an untyped
language.

3 Arrays and Bounded Quantifiers in Logic Pro-.
gramm1ng

Arrays in logic programming were introduced in Eriksson and Rayner [ER84]. Bark­
lund and Bevemyr [BB93] proposed to extend Prolog with arrays and studied their
use in conjunction with the bounded quantifì.cation. In our opinion the resulting
extension (unavoidably) suffers from the fact that Prolog is an untyped language.
In Kluzniak [Klu93] arrays are present, as well, where they are called indexable
sequences.

More recently, Barklund and Hill [BH95] proposed to add arrays and restricted
quantifìcation, a generalization of the bounded quantifìcation, to Godei, the pro­
gramming language which does use types.

In the programs below we use bounded quantifìcation, arrays and type declara­
tions. The use of bounded quantifì.ers and arrays makes them simpler, more readable
and closer to specifì.cations. We declare constants, types, variables and relations in
a style borrowed from the programming language Pascal. The choice of notation is
preliminary.

We begin with two introductory examples.

Problem 3 Check whether a given sequence of 100 integers is ordered.

Solution

const n = 100.
rel ordered: array [1 .. n] of integer.
ordered(A) ~ Iii E [1 .. n-1] A[I] ::; A[I+1].

l t

23

Comments This example shows that within the array subscripts terms should be
evaluated, so that we can identify 1+1 with 2 etc. More precisely, "+" shQ.W<ÌJ:>s:

!iewed]l~J:~.~~~ an exte!'nall'~~c~cl.~~i!l..!~-~!l~~LM~szYJi_~ et al. [MBB+93].
--N ~te that th;·b~~nd~d. universal quantifìer Iii E [1 .. n] do es no t correspond

to the imperative for i: =1 t o n loop. The former is executed as long as a failure
does not arise, i.e. up to n times, whereas the latter is executed precisely n times.
The programming construct Iii E [1 .. n] Q actually corresponds to the construct

fori:= l to n do if-, Q then
begin

failure := true; exit
end

which is clumsy and unnatural within the imperative programming paradigm.
(Feliks Kluzniak suggested to us the following, slightly more natural interpreta­

tion of Iii E [1. .n] Q:

Ì:=l;
while i ::; n cand Q do i:=i+l;
failure := i ::; n,

where cand is the "conditional and" counective (see Gries [Gri81, pages 68-70].))

Problem 4 Generate all members of a given sequence of 100 elements.

Solution

const n = 100.
rel member: (*, array [1. .n] of *).
member(X, Y) ~ 3I E [1. .n] X = Y[I].

Comments Here, Y is the given sequence. "*" stands for an unknown type. "="
is a built-in declared as

rei =: (*, *).
DELAY X= Y UNTIL known(X) V known(Y).

In other words, "=" is defì.ned on any type and the calls to "=" are delayed until
the value of one of its arguments is known, i.e. uniquely determined. If the values
of both arguments are known, then it behaves like the usual comparison relation of
Prolog and ìf the value of only one argument is known and the other is a, possibly
subscripted, variable, then "=" behaves like the is built-in of Prolog. The case when
one of the arguments is known and the other is not a variable does not arise here.
known(X) is a built-in which holds when its argument is uniquely determined. It
corresponds to ground (X) in Prolog.

This example shows the usefulness of polymorphic types in the presence of arrays.
The bounded existential quantifì.er 3I E [1 .. n] implements backtracking and has
no counterpart within the imperative programming paradigm .. ~-·---~

24

Problem 5 Arrange three l 's, three 2's, ... , three 9's in sequence so that for a1l
i E [1, 9] there are exactly i numbers between successive occurrences of i (see Coelho
and Cotta [CC88, page 193]).

Solution

rel sequence: array [1 .. 27] of [1 .. 9] .

sequence (A) f-- VI E [1 .. 9] :JJ E [1 .. 25-2I]
(A[J] = I, A[J+I+1] I, A[J+2I+2] = I)).

Comments The range J E [1 .. 25-2I] comes from the requirement that the
indices J, J+I+1, J+2I+2 should lie wit~n [1.. 27]. Thus J+2I+2 :=:; 27, that is
J :=:; 25-2I.

Problem 6 Generate a1l permutations of a given sequence of 100 elements.

First we provide a solution for the case when there are no repeated elements in
·the sequence.

Solution l

const n = 100.

rei permutation: (array [1 .. n] of *, array [1. .n] of *).

permutation(X, Y) <-- VI E [1. .n] 3J E [1. .n] Y[J] = X[I].

Here, X is the given sequence. Alternatively,

permutation(X, Y) f-- VI E [1. .n] member(X[I], Y).

Comments Note the similarity in the structure between this program and the
one that solves problem L This program is incorrect when the sequence contains
repeated elements. For example for n = 3 and X:= O, O, 1, Y: = O, 1, i is a possible
answer.

To deal with the general case we use local array declarations and reuse the above
program.

Solution 2

const n = 100.

relpermutation: (array [1 .. n] of*, array [1 .. n] of*).
permutation(X, Y) <--

var A: array [1. .n] of [1. .n].
VI E [1. .n] 3J E [1. .n] A[J] I,
VI E [1. .n] Y[I] = X[A[I]].

25

Comments This solution states that A is an onto function from [1 .. n] to [1 .. n]
an d t ha t a permution of a sequence of n elements is obtained by applying the function
A to its indices.

Next, consider two well-known chess puzzles.

Problem 7 Place 8 queens on the chess board so that they do not check each other.

First, we provide a naive generate and test solution. It will be of use in the next
section.

Solution l

const n= 8.
type board: array [1 .. n] of [1. .n].
rei queens, generate, safe: board.

queens (X) f-- generate (X) , safe (X) .

genera t e (X) <-- VI E [1. . n] :JJ E [1. . n] X [I] = J.

safe(X) <-- VI E [1 .. n] VJ E [I+1 .. n]
(X[I] =f. X[J], X[I] =f. X[J] + (J-I), X[I] =f. X[J] + (I-J)).

Comments To improve readability board is explicitly declared here as a type.
Declaratively, this program states the conditions which should be satis:fied by the
values chosen for the queens. "=f." is a built-in declared as

rei =f. : C* , *) .

In this section we use it only to compare terms with known values. Then "=/="
behaves like the usual arithmetic inequality relation of Prolog. A more generai
usage of "=f." will be explained in the next section.

Next, we give a solution which involves backtracking.

Solution 2

const n = 8.
type board: array [1 .. n] of [1 .. n].
rei queens: board.

queens(X) f-- VJ E [1 .. n] 3K E [1 .. n]
(X [J] = K,

VI E [1.. J-1]
(X[I] =f. X[J], X[I] =f. X[J] + (J-I), X[I] =f. X[J] + (I-J))).

26

Comments Declaratively, this program states the conditions each possible value
K for a queen placed in column J should satisfy.

Problem 8 Knight's tour. Find a cyclic route of a knight on the chess board so
that each fìeld is visited exactly once.

Solution We assign to each fìeld a value between l and 64 and formalize the
statement "from every fìeld there is a "knight-reachable" field with the value one
bigger". By symmetry we can assume that the value assigned to the fìeld X [1, 1]
is 1. Taking into account that the route is to be cyclic we actually get the following
solution.

const n = 8.
type board: array [1 .. n, 1 .. n] of [1 .. n 2].

rei knight : board.
go_on: (board, [1 .. n], [1 .. n]).

knight(X) +- 'v'I E [1. .n] 'v'J E [1. .n] go_on(X, I, J), X[1, 1] 1.

go_on(X, I, J) +- 3I1 E [1. .n] 3J1 E [1 .. n]
(abs((I-I1)·(J-J1)) = 2, X[I1, J1] = (X[I, J] mcd n 2) + 1).

DE1AY go_on(X, I, J) UNTI1 kno~(X[I,J]).

Comments Note that the equation abs (X · Y) = 2 used in the defìnition of go_on
has exactly 8 solutions, which determine the possible directions for a knight move.
Observe that each time this cali to "=" is selected, both arguments of it are known.
The efficiency of go_on coulci of course be improveci by explicitly enumerating the
choices for the offsets of the new coordinates w.r.t. the old ones.

The behaviour of the above program is quite subtle. First, thanks to the cielay
declaration, 64 constraints ofthe form go_on(X, I, J) are generateci. Then, thanks
to the statement X [1, 1] = 1, the :first of them is "triggered" which one by one
activates the remaining constraints. The backtracking is carried out by choosing
different values for the variables Ii and J1. The delay declaration is not needed,
but without it this program would be hopelessly inefficient.

It is interesting to note that in Wirth [Wir76], a classical book on programming
, in Pascal, the solutions to the last two problems are given as prototypical examples
'· li of recursive programs. Here recursion is implicit.

We conclude this section by one more program. It will be needed in the next
section.

Problem 9 Let m = 50 and n = 100. Determine the number of different elements
in an array X: array [1 .. m, 1 .. n] of integer.

27

Solution

const m= 50.
n = 100.

type board: array [1. .m,1 .. n] of integer.
rei count : (board, natura!) .

count (X, Number) +-

Number = m · n -
#(I, J: I E [i..m], J E [i..n]:

) .

(3K E [1. .I-1] 31 E [1. .n] X[I,J] = X[K,L])
% X[I,J] occurs in an earlier ro~

V (:31 E [1 .. J-1] X[I,J] = X[I,L]).
% X[I,J] occurs earlier in the same ro~

Comments In this program we used the countin.g_5!,1];aA~iJi:~!.j~tJ:g!Ì,J;t~cl_j:!LQri<ès
[Gri81, page 74] and adopted in Klu~~-ak [Klu93] in the speci:fication language
SPILL-2. In general, given lists 11, 12, the term #(I, J: I E 11, J E 12: Q)
stands for the number of pairs (i, j) such that i E 11, j E 12 an d for which the
query Q{I/ i, J l j} succeeds. It is possible to a voi d the use of the counting quantifìer
a t the expense of introducing a local array of type bear d. This alternative program
is more laborious to write.

This concludes our presentation of selected logic programs written using arrays
and boundeci quantifìers. Other examples, including those involving numerical com­
putation can be founci in Barklund and Millroth [BM94].

4 Arrays and Bounded Quanti:fi.ers in Constraint
Logic Programming

We now present some constraint logic programs. These are constraint programs
with .. :finite domains in the style of van Hentenryck [vH89]). Each of them has a
simil~~ p~ft;~~~nstraints are fìrst generateci, and then resolved after the possible
values for variables are successively generateci. To clarify their use we provide here
alternative solutions to two problems discussed in the previous section.

Problem 10 Solve problem 7 by means of constraints.

Solution

const n= 8.
type board: array [1 .. n] of [1 .. n].
rel queens, safe, generate: board.

queens (X) <---- safe (X) , generate (X) .

safe(X) <---- VI E [1 .. n] VJ E [I+1 .. n]
(X[I] =f. X[J], X[I] =f. X[J] + (J-I), X[I] =f. X[J] + (I - J)).

generate (X) <---- VI E [1. . n] 3J E dom(X [I]) X [I] = J.

Comments Here dom(X), for a (possibly subscripted) variable X, is a ~
Il which denotes the list of current values in t~ domain of X, say in the ascending
~ arder. The value of dom(X) can change only by decreasing, by executing a constraint,

so in the above program an atom of the form X =f. t .
The relation "=f." was used in the previous section only in the case when both

arguments of it were known. Here we generalizes its usage, as we now allow that
one or both sides of it are not known'. In fact, "=f." is a built-in defìned as in
van Hentenryck [vH89 , pages 83-84], though generalized to arbitrary non-compound
types.

We require that one of the following holds:

• Both sides of "=f." are known. This case is explained in the previous section.

• A t most one of the sides of "=f." is known and one of the sides of "=f.", denoted
below by X, is either a simple variable or a subscripted variable with a known
subscript.

In the second case X =f. t is defìned as follows, where fora term s, Val(s) stands
for the set of its currently possible values :

ifVal(X) n Val(t) = 0 then succeed
elseifVal (t) is a singleton then% t is known, so X is not known

begin dom(X) := dom(X) - Val(t);% dom(X) =f. 0
if dom(X) = {f} then X: = f

end.

If neither Val (X) n Val (t) = 0 n or Val (t) is a singleton, then the execution of X
=f. t is delayed. We treat t =f. X as X =f. t .

So for example in the program fragment

type bool: [false, true] .
var B: bool.

A: array [1 .. 2] of bool.

A[1] =f. A[2], A[1] =f. B, B = true .

the constraints A [1] =f. A [2] an d A [1] =f. B are :first delayed an d upon the exe­
cution of the atom B = true the variable A [1] becomes false and A [2] becomes
true.

29

In turn, in the case of the program given above the execution of an atom of the
form X [I] = J for some I, J E [1 . . n] can affect the domains of the variables X [K]
for K E [I+1 .. n]

This solution to the 8 queens problem is a forward checking program (see van
Hentenryck [vH89, pages 122-127]). Note the textual similarity between this pro­
gram and the one given in solution l to problem 7. Essentially, ~he calls to the
safe and generate relations are now reversed. The generate relahon corresponds
to the labeling procedure in van Hentenryck [vH89]). In the subsequent programs
the defìnition of the generate relation is always of the same format and is omitted.

Probiem 11 Solve problem 6 by means of constraints .

Solution

const n = 100.

rei permutation: (array [1. .n] of *, array [1. .n] of *) .
permutation(X, Y) <--

type board: array [1 .. n] of [1 .. n] .
rei one_one, generate: board .

one_one (Z) <---- VI E [1. . n] VJ E [I +1 .. n] Z [I] =f. Z [J] .

var A: board.
one_one(A), generate(A),
VI E [1. .n] Y[I] = X[A[I]].

Comments In this solution, apart from the local array declaration, we also use
local type and relat ion declarations. The effi.ciency w.r.t. to the logic programming
solution is increased by stating, by means of the call to the one_one relation, that
A is a 1-1 function. This replaces the previously used statement that A is an onto
function. The call to one_one generates n · (n- 1)/2 = 4950 constraints.

We conclude this section by dealing with another classic problem - that of
colouring a map.

P robiem 12 Given is a binary relation neighbour between countries. Colour a
ma p in su eh a way that no two neighbours ha ve the same color.

Soiution

type color: [blue, green, red, yellow].
countries: [austria, belgium, france, italy, .. .] .

rei map_color , constrain, generate : array countries of color.
neighbour: (country, country).

map_color (X) <---- constrain(X), generate(X).

30

constrain(X) ,_ VI E countries VJ E countries
neighbour(I,J) -t X[I] =/: X[J].

Comments We interpret here P -t Q as follows:

(P-> Q) <- P, Q.
(P -t Q) ,_ -,p.

so like the IF P THEN Q statement of Godel. N o te that in the above program at
the moment of selection of the P -t Q statement P is ground. Obviously, an efficient
implementation of P -t Q should avoid the reevaluation of P.

Thus the constrain relation generates h ere the constraints of the form X [I] =/:
X [J] for ali I, J such that neighbour (I ;J).

5 Adding Minimization and Maximization
Next, we introduce a construct allowing us to express in a compact way the require­
ment that we are looking for an optimal solution. To this end we introduce the
minimization operator Y = fLX: Q which is defined as follows:

Y = fLX:Q <- Q{X/Y}, -.(3X (X < Y, Q)).

W e assume here that X and Y are of the same type and that < is a built-in ordering
on the domain of the type of X and Y. The existential quantifìer 3X Q is defined by
the clause

3XQ <-Q.

The efficient implementation of the rninirnization operator should make use of
memoization (sometimes called tabulation) to store the solutions to the query Q
found during the successive attempts to fìnd a rninimal one.

A dual operator, the maximization operator Y = l/X: Q, is defined by:

Y = l/X: Q ,_ Q{X/Y}, ..., (3X (X > Y, Q)) .

As before we assume that > is a built-in ordering on the domain of the type of X an d
Y. In Barklund and Hill [BH95] the rninirnization and the maxirnization operators are
introduced as a form of arithmetic quantifiers, in the style of the counting quantifier
introduced earlier. The above two clauses show that they are derived concepts.

The following simple example illustrates the use of these constructs.

Problem 13 Find a rninimum and a maximum of a given sequence of 100 integers.

31

Solution

const n = 100.
rei min_and...max: (integer, integer, array
min_and...max(Min, Max, A) ,_

Min = fLX: 3I E [1. .n] X = A[I],
Max = 1/X: 3I E [1. .n] X = A[I].

[1. . n] of integer) .

Next, we use these two operators in two constraint programs.

Problem 14 The cutting stock problem (see van Hentenryck [vH89, pages 181-
187]). There are 72 configurations, 6 kinds of shelves and 4 identica! boards to be
cut. Given are 3 arrays:

Shelves: array [1.. 72, 1.. 6] of natura!,
Req: array [1 .. 6] of natura!,
W aste: array [1 .. 72] of natura!.

Shel ves [K, J] denotes the number of shelves of kind J cut in configurati o~ K,
Wast e [I] denotes the w aste per board in configuration I an d Re q [J] the reqmred
number of shelves of kind J. The problem is to cut the required number of shelves
of each kind in such a way that the total waste is rninirnized.

Solution We represent the chosen configurations by the array
Conf: array [1 .. 4] of [1 .. 72]

where Conf [I] denotes the configuration used to cut the board I.

rel sol ve: (array [1. . 4] of [1. . 72] , natura!) ·
generate: array [1 .. 4] of [1. . 72] .

sol ve (Conf, Sol) <-
Sol= fLTCost:

% Sol is the minimal TCost such that:
VI E [1 .. 3] Conf[I] $ Conf[I+1],

% symmetry bet~een the boards
VJ E [1..6] :Ef:

1
Shelves[Conf[I],J] > Req[J],

% enough shelves are cut
TCost = :Ej=1 Waste[Conf[I]],

% TCost is the total ~aste
generate(Conf).

Comments In this program we used as a shorthand the sum notation ":E "
In generai it is advisable to use the sum quantifier (see Gries [Gri81, page 72]),
which allo~s us to use :E~=k t as a term. The sum quantifier is adopted in SPILL-2
language of Kluzniak [Klu93]. Kluzniak's notation for this expression is: (S I: k

32

::; I :S: l: t). The interpretation of the constr,;nts of the .ror X < t X > t _ _ ~ l'ID ,

or X = t is similar to that of X =1- t and is omitted.

We conclude by solving the following problem.

Problem 15 Let m = 50 anci n = 100. Given is an array Co which assigns to each
pix:el on an m by n boarci a colour. A region is a maximal set of adjacent pixels that
have the same colour. Determine the number of regions.

In the program below we assign to the pixels belonging to the same region the
same natural number, drawn between l and m·n. If we maximize the number of so
useci natural numbers we obtain the ciesired solution.

Solution

const m = 50.
n= 100.

type color: [blue, green, red, yellow].
pattern: array [1. .m, l. .n] of color.
board: array [1 .. m, 1 .. n] of [1 .. m·n].

rel pixel: (pattern, natural).
no: (pattern, board).
generate: board.
count : (board, natural) .

pixel C Co, Sol) ;-- Sol = vNumber:
var X: board.
no(Co, X), generateCI), count(X, Number).

no (Co, X) ;-- 'v'I E [1. .m] 'v'J E [1. .n]
c
(I < m --+

(J < n --+

) .

(Co [I, J]
(Co [I, J]

Co[I+1,J] H

Co[I,J+1] H

X [I, J]
X [I, J]

X[I+1,J])),
X[I,J+1]))

Comments The count relation is defineci in the solution to problem 9. In the
above program first 2m · n - (m + n) = 9850 constraints are generateci. Each of
them cieals with two adjacent fielcis and has the form of an equality or inequality.
Then the possible values for the elements of X are generateci and the number Number
of so useci natural numbers is counted. The maximum value for Number is then the
desireci solution.

The resulting program is probably not efficient, but stili it is interesting to note
that the problem at hanci can be solved in a simple way without explicit recursion.

33

6 Conclusions

W e ha ve presented here severallogic and constraint logic programs that use bounded
quantification and arrays. We hope that these examples convinced the readers about
the usefulness of these constructs. W e think that this approach to programming is
especially attractive when dealing with various optimization problems, as their speci­
fications often involve arrays, bounded quantification, summation, and minimization
and maximization. Constraint programming solutions to these problems can be eas­
ily written using arrays, bounded quantifiers, the sum and cardinality quantifiers,
and the minimization and maximization operators. As examples let us mention the
stable marriage problem, various timetabling problems and integer programming.

Of course, it is not obvious whether the solutions so obtained are efficient. We
expect, however, that aiter an addition of a small number of built-in's, like deleteff
and deleteffc of van Hentenryck [vH89, pages 89-90], it will be possible to write
simple constraint programs which will be comparable in efficiency with those written
in other languages for constraint logic programming.

When introducing arrays we were quite conservative and only allowed static
arrays, i.e. arrays whose bounds are determined at compile time. Of course, in
a more realistic language proposal also open arrays, i.e. arrays whose bounds are
determined at run-time should be allowed. One might also envisage the use of
:flexible arrays, i.e. arrays whose bounds can change at run-time.

In order to make this programming proposal more realistic one should provide
a smooth integration of arrays with recursive types, like lists and trees. In the
language SPILL-2 of Kluzniak [Klu93] types are present but only as sets of ground
terms, and polymorphism is not allowed. Barklund and Hill [BH95] proposed to
add arrays to Godei (which does support polymorphism) as a system module. We
would prefer to treat arrays on equal footing with other types.

W e noticed already that within the logic programmi.:rrg paradigm the demarkation
line between iteration and recursion differs from the one in the imperative program­
ming paradigm. In order to better understand the proposed programming style one
should first clarify when to use iteration instead of recursion. In this respect it is
useful to quote the opening sentence of Barklund and Millroth [BM94]: "Programs
operating on inductively defined data structures, such as lists, are naturally defined
by recursive programs, while programs operating on "indexable" data structures,
such as arrays, are naturally defined by iterative programs".

We do not entirely agree with this remark. For example, the "suffix" quantifiers
mentioned in Section 2 allow us to write many list processing programs without
explicit use of recursion (see Voronkov [Vor92]) and the quicksort program written
in the logic programming style is more natural when written using recursion than
iteration.

The single assignment property of logic programming makes certain programs
that involve arrays (like Warshall's algorithm) obviously less space efficient than
their imperative programming counterparts. This naturally motivates research on ef-

34

fì.cient implementation techniques of arrays within the logic prograrnming paradigm.
Finally, a comment about the presentation. We were quite informai when ex­

plaining the meaning of the proposed language constructs. Note that the usuai
defì.nition of SLD-resolution has to be appropriately modifì.ed in presence of ar­
rays an d bounded quantifì.cation. For example, the query X [1] = O, \ii E [1 .. 2]
X [I] =f. O fails but this fact can be deduced only when the formation of resolvents
is formally explained. To this end substitution for subscripted variables needs to
be properly defì.ned. One possibility is to adopt one of the defì.nitions used in the
context of verifì.cation of imperative programs (see Apt [Apt81, pages 460-462]). W e
leave the task of defìning a formai semantics to another paper.

Acknowledgements I would like to tha,nk here Jonas Barklund and Feliks Kluzniak
for useful discussions on the subject of bounded quantifì.cation and Pascai van Hen­
tenryck for encouragement at the initiai stage of this work. Also, I am grateful to
Feliks Kluzniak for helpful comments on this paper.

References

[Apt81]

[BB93]

[BH95]

[BM94]

[CC88]

[ER84]

[Gri81]

K.R. Apt. Ten years of Hoare's logic, a survey, part I. ACM TOP LAS,
3:431-483, 1981.

J. Barklund and J. Bevemyr. Prolog with arrays and bounded quantifì.­
cations. In Andrei Voronkov, editor, Logic Programming and Automated
Reasoning-Proc. 4th Intl. Conf., LNCS 698, pages 28-39, Berlin, ~993.
Springer-Verlag.

J. Barklund an d P. Hill. Extending Godei for expressing restricted quan­
tifì.cations and arrays. UPMAIL Tech. Rep. 102, Computer Science De­
partment, Uppsaia University, Uppsaia, 1995.

J. Barklund an d H. Millroth. Providing iteration an d concurrency in logic
programs through bounded quantifì.cations. UPMAIL Tech. Rep. 71,
Computer Science Department, Uppsaia University, Uppsaia, 1994.

H. Coelho and J. C. Cotta. Prolog by Example. Springer-Verlag, Berlin,
1988.

1.-H. Eriksson and M. Rayner. Incorporating mutable arrays into logic
programrning. In S. A. Tarnlund, editor, Proceedings of the 1991 In­
ternational Conference on Logic Programming, pages 101-114. Uppsaia
University, 1984.

D. Gries. The Science of Programming. Springer-Verlag, New York,
1981.

[Har80]

[HL94]

[Klu91]

[Klu93]

[KM94]

[vH89]

[Vor92]

[Wir76]

35

D. Harel. And/or programs: a new approach to structured programrning.
ACM Toplas, 2(1):1-17, 1980.

P. M. Hill and J. W. Lloyd. The Godel Programming Language. The
MIT Press, 1994.

F. Kluzniak. Towards practicai executable specifì.cations in logic. Re­
search report LiTH-IDA-R-91-26, Department of Computer Science,
Linkoping University, August 1991.

F. Kluiniak. SPILL-2: the language. Technicai report ZMI Reports
No 93-03, Institute of Informatics, Warsaw University, July 1993. A
deliverable for year l of the BRA Esprit Project Compulog 2.

F. Kluzniak and M. Milkowska. Readable, runnable requirements speci­
fì.cations: Bridging the credibility gap. In M. Hermenegildo and J. Pen­
jam, editors, Programming Language Implementation and Logic Pro­
gramming. Proceedings of the 6th International Symposium, PLILP'94.
Madrid, September 1994, pages 449-450. Springer-Verlag, 1994.

J. Maiuszy:D.ski, S. Bonnier, J. Boye, F. Kluiniak, A. Kagedai, and
U. Nilsson. Logic programs with externai procedures. In K.R. Apt,
J.W. de Bakker, and J.J.M.M. Rutten, editors, Current Trends in Logic
Programming Languages, pages 21-48. The MIT Press, Cambridge, Mas­
sachussets, 1993.

P. van Hentenryck. Constraint Satisfaction in Logic Programming. Logic
Programrning Series, The MIT Press, Cambridge, MA, 1989.

A. Voronkov. Logic programrning with bounded quantifì.ers. In
A. Voronkov, editor, Logic Programming and Automated Reasoning­
Proc. 2nd Russian Conference on Logic Programming, LNCS 592, pages
486-514, Berlin, 1992. Springer-Verlag.

N. Wirth. Algorithms + Data Structures = Programs. Prentice-Hall,
1976.

Completeness in Abstract Interpretation *

(Invited talk)

Pat.rick COUSOT

LIENS- DMI
École Normale Supérieure

45 rue d'Ulm
75230 Paris cedex 05 (France)

cousotOdmi.ens.fr

Abstract interpretation [l] is a method for designing hierarchies of se­

mantics as well as specifications of program analyzers by approximation of

these semantics. Because of undecidability problema su eh as the termination

problem, abstract interpreta.tion based program analysis methods are fundar

mentally incomplete. Moreover implementation techniques such as the use

of widenings/narrowing to speed up convergence of iterative fixpoint compu­

tation methods give the impression that the result of the analysis performed

by the abstract interpreter is not at ali predictable by the user.

This is in contrast with methods such as set-based analysis à la Heinze or

type inference à la Milner which look different from abstract interpretation,

for which numerous completeness results have been published and for which

the result of the analysis can be predicted by the user, at least in principle,

through the use of a rule-based inference system.
It has been shown recently that both set-based analysis [2] and type­

inference [3] are abstract interpretations. Set-based analysis uses a finite

abstract symbolic domain for each particular program (although it is an infi­

nite domain when considering ali possible programs). The unification based

type-inference algorithm uses an infinite abstract domain together with a

rather naive widening operator (which may not look natural to some users).

•This work was pa.rtly supported by F.sPRIT "ARA 8130 LOM A PS.

This clearly shows that when one speaks of the fundamental incompleteness
?f abstract interpretation in contrast with the relative completeness of type
mference systems, one cannot speak of the exactly same notions.

After a brief introduction to basic abstract interpretation notions the
purpose of the talk is to solve this apparent contradiction by elimin~ting
~uperfiu~us di~erences in presentation of program analysis methods an d by
mtroducmg a hierarchy of different and partially comparable notions of com­
plete~es~. This explai~s the various acceptations ofthe notion with regard to
:fixp01nt mferencejfus10n, computer representation of the abstract domain
computability ofthe abstract property transformer, (iterative) fixpoint com~
putation, rule-based inference algorithm, convergence acceleration, etc. Nu­
merous examples are provided in th,!! context of Jogic programming with a
few incursions in functional programming.

References

[l] P. Cousot and R. Cousot. Abstract interpretation and application to
logic programs. J. Logic Prog., 13(2-3):103-179, 1992. (The editor of
JLP has mistakenly published the unreadable galley proof. For a correct
version of this paper, see http ://vwv. ens .frrcousot.)

[2] P. Cousot and R. Cousot. Formallanguage, grammar and set-constraint­
based program analysis by abstract interpretation. In Proc. >fh FPCA,
pages 17G-181, La Jolla, Calif., 25--28 June 1995. ACM Press.

[3] B. Monsuez. Polymorphic types and widening operators. In P. Cousot,
M. Falaschi, G. Filé, and A. Rauzy, editors, Proc. !fd International
Workshop WSA '93 on Static Analysis, Padova, (I), LNCS 724, pages
267-281. Springer-Verlag, 22-24 Sept. 1993.

Logical foundations for multi-agent
systems

Robert Kowalski
Imperial College - Department of Computing

180 Queen's Gate, London SW7 2BZ, UK

I will summarise the current status of my work with Francesca Toni, Fariba Sadri,
Jacinto Daviia, Ber Permpoontanaiarp, Eric Fung and Gerhard Wetzel on developing
logical foundations for multi-agent systems.

The core of these foundations is a new approach to logic programming which uni­

fies abductive logic programming and constraint logic programming. This approach
allows predicates to be defined in the usuallogic programming manner, augmented
with integrity constraints, which are properties of the definitions. Predicates are
executed backwards using the definitions, as well as forwards using the integrity
constraints. The approach is being developed both to serve as the inference engine
for individuai agents and as a programming language paradigm in its own right.
Applications of the approach to operations research problems are also being inves­
tigated.

Integrity constraints are also used to obtain activity and reactivity in individuai
agents. Observations, which update the knowledge base of an agent, are checked for
consistency with the integrity constraints. Integrity checking generates new goals,

some of which may be converted into actions to be executed by the agent.

The overall observation-reasoning-action cycle is controlled by a resource-bounded
metalogic program. The resource bound allows the reasoning and planning compo­
nent of the cycle to be interrupted at any time to obtain an executable approxima­
tion to a plan which achieves the agent's goais. The representation of actions and
temporal relationships is formulateci in a version of the event calculus.

An agent's plans can contain actions to be performed by the agent itself, as well
as actions to be performed by other agents. Moreover, actions can be speech acts,
in generai, and can convey information or requests from one agent to another, in
particular. Agents can use such speech acts to coordinate their actions. We have
begun to investigate the use of argumentation theory to provi de a framework for such
speech acts . In addition, we intend to investigate the applicability of concepts from
deontic logic (the logic of obligation, prohibition and permission) to the problem of
regulating interaction among agents.

On the Abstract Diagnosis of Logic
Programs

Marco Comini, Giorgio Levi
Dipartimento di Informatica, Università di Pisa

Corso Italia 40, 56125 Pisa, Italy
{comini,levi}@di.unipi.it

Giuliana Vitiello
Dipartimento di Informatica ed Applicazioni

Università di Salerno, Baronissi (Salerno), Italy
giuvit@udsab.dia.unisa.it

Abstract

Abstract diagnosis of logic programs is an extension of declarative diagnosis,
where we dea! with specincations of operational properties, which can be
characterized as abstractions of SLD-trees (observables).
We introduce a simple and efficient method to detect incompleteness errors,
which is based on the application of the immediate consequences operator to
the specincation. The method is proved to be correct and complete whenever
the immediate consequences operator has a unique nxpoint. We prove that
this property is always satisned if the program belongs to a large class of
programs (acceptable programs). We then show that the same property can
be proved for any program P, if the observable belongs to a suitable class of
observables. We nnally consider the problem of diagnosis of incompleteness
for a weaker class of observables, which are typical of program analysis.

l Introduction

Abstract diagnosis [9, 11] is a combination of three known techniques, i.e., al­
gorithmic (declarative) diagnosis (debugging) [25, 18, 21, 15], the s-semantics ap­
proach to the definition of program denotations modeling various observable behav­
iors [16, 17, 20, 4, 3], and abstract interpretation [12, 13, 14].

The diagnosis problem can formally be defined as follows. Let P be a program,
[P], be the behavior of P w.r.t. the observable property a, and Ia be the specifi­
cation of the intended behavior of P w.r.t. a. The diagnosis consists of comparing

42

[P], and Ia and determining the "errors" and the program components which are
sources of errors, when [P]" =/= Io:·

The above formulation is parametric w.r.t. the observable a, which is considered
in the specification I, and in the actual behavior [P]".

Declarative diagnosis is concerned with model-theoretic properties rather than
with the operational behavior. The specification is therefore the intended declarative
semantics of the program, which is the least Herbrand m o del in [25

1
21]

1
an d the set

of atomic logica! consequences in [18].
Abstract diagnosis is a generalization of declarative diagnosis 1 where we consider

operational properties. An observable is any property which can be extracted from a
goal computation 1 i.e. 1 observables are ,abstractions of SLD-trees. Examples of useful
observables are computed answers, finite failures and cali patterns (i.e., procedure
calis selected in an SLD-derivation). Other examples come from program analysis,
e.g. depth(l)-answers (i.e., answers containing terms whose depth is :::; l), types,
modes and ground dependencies. As we wili discuss later, the relation among the
observables can naturaliy be understood in terms of abstract interpretation.

Here are some motivations for abstrad diagnosis.

• The most natura! abstract diagnosis for positive logic programs is diagnosis
w.r.t. computed answers, which leads to a more precise analysis, since declar­
ative diagnosis is related to correct answers only.

• Diagnosis w.r.t. finite failures aliows us to verify another relevant behavior,
which has also a logica] interpretation.

• Less abstract observables, such as cali patterns, can be useful to verify the con­
tro] and data flow between different procedures1 as we usualiy do in interactive
debugging. For example, the intended behavior that we specify might be a set
of assertions ofthe form "the execution of the procedure call p(t1 1

••• , t n) leads
to the procedure call q(S1, ... , sm)".

• Diagnosis w.r.t. depth(l)-answers makes diagnosis w.r.t. computed answers
effective, since both I" and [P]" are finite.

• Diagnosis w.r.t. types allows us to detect bugs as the inadmissible calls in [24].
If I" specifies the intended program behavior w.r.t. types, abstract diagnosis
boils down to type checking.

• Diagnosis w.r.t. modes and ground depenciencies allows us to verify other
partial program properties.

In declarative diagnosis, the specification is usually assumed to be given by means
of an oracle. This approach is feasible even in abstract diagnosis. However, since
our method can handle abstractions, we can easily come out with finite observable
behaviors and specify them in an extensional way.

43

The idea of combining abstract interpretation and debugging was first proposed
in [5], where abstract interpretation techniques are used to statically determine the
origin of bugs in higher-order imperative languages. The result is a set of correctness
conditions expressed in terms of assertions.

Our theory of abstract diagnosis is built on an algebraic semantic framework for
positive logic programs [7, 8], based on the formalization of observables as abstrac­
tions. A complete description of the framework is outside the scope of this paper.
In Section 2 we summarize the main properties of the framework. We will con­
sider h ere an important class of observables (denotational observables) with strong
semantic properties. The diagnosis problem and the diagnosis algorithms for deno­
tational observables introduced in [9] are considered in Section 3. We show that the
existing declarative diagnosis methods can be reconstructed as instances of abstract
diagnosis w.r.t. denotational observables. As in the case of declarative diagnosis,
incorrect clauses can be detected by applying an immediate consequences operator
to the specification. The first contribution of this paper is a method to detect in­
completeness errors, which is similar to the incorrectness detection method, since i t
is based on the application of the (abstract) immediate consequences operator TP,<>

to the specification. The main result is that this method is correct and complete,
if TP,a has a unique fixpoint. In Section 4 we show that this is the case for a large
class of programs (acceptable programs). Acceptable programs were defined in [2]
to study termination andali the pure PROLOG programs in [26] are reported to be
acceptable. The same property is then shown (Section 5) to hold for all programs
and for any observable a belonging to a suitable class of denotational observables.
We finaliy consider in Section 6 the problem of diagnosis of incompleteness for a
weaker class of observables (which are calied semi-denotationaD. Semi-denotational
observables are typicaliy the properties used in program analysis.

2 Observables

We consider pure logic programs with the PROLOG (leftmost) selection rule.
We assume the reader to be familiar with the notions of SLD-resolution and SLD­
tree (see [22, l]). The theory of observables [7, 8] is based on a kernel semantics for
SLD-trees. The kernel semantics is given by two separate constructions, i.e.,

• a definition in denotational style,

• a definition given in terms of a transition system.

Both definitions are expressed in terms of three semantic operators @, EEì and t><L

which are the semantic counterparts of the syntactic operators /\, V and r-. The
denotational and operational definitions are equivalent. Moreover, there exists a
goal-independent program denotation which has the foliowing properties:

• it can be defined in terms ofthe transition system (top-down definition O(P)),
by considering the set of SLD-trees for most generai atomic goals.

44

• it can be obtained from the denotational defìnition (bottom-up defìnition
:F(P)), by taking the least fìxpoint of the operator Tp (the denotational se­
mantics of P).

• O(P) = :F(P).

• the denotation is correct and minima], i.e., P1 ;::-;; P2 ~ O(P1) = O(P2),
where ;::-;; is the observational program equivalence induced by SLD-trees.

• the denotation is AND-compositional, i.e., we can derive the SLD-trees for
any (conjunctive) goal from O(P).

• the denotation is OR-compositional, i.e., we can derive from O(P1) and O(Pz)
the denotation of P1 U P2.

Observables are abstractions of SLD-trees. More precisely, an obser-vable is a
function a from the domain of SLD-trèes n to an abstract domain V, which pre­
serves the partial orders. a is an abstraction function according to abstract interpre­
tation, i.e., t h ere exists a function ì (concretization) from V to n, such tha.t (a, ì) is
a Galois insertion. The theory of abstract interpretation tells us that we can defìne
the most precise abstract version fa of each semantic operator f as fa = a o f o ì·
Now we can obtain an a.bstract transition system and an abstract denotational def­
inition from the ones of the kernel semantics, by simply replacing the operators @,

EB and l><l by their most precise abstract versions @0 , ffia and l><l0 • We obtain two
abstract (goal-independent) program denotations: the top-down denotation 0 0 (P)
and the bottom-up denotation :Fa(P).

[8] gives a classifìcation of observables, where each class is characterized by a set
of simple axioms relating a, /, @, EB and l><l.

• per-fect obser-vables. For perfect observables we can compute on the abstract do­
main, both operationally and denotationally, without losing precision. In par­
ticular, the abstract denotations are precise, i.e.,00 (P) = Fa(P) = a(O(P)).
Perfect observables have all the properties of the kernel semantics. Computed
resultants is an example of a perfect observable.

• denotational obser-vables. The abstract denotations are not precise. However,
we can take the most precise approximation TP,a of the T p operator an d use i t
in the denotational defìnition. The resulting abstract denotational semantics is
now precise, as is the case for the bottom-up denotation TP,a t w= a(O(P)).
Denotational observables have all the properties of the kernel semantics (re­
stricted to the bottom-up denotations), apart from OR-compositionality. The
abstract transition system cannot be made precise. Examples of denotational
observables are: partial answers, call patterns, computed answers, correct an­
swers, ground instances of computed answers. Some of the specialized bottom­
up operators TP,a = aoTpoì are existing "immediate consequences operators".
In particular,

45

If q; is the observable "ground instances of computed answers", Tp,q, is the
ground operator defìned in [27] (and :Fq,(P) is the least Herbra.nd mode!).

- If 1/J is the observable "correct answers", Tp,..p is the non-ground operator
fìrst defìned in [6] (and :F..p(P) is the least term model).

If ç is the observable "computed answers", TP,f. is the s-semantics operator
defìned in [16].
If T) is the observable "cali patterns", Tp, 17 is the cali patterns operator
defìned in [20].

Perfect observables are also denotational.

• opemtional obser-vables. These are observables for which we can systematically
derive a precise abstract transition system, while the denotational semantics
is not precise. This class is not relevant to our approach to diagnosis, which
is based on TP,cx·

• semi-pe1ject obser-vables. The top-down and bottom-up denotations are equiv­
alent, yet they are not precise, i.e., Ocx(P) = :Fcx(P) t a(O(P)), where ::S is
the partial order relation on the abstract domain. Both the top-down and the
bottom-up abstract computations are correct according to abstract interpreta­
tion theory, i.e., there is a loss of precision due to approximation. Semi-perfect
observables have all the properties of the kernel semantics.

• semi-denotational obser-vables. By taking the most precise approximation TP,a
of the T p operator, we obtain a bottom-up abstract denotation which is more
precise of the top-down abstract denotation, yet is less precise than the ab­
straction of the concrete denotation, i.e., a(O(P)) ::S TP,cx t w ::S Oa(P).
Semi-denotational observables have the same properties of denotational ob­
servables, apart from the precision. Examples of semi-denotational observables
are severa! domains used to abstract substitutions in the framework of program
analysis (types, groundness dependencies, etc.). Semi-perfect observables are
also semi-denotational.

Our basic theory of abstract diagnosis will be developed for denotational observ­
ables. In Section 6 we will mention how it can be extended to semi-denotational
ohservables.

We show two of the TP,cx operators that will be later used in the examples.

• (computed answer substitutions)

Tp,ç(I) = { (p(X), rJ) l
l. X is a tuple of new distinct variables
2. p(t):- PI(~), ... ,pn({n) E P
3. (p;(X;), rJ;) E I, l ::; i ::; n,
4. {) = mgu ((p(f),pi(fi), ... ,pn(Fn)),

(p(X),pl(XI)rJl, · · · ,pn(Xn){)n)) }.

3

46

• (1-answers with depth)

Tp:::.(I) = { (p(X),iJ,m) l
l. .X is a tuple of new distinct variables
2. p(t):- P1(f1), ... ,pn(t:) E P
3. (p;(X;), iJ;, m;) E I, l ::; i::; n,

4. {) = mgu ((p(t),p1 (t~), ... ,pn(t:)),

(p(X),pJ(XJ)iJJ, .. · 1 Pn(Xn)iJn))
5. m = l + m1 + ... + mn ::; l } .

Abstract diagnosis w.r.t. denotational observ­
ables

Let P be a program. If Q is a denotational observable, we know that the actual

and the intended behaviors of P for all the goals are uniquely determined by the

behaviors for most genera] goals. The following Definitions 3.1 and 3.2 extend to

abstract diagnosis the definitions given in [25, 18, 21] for declarative diagnosis. In

the following Ic. is the specification of the abstraction of the intended behavior of

program P for most generai atomic goals w.r.t. the denotational observable Q (i.e.,

I"' is the specification of the intended Q(O(P))). The actual abstract semantics of

the program P is the abstract bottom-up denotation Frx(P) = TP,C< t w, since Q is a

denotational observable. In the case of denotational observables we can assume the

partial order on the abstract domain to be ç (set inclusion).

Definition 3.1

~- P is partially correct w.r.t. Irx, if Fo:(P) ç Ia.

n. P is complete w.r.t. I"'.' ifia ç Fa(P).

m. P is totally correct w.r.t. Ia, if :F"'(P) =Io..

If P is not totally correct, we are left with the problem of determining the errors,
which are based on the symptoms.

Definition 3.2

~- A n incorrectness symptom is an element O' such that O' E F,,(P) an d O' tf_ Irx.

n. An incompleteness symptom is an elementO' such that O' E Irx and O' tf. Frx(P).

Note that a totally correct program has no incorrectness and no incompleteness

symptoms. Our incompleteness symptoms are related to the insufficiency symp­

toms in [18), which are defined by taking gfp (T p) instead of lfp (T p) as program

semantics. The two definitions, even if different, turn out to be the same for the

47

dass of programs we are interested in (see the acceptable programs in Section 4).

Ferrand's choice is motivated by the fact that gfp (T p) is related to finite failures.

The approach of using two different semantics for reasoning about incorrectness

a.nd incompleteness has been pursued in [19], leading to an elegant uniform (yet

non-effective) characterization of correctness an d completeness.

It is worth noting that we can reconstruct the usual definitions of declarative di­

agnosis within our more genera] framework, thus showing that the use of declarative

specifications can also be motivated by operational arguments (i.e., the declarative

semantics are goal-independent denotations corresponding to suitable denotational

observables). In particular,

e the observable cf; (ground instances of computed answers) gives us the declar­

ative diagnosis based on the least Herbrand mode! [25, 21];

o the observable 7./J (correct answers) gives us the declarative diagnosis based on

the least term mode] [18].

It is straightforward to realize that an element may sometimes be an (incorrect­

ness or incompleteness) symptom, just because of another symptom. The diagnosis

determines the "basic" symptoms, and, in the case of incorrectness, the relevant

clause in the program. This is captured by the definitions of incorrect clause and

uncovered element, which are related to incorrectness and incompleteness symptoms,

respectively.

Definition 3.3 Jf there exists an element O' such that O' t/. Irx and O' E T{c},e<(Irx),

then the clause c E P is incorrect o n O'.

Informally, cis incorrect on a, if i t d eri ves a wrong observation from the intended

semantics. T{c},a is the operator associateci to the program {c}, consisting of the

clause c only.
The following theorem shows the relation between partial correctness (Defini­

tìon 3.1) and absence of incorrect clauses (Definition 3.3). The theorem shows the

feasibility of a diagnosis method for incorrectness based on the comparison between

Io_ and TP,C<(Irx) and does not require to actually compute the denotation :F"'(P)

(ì.e., the least fixpoint of TP,a)· Note that the second part of the theorem asserts

that there might be incorrect clauses even if there are no incorrectness symptoms.

In other words, if we just look at the semantics of the program, some incorrectness

bugs can be "hidden" (because of an incompleteness bug).

Theorem 3.4 lf there are no incorrect clauses in P according to Definition 3.3,

then P is partially correct w. r. t. a according t o Definition 3.1 (hence there are no

incorrectness symptoms). The converse does not hold.

Pro o f.

48

1. If TP,a(Ia) ç Ia, then Ia is a pre-fixpoint of TP,a· Since :Fa(P) = lfp (TP.a)
[7], by Tarski's theorem :Fa(P) ç Ia.

If TP,a(Ia) g; Ia, then for some element cr, cr E TP,a(Ia) and cr t/. Ia. Hence,
there exists a clause c in P such that cr E T{c},a(Ia)· Therefore cis incorrect.
Otherwise, if TP,a(Icx) ç Icx for all c E P and cr E T{c},cx(Ia). then cr E
TP,a(Ia)· Hence cr E Io-.

11. Consider the program P = {p :-r.} and the specification Iç = { (r, r::) }. P
is partially correct because :Fç (P) = 0 ç Iç. However the only clause of P is
incorrect because {(p, r:;)} E TP,<.(Iç) - Iç.

Ili

As in the case of declarative diagnosis, handling completeness turns out to be
more complex, since some incompletnesses cannot be detected by comparing Ia and
TP.a(Ia)· One would like to base the diagnosis on the following definition.

Definition 3.5 An element cr is uncovered if

Informally, cr is uncovered if there are no clauses deriving it from the intended
semantics.

The following proposition shows that we cannot base the diagnosis of incom­
pleteness on the detection of uncovered elements.

Proposition 3.6 There exist a program P, a denotational observable o: and a spec­
ification Ia, such that

z. there are no uncovered elements in P,

iz. P is no t complete w. r. t. Ia (i. e., there exist incompleteness symptoms).

Proof. Consider the program P = { p(x) :-p(x).} and the specification Iç
{ (p(x),r:;) }. Then TP.ç(Iç) = { (p(x),r:;) }, while :Fç(P) = 0. 111

However, the following theorem shows that the diagnosis of incompleteness can be
based on Definition 3.5 if the operator TP.o has a unique fixpoint.

Theorem 3. 7 Assume Tp, 01 has a unique fixpoint. Jf there are no uncovered ele­
ments, then P is complete w.r.t. Ia (hence there are no incompleteness symptoms).
The converse does not hold.

Proof.

1. If Ia ç TP,cx(Icx), then Ia is a post-fixpoint of TP,a· By Tarski's theorem,
Ia ç gfp (TP,a). Since :Fa(P) = lfp (TP,a) [7] and gfp (TP,a) = lfp (TP,a), the
thesis holds.

49

11. Consider the program P = {p :-r., r.} and the specification Iç = {(p, r::) }.
p is complete because :Fç(P) = { (p,r::), (r,r:;)} ::) Iç. However the element
(p, r:;) is uncovered because Tp,diç) = { (r, r::) }.

Il

In the next two sections we will consider two large classes of programs and de­
notational observables, for which TP,cx has a unique fixpoint. For these programs
and observables, the diagnosis of incompleteness is as simple as the one for incor­
rectness. Note that, if TP,a has a unique fixpoint, lfp (TP,cx) = gfp (TP.c;)· Hence our
incompleteness symptoms correspond to the insuffì.ciency symptoms in [18].

The foliowing corollary is a justifìcation of the overali diagnosis method.

Corollary 3.8 Assume TP,c; has a unique fixpoint. Then P is totally correct w. r.t.
Icx, if and only if there are no incorrect clauses an d uncovered elements according io
definitions 3.3 and 3.5.

If the abstraction o: guarantees that for each most generai atomic goal we have
fìnitely many observations, then the specifìcation is finite and our diagnosis is ef­
fective. In such a case, as already mentioned, Icx can be specified in an extensional
way and there is no need for the oracle.

4 A bstract diagnosis of acceptable programs

We consider here the abstract diagnosis of programs belonging to the class of
acceptable programs [2], whose definition is given below. It is worth noting that ac­
ceptable programs are the left-terminating programs, i.e., those programs for which
the SLD-derivations of ground goals (via the leftmost selection rule) are finite. As
a.lready mentioned, most interesting programs are acceptable (all the pure PRO­
LOG programs in [26] are acceptable). The same property holds for most of the
"wrong" versions of acceptable programs, since most "natura!" errors do not affect
the left-termination property.

Definition 4.1 [2] A leve! mapping fora program P is a function l· l : Bp --t N
from ground atoms to natura! numbers. Let l · l be a level mapping for P and I be a
(no t necessarily Herbrand) m od el of P. P is acceptable w. r.t. 1·1 an d I, if for every
clause a :- b1 , .•. bn in Ground(P) the following implication holds for i E [l, n]:

I ~ A};;;,~ bj ===?- la l > lb;l.
One relevant technical property of acceptable programs is that the ground immediate
consequences operator has a unique fìxpoint [2]. We have proved the following
theorem, which tells us that the same property holds forali the operators TP,a, such
that o: is a denotational observable (SLD-trees, cali patterns, answers with depth,
l-answers with depth, correct and computed answers, ground instances of computed
answers, etc.). W e first need some additional definitions and lemmata. In the
following, T p denotes the immediate consequences operator of the kernel semantics.

50

Definition 4.2 A norm far a pragmm P an R is a functian 11·11 : R -+ N such that
far every n the set {x E R l /lxii = n} is finite. A pragmm P is 7?-acceptable, if
there exists a narm s.t. far ali c E P and ali finite I E R

Lemma 4.3 Every a.cceptable pragmm P is R-acceptable.

Proof. Wejust need to define //Xl/= max{/G19/*I (G,19,b,cl) E X,19}, where
1·1 is the leve) mapping of P and /BI*= min { /B'l,b//'l,b is grounding for B }. 111

For every observable o: and each n we can define a "projection" function 7in,a(I) =
o: 0 7i n ° ì, w h ere 7i n (I) = { x E I l Il x Il =F n } . The functions 7i n,o are well defined if
o: is a denotational observable.

Lemma 4.4 Lei P be an acceptable pragmm and o: be a denatatianal abservable.
Then

7Tn,a O Tp,Oc = 7Tn,o O TP,o O (L 1Ti,o)·
i<n

Proof. For every n, every I and for all m ~n, the sets (7rn o Tp o 7im)(I) are
empty, because //Tp(I)/1 > //I/1 by hypothesis . Thus Ttn o Tp = 1in o Tp o"· "'· L.Jt<n •
Then for every a

which is the claim.

0:07inOìOO:OTpoì

0:07Tn0Tpoì

ao(TtnoTpo L";) o!
i<n

= 1in,o O TP,o O L 1ii,o
i<n

V/e are now ready to prove the main theorem.

i<n

il

Theorem 4.5 (fixpoint uniqueness) Let P be an accepta.ble pragram and o: be a
denatatiana.l abserva.ble. Then TP,o tw is the unique fixpaint af TP,o·

51

Proof. Clearly TP.o tw is a fixpoint. Now assume that X and Y are fixpoints.
We show, by induction on n, that for all n, 1in,cx(X) = 1in,a(Y).

(7io,o O TP,a)(X)

(1io,o o T P,o) (.l)

(1io,o o T p·")(Y)

7io,a(Y)

Moreover, iffor alli< n 1i;,"(X) = 7i;,a(Y), then

Hence

nE N

(7in,o O TP,a)(X)

(7in,Oc O TP,Oc O (l: 1ii,a))(X)
i<n

i<n

(7in,a O TP,a)(Y)

1in,o(Y)

nE N

Theorems 4.5 and 3.7 allow us to perform the diagnosis of incompleteness errors
according to Definition 3.5.

Corollary 4.6 Let P be an acceptable pragram. Then P is totally correct w.r.t. I'"
if and anly ifTP,cx(I"') =Io·

It is worth noting that the property of being acceptable is undecidable. Therefore
we do not mean the diagnosis to contain a test for acceptability. We just want to
remark that, since all sensible programs turn out to be acceptable, the diagnosis
algorithm based on the application of the bottom-up operator to the specification
(both for correctness an d incompleteness) is indeed feasible.

Note that this result applies to declarative diagnosis as well, because, as we have
showa in Section 3, it can be explained in terms of denotational observables.

Example 4. 7 Consider the acceptable program P of Figure l, which is an "ances­
tor" database with a missing clause (ancestor(X, Y) :- parent(X, Y).). Consider the
computed answer substitutions observable ç. The specification is

Iç = { (parent(X, Y), { X/terach, Y/abraham}),
(parent(X, Y), { Xjabraham, Y/isaac}),
(a.ncestar(X, Y), { X/terach, Y/abraham}),
(ancestor(X, Y), { X/terach, Y/isaac}),
(ancestar(X, Y), { X/abraham, Y/isaac}) },

while

52

ancestor(X, Y) :- ancestor(X, Z), parent(Z, Y).
parent(abraham, isaac).
parent(terach, abraham).

Figure 1: A wrong acceptable program

TP,ç(Id = { (parent(X, Y), { X/terach, Y/abraham }),
(parent(X, Y), { X/abraham, Y/isaac}),
(ancestor(X, Y), { Xjterach, Y/isaac}) }.

The elements (ancestor(X, Y), { X/terach, Y/abraham }) and
(ancestor(X, Y), { X/abraham, Y/isaacJ) are diagnosed as uncovered whìle the
"derived" element '
(ancestor(X, Y), { X/terach, Y/isaac}) is not, even if i t is an incompleteness symp­
tom. •

5 Abstract diagnosis of acceptable denotational
observables

In this section we show that Defìnition 3.5 can be used to detect incompleteness
err?rs even for non accept~ble pr_ograms, if the observable o: satisfies a property
wh1ch guarantees that the Jmmed~ate consequences operator has a unique fìxpoint
(acceptable observables).

Definition 5.1 An a-leve! mapping for a denotational observable a : R -+ D is a
functzon l · l : D -+ N. Lei l · l be an a-level mapping, o: is acceptable w.r.t. 1 . 1 if
for every clause c an d for all finite Icx,

IT{c},cx(Icx)l > IIcxl·

For eve~y ~-leve] mapping 1·1 we can defìne the norm IIXII = lo:(X)I and, therefore,
the prOJeCtJOnS 7r n,o:·

Lemma 5.2 Lei P be a program and o: be an acceptable denotational observable.
Then

1l"n,cx O TP,o: = 1l"n,cx O TP.cx O (L 1ri,cx)·
i<n

Theorem 5.3 Lei P be a program and o: be an acceptable denotational observable.
Then TP,"' has a unique fixpoint.

W e show. now that the basic SLD-trees observable (id) is indeed acceptable.
The abstractwn can destroy thìs property. However ali the denotational observables

53

which keep some information about the length of the derivation are also acceptable.
In particular this is the case of the Z-answers with depth observable, which has been
proposed to achieve finite extensional specifìcations. On the other han d, correct and
computed answers substitutions are not acceptable (as shown by the program in the
proof of Proposition 3.6).

Proposition 5.4 The identica! denotational observable id : R --+ R is acceptable.

Proposition 5.5 The observable :=: is acceptable.

Example 5.6 Consider the program P of Figure 2 which is another "wrong" versi o n
of the "ancestor" database. This version, however, is not acceptable (the computa­
tion of the goal ?- ancestor(terach, abraham) goes into an infinite loop). W e will
show that the bug can be located by an acceptable denotational observable. Con­
sider fìrst the computed answer substitutions observable ç, which is not acceptable.

Ir. = { (parent(X, Y), {X/terach, Y/abraham }),
(parent(X, Y), { X/abraham, Y/isaac}),
(ancestor(X, Y), { X/terach, Y/abraham}),
(ancestor(X, Y), { X/terach, Y/isaac}),
(ancestor(X, Y), { X/abraham, Y/isaac}) }.

Even if Tp,r_(Ir.) = Iç, the program has an incompleteness symptom, since the ele­
ment (ancestor(X, Y), { Xjterach, Y/isaac}) does not belong to Fç(P).

Consider now the 6-answers with depth observable :=:, which is instead acceptable.

I=.= { (parent(X, Y), { X/terach, Y/abraham }, 1),
(parent(X, Y), { X/abraham, Y/isaac }, 1),
(ancestor(X, Y), { X/terach, Y/abraham }, 2),
(ancestor(X, Y), { X/terach, Y/isaac }, 4),
(ancestor(X, Y), { X/abraham, Y/isaac }, 2) },

T p,=.(I=.) = { (parent(X, Y), { X/terach, Y/abraham }, 1),
(parent(X, Y), { X/abraham, Y/isaac }, 1),
(ancestor(X, Y), { X/terach, Y/abraham }, 2),
(ancestor(X, Y), { X/terach, Y/isaac }, 6),
(ancestor(X, Y), { X/abraham, Y/isaac }, 2) }.

The diagnosis now detects the incorrect clause c2 in addition to the uncovered ele­
ment (ancestor(X, Y), { X/terach, Y/isaac }, 4). •

6 Diagnosis of incompleteness for semi-denota­
tional observables

54

c!) ancestor(X, Y) :- parent(X, Y).
c2) ancestor(X, Y) :- ancestor(X, Y), parent(Z, Y).
c3) pare n t (abraham, isaac).
c4) parent(terach, abraham).

Figure 2: A non acceptable program

Semi-denotationa.l observables are meant to mode] the abstraction (with ap­
proximation) involved in program analysis (e.g. depth(1)-answers, types, modes,
ground dependencies and sharing). Even the most precise abstract denotation
Fa (P) is just an approximation ofthe abstraction of the concrete semantics. N amely
o:(O(P)) = o:(F(P)) ::S Fa(P). The speéifìcation Ia is a speci:fìcation ofthe intended
behavior o:(O(P)). Hence we cannot get, any information about partial correctness,
since in genera] the following relation holds (fora complete program):

In other words, in a partially correct and complete program, the actual program
denotation an d the specifìcation can be different, just because of the approximation
introduced by the semi-denotational observable.

On the other hand, the defìnitions given in Section 3 related to completeness
(and the corresponding diagnosis algorithm for detecting uncovered elements) are
applicable to the case of semi-denotational observables as well, once we adapt our
defìnitions to the partial order ::S, which is usually different from set inclusion in semi­
denotational observables. In particular, we can decide completeness by comparing
Ia and TP,a(Ia), if P is acceptable and a is a semi-denotational observable.

7 Conclusions

We have shown that the theory of declarative diagnosis can be extended to
the case where the speci:fìcation defines the intended behavior of programs w.r.t.
operational properties which can be formalized as denotational or semi-denotational
observables, as first suggested in [9]. The main new result w.r.t. [9] is the simple
characterization of incompleteness in the case of acceptable programs or acceptable
observables.

This paper is concerned with the foundations of abstract diagnosis. Hence we
have not dealt with the problems of designing efficient diagnosis algorithms and
of implementing the specifìcation. Let us just mention that we can easily define
top-down diagnosis algorithms, in the style of those discussed in [23], where the
specification is given by an oracle, possibly implemented by querying the user. One
such an algorithm, for the case of the computed answers denotational observable,
is described in [10]. The top-down diagnoser uses one oracle only, and does not

'l

55

require to determine the symptoms in advance. The AND-compositionality property
of Fa(P) allows us to determine all the incorrect clauses and uncovered :Jements by
considering just a finite set of atomi c goals (i. e., the most genera] at~m1c goals)·

The effectivity of the diagnosers relies on our ability to handle .fìmte ap?roxJ~a­
tions of the specification. In fact, if Ia is not finite, the diagnosis JS ~nfeas1~le SIDce
the oracle may return infinite answers to some queries. Abstract dJagnos:s allows
us to tackle this problem, by considering abstractions (modeled by denota~wnal ob­
servables) on finite domains. One example is t.he observable 1-answer~ w1th depth
considered in this paper, which, however, reqmres the user to reason m unaccept­
able operational terms. A second solution is to move to ~1ore nat~ral observables,
such as depth(l)-answers, which can be modeled as a sem1-denotatw~al observable
(in this case, however, we can only reas~n abo~t incompleteness). Fmally, we can
resort to partial specifications as de:fìned ID [10] ID .th~ case of t~e comput.ed a~swers
observable. Partial specifications are simply descnptwns of fimte approx1matwns of
the intended program behavior. The theory of abstract .diagnosis can be extended
t o parti al specifications, resulting in weaker results, wh1ch may be, however, very
useful in the practice of diagnosis.

References

[l] K. R. Apt. Introduction to Logic Programming. In J. van Leeuwen, editor,
Handbook of Theoretical Computer Science, volume B: Forma! Models an~ Se­
mantics, pages 495-574. Elsevier, Amsterdam and The MIT Press, Cambndge,
1990.

[2] K. R. Apt and D. Pedreschi. Reasoning about termination of pure PROLOG
programs. Information and Computation, 106(1):109-157, 1993.

[3] A. Bossi. M. Gabbrielli, G. Levi, and M. Martelli. The s-semantics approach:
Theory ~nd applications. Journal of Logic Programming, 19-20:149-197, 1994.

[4] A. Bossi, M. Gabbrielli, G. Levi, and M. C. Meo. A Compositional Semantics
for Logic Programs. Theoretical Computer Science, 122(1-2):3-47, 1994.

[5] F. Bourdoncle. Abstract debugging of higher-order imperative languages. In
Programming Languages Design and !mplementation '93, pages 46-55, 1993.

[6] K. L. Clark. Predicate logic as a computational formalism. Res. Report DOC
79/59, Imperia] College, Dept. of Computing, London, 1979.

[7] M. Comini and G. Levi. An algebraic theory of observables. In M. Bruynooghe,
editor, Proceedings of the 1994 Int'l Symposium on Logic Programming, pages
172-186. The MIT Press, Cambridge, Mass., 1994.

56

[8] M. Comini, G. Levi, and M. C. Meo. Compositionality of SLD-derivations and
their abstractions. In M.I. Sessa, editor, Proceedings GULP-PRODE'95, 1995.

[9] M. Comini, G. Levi, and G. Vitiello. Abstract debugging of logic programs. In
L. Fribourg and F. Turini, editors, Proc. Logic Program Synthesis and Trans­
formatiorl. and Metaprogramming in Logic 1994, volume 883 of Lecture Notes
1:n Computer Science, pages 440-450. Springer-Verlag, Berlin, 1994.

[10] M. Comini, G. Levi, and G. Vitiello. Declarative diagnosis revisited. In M.I.
Sessa, editor, Proceedings GULP-PRODE'95, 1995.

[11] M. Comini, G. Levi, and G. Vitiello. Efficent detection of incompleteness er­
rors in the abstract debugging of logid programs. In M. Ducassé, editor, Proc.
2nd International Workshop on Autom;ated and Algoritmic Debugging, AADE­
BUG'95, 1995.

[12] P. Cousot and R. Cousot. Abstract Interpretation: A Unified Lattice Model for
Static Analysis of Programs by Construction or Approximation of Fixpoints.
In Proc. Fourth ACM Symp. Principles of Programming Languages, pages 238-
252, 1977.

[13] P. Cousot and R. Cousot. Systematic Design of Program Analysis Frameworks.
In Proc. Sixth A CM Symp. Principles of Programming Languages, pages 269-
282, 1979.

[14] P. Cousot and R. Cousot. Abstract Interpretation and Applications to Logic
Programs. Journal of Logic Programming, 13(2 & 3):103-179, 1992.

[15] M. Ducassè and J. Noyè. Logic programming environments: Dynamic program
analysis and debugging. Journal of Logic Programming, 19-20:351-384, 1994.

[16] M. Falaschi, G. Levi, M. Martelli, and C. Palamidessi. Declarative Modeling of
the Operational Behavior of Logic Languages. Theoretical Computer Science,
69(3):289-318, 1989.

[17] M. Falaschi, G. Levi, M. Martelli, and C. Palamidessi. A Model-Theoretic
Reconstruction of the Operational Semantics of Logic Programs. Jnjormation
and Computation, 102(1):86-113, 1993.

[18] G. Ferrand. Error Diagnosis in Logic Programming, an Adaptation of E. Y.
Shapiro's Method. Journal of Logic Programming, 4:177-198, 1987.

[19] G. Ferrand. The notions of symptom and error in declarative diagnosis of logic
programs. In P. A. Fritzson, editor, Automated and Algorithmic Debugging,
Proc. AAIJ_EBUG '93, volu~e 749 of Lecture Notes in Computer Science, pages
40-57. Spnnger-Verlag, Berlm, 1993.

57

[20] M. Gabbrielli, G. Levi, and M. C. Meo. Observational Equivalences for Logic
Programs. In K. Apt, editor, Proc. Joint Int 'l Con]. and Symposium o n Logic
Programming, pages 131-145. The MIT Press, Cambridge, Mass., 1992. Ex­
tended version to appear in Injormation and Computation.

[21] J. W. Lloyd. Declarativeerror diagnosis. New Generation Computing, 5(2):133-
154, 1987.

[22] J. W. Lloyd. Foundations of Logic Programming. Springer-Verlag, Berlin, 1987.
Second edition.

[23] L. Naish. Declarative diagnosis of missing answers. New Generation Computing,
10:255-285, 1991.

[24] L. M. Pereira. Rational debugging in logic programming. In E. Y. Shapiro,
editor, Proceedings of the 3rd International Conference on Logic Programming,
volume 225 of Lecture Notes in Computer Science, pages 203-210. Springer­
Verlag, Berlin, 1986.

[25] E. Y. Shapiro. Algorithmic program debugging. In Proc. Ninth Annua! ACM
Symp. on Principles of Programming Languages, pages 412-531. ACM Press,
1982.

[26] L. Sterling and E. Y. Shapiro. The Art of Prolog. The MIT Press, Cambridge,
Mass., 1986.

[27] M. H. van Emden and R. A. Kowalski. The semantics of predicate logic as a
programming language. Journal of the A. CM, 23(4):733-742, 1976.

