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Preface

The Second Joint Conference on Declarative Programming GULP-PRODE’95 joins
together the 10th Italian GULP Conference on Logic Programming and the 5th
Spanish PRODE Congress on Declarative Programming.

GULP-PRODE’95 was held in Marina di Vietri (Italy} at the IIASS institute on
September 11-14, 1995, following the eight previous GULP conferences in Genova
(1986), Torino (1987), Roma (1988), Bologna (1989), Padova (1990), Pisa (1991),
Tremezzo (1992) and Gizzeria (1993), the three previous PRODE meetings in Tor-
remolinos (1991), Madrid (1992) and Blanes (1993), and the First Joint Conference
on Declarative Programming GULP-PRODE’94 in Pefiscola, Spain.

GULP-PRCODE’95 has been organized by the Universitd di Salerno.

The technical program for the Conference included 43 full communications, 6 short
communications, 4 guest lectures and 2 guest talks. The papers in this book
are printed in their order of presentation at the Conference, with communications
grouped into thematic sessions. The papers were selected from 56 received sub-
missions. All the papers were evaluated by at least two reviewers. The Program
Committee met at the Universitd di Salerno to select the 49 papers which are in-
cluded in this volume as full or short communications.

In addition to the contributed papers, GULP-PRODE’95 featured four outstanding
lectures by: Krzysztof R. Apt (CWI Amsterdam), Patrick Cousot (Ec. Nor. Sup.
Paris), Robert A. Kowalski (Imp. Col. London), and Giorgio Levi (Univ. Pisa).
The lecture by K. Apt was presented by Elena Marchiori. Two distinguished talks
were also given by Dale Miller (Pennsylvania Univ.) and Luis M. Pereira (Univ.
Nova de Lisboa).

We express our gratitude to all members of the Program Committee and to all out-
side referees who offered their expertise in the review process. We extend our sincere
thanks to all authors who submitted papers and to all conference participants.

We would also like to thank all institutions supporting the Conference, with spe-
cial thanks to the Universitd di Salerno and to the Dipartimento di Informatica e
Applicazioni “R.M. Capocelli”. Moreover, we gratefully aknowledge the broad of
directors of the ITASS and the secretary of this institute, Ornella De Pasquale, for
her efficient support.




Finally, we wish to especially highlight the contribution of the Organizing Commit-
tee, whose work made the Conference possible, and give special thanks to Andrea
F. Abate, Bruno Carpentieri, Filomena Ferrucci, Vincenzo Loia, Alfonso Sessa and
Giuliana Vitiello. We also wish to express our deep gratefulness to the Organizing
Committee of GULP-PRODE’%4 for their previous work and experience which have
been extremely useful.

Maria Alpuente Frasnedo
Maria I. Sessa

Editors

Salerno, June 1995
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Foreword

The Gruppo Ricercatori ed Utenti di Logic Programming (GULP, which stands for
Legic Programming Researchers and Users Group), is an affiliate to the Association
of Logic Programming (ALP). The goals of the group are to make Logic Program-
ming more popular and to create opportunities for the exchange of experiences and
information between researchers and users working in the field for both public and
private organizations.

To this purpose GULP promotes many different activities such as the exchange
of information among its members and the organization of workshops, advanced
schools and its annual Conference.

Starting from 1994 our annual Conference is held jointly with the Spanish Confer-
ence PRODE on Declarative Programming. This has represented a significant step
towards the exchange of research experience among European Latin countries.

The main aims of the Conference are:

1) to serve as an occasion for those working in this area which are interested in
meeting and exchanging experiences;

2) to illustrate the current state of the art in the area through invited talks given
by well known researchers;

3) to enable students and researchers to learn more about logic and declarative
programming by means of introductory tutorials.

This year we will celebrate a special anniversary, namely the first ten years of GULP
and the tenth Conference. The previous annual conferences were held in Genoa,
Turin, Rome, Bologna, Padua, Pisa, Tremezzo, Gizzeria Lido, and, as a GULP-
PRODE Conference, in Peiiiscola (Spain).

The scientific program of this joint Conference GULP-PRODE includes papers from
colleagues from several European countries. The large international participation,
considered together with the good technical quality of the papers accepted for pre-
sentation, is a further confirmation of the success of this joint event.

On behalf of GULP I would like to thank Maria Sessa and all the other colleagues
of the Universitd di Salerno for the organization of this year Conference.

Maurizio Martelli
President of the GULP
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JERY-SNPY A A

Arrél“ys_,,Bounded Quantification and
Iteration in Logic and Constraint Logic
Programming

Krzysztof R. Apt
CWI
P.0O. Boz 94079, 1090 GB Amsterdam, The Netherlands
and
Department of Mathematics and Computer Science
University of Amsterdam, Plantage Muidergracht 24
1018 TV Amsterdam, The Netherlands

Abstract

We claim that programmming within the logic programming paradigm suf-
fers from lack of attention given to iteration and arrays. To comvince the
reader about their merits we present several examples of logic and constraint
logic programs which use iteration and arrays instead of explicit recursion and

" lists. These programs are substantially simpler than their counterparts writ-
ten in the conventional way. They are easier to write and to understand, are
guaranteed to terminate and their declarative character makes it simpler to
argue about their correctness. Iteration is implemented by means of bounded
quantification.

1 Introduction

Any systematic course on programming in the imperative style (say using Pascal),
first concentrates on iteration constructs (say while or repeat) and only later deals
with recursion. Further, the data structures are explained first by dealing with the
static data structures (like arrays and records) and only later with the dynamic data
structures (which are constructed by means of pointers).

In the logic programming framework the distinctions between iteration and re-
cursion, and between static and dynamic data structures are lost. One shows that
recursion is powerful enough to simulate iteration and rediscovers the latter by
identifying it with tail recursion. Arrays do not exist. In contrast, records can be

; modelled by terms, and dynamic data structures can be defined by means of clauses,
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in a recursive fashion (with the exception of lists for which in Prolog there is support
in the form of built-ins and a more friendly notation).

One of the side effects of this approach to programming is that one often uses a
sledgehammer to cut the top of an egg. Even worse, simple problems have unneces-
sarily complex and clumsy solutions in which recursion is used when a much easier
solution using iteration exists, is simpler to write and understand, and — perhaps
even more important — is closer to the original specification.

In this paper we would like to propose an alternative approach to programming
in logic programming and in constraint logic programming — an approach in which
adequate stress is put on the use of arrays and iteration. Because iteration can be
expressed by means of bounded quantification, a purely logical construct, the logic
programming paradigm is not “violated”. On the contrary, it is enriched, clarified
and better tailored for the programming needs.

Arrays are especially natural when dealing with vectors and matrices. The use
of dynamic data structures to write programs dealing with such objects is unnatu-
ral. We shall try to illustrate this point by presenting particularly simgple solutions
to problems such as the n-queens problem, the knight’s tour, the map colouring
problem, the cutting stock problem, and other problems involving backtracking.

Further, by adding to the language operators which allow us to express optimiza-
tion, i.e. minimization and maximization, we can easily write programs for various
optimization problems.

For pedagogical reasons we limit our attention to programs that involve iteration
and optimization constructs. Of course, explicit recursion has its place both in logic
programming and in constraint logic programming. One of the main purposes of
this paper is to llustrate how much can be achieved without it.

In the programs considered in this paper recursion is hidden in the implementa-
tion of the bounded quanfiers and this use of recursion is guaranteed to terminate.
Consequently, these programs always terminate. As termination is one of the major
concerns in the case of logic programming, from the correctness point of view it is
better to use iteration instead of recursion, when a choice arises. Also, iteration can
be implemented more efficiently than recursion (see Barklund and Bevemyr [BB93]
for an explanation how to extend WAM to implement iteration in Prolog).

This work has a preliminary character and can be seen as an attempt to identify
the right linguistic concepts which simplify programming iz the logic programming
paradigm. When presenting this view of programming within the logic programming
paradigm we were very much influenced by the publications of Barklund and Millroth
[BMS4], Voronkov [Vor$2] and Kluzniak [Klu93]. In fact, the constructs whose use
we advocate, i.e. bounded quantification and arrays, were already proposed in these
papers. The only, possibly new, contribution of this paper is a suggestion to include
these constructs in constraint logic programming.

21
2 DBounded Quantifiers

Bounded quantifiers in logic programming were introduced in Kluznizk [Klu91] and
are thoroughly discussed in Voronkov [Vor92] (where also earlier references in Rus-
sian are given). They are also used in Klu#niak [Klu93] (see also Kluzniak and
Mitkowska [KM94]) in a specification language SPILL-2 in which executable speci-
fications can be written in the logic programming style.

Following Voronkov [Vor92] we write them as 3X € L 0Q (the bounded existential
quantifier) and VX € L { (the bounded universal quantifier), where L is a list and
Q a query, and define them as follows:

Jx e [Y | vsl @ «— o{x/7}.
JXely | vs1qg «— 3% € ¥s Q.

VI € [¥ | ¥s] O — Q{X/¥}, VX € Ys 0. e (X, (Y120
vie 0g. WL et .

Voronkov [Vor92] alsc discusses two other bounded quantifiers, written as 3%
L Qand VX C L Q, where X [ Lis to be read “X is a suffix of L”, which we do not
consider here.

To some extent the use of bounded quantifiers allows us to introduce in some
compact form the “and” and the “or” branching within the program computations.
This reveals some connections with the approach of Harel [Har80], though we believe
that the expressiveness and ease of programming within the logic programming
paradigm makes Harel’s programming proposal obsclete.

Even without the use of arrays the gain in expressiveness achieved by means

of bounded quantifiers is quite spectacular. Consider for example the following
problem.

Problem 1 Write a program which tests whether one list is a subset of another.

Solution
subset(Xs, ¥s) «— VX € Xs Y € ¥s X = Y.

Several other examples can be found iz Voronkov [Vor92]. Here we content
ourselves with just one more, in which we use delay declarations very much ke in
modern versions of Prolog, (for example in ECLPS®) or the programming language

Godel of Hill and Lloyd [HL84)).
Problem 2 Write a program checking the satisfiability of a Boolean formula.

Solution We assume here that the input Boclean formula is written using Prolog
notation, so for example (= X, ¥) ; Zstandsfor (=X A Y) V Z.

sat(X) « X, generate(X).
generate(X) «— vars(X, Ls), VY € Ls 3Z € [true, faill ¥ = Z.

DELAY X UNTIL nonvar(X).
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Comments This remarkably short program uses meta-variables and a mild ex-
tension of the delay declarations to meta-variables. The delay declaration used here
delays any call to a meta-variable until it becomes instantiated. vars(t, Ls) for a
term t computes in Ls the list of the variables occurring in t. Its definition is omit-
ted. vars (X, Ls) can be easily implemented using the var(X) and univ built-in’s
of Prolog. true and fail are Prolog’s built-in’s.

In this program it is not advisable to delay the calls to negative literals until they
become ground. Such a delay would reduce checking for satisfiability of subformulas
which begin with the negation sign to a naive generate and test method.

Even though this program shows the power of Prolog, we prefer to take another
course and use types instead of exploring extensions of Prolog, which is an untyped
language.

3 Arrays and Bounded Quantifiers in Logic Pro-
gramming

Arrays in logic programming were introduced in Eriksson and Rayner [ER84]. Bark-
lund and Bevemyr [BB93] proposed to extend Prolog with arrays and studied their
use in conjunction with the bounded quantification. In our opinion the resulting
extension (unavoidably) suffers from the fact that Prolog is an untyped language.
In Kluzniak [Klu93] arrays are present, as well, where they are called indexable
sequences.

More recently, Barklund and Hill [BH95] proposed to add arrays and restricted
quantification, a generalization of the bounded quantification, to Gédel, the pro-
gramming language which does use types.

In the programs below we use bounded quantification, arrays and type declara-
tions. The use of bounded quantifiers and arrays makes them simpler, more readable
and closer to specifications. We declare constants, types, variables and relations in
a style borrowed from the programming language Pascal. The choice of notation is
preliminary.

We begin with two introductory examples.

Problem 3 Check whether a given sequence of 100 integers is ordered.

Solution

const n = 100.
rel ordered: array [1..n] of integer.
ordered(4) «— VI € [1..n-1] A[I] < A[I+1].

It s, Pl e Do B Wien Ve b Lo B R e P

Comments This example shows that within the array subscripts terms should be

viewed here as an external procedure in the sense of Matuszyriski et al. [MBB*93].

Note that the bounded universal quantifier VI € [1..n] does not correspond
to the imperative for i:=1 to n loop. The former is executed as long as a failure
does not arise, i.e. up to n times, whereas the latter is executed precisely n times.

The programming construct VI € [1..n] Q actually corresponds to the construct
for i:=1 to n do if - Q then _
begin
failure := true; ezit
end

which is clumsy and unnatural within the imperative programming paradigm.
(Feliks KluZniak suggested to us the following, slightly more natural interpreta-
tion of VI € [1..n] Q:

1:=1;
while 1 < n cand Q do i:=i+1;
failure :=1 < n, )

where cand is the “conditional and” comnective (see Gries [Gri81, pages 68-70].))

Problem 4 Generate all members of a given sequence of 100 elements.

Solution

"const n = 100.

rel member: (*, array [1..n] of *).
member(X, Y) « 3JI € [t..n] X = Y[I].

Comments Here, Y is the given sequence. “*¥” stands for an unknown type. “=”
is a built-in declared as

rel =: (%, %),
DELAY X = Y UNTIL known (X) V known(Y).

In other words, “=” is defined on any type and the calls to “=” are delayed until
the value of one of its arguments is known, i.e. uniquely determined. If the values
of both arguments are known, then it behaves like the usual comparison relation of
Prolog and if the value of only one argument is known and the other is a, possibly
subscripted, variable, then “=” behaves like the is built-in of Prolog. The case when
one of the arguments is known and the other is not a variable does not arise here.
known(X) is a built-in which holds when its argument is uniquely determined. It
corresponds to ground(X) in Prolog.

This example shows the usefulness of polymorphic types in the presence of arrays.

~ The bounded existential quantifier 3T € [1..n] implements backtracking and has
{ no counterpart within the imperative programming paradigm.
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Problem 5 Arrange three 1’s, three 2’s, ..., three 9’s in sequence so that for all

i € [1,9] there are exactly i numbers between successive occurrences of 7 (see Coelho
and Cotta [CC88, page 193]).

Solution

rel sequence: array [1..27] of [1..9].
sequence(d) +— VI € [1..8] 33 € [1..25-21]
(8031 = 1, A[J+I+1] = I, a[J+21+2] = I)).

Comments The range J € [1..25-21] comes from the requirement that the
indices J, J+I+1, J+2I+2 should e within [1..27]. Thus J+2I+2 < 27, that is
J < 25-2I.

Problem 6 Generate all permutations of a given sequence of 100 elements.

First we provide a solution for the case when there are no repeated elements in
‘the sequence.

Solution 1

const o = 100.
rel permutation: (array [1..n] of %, array [1..n] of *).
permutation(X, ¥Y) « VI € [1..n] 3J € [i..a] Y[J] = X[I].

Here, X is the given sequence. Alternatively,

permutation(X, Y) « VI € [1..n] member(X[I], ¥).

Comments Note the similarity in the structure between this program and the
one that solves problem 1. This program is incorrect when the sequence contains

repeated elements. For example forn = 3 and X:= 0,0,1, Y:= 0,1,1is a possible
answer.

To deal with the general case we use local array declarations and reuse the above
program.

Solution 2

const n = 100.
rel psrmutation: (array [1..n] of *, array [1..n] of ).
permutation(X, Y) «

var A: array [1..n] of [1..n].

VI € [1..n] 33 € [1..n] A[J] = I,

VI € [i..n] Y[I] = X[A[11].

U FQ,Q %5”

fLE
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Comments This solution states that & is an onto function from [1. .n] to [1. .n]
and that a permution of a sequence of n elements is obtained by applying the function
& to its indices.

Next, consider two well-known chess puzzles.
Problem 7 Place 8 queens on the chess board so that they do not check each other.

First, we provide a naive generate and test solution. It will be of use in the next
section.

Solution 1

const n = 8.
type board: array [1..n] of [1..n].
rel queens, gensrate, safe: board.

queens (X) « generate(X), safe(X).
generate(X) « VI € [1..n] 37 € [i..n] X[I] = J.

safe(X) «— VI € [1..n] VJ € [I+1..n]
(X[11 # %031, (11 # X[J1 + (J-I), X[I] # %031 + (I-3)).

Comments To improve readability board is explicitly declared here as a type.
Declaratively, this program states the conditions which should be satisfied by the
values chosen for the queens. “#” is a built-in declared as

rel #: (%, *).

In this section we use it only to compare terms with known values. Then “#£”
behaves Lke the usual arithmetic inequality relation of Prolog. A more general
usage of “#” will be explained in the next section.

Next, we give a solution which involves backtracking.

Solution 2

const n = 8.
type board: array [1..n] of [1..n].
rel queens: board.

queens(X) « VJ € [1..n] 3K € [1..n]
(x[J]1 = K,
VI e [1..3-1]
(x[11 # x[33, X[11 # X031 + (3-I), X011 # X[31 + (I-2))).
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Comments Declaratively, this program states the conditions each possible value
K for a queen placed in column J should satisfy.

Problem 8 Knight’s tour. Find a cyclic route of a knight on the chess board so
that each field is visited exactly once.

Solution We assign to each field a value between 1 and 64 and formalize the
statement “from every field there is a “knight-reachable” field with the value one
bigger”. By symmetry we can assume that the value assigned to the field X[1, 1]
is 1. Taking into account that the route is to be cyclic we actually get the following
solution.

const n = 8.
type board: array [1..n, 1..n] of [1..n%].
rel knight: board.

gowon: (board, [1..n], [1..n]).

knight (X) « VI € [1..n] VJ € [1..n] goon(X, I, J), X[1, 1] = 1.

goon(X, I, J) « dJI1 € [1..n] 331 € [1..n]
(abs((I-I1)-(J-J1)) = 2, X[11, J1] = (X[I, J] mod n®) + 1).

DELAY go.on(X, I, J) UNTIL known(X[I,J]).

Comments Notethat the equation abs(X - Y) = 2used in the definition of go.on.

has exactly 8 solutions, which determine the possible directions for a knight move.
Observe that each time this call to “=” is selected, both arguments of it are known.
The efficiency of go.on could of course be improved by explicitly enumerating the
choices for the offsets of the new coordinates w.r.t. the old ones.

The behaviour of the above program is quite subtle. First, thanks to the delay
declaration, 64 constraints of the form go_on(X, I, J) are generated. Then, thanks
to the statement X[1, 1] = 1, the first of them is “triggered” which one by one
activates the remaining constraints. The backtracking is carried out by choosing
different values for the variables I1 and J1. The delay declaration is not needed,
but without it this program would be hopelessly inefficient.

It is interesting to note that in Wirth {Wir76], a classical book on programming
in Pascal, the solutions to the last two problems are given as prototypical examples
of recursive programs. Here recursion is implicit.

We conclude this section by one more program. It will be needed in the next
section.

Problem 9 Letm = 50 and n = 100. Determine the number of different elements
in an array X:array [1..m, 1..n] of integer.
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Solution

const m = 50.

n = 100.
type board: array [1..m,1..n] of integer.
rel count: (board, natural).

count (X, Number) +«
Number = m - n -
#(I, J: I € [1..m], J € [1..n]:
(3K ¢ [1..I-1] 9L € [1..n] X[I,J] = XI[K,L])
% X[I,J] occurs in an earlier row
v (3L € [1..J-1] x[1,3] = X[1I,L]).
% X[I,J] occurs earlier in the same Trow

Comments In this program we used the counting qua.ntiﬁer introduced in Gries

SPILL-Z. In general, gml L2 the term #(I, J: I € L1, J € L2: Q)
stands for the aumber of pairs (i,j) such that i € L1, j € L2 and for which the
query Q{I/i,J/j} succeeds. It is possible to avoid the use of the counting quantifier
at the expense of introducing a local array of type board. This alternative program
is more laborious to write.

This concludes our presentation of selected logic programs written using arrays
and bounded quantifiers. Other examples, including those involving numerical com-

putation can be found in Barklund and Millroth [BM94].

4 Arrays and Bounded Quantifiers in Constraint
Logic Programming

We now present some constraint logic programs. These are constraint programs

Do

values for vanables are successively generated. To clarify their use we provide here
alternative solutions to two problems discussed in the previous section.

Problem 10 Solve problem 7 by means of constraints.

Solution

const n = 8.
type board: array [1..n] of [1..n].
rel queens, safe, generate: board.

-
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constrain(X) « VI € countries VJ € countries
neighbour(I,J) — X[I] # X[J].

Comments We interpret here P — Q as follows:

(P—Q) « P, Q.
(P—Q) « —P.

so like the IF P THEN { statement of Godel. Note that in the above program at
the moment of selection of the P — Q statement P is ground. Obviously, an efficient
implementation of P — Q should avoid the reevaluation of P.

Thus the constrain relation generates here the constraints of the form X[I] #
X[J] for all T,J such that neighbour(I/J).

5 Adding Minimization and Maximization

Next, we introduce a construct allowing us to express in a compact way the require-
ment that we are looking for an optimal solution. To this end we introduce the
minimization operator Y = pX:Q which is defined as follows:

Y= puX:Q — Q{X/Y}, ~(ITZ (X <Y, Q).

We assume here that X and Y are of the same type and that < is a built-in ordering .

on the domain of the type of X and Y. The existential quantifier 3X Q is defined by
the clause

FQ o~ Qﬂ

The efficient implementation of the minimization operator should make use of
memoization (sometimes called tabulation) to store the solutions to the query @
found during the successive attempts to find a minimal one.

A dual operator, the mazimization operator Y = vX:Q, is defined by:

Y= vX:Q « Q{X/Y}, - (3 (X > 7Y, Q).

As before we assume that > is a built-in ordering on the domain of the type of X and

Y. In Barklund and Hill [BH95) the minimization and the maximization operators are

introduced as a form of arithmetic quantifiers, in the style of the counting quantifier

introduced earlier. The above two clauses show that they are derived concepts.
The following simple example illustrates the use of these constructs.

Problem 13 Find a minimum and a maximum of a given sequence of 100 integers.
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Solution

const n = 100. .
rel min_andmax: (integer, integer, array [i..n] of integer).
min_and max(Min, Max, A) «
Min = pX: 3T € [1..n] X
Max = vX: 3T € [1..n] X

AlI],
AlId.

Next, we use these two operators in two constraint programs.

Problem 14 The cutting stock problem (see van Hentenryck [\tH89, pages 181-
187]). There are 72 configurations, 6 kinds of shelves and 4 identical boards to be

cut. Given are 3 arrays:

Shelves:array [1..72, 1..6] of natural,
Req:array [1..6] of natural,
Waste:array [1..72] of natural.

Shelves[K,J] denotes the number of shelves of kind J cut in conﬁguratim'l K,
Waste[I] denotes the waste per board in configuration I and Req[J] the required
number of shelves of kind J. The problem is to cut the required number of shelves
of each kind in such a way that the total waste is minimized.

Solution We represent the chosen configurations by the array
Conf: array [1..4] of [1..72]
where Conf [I] denotes the configuration used to cut the board I.

rel solve: (array [1..4] of [1..72], natural).
generate: array [1..4] of [1..72].

solve(Conf, Sol) «
Sol = uTCost:
% Sol is the minimal TCost such that:
VI € [1..3] Conf[I] < Conf[I+1],
% symmetry between the boards
V3 € [1..6] B}_, Shelves[Conf[I],J] > ReqlJ],
% enough shelves are cut
TCost = £%_, Waste[Conf[I]],
% TCost is the total waste
generate (Conf) .
Comments In this program we used as a shorthand the sum not‘ation Y
In general, it is advisable to use the sum quantifier (se.e Gr.ies [GnSl,.pa.ge 72)),
which allows us to use Z4_, t as a term. The sum qua.ntlﬁer is adoI')ted-m SPILL-2
language of Kluzniak [Klu93]. Kluzniak’s notation for this expression is: (5 I: k
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< I £ 1: t). The interpretation of the constraints of the form X <%, X >+
or X = % is similar to that of X # t and is omitted.

We conclude by solving the following problem.

Problem 15 Letm = 50 and n = 100. Given is an array Co which assigns to each
pixel on an m by n board a colour. A region is a maximal set of adjacent pixels that
have the same colour. Determine the number of regions.

In the program below we assign to the pixels belonging to the same region the
same natural number, drawn between 1 and m-n. If we maximize the number of so
used natural numbers we obtain the desired solution.

i

Solution
const m = 50.
n = 100,

type color: [blue, green, red, yellow].
pattern: array [1..m,1..n] of color.
board: array [1..m,i..n] of [1..mn].
rel pixel: (pattern, natural).
no: (pattern, board).
gensrate: board.
count: (board, natural).

pixel(Co, Sol) ¢« Sol = pNumber:
var X: board.
no(Co, X), gensrate(X), count (X, Number).

no(Co, X) « VI € [1..m] VI € [1..n]
(
(I <m — (ColI, 1]
(J <n — (colI,s]
).

ColI+1,J]1 «~ X[I,J]
ColI,J+1] ~ X[I,J]

X[I+1,31)),
X[1,I3+11))

n
1]

Comments The count relation is defined in the solution to problem §. In the
above program first 2m - n — (m + n) = 9850 constraints are generated. Each of
them deals with two adjacent fields and has the form of an equality or inequality.
Then the possible values for the elements of X are generated and the number Number
of so used natural numbers is counted. The maximum value for Number is then the
desired solution.

The resulting program is probably not efficient, but still it is interesting to note
that the problem at hand can be solved in a simple way without explicit recursion.
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6 Conclusions .

We have presented here several logic and constraint logic programs that use bounded
quantification and arrays. We hope that these examples convinced the readers about
the usefulness of these constructs. We think that this approach to programming is
especially attractive when dealing with vanous optimization problems, as their speci-
fications often involve arrays, bounded quantification, summation, and minimization
and maximization. Constraint programming solutions to these problems can be eas-
ily written using arrays, bounded quantifiers, the sum and cardinality quantifiers,
and the minimization and maximization operators. As examples let us mention the
stable marriage problem, various timetabling problems and integer programming,.

Of course, it is not obvious whether the solutions so obtained are efficient. We
expect, however, that after an addition of a small number of built-in’s, like deleteff
and deleteffc of van Hentenryck [vH89, pages 89-90], it will be possible to write
simple constraint programs which will be comparable in efficiency with those written
in other languages for constraint logic programming.

When introducing arrays we were quite conservative and only allowed static
arrays, i.e. arrays whose bounds are determined at compile time. Of course, in
a more realistic language proposal also open arrays, i.e. arrays whose bounds are
determined at run-time should be allowed. One might also envisage the use of
flexible arrays, i.e. arrays whose bounds can change at run-time.

In order to make this programming proposal more realistic one should provide
a smooth integration of arrays with recursive types, like lists and trees. In the
language SPILL-2 of KluZniak [Klu93] types are present but only as sets of ground
terms, and polymorphism is not allowed. Barklund and Hill [BH95] proposed to
add arrays to Goédel (which does support polymorphism) as a system module. We
would prefer to treat arrays on equal footing with other types.

We noticed already that within the logic programming paradigm the demarkation
line between iteration and recursion differs from the one in the imperative program-
ming paradigm. In order to better understand the proposed programming style one
should first clarify when to use iteration instead of recursion. In this respect it is
useful to quote the opening sentence of Barklund and Millroth [BM94]: “Programs
operating on inductively defined data structures, such as lists, are naturally defined
by recursive programs, while programs operating on “indexable” data structures,
such as arrays, are naturally defined by iterative programs”.

We do not entirely agree with this remark. For example, the “suffix” quantifiers
mentioned in Section 2 allow us to write many list processing programs without
explicit use of recursion (see Voronkov [Vor92]) and the quicksort program written
in the logic programming style is more natural when written using recursion than
iteration.

The single assignment property of logic programming makes certain programs
that involve arrays (like Warshall’s algorithm) obviously less space efficient than
their imperative programming counterparts. This naturally motivates research on ef-
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ficient implementation techniques of arrays within the logic programming paradigm.

Finally, a comment about the presentation. We were quite informal when ex-
plaining the meaning of the proposed language constructs. Note that the usual
definition of SLD-resolution has to be appropriately modified in presence of ar-
rays and bounded quantification. For example, the query X[1] = 0, VI € [1..2]
X[I] # O fails but this fact can be deduced only when the formation of resolvents
is formally explained. To this end substitution for subscripted variables needs to
be properly defined. One possibility is to adopt one of the definitions used in the
context of verification of imperative programs (see Apt [Apt81, pages 460-462]). We
leave the task of defining a formal semantics to another paper.

Acknowledgements I would like to thank here Jonas Barklund and Feliks Kluzniak
for useful discussions on the subject of bounded quantification and Pascal van Hen-
tenryck for encouragement at the initial stage of this work. Also, I am grateful to
Feliks KluZniak for helpful comments on this paper.

References
[Apt81]  K.R. Apt. Ten years of Hoare’s logic, a survey, part I. ACM TOPLAS,
3:431-483, 1981,

[BB93] J. Barklund and J. Bevemyr. Prolog with arrays and bounded quantifi-
cations. In Andrei Voronkov, editor, Logic Programming and Automated
Reasoning—Proc. 4th Intl. Conf., LNCS 698, pages 28-39, Berlin, 1993.
Springer-Verlag.

[BH95] J. Barklund and P. Hill. Extending Gédel for expressing restricted quan-
tifications and arrays. UPMAIL Tech. Rep. 102, Computer Science De-
partment, Uppsala University, Uppsala, 1995.

[BM94]  J.Barklund and H. Millroth. Providing iteration and concurrency in logic
programs through bounded quantifications. UPMAIL Tech. Rep. 71,

Computer Science Department, Uppsala University, Uppsala, 1994.

[CC8s] H. Coelho and J. C. Cotta. Prolog by Ezample. Springer-Verlag, Berlin,
1988.

[ER84] L.-H. Eriksson and M. Rayner. Incorporating mutable arrays into logic
programming. In S. A. Tarnlund, editor, Proceedings of the 1991 In-
ternational Conference on Logic Programming, pages 101-114. Uppsala
University, 1984.

[Gri81] D. Gries. The Science of Programming. Springer-Verlag, New York,
1981.

[Har80]

(HL94]

[K1u91]

[K1u93]

[KM94]

[MBB+93]

 [vHSY]

[Vor92]

[Wir76]

35

D. Harel. And/or programs: a new approach to structured programming.

ACM Toplas, 2(1):1-17, 1980.

P. M. Hill and J. W. Lloyd. The Gédel Programming Language. The
MIT Press, 1994.

F. Kluzniak. Towards practical executable specifications in logic. Re-
search report LiTH-IDA-R-91-26, Department of Computer Science,
Linkoping University, August 1991.

F. Kluzniak. SPILL-2: the language. Technical report ZMI Reports
No 93-03, Institute of Informatics, Warsaw University, July 1993. A
deliverable for year 1 of the BRA Esprit Project Compulog 2.

F. Kluzniak and M. Mitkowska. Readable, runnable requirements speci-
fications: Bridging the credibility gap. In M. Hermenegildo and J. Pen-
jam, editors, Programming Language Implementation and Logic Pro-
gramming. Proceedings of the 6th International Symposium, PLILP’9.
Madrid, September 1994, pages 449-450. Springer-Verlag, 1994.

J. Maluszydski, S. Bonnier, J. Boye, F. Kluzniak, A. Kigedal, and
U. Nilsson. Logic programs with external procedures. In K.R. Apt,
J.W. de Bakker, and J.J.M.M. Rutten, editors, Current Trends in Logic
Programming Languages, pages 21-48. The MIT Press, Cambridge, Mas-
sachussets, 1993.

P. van Hentenryck. Constraint Satisfaction in Logic Programming. Logic
Programming Series, The MIT Press, Cambridge, MA, 1989.

A. Voronkov. Logic programming with bounded quantifiers. In
A. Voronkov, editor, Logic Programming and Automated Reasoning—
Proc. 2nd Russian Conference on Logic Programming, LNCS 592, pages
486-514, Berlin, 1992. Springer-Verlag.

N. Wirth. Algorithms + Data Structures = Programs. Prentice-Hall,
1976.



Completeness in Abstract Interpretation *

(Invited talk)

Patrick COUSOT

LIENS - DMI
Ecole Normale Supérieure
45 rue d'Ulm
75230 Paris cedex 05 (France)

cousot@dmi.ens.fr

Abstract interpretation [1] is 2 method for designing hierarchies of se-
mantics as well as specifications of program analyzers by approximation of
these semantics. Because of undecidability problerns such as the termination
problem, abstract interpretation based program analysis methods are funda-
mentally incomplete. Moreover implementation techniques such as the use
of widenings/narrowing to speed up convergence of iterative fixpoint compu-
tation methods give the impression that the result of the analysis performed
by the abstract interpreter is not at all predictable by the user.

This is in contrast with methods such as set-based analysis & la Heinze or
type inference & la Milner which look different from abstract interpretation,
for which numerous completeness results have been published and for which
the result of the analysis can be predicted by the user, at least in principle,
through the use of a rule-based inference system.

It bas been shown recently that both set-based analysis [2] and type-
inference [3] are abstract interpretations. Set-based analysis uses a finite
abstract symbolic domain for each particular program (although it is an infi-
nite domain when considering all possible programs). The unification based
type-inference algorithm uses an infinite abstract domain together with a
rather naive widening operator (which may not look natural to some users).

*This work was partly supported by FspriT BRA 8130 LOMAPS.




This clearly shows that when one speaks of the fundamental incompleteness
of abstract interpretation in contrast with the relative completeness of type
inference systems, one cannot speak of the exactly same notions.

After a brief introduction to basic abstract interpretation notions, the
purpose of the talk is to solve this apparent contradiction by eliminating
superfluous differences in presentation of program analysis methods and by
introducing a hierarchy of different and partially comparable notions of com-
pleteness. This explains the various acceptations of the notion with regard to
fixpoint inference/fusion, computer representation of the abstract domain,
computability of the abstract property transformer, (iterative) fixpoint com-
putation, rule-based inference algorithm, convergence acceleration, etc. Nu-
merous examples are provided in the context of logic programming with a
few incursions in functional programming.
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I will summarise the current status of my work with Francesca Toni, Fariba Sadri,
Jacinto Davila, Ber Permpoontanalarp, Eric Fung and Gerhard Wetzel on developing
logical foundations for multi-agent systems.

The core of these foundations is a new approach to logic programming which uni-
fies abductive logic programming and constraint logic programming. This approach
allows predicates to be defined in the usual logic programming manner, augmented
with integrity constraints, which are properties of the definitions. Predicates are
executed backwards using the definitions, as well as forwards using the integrity
constraints. The approach is being developed both to serve as the inference engine
for individual agents and as a programiming language paradigm in its own right.
Applications of the approach to operations research problems are also being inves-
tigated.

Integrity constraints are also used to obtain activity and reactivity in individual
agents. Observations, which update the knowledge base of an agent, are checked for
consistency with the integrity constraints. Integrity checking generates new goals,
some of which may be converted into actions to be executed by the agent.

The overall observation-reasoning-action cycle is controlled by a resource-bounded
metalogic program. The resource bound allows the reasoning and planning compo-
nent of the cycle to be interrupted at any time to obtain an executable approxima-
tion to a plan which achieves the agent’s goals. The representation of actions and
temporal relationships is formulated in a version of the event calculus.

An agent’s plans can contain actions to be performed by the agent itself, as well
as actions to be performed by other agents. Moreover, actions can be speech acts,
in general, and can convey information or requests from one agent to another, in
particular. Agents can use such speech acts to coordinate their actions. We have
begun to investigate the use of argumentation theory to provide a framework for such
speech acts . In addition, we intend to investigate the applicability of concepts from
deontic logic (the logic of obligation, prohibition and permission) to the problem of
regulating interaction among agents. ‘
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Abstract

Abstract diagnosis of logic programs is an extension of declarative diagnosis,
where we dea] with specifications of operational properties, which can be
characterized as abstractions of SLD-trees (observables).

We introduce a simple and efficient method to detect incompleteness errors,
which is based on the application of the immediate consequences operator to
the specification. The method is proved to be correct and complete whenever
the immediate consequences operator has a unique fixpoint. We prove that
this property is always satisfied if the program belongs to a large class of
programs (acceptable programs). We then show that the same property can
be proved for any program P, if the observable belongs to a suitable class of
observables. We finally consider the problem of diagnosis of incompleteness
for a weaker class of observables, which are typical of program analysis.

1 Introduction

Abstract diagnosis [9, 11] is a combination of three known techniques, i.e., al-
gorithmic (declarative) diagnosis (debugging) [25, 18, 21, 15], the s-semantics ap-
proach to the definition of program denotations modeling various observable behav-
jors [16, 17, 20, 4, 3], and abstract interpretation [12, 13, 14].

The diagnosis problem can formally be defined as follows. Let P be a program,
[P]. be the behavior of P w.r.t. the observable property @, and Z, be the specifi-
cation of the intended behavior of P w.r.t. a. The diagnosis consists of comparing
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[Pl and I, and determining the “errors” and the program components which are
sources of errors, when [P], # Z,.

The above formulation is parametric w.r.t. the observable «, which is considered
in the specification 7, and in the actual behavior [P],.

Declarative diagnosis is concerned with model-theoretic properties rather than
with the operational behavior. The specification is therefore the intended declarative
semantics of the program, which is the least Herbrand model in 25, 21], and the set
of atomic logical consequences in [18].

Abstract diagnosis is a generalization of declarative diagnosis, where we consider
operational properties. An observable is any property which can be extracted from a
goal computation, i.e., observables are abstractions of SLD-trees. Examples of useful
observables are computed answers, ﬁﬁite failures and call patterns (i.e., procedure
calls selected in an SLD-derivation). Other examples come from program analysis,
e.g. depth(l)-answers (i.e., answers containing terms whose depth is < I), types,
modes and ground dependencies. As we will discuss later, the relation among the
observables can naturally be understood in terms of abstract interpretation.

Here are some motivations for abstract diagnosis.

o The most natural abstract diagnosis for positive logic programs is diagnosis
w.T.t. computed answers, which leads to a more precise analysis, since declar-
ative diagnosis is related to correct answers only.

e Diagnosis w.r.t. finite failures allows us to verify another relevant behavior,
which has also a logical interpretation.

o Less abstract observables, such as call patterns, can be useful to verify the con-
trol and data flow between different procedures, as we usually do in interactive
debugging. For example, the intended behavior that we specify might be a set
of assertions of the form “the execution of the procedure call p(¢}, ..., t,) leads
to the procedure call g(s1,...,8.)".

o Diagnosis w.r.t. depth(/)-answers makes diagnosis w.r.t. computed answers
effective, since both 7, and [P], are finite.

e Diagnosis w.r.t. types allows us to detect bugs as the inadmissible calls in [24].
If Z, specifies the intended program behavior w.r.t. types, abstract diagnosis
boils down to type checking.

s Diagnosis w.r.t. modes and ground dependencies allows us to verify other
partial program properties.

In declarative diagnosis, the specification is usually assumed to be given by means
of an oracle. This approach is feasible even in abstract diagnosis. However, since
our method can handle abstractions, we can easily come out with finite observable
behaviors and specify them in an extensional way.

i
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The idea of combining abstract interpretation and debugging was first proposed
in [5], where abstract interpretation techniques are used to statically determine the
origin of bugs in higher-order imperative languages. The result is a set of correctness
conditions expressed in terms of assertions.

Our theory of abstract diagnosis is built on an algebraic semantic framework for
positive logic programs [7, 8], based on the formalization of observables as abstrac-
tions. A complete description of the framework is outside the scope of this paper.
In Section 2 we summarize the main properties of the framework. We will con-
sider here an important class of observables (denotational observables) with strong
semantic properties. The diagnosis problem and the diagnosis algorithms for deno-
tational observables introduced in [9] are considered in Section 3. We show that the
existing declarative diagnosis methods can be reconstructed as instances of abstract
diagnosis w.r.t. denotational observables. As in the case of declarative diagnosis,
incorrect clauses can be detected by applying an immediate consequences operator
to the specification. The first contribution of this paper is a method to detect in-
completeness errors, which is similar to the incorrectness detection method, since it
is based on the application of the (abstract) immediate consequences operator Tr,
to the specification. The main result is that this method is correct and complete,
if Tp, has a unique fixpoint. In Section 4 we show that this is the case for a large
class of programs {acceptable programs). Acceptable programs were defined in [2]
to study termination and all the pure PROLOG programs in [26] are reported to be
acceptable. The same property is then shown (Section 5) to hold for all programs
and for any observable a belonging to a suitable class of denotational observables.
We finally consider in Section 6 the problem of diagnosis of incompleteness for a
weaker class of observables (which are called semi-denotational). Semi-denotational
observables are typically the properties used in program analysis.

2 Observables

We consider pure logic programs with the PROLOG (leftmost) selection rule.
We assume the reader to be familiar with the notions of SLD-resolution and SLD-
tree (see [22, 1]). The theory of observables [7, 8] is based on a kernel semantics for
SLD-trees. The kernel semantics is given by two separate constructions, i.e.,

e a definition in denotational style,

e a definition given in terms of a transition system.

Both definitions are expressed in terms of three semantic operators @, @ and a,
which are the semantic counterparts of the syntactic operators A, V and +. The
denotational and operational definitions are equivalent. Moreover, there exists a
goal-independent program denotation which has the following properties:

e it can be defined in terms of the transition system (top-down definition O(P)),
by considering the set of SLD-trees for most general atomic goals.
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e it can be obtained from the denotational definition (bottom-up definition
F(P)), by taking the least fixpoint of the operator Tr (the denotational se-
mantics of P).

o O(P) = F(P).

o the denotation is correct and minimal, i.e., P, = P, +— O(P) = O(P,),
where a2 is the observational program equivalence induced by SLD-trees.

o the denotation is AND-compositional, i.e., we can derive the SLD-trees for
any (conjunctive) goal from O(P).

e the denotation is OR-compositional, i.e., we can derive from O(P,) and O(R,)
the denotation of Py |J P,.

Observables are abstractions of SLD-trees. More precisely, an observable is a
function o from the domain of SLD-trees R to an abstract domain D, which pre-
serves the partial orders. « is an abstraction function according to abstract interpre-
tation, i.e., there exists a function 7 (concretization) from D to R, such that (o, ) is
a Galois insertion. The theory of abstract interpretation tells us that we can define
the most precise abstract version f* of each semantic operator f as f* = @ o f o~.
Now we can obtain an abstract transition system and an abstract denotational def-
inition from the ones of the kernel semantics, by simply replacing the operators ®,
@ and o< by their most precise abstract versions ®,, @4 and >1,. We obtain two
abstract (goal-independent) program denotations: the top-down denotation O (P)
and the bottom-up denotation F,(P).

[8] gives a classification of observables, where each class is characterized by a set
of simple axioms relating «, v, ®, @ and .

o perfect observables. For perfect observables we can compute on the abstract do-
main, both operationally and denotationally, without losing precision. In par-
ticular, the abstract denotations are precise, i.e.,04(P) = Fo(P) = a(O(P)).
Perfect observables have all the properties of the kernel semantics. Computed
resultants is an example of a perfect observable.

o denotational observables. The abstract denotations are not precise. However,
we can take the most precise approximation Tp, of the T operator and use it
in the denotational definition. The resulting abstract denotational semantics is
now precise, as is the case for the bottom-up denotation Tr, T w = a(O(P)).
Denotational observables have all the properties of the kernel semantics (re-
stricted to the bottom-up denotations), apart from OR-compositionality. The
abstract transition system cannot be made precise. Examples of denotational
observables are: partial answers, call patterns, computed answers, correct an-
swers, ground instances of computed answers. Some of the specialized bottom-
up operators Tp, = oTpoy are existing “immediate consequences operators”.
In particular,
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~ If ¢ is the observable “ground instances of computed answers”, Tp, is the
ground operator defined in {27] (and F4(P) is the least Herbrand model).

— If 1) is the observable “correct answers”, Tp, is the non-ground operator
first defined in [6] (and Fy{P) is the least term model).

— If £ is the observable “computed answers”, Tp¢ is the s-semantics operator
defined in {16].

~ If  is the observable “call patterns”, Tp, is the call patterns operator
defined in [20].

Perfect observables are also denotational.

e operational observables. These are observables for which we can systematically
derive a precise abstract transition system, while the denotational semantics
is not precise. This class is not relevant to our approach to diagnosis, which
is based on Tpq.

e semi-perfect observables. The top-down and bottom-up denotations are equiv-
alent, yet they are not precise, i.e., Ou(P) = Fol P) = a(O(P)), where < is
the partial order relation on the abstract domain. Both the top-down and the
bottom-up abstract computations are correct according to abstract interpreta-
tion theory, i.e., there is a loss of precision due to approximation. Semi-perfect
observables have all the properties of the kernel semantics.

o semi-denotational observables. By taking the most precise approximation Tp,
of the Tp operator, we obtain a bottom-up abstract denotation which is more
precise of the top-down abstract denotation, yet is less precise than the ab-
straction of the concrete denotation, i.e., a(O(P)) X Tpo T w =< OL(P).
Semi-denotational observables have the same properties of denotational ob-
servables, apart from the precision. Examples of semi-denotational observables
are several domains used to abstract substitutions in the framework of program
analysis (types, groundness dependencies, etc.). Semi-perfect observables are
also semi-denotational.

Qur basic theory of abstract diagnosis will be developed for denotational observ-
ables. In Section 6 we will mention how it can be extended to semi-denotational
observables.

We show two of the Tp, operators that will be later used in the examples.

o (computed answer substitutions)

Tpe(I) = {(p(X),9) |

X is a tuple of new distinct variables

1

2. p(t) = p1(1), ..., paltn) € P

3. <p1' Xi),9;) €~I, 1 § 1 <mn, )

4. J = mgu ((p(f%pl(tl)v'"7pn(tn))7~
X),p(X1)01, .-, pa(XR)00)) 3



e (l-answers with depth)

Tp=(1) = {{p(X),9,m) |

1 X’ is a tuple of new distinct variables
2. plf = n(t),....pa(tn) € P

3. (plX)ﬁl,m1>€[1<z<n

4 ﬂng (( (t)apl( )7" 7Pn(tﬁ))7

(P(X ), 1 (K1), ., pa (X )Fn))
5. m=1+m+...+m, <[}

3 Abstract diagnosis W.r. t. denotational observ-
ables

Let P be a program. If o is a denotational observable, we know that the actual
and the intended behaviors of P for all the goals are uniquely determined by the
behaviors for most general goals. The following Definitions 3.1 and 3.2 exte;Jd to
abstract diagnosis the definitions given in [25, 18, 21] for declarative diagnosis. In
the following 7, is the specification of the abstraction of the intended behavior of
program P for most general atomic goals w.r.t. the denotational observable o (i.e.,
Z, is the specification of the intended a(O(P))). The actual abstract semantics of
the program P is the abstract bottom-up denotation F,(P) = Tp, T w, since a is a
denotational observable. In the case of denotational observables we can assume the
partial order on the abstract domain to be C (set inclusion).

Definition 3.1
i. P is partially correct w.r.t. Z,, if F.(P) C Z..
. P is complete w.r.t. I, if I, C F,(P).
wi. P is totally correct w.rt. Z,, of Fo(FP) = I,.

If P is not totally correct, we are left with the problem of determining the errors,
which are based on the symptoms.

Definition 3.2

i. An incorrectness symptom is an element o such that o € Fu(P) and o € Z,,.
. Anincompleteness symptom is an element o such that o € I, and o g Fo(P).

Note that a totally correct program has no incorrectness and no Incompleteness
symptoms. Our incompleteness symptoms are related to the insufficiency symp-
toms in [18], which are defined by taking gfp (Tp) instead of p (Tr) as program
semantics. The two definitions, even if different, turn out to be the same for the
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class of programs we are interested in (see the acceptable programs in Section 4).
Ferrand’s choice is motivated by the fact that gfp (Tr) is related to finite failures.
The approach of using two different semantics for reasoning about incorrectness
and incompleteness has been pursued in [19], leading to an elegant uniform (yet
non-effective) characterization of correctness and completeness.

It is worth noting that we can reconstruct the usual definitions of declarative di-
agnosis within our more general framework, thus showing that the use of declarative
specifications can also be motivated by operational arguments (i.e., the declarative
semantics are goal-independent denotations corresponding to suitable denotational
observables). In particular,

e the observable ¢ (ground instances of computed answers) gives us the declar-
ative diagnosis based on the least Herbrand model [25, 21];

o the observable ¥ (correct answers) gives us the declarative diagnosis based on
the least term model [18].

1t is straightforward to realize that an element may sometimes be an (incorrect-
ness or incompleteness) symptom, just because of another symptom. The diagnosts
determines the “basic” symptoms, and, in the case of incorrectness, the relevant
clause in the program. This is captured by the definitions of incorrect clause and
uncovered element, which are related to incorrectness and incompleteness symptoms,
respectively.

Definition 3.3 If there ezists an element o such that o & I, and 0 € Tga(Za),
then the clause ¢ € P is incorrect on o.

Informally, c is incorrect on o, if it derives a wrong observation from the intended
semantics. Tyc},. is the operator associated to the program {c}, comnsisting of the
clause c only.

The following theorem shows the relation between partial correctness (Defini-
tion 3.1) and absence of incorrect clauses (Definition 3.3). The theorem shows the
feasibility of a diagnosis method for incorrectness based on the comparison between
7, and Tpo(Z.) and does not require to actually compute the denotation Fo(P)
(i.e., the least fixpoint of Tp,). Note that the second part of the theorem asserts
that there might be incorrect clauses even if there are no incorrectness symptoms.
In other words, if we just look at the semantics of the program, some incorrectness
bugs can be “hidden” (because of an incompleteness bug).

Theorem 3.4 If there are no incorrect clauses in P according to Definition 3.3,
then P is partially correct w.r.t. @ according to Definition 3.1 (hence there are no
incorrectness symptoms). The converse does not hold.

Proof.
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0If Tpa(Za) C I, then I, is a pre-fixpoint of Tp,. Since F(P) = Ifp (Tpq)
[7), by Tarski’s theorem F,,(P) C Z,,.

I Tpo(Zs) € Z,, then for some element o, o € Tpo(Z,) and o € I,. Hence,
there exists a clause ¢ in P such that ¢ € T{:}.o(Za). Therefore c is incorrect.
Otherwise, if Tpa(Za) C Zs for all ¢ € P and 0 € T{(.}o(Z.). then ¢ €
Tpa(Zy). Hence o € Z,.

ii. Consider the program P = {p :—r.} and the specification Z; = {(r,e)}. P
is partially correct because F¢(P) = 0 C Z;. However the only clause of P is
incorrect because { (p,e) } € Tpe(Ze) — Zs.

As in the case of declarative diagnosis, handling completeness turns out to be
more complex, since some incompletnesses cannot be detected by comparing Z,, and
Tpo(Za). One would like to base the diagnosis on the following definition.

Definition 3.5 An element o is uncovered if
0 €ZL,,0 € Tpu(Zy).

Informally, o is uncovered if there are no clauses deriving it from the intended
semantics.

The following proposition shows that we cannot base the diagnosis of incom-
pleteness on the detection of uncovered elements.

Proposition 3.6 There ezist a program P, a denotational observable o and a spec-
ification L, such that

t. there are no uncovered elements in P,
i. P is not complete w.r.t. I, (i.e., there exist incompleteness symptoms).

Proof. Consider the program P = {p(x) :— p(x).} and the specification I =
{{p(z),€) }. Then Tre(Ze) = { (p(z), <) }, while F¢(P) = 0. "

However, the following theorem shows that the diagnosis of incompleteness can be
based on Definition 3.5 if the operator T, has a unique fixpoint.

Theorem 3.7 Assume Tp, has a unigue fizpoint. If there are no uncovered ele-

ments, then P is complete w.r.t. I, (hence there are no incompleteness symptoms).
The converse does not hold.

Proof.

LI 7, € TpalZa), then Z, is a post-fixpoint of Tp,. By Tarski’s theorem,

Zo C gfp(Tra). Since Fo(P) = fp(Thy) [7] and gfp (Tre) = Hp (Tpa), the
thesis holds.
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ii. Consider the program P = {p :— r., r.} and the specification Z; = {(p,¢) }.
P is complete because F¢(P) = {(p,e),(r,e)} D Z,. However the element
(p,e) is uncovered because Tps(Z¢) = { (r,c) }.

In the next two sections we will consider two large classes of programs and de-
notational observables, for which Tp, has a unique fixpoint. For these programs
and observables, the diagnosis of incompleteness is as simple as the one for incor-
rectness. Note that, if Tp, has a unique fixpoint, fp (T'ro) = gfp (Tp..). Hence our
incompleteness symptoms correspond to the insufficiency symptoms in [18].

The following corollary is a justification of the overall diagnosis method.

Corollary 3.8 Assume Tp, has a unique fizpoint. Then P is totally correct w.r.t.
I, if and only if there are no incorrect clauses and uncovered elements according o

definitions 3.3 and 3.5.

If the abstraction & guarantees that for each most general atomic goal we have
finitely many observations, then the specification is finite and our diagnosis is ef-
fective. In such a case, as already mentioned, Z, can be specified in an extensional
way and there is no need for the oracle.

4 Abstract diagnosis of acceptable programs

We consider here the abstract diagnosis of programs belonging to the class of
acceptable programs (2], whose definition is given below. It is worth noting that ac-
ceptable programs are the left-terminating programs, i.e., those programs for which
the SLD-derivations of ground goals (via the leftmost selection rule) are finite. As
already mentioned, most interesting programs are acceptable (all the pure PRO-
LOG programs in [26] are acceptable). The same property holds for most of the
“wrong” versions of acceptable programs, since most “natural” errors do not affect
the left-termination property.

Definition 4.1 [2] A level mapping for a program P is a function |-|: Bp — N
from ground atoms to natural numbers. Let |- | be a level mapping for P and T be a
(not necessarily Herbrand) model of P. P is acceptable w.r.t. |-| and Z, if for every
clause a :— by, ... b, in Ground(P) the following implication holds for i € [1,n]:

I = AZ b = |a] > |by.

One relevant technical property of acceptable programs is that the ground immediate
consequences operator has a unique fixpoint [2]. We have proved the following
theorem, which tells us that the same property holds for all the operators Tr,, such
that o is a denotational observable (SLD-trees, call patterns, answers with depth,
l-answers with depth, correct and computed answers, ground instances of computed
answers, etc.). We first need some additional definitions and lemmata. In the
following, Tr denotes the immediate consequences operator of the kernel semantics.
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Definition 4.2 A norm for a program P on R is a function |- | : R = N such that
Jor every n the set {z € R | |z = n} is finite. A program P is R-acceptable, if
there exists a norm s.t. for all c € P and all finite T € R

1Ty (D> 11
Lemma 4.3 Every acceptable program P is R-acceptable.

Proof. ~ We just need to define |X| = max {|G9|* | (G,9,b,cl) € X, ¥}, where
| -] is the level mapping of P and |B|* = min{|By| | 4 is grounding for B }. B

For every observable a and each n we can define a “projection” function 7, o) =

a o7, 07y, where mi(I) = {z € I'| |z] # n}. The functions ,, are well defined if
@ is a denotational observable

Lemma 4.4 Let P be an acceptable program and o be a denotational observable.

Then
Tna © TP,a = Tna O TP.a 0 ( § '/Ti,a)~

i<n

Proof. For every n, every I and for all m > n, the sets (7, 0 T o Tm)(I) are
empty, because |Tp(1)| > || by hypothesis . Thus 7, 0 Tp = 7, 0 Tp 0 3

i<n i
Then for every o

Taolpe = aom,oyoaocTpoxy
= aom,o0lpory
= ao(wnoTpoE ) 07y
i<n
= aowno'yoaoTpo'yoaoE (mio07)
i<n
= (aom,oy)o(aeTlpoy)o E (aomony)
i<
= '/Tn,aOTP,aOE Tia
i<n

which is the claim. =

We are now ready to prove the main theorem.

Theorem 4.5 (fixpoint uniqueness) Let P be an acceptable program and « be a
denotational observable. Then Tp,tw is the unique fizpoint of Tp,.
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Proof. Clearly Tp,tw is a fixpoint. Now assume that X and Y are fixpoints.
We show, by induction on n, that for all n, 7, o(X) = 7m0 o (¥).

Too(X) = (TouoTpa)(X)
(770,0 o TP,cv)(L)
(To.a 0 Tpa)(Y)
ToalY )

I

I

Moreover, if for all i < n m;4(X) = 7;4(Y), then
Tne(X) = (Frao Tra)(X)
= (TraoTrao () ma))(X)

= (7Tn,a o] Tp'a o] (Z Wi,a))<y)
(Tna 0 Tpa)(Y)
TnalY)

= (D med(X) = (D ma)(¥Y) =Y

neN nEN

Hence

Theorems 4.5 and 3.7 allow us to perform the diagnosis of incompleteness errors
according to Definition 3.5.

Corollary 4.6 Let P be an acceptable program. Then P is totally correct w.r.t. Z,
if and only if Tpo(Zs) = L.

It is worth noting that the property of being acceptable is undecidable. Therefore
we do not mean the diagnosis to contain a test for acceptability. We just want to
remark that, since all sensible programs turn out to be acceptable, the diagnosis
algorithm based on the application of the bottom-up operator to the specification
(both for correctness and incompleteness) is indeed feasible. ‘

Note that this result applies to declarative diagnosis as well, because, as we have
shown in Section 3, it can be explained in terms of denotational observables.

Example 4.7 Consider the acceptable program P of Figure 1, which is an “ances-
tor” database with a missing clause (ancestor(X,Y) :— parent(X,Y).). Consider the
computed answer substitutions observable £. The specification is

T = {(parent(X,Y),{ X/terach, Y/abraham }),
(parent(X,Y),{ X/abraham, Y/isaac }),
(ancestor(X,Y),{ X/terach, Y/abraham }),
(ancestor(X,Y),{ X/terach, Y/isaac }),
{ancestor(X,Y),{ X/abraham, Y/isaac }) },
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ancestor(X,Y) :— ancestor(X, Z), parent(Z, Y).
parent(abraham, isaac).
parent(terach, abraham).

Figure 1: A wrong acceptable program

while
Tre(Ze) = { (parent(X, ) { X/terach, Y/abraham }),
(parent(X,Y’),{ X/abraham, Y/isaac }),
(ancestor(X Y),{ X/terach, Y/isaac })}

The elements (ancestor(X,Y), { X/terach,Y/abraham }) and

(ancestor(X,Y'),{ X/abraham, Y/isaac }) are diagnosed as uncovered, while the
“derived” element k

(ancestor(X,Y),{ X/terach, Y/isaac }) is not, even if it is an incompleteness symp-

tom. a

5 Abstract diagnosis of acceptable denotational
observables

In this section we show that Definition 3.5 can be used to detect Incompleteness
errors even for non acceptable programs, if the observable « satisfies a property

which guarantees that the immediate consequences operator has a unique fixpoint
(acceptable observables).

Definition 5.1 An a-level mapping for a denotational observable o : R — D is a
function |- | : D — N. Let|-| be an a-level mapping, o is acceptable w.r.t. [<]df
for every clause ¢ and for all finite T,,

1T(eya(Za)l > |Tal-

For every a-level mapping |- | we can define the norm |X| = la(X)| and, therefore,
the projections m, 4.

Lemma 5.2 Let P be a program and a be an acceptable denotational observable.
Then
Tn,e © TP,a = Tna O TP.a o (Z 7Ti,or)-
i<n

Theorem 5.3 Let P be a program and o be an acceptable denotational observable.
Then Tpe has a unique firpoint.

We show now that the basic SLD-trees observable (id) is indeed acceptable.
The abstraction can destroy this property. However all the denotationa) observables
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which keep some information about the length of the derivation are alsg acceptable.
In particular this is the case of the l-answers with depth observable, which has been
proposed to achieve finite extensional specifications. On the other hand, correct and
computed answers substitutions are not acceptable (as shown by the program in the
proof of Proposition 3.6).

Proposition 5.4 The identical denotational observable id : R — R is acceptable.
Proposition 5.5 The observable = is acceptable.

Example 5.6 Consider the program P of Figure 2 which is another “wrong” version
of the “ancestor” database. This version, however, is not acceptable (the computa-
tion of the goal 7- ancestor(terach, abraham) goes into an infinite loop). We will
show that the bug can be located by an acceptable denotational observable. Con-
sider first the computed answer substitutions observable ¢, which is not acceptable.

T, = { (parent(X,Y),{ X/terach, Y/abraham }),
(parent(X,Y),{ X/abraham, Y/isaac }),
{ancestor(X,Y),{ X/terach, Y/abraham }),
(ancestor(X,Y),{ X/terach, Y /isaac }),
(ancestor(X,Y),{ X/abraham,Y/isaac }) }.

Even if Tpe(Z¢) = Ze, the program has an incompleteness symptom, since the ele-
ment (ancestor(X,Y),{ X /terach,Y/isaac}) does not belong.to. Fe(P).
Consider now the 6-answers with depth observable =, which is instead acceptable.

Tz = { (parent(X,Y),{ X/terach,Y/abraham }, 1),
(parent(X, Y) { X/abraham, Y/isaac },1),
{ancestor(X,Y),{ X/terach, Y/abraham },2),
(ancestor(X,Y),{ X/terach,Y/isaac },4),
(ancestor(X,Y),{ X/abraham,Y/isaac },2) },

parent(X,Y),{ X/terach, Y/abraham }, 1),
parent(X,Y),{ X/abraham, Y/isaac },1),
ancestor(X,Y ), { X /terach, Y/abraham },2),
ancestor(X,Y),{ X/terach, Y /isaac },6),
(ancestor(X,Y),{ X /abraham, Y/isaac },2) }.

The diagnosis now detects the incorrect clause ¢; in addition to the uncovered ele-

ment (ancestor(X,Y),{ X/terach, Y/isaac },4). =

Trz(Zz) =1

s

6 Diagnosis of incompleteness for semi-denota-
tional observables
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) ancestor(X,Y):— parent(X,Y).

¢z) ancestor(X,Y):— ancestor(X,Y), parent(Z,Y).
) parent(abraham, isaac).

) parent(terach, abraham).

Figure 2: A non acceptable program

Semi-denotational observables are meant to model the abstraction (with ap-
proximation) involved in program analysis (e.g. depth(l)-answers, types, modes,
ground dependencies and sharing). Even the most precise abstract denotation
Fo(P)is just an approximation of the abstraction of the concrete semantics. Namely
a(O(P)) = a(F(P)) X Fu(P). The spedification Z, is a specification of the intended
behavior a(O(P)). Hence we cannot get, any information about partial correctness,
since in general the following relation holds (for a complete program):

I, < FalP).

In other words, in a partially correct and complete program, the actual program
denotation and the specification can be different, just because of the approximation
introduced by the semi-denotational observable.

On the other hand, the definitions given in Section 3 related to completeness
(and the corresponding diagnosis algorithm for detecting uncovered elements) are
applicable to the case of semi-denotational observables as well, once we adapt our
definitions to the partial order =, which is usually different from set inclusion in semi-
denotational observables. In particular, we can decide completeness by comparing
7, and Tpo(Zs), if P is acceptable and o is a semi-denotational observable.

7 Conclusions

We have shown that the theory of declarative diagnosis can be extended to
the case where the specification defines the intended behavior of programs w.r.t.
operational properties which can be formalized as denotational or semi-denotational
observables, as first suggested in [9]. The main new result w.r.t. [9] is the simple
characterization of incompleteness in the case of acceptable programs or acceptable
observables. :

This paper is concerned with the foundations of abstract diagnosis. Hence we
have not dealt with the problems of designing efficient diagnosis algorithms and
of implementing the specification. Let us just mention that we can easily define
top-down diagnosis algorithms, in the style of those discussed in [23], where the
specification is given by an oracle, possibly implemented by querying the user. One
such an algorithm, for the case of the computed answers denotational observable,
is described in [10]. The top-down diagnoser uses one oracle only, and does not
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require to determine the symptoms in advance. The AND-compositionality property
of F(P) allows us to determine all the incorrect clauses and uncovered .elernents by
considering just a finite set of atomic goals (1.e., the .most general atc.>m1c goals.).

The effectivity of the diagnosers relies on our ability to hand‘le.ﬁmte approxima-
tions of the specification. In fact, if Z, is not finite, the diagnosis is gnfeas@le since
the oracle may return infinite answers to some queries. Abstract dxagnos.xs allows
us to tackle this problem, by considering abstractions (modeled by denota?lonal ob-
servables) on finite domains. One example is the observable l-answer§ with depth
considered in this paper, which, however, requires the user to reason in unaccept-
able operational terms. A second solution is to move to more natu.ral observables,
such as depth(/}-answers, which can be modeled as a seml‘denotatlox.lal observable
(in this case, however, we can only reason about incompleteness). Finally, we can
resort to partial specifications as defined in [10] in the case of the comput.ed answers
observable. Partial specifications are simply descriptions of ﬁmte. approximations of
the intended program behavior. The theory of abstract .dia.gnoms can be extended
to partial specifications, resulting in weaker results, which may be, however, very
useful in the practice of diagnosis.

References

1] K. R. Apt. Introduction to Logic Programming. In J. van Leeuwen, editor,
Handbook of Theoretical Computer Science, volume B: Formal Models anc-l Se-
mantics, pages 495-574. Elsevier, Amsterdam and The MIT Press, Cambridge,
1990.

[2] K. R. Apt and D. Pedreschi. Reasoning about termination of pure PROLOG
programs. Information and Computation, 106(1):109-157, 1993.

[3] A. Bossi, M. Gabbrielli, G. Levi, and M. Martelli. The s-semantics approach:
Theory and applications. Journal of Logic Programming, 19-20:149-197, 1994.

[4] A. Bossi, M. Gabbrielli, G. Levi, and M. C. Meo. A Compositional Semantics
for Logic Programs. Theoretical Computer Science, 122(1-2):3-47, 1994.

[5] F. Bourdoncle. Abstract debugging of higher-order imperative langtlages. In
Programming Languages Design and Implementation ’93, pages 46-55, 1993.

[6] K. L. Clark. Predicate logic as a computational formalism. Res. Report DOC
79/59, Imperial College, Dept. of Computing, London, 1979.

[7] M. Comini and G. Levi. An algebraic theory of observables. In M. Brgynooghe,
editor, Proceedings of the 1994 Int’l Symposium on Logic Programming, pages
172-186. The MIT Press, Cambridge, Mass., 1994.




56

[8] M. Comini, G. Levi, and M. C. Meo. Compositionality of SLD-derivations and
their abstractions. In M.I. Sessa, editor, Proceedings GULP-PRODE’95, 1995.

[9] M. Comini, G. Levi, and G. Vitiello. Abstract debugging of logic programs. In
L. Fribourg and F. Turini, editors, Proc. Logic Program Synthesis and Trans-
Jormation and Metaprogramming in Logic 1994, volume 883 of Lecture Notes
in Computer Science, pages 440-450. Springer-Verlag, Berlin, 1994.

[10] M. Comini, G. Levi, and G. Vitiello. Declarative diagnosis revisited. In M.I.
Sessa, editor, Proceedings GULP-PRODE’95, 1995.

[11] M. Comini, G. Levi, and G. Vitjello. Efficent detection of incompleteness er-
rors in the abstract debugging of logicf’programs. In M. Ducassé, editor, Proc.
2nd International Workshop on Automated and Algoritmic Debugging, AADE-
BUG’95, 1995.

[12] P. Cousot and R. Cousot. Abstract Interpretation: A Unified Lattice Model for
Static Analysis of Programs by Construction or Approximation of Fixpoints.

In Proc. Fourth ACM Symp. Principles of Programming Languages, pages 238~
252, 1977.

[13] P. Cousot and R. Cousot. Systematic Design of Program Analysis Frameworks.
In Proc. Sizth ACM Symp. Principles of Programming Languages, pages 269~
282, 1979.

[14] P. Cousot and R. Cousot. Abstract Interpretation and Applications to Logic
Programs. Journal of Logic Programming, 13(2 & 3):103-179, 1992.

[15] M. Ducassé and J. Noye. Logic programming environments: Dynamic program
analysis and debugging. Journal of Logic Programming, 19-20:351-384, 1994.

[16] M. Falaschi, G. Levi, M. Martelli, and C. Palamidessi. Declarative Modeling of

the Operational Behavior of Logic Languages. Theoretical Computer Science,
69(3):289-318, 1989.

[17] M. Falaschi, G. Levi, M. Martelli, and C. Palamidessi. A Model-Theoretic
Reconstruction of the Operational Semantics of Logic Programs. Information
and Computation, 102(1):86-113, 1993.

(18] G. Ferrand. Error Diagnosis in Logic Programming, an Adaptation of E. Y.
Shapiro’s Method. Journal of Logic Programming, 4:177-198, 1987.

[19] G. Ferrand. The notions of symptom and error in declarative diagnosis of logic
programs. In P. A. Fritzson, editor, Automated and Algorithmic Debugging,
Proc. AADEBUG ’93, volume 749 of Lecture Notes in Computer Science, pages
40-57. Springer-Verlag, Berlin, 1993.

57

[20] M. Gabbrielli, G. Levi, and M. C. Meo. Observational Equivalen'ces for Logi'c
Programs. In K. Apt, editor, Proc. Joint Int’l Conf. and Symposium on Logic
Programming, pages 131-145. The MIT Press, Cambridge, Mass., 1992. Ex-
tended version to appear in Information and Computation.

[21] J. W. Lloyd. Declarative error diagnosis. New Generation Computing, 5(2):133-
154, 1987.

[22] J. W. Lloyd. Foundations of Logic Programming. Springer-Verlag, Berlin, 1987.
Second edition.

[23] L. Najsh. Declarative diagnosis of missing answers. New Generation Computing,
10:255-285, 1991.

[24] L. M. Pereira. Rational debugging in logic programming. Ig E. Y. Shap%ro,
editor, Proceedings of the 3rd International Conference on Logic Programming,
volume 225 of Lecture Notes in Computer Science, pages 203-210. Springer-
Verlag, Berlin, 1986.

[25] E. Y. Shapiro. Algorithmic program debugging. In Proc. Ni7—1th Annual ACM
Symp. on Principles of Programming Languages, pages 412-531. ACM Press,
1982.

[26] L. Sterling and E. Y. Shapiro. The Art of Prolog. The MIT Press, Cambridge,
Mass., 1986.

[27] M. H. van Emden and R. A. Kowalski. The semantics of predicate logic as a
programming language. Journal of the ACM, 23(4):733-742, 1976.




