GULP-PRODE '95
Joint Conference on
Declarative Programming

Editors
MARIA ALPUENTE
MARIA I. SESSA

11-14 September 1995
MARINA DI VIEITRI - ITALY
GULP-PRODE’95

JOINT CONFERENCE ON DECLARATIVE PROGRAMMING
Marina di Vietri sul Mare, Italy
September 11-14 1995

PROCEEDINGS
Preface

The Second Joint Conference on Declarative Programming GULP-PRODE’95 joins together the 10th Italian GULP Conference on Logic Programming and the 5th Spanish PRODE Congress on Declarative Programming.

GULP-PRODE’95 was held in Marina di Vietri (Italy) at the IIASS institute on September 11-14, 1995, following the eight previous GULP conferences in Genova (1986), Torino (1987), Roma (1988), Bologna (1989), Padova (1990), Pisa (1991), Tremezzo (1992) and Gizzaria (1993), the three previous PRODE meetings in Torremolinos (1991), Madrid (1992) and Blanes (1993), and the First Joint Conference on Declarative Programming GULP-PRODE’94 in Peñíscola, Spain.

GULP-PRODE’95 has been organized by the Università di Salerno.

The technical program for the Conference included 43 full communications, 6 short communications, 4 guest lectures and 2 guest talks. The papers in this book are printed in their order of presentation at the Conference, with communications grouped into thematic sessions. The papers were selected from 56 received submissions. All the papers were evaluated by at least two reviewers. The Program Committee met at the Università di Salerno to select the 49 papers which are included in this volume as full or short communications.

In addition to the contributed papers, GULP-PRODE’95 featured four outstanding lectures by: Krzysztof R. Apt (CWI Amsterdam), Patrick Cousot (Ecole Nor. Sup. Paris), Robert A. Kowalski (Imp. Col. London), and Giorgio Levi (Univ. Pisa). The lecture by K. Apt was presented by Elena Marchiori. Two distinguished talks were also given by Dale Miller (Pennsylvania Univ.) and Luis M. Pereira (Univ. Nova de Lisboa).

We express our gratitude to all members of the Program Committee and to all outside referees who offered their expertise in the review process. We extend our sincere thanks to all authors who submitted papers and to all conference participants. We would also like to thank all institutions supporting the Conference, with special thanks to the Università di Salerno and to the Dipartimento di Informatica e Applicazioni "R.M. Capocelli". Moreover, we gratefully acknowledge the broad of directors of the IIASS and the secretary of this institute, Ornella De Pasquale, for her efficient support.
Finally, we wish to especially highlight the contribution of the Organizing Committee, whose work made the Conference possible, and give special thanks to Andrea F. Abate, Bruno Carpentieri, Filomena Ferrucci, Vincenzo Loia, Alfonso Sessa and Giuliana Vitiello. We also wish to express our deep gratefulness to the Organizing Committee of GULP-PRODE'94 for their previous work and experience which have been extremely useful.

Maria Alpuente Frasnedo
Maria I. Sessa
Editors
Salerno, June 1995
Foreword

The Gruppo Ricercatori ed Utenti di Logic Programming (GULP, which stands for Logic Programming Researchers and Users Group), is an affiliate to the Association of Logic Programming (ALP). The goals of the group are to make Logic Programming more popular and to create opportunities for the exchange of experiences and information between researchers and users working in the field for both public and private organizations.

To this purpose GULP promotes many different activities such as the exchange of information among its members and the organization of workshops, advanced schools and its annual Conference.

Starting from 1994 our annual Conference is held jointly with the Spanish Conference PRODE on Declarative Programming. This has represented a significant step towards the exchange of research experience among European Latin countries.

The main aims of the Conference are:
1) to serve as an occasion for those working in this area which are interested in meeting and exchanging experiences;
2) to illustrate the current state of the art in the area through invited talks given by well known researchers;
3) to enable students and researchers to learn more about logic and declarative programming by means of introductory tutorials.

This year we will celebrate a special anniversary, namely the first ten years of GULP and the tenth Conference. The previous annual conferences were held in Genoa, Turin, Rome, Bologna, Padua, Pisa, Tremezzo, Giazeria Lido, and, as a GULP-PRODE Conference, in Peniscola (Spain).

The scientific program of this joint Conference GULP-PRODE includes papers from colleagues from several European countries. The large international participation, considered together with the good technical quality of the papers accepted for presentation, is a further confirmation of the success of this joint event.

On behalf of GULP I would like to thank Maria Sessa and all the other colleagues of the Università di Salerno for the organization of this year Conference.

Maurizio Martelli
President of the GULP

<table>
<thead>
<tr>
<th>Referees</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A. F. Abate</td>
<td>M. Gabbrielli</td>
<td>N. Olivetti</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L. Araujo</td>
<td>J. Garcia-Martin</td>
<td>L. Palopoli</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F. Arcelli</td>
<td>M. Gaspari</td>
<td>R. Peña</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A. Asperti</td>
<td>S. Greco</td>
<td>M. Proietti</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R. Barbuti</td>
<td>G. Guerrini</td>
<td>J. Puyol-Gruart</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C. Böhm</td>
<td>A. Guglielmi</td>
<td>A. Raffaetà</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P. Bonatti</td>
<td>A. Herranz-Nieva</td>
<td>F. Ranzato</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A. Bottoni</td>
<td>C. Laneve</td>
<td>C. Renso</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C.G. Brown</td>
<td>G.A. Lanzarone</td>
<td>R.O. Rodriguez</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M. Bugliesi</td>
<td>J. Levy</td>
<td>S. Rossi</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N. Cancetta</td>
<td>V. Loia</td>
<td>A. Rubio</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A. Casanova</td>
<td>F.J. Lopez-Fraguas</td>
<td>S. Ruggieri</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S. Castellani</td>
<td>S. Lucas</td>
<td>P. Rullo</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S. Contiero</td>
<td>P. Mancarella</td>
<td>A. Sanchez Ortega</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M. Coppo</td>
<td>G. Manco</td>
<td>F. Scozzari</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A. del Pozo Prieto</td>
<td>G. Mascari</td>
<td>U.P. Vasco</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S. Etalle</td>
<td>M.C. Meo</td>
<td>G. Vidal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M. Fabris</td>
<td>A. Messora</td>
<td>J. O. Villaroja</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F. Ferrucci</td>
<td>M. Napoli</td>
<td>G. Vitiello</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F. Formato</td>
<td>M. Navarro</td>
<td>E. Zaffanella</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Contents

INVITED LECTURES

Arrays, Bounded Quantification and Iteration in Logic and Constraint Logic Programming
K.R. Apt

Completeness in Abstract Interpretation
P. Cousot

Logical Foundations for Multi-agent Systems
R. Kowalski

On the Abstract Diagnosis of Logic Programs
G. Levi, M. Comini, and G. Vitiello

GUEST TALKS

Observations about Using Logic as a Specification Language
D. Miller

Parallel Logic Programming with Extensions
L.M. Pereira, J.C. Cunha, and L. Damas

CONCURRENCY

Domain Independent Ask Approximation in CCP
E. Zaffanella

Modeling Real-Time in Concurrent Constraint Programming
F.S. de Boer, and M. Gabrilli

Extending CAML Light to Perform Distributed Computation
J.L. Freire Nistal, B.B. Fraguenu Rodríques, and V.M. Guías Fernández

A Logic Language Based on GAMMA-Like Multiset Rewriting
P. Ciancarini, D. Fogli, and M. Gaspari
DEDUCTIVE DATABASES

Side Effect Analysis for Logic-Based Planning
K. Eshghi, and M. Mowbray

Downward Refinement of Hierarchical Datalog Theories
F. Esposito, N. Fanizzi, D. Malerba, and G. Semeraro

Integrity Constraints Evolution in Deductive Databases
D. Montesi, and F. Turini

Declarative Reconstruction of Updates in Logic Databases:
A Compilative Approach
M. Carboni, V. Foddai, F. Giannotti, and D. Pedreschi

NEGATION

An Introduction to Regular Search Spaces
A. Momigliano, and M. Ornaghi

A Framework for a Transformational Approach to Negation
J. Humet

Ordered Logic and its Relationships to other Logic Programming Formalisms
F. Buccafurri

Analysis of SLDNF for Local CLP
A. Bottoni

A Semantics for the Kakas-Mancarella Procedure for Abductive
Logic Programming
F. Toni

HIGHER-ORDER

Implementing Higher-Order Term-Rewriting for Program Transformation
in AProl
F. Arcelli, and F. Formato

The Undefined Function Differs from the Pointwise Undefined Function
W. Dosch

EXTENSIONS AND INTEGRATION

LOO: An Object Oriented Logic Programming Language
P. Mancarella, A. Raffaetà, and F. Turini

Forum & Objects
G. Delzanno, and M. Martelli

Three-Valued Semantics for Extended Logic Programs
P.A. Bonatti, and L. Giordano

Constructing Logic Programs with Higher-Order Predicates
J.F. Nilsson, and A. Hamfelt

Petri Nets and Linear Logic: a Case Study for Logic Programming
I. Cervesato

APPLICATIONS

GRAMPAL: A Morphological Processor for Spanish Implemented in Prolog
A. Moreno, and J.M. Góñi

A Declarative Approach to the Design and Realization of Graphic Interfaces
D. Aquilino, D. Apuzzo, and P. Asirelli

IMPLEMENTATIONS

Improving the Efficiency of Dynamic Modular Logic Languages
A. Ciampolini, E. Lamma, and P. Mello

Lazy Narrowing on an Abstract Machine by Means of Examples
E. Ullin-Hernández

Exploiting Expression- and Or-Parallelism for a Functional
Logic Language
W. Huns, St. Winkler, and F. Saenz

An Effective Algorithm for Compiling Pattern Matching Keeping
Laziness
P. Palao, and M. Núñez

A Prolog Implementation of Kem
A. Artori, P. Cattabriga, and G. Governatori

Explicit Implementation of a Constraint Solving Mechanism in
a Relational Programming System
P. Bellei, O. Camp, and C. Matiashoff
Arrays, Bounded Quantification and Iteration in Logic and Constraint Logic Programming

Krzysztof R. Apt

CWI
P.O. Box 94079, 1090 GB Amsterdam, The Netherlands
and
Department of Mathematics and Computer Science
University of Amsterdam, Plantage Muidergracht 24
1018 TV Amsterdam, The Netherlands

Abstract

We claim that programming within the logic programming paradigm suffers from lack of attention given to iteration and arrays. To convince the reader about their merits we present several examples of logic and constraint logic programs which use iteration and arrays instead of explicit recursion and lists. These programs are substantially simpler than their counterparts written in the conventional way. They are easier to write and to understand, are guaranteed to terminate and their declarative character makes it simpler to argue about their correctness. Iteration is implemented by means of bounded quantification.

1 Introduction

Any systematic course on programming in the imperative style (say using Pascal), first concentrates on iteration constructs (say while or repeat) and only later deals with recursion. Further, the data structures are explained first by dealing with the static data structures (like arrays and records) and only later with the dynamic data structures (which are constructed by means of pointers).

In the logic programming framework the distinctions between iteration and recursion, and between static and dynamic data structures are lost. One shows that recursion is powerful enough to simulate iteration and rediscovers the latter by identifying it with tail recursion. Arrays do not exist. In contrast, records can be modelled by terms, and dynamic data structures can be defined by means of clauses,
2 Bounded Quantifiers

Bounded quantifiers in logic programming were introduced in Kluzniak [Klu91] and are thoroughly discussed in Voronkov [Vor92] (where also earlier references in Russian are given). They are also used in Kluzniak [Klu93] (see also Kluzniak and Milkowska [KM94]) in a specification language SPILL-2 in which executable specifications can be written in the logic programming style.

Following Voronkov [Vor92] we write them as \(\exists x \in L \cdot Q \) (the bounded existential quantifier) and \(\forall x \in L \cdot Q \) (the bounded universal quantifier), where \(L \) is a list and \(Q \) a query, and define them as follows:

\[
\exists x \in \{ Y | \exists y \cdot Q(x/y) \} \leftarrow Q(x/y).
\]

\[
\forall x \in \{ Y | \forall y \cdot Q(x/y) \} \leftarrow Q(x/y) \land \forall x \in Y s \cdot Q.
\]

Voronkov [Vor92] also discusses two other bounded quantifiers, written as \(\exists x \subseteq L \cdot Q \) and \(\forall x \subseteq L \cdot Q \), where \(x \subseteq L \) is to be read "\(x \) is a suffix of \(L \)"; we do not consider here.

To some extent the use of bounded quantifiers allows us to introduce in some compact form the "and" and the "or" branching within the program computations. This reveals some connections with the approach of Harel though we believe that the expressiveness and ease of programming within the logic programming paradigm makes Harel's programming proposal obsolete.

Even without the use of arrays the gain in expressiveness achieved by means of bounded quantifiers is quite spectacular. Consider for example the following problem.

Problem 1 Write a program which tests whether one list is a subset of another.

Solution

\[
\text{subset}(Xs, Ys) \leftarrow \forall x \in Xs \exists y \in Ys \cdot x = y.
\]

Several other examples can be found in Voronkov [Vor92]. Here we content ourselves with just one more, in which we use delay declarations very much like in modern versions of Prolog, (for example in ECLIPS, or the programming language Godel of Hill and Lloyd [HL94]).

Problem 2 Write a program checking the satisfiability of a Boolean formula.

Solution

We assume here that the input Boolean formula is written using Prolog notation, so for example \(\neg x \lor y \); \(Z \) stands for \(\neg x \land y \lor Z \).

\[
\text{sat}(X) \leftarrow X, \text{generate}(X).
\]

\[
\text{generate}(X) \leftarrow \text{vars}(X, Ls), \forall Y \in Ls \exists Z \in [\text{true}, \text{false}] \cdot Y = Z.
\]

\[
\text{DELAY} \text{UNTIL} \text{nonvar}(X).
\]
3 Arrays and Bounded Quantifiers in Logic Programming

Arrays in logic programming were introduced in Eriksson and Rayner [ER84]. Barklund and Bevemyr [BB93] proposed to extend Prolog with arrays and studied their use in conjunction with the bounded quantification. In our opinion the resulting extension (unavoidably) suffers from the fact that Prolog is an untyped language. In Kluzniak [Klu93] arrays are present, as well, where they are called indexable sequences.

More recently, Barklund and Hill [BH95] proposed to add arrays and restricted quantification, a generalization of the bounded quantification, to Gödel, the programming language which does use types.

In the programs below we use bounded quantification, arrays and type declarations. The use of bounded quantifiers and arrays makes them simpler, more readable and closer to specifications. We declare constants, types, variables and relations in a style borrowed from the programming language Pascal. The choice of notation is preliminary.

We begin with two introductory examples.

Problem 3 Check whether a given sequence of 100 integers is ordered.

Solution

const n = 100.
rel ordered: array [1..n] of integer.

Comments This remarkably short program uses meta-variables and a mild extension of the delay declarations to meta-variables. The delay declaration used here delays any call to a meta-variable until it becomes instantiated. vars(t, Ls) for a term t computes in Ls the list of the variables occurring in t. Its definition is omitted. vars(X, Ls) can be easily implemented using the var(X) and univ built-in’s of Prolog. true and fail are Prolog’s built-in’s.

In this program it is not advisable to delay the calls to negative literals until they become ground. Such a delay would reduce checking for satisfiability of subformulas which begin with the negation sign to a naive generate and test method.

Even though this program shows the power of Prolog, we prefer to take another course and use types instead of exploring extensions of Prolog, which is an untyped language.
Problem 5 Arrange three 1's, three 2's, ..., three 9's in sequence so that for all \(i \in [1, 9]\) there are exactly \(i\) numbers between successive occurrences of \(i\) (see Coelho and Cotta [CC88, page 193]).

Solution

rel sequence: array [1 .. 27] of [1 .. 9].
sequence(A) ← \(\forall i \in [1 .. 9] \exists j \in [1 .. 25 - 2i] \)

Comments The range \(J \in [1 .. 25 - 2i]\) comes from the requirement that the indices \(J, J+i+1, J+2i+2\) should lie within \([1 .. 27]\). Thus \(J + 2i + 2 \leq 27\), that is \(J \leq 25 - 2i\).

Problem 6 Generate all permutations of a given sequence of 100 elements.

First we provide a solution for the case when there are no repeated elements in the sequence.

Solution 1

const n = 100.
rel permutation: (array [1 .. n] of *, array [1 .. n] of *).
permutation(X, Y) ← \(\forall i \in [1 .. n] \exists j \in [1 .. n] Y[j] = X[i]\).
Here, \(X\) is the given sequence. Alternatively,

\(\forall i \in [1 .. n] \text{ member}(X[i], Y)\).

Comments Note the similarity in the structure between this program and the one that solves problem 1. This program is incorrect when the sequence contains repeated elements. For example for \(n = 3\) and \(X := 0, 0, 1, Y := 0, 1, 1\) is a possible answer.

To deal with the general case we use local array declarations and reuse the above program.

Solution 2

const n = 100.
rel permutation: (array [1 .. n] of *, array [1 .. n] of *).
permutation(X, Y) ← var A: array [1 .. n] of [1 .. n].
\(\forall i \in [1 .. n] \exists j \in [1 .. n] A[j] = i, \forall i \in [1 .. n] Y[i] = X[A[i]]\).

Comments This solution states that \(A\) is an onto function from \([1 .. n]\) to \([1 .. n]\) and that a permutation of a sequence of \(n\) elements is obtained by applying the function \(A\) to its indices.

Next, consider two well-known chess puzzles.

Problem 7 Place 8 queens on the chess board so that they do not check each other.

First, we provide a naive generate and test solution. It will be of use in the next section.

Solution 1

const n = 8.
type board: array [1 .. n] of [1 .. n].
rel queens, generate, safe: board.
queens(X) ← generate(X), safe(X).
generate(X) ← \(\forall i \in [1 .. n] \exists j \in [1 .. n] X[i] = j\).
safe(X) ← \(\forall i \in [1 .. n] \forall j \in [i+1 .. n] \)
\((X[i] \neq X[j], \forall k \in [i+1 .. n] (X[i] \neq X[j] + (j-i), X[i] \neq X[j] + (i-j)))\).

Comments To improve readability board is explicitly declared here as a type. Declaratively, this program states the conditions which should be satisfied by the values chosen for the queens. "\(\neq\)" is a built-in declared as
rel \(\neq\): (*, *).

In this section we use it only to compare terms with known values. Then "\(\neq\)" behaves like the usual arithmetic inequality relation of Prolog. A more general usage of "\(\neq\)" will be explained in the next section.

Next, we give a solution which involves backtracking.

Solution 2

const n = 8.
type board: array [1 .. n] of [1 .. n].
rel queens: board.
queens(X) ← \(\forall j \in [1 .. n] \exists k \in [1 .. n] \)
\((X[j] = k, \forall i \in [1 .. n-1] \)
\((X[i] \neq X[j], X[i] \neq X[j] + (j-i), X[i] \neq X[j] + (i-j)))\).
Problem 8 Knight's tour. Find a cyclic route of a knight on the chess board so that each field is visited exactly once.

Solution We assign to each field a value between 1 and 64 and formalize the statement “from every field there is a “knight-reachable” field with the value one bigger”. By symmetry we can assume that the value assigned to the field X[1, 1] is 1. Taking into account that the route is to be cyclic we actually get the following solution.

const n = 8.
type board: array [1 .. n, 1 .. n] of [1 .. n^2].
rel knight: board.
go_on: (board, [1 .. n], [1 .. n]).
knight(X) +-
 \forall I \in [1 .. n] \forall J \in [1 .. n] \exists I1 \in [1 .. n] \exists J1 \in [1 .. n]
 (abs((I-I1)-(J-J1)) = 2, X[I1, J1] = (X[I, J] mod n^2) + 1).
DELAY go_on(X, I, J) UNTIL known(X[I, J]).

Comments Note that the equation abs(X · Y) = 2 used in the definition of go_on has exactly 8 solutions, which determine the possible directions for a knight move. Observe that each time this call to “=” is selected, both arguments of it are known. The efficiency of go_on could of course be improved by explicitly enumerating the choices for the offsets of the new coordinates w.r.t. the old ones.

The behaviour of the above program is quite subtle. First, thanks to the delay declaration, 64 constraints of the form go_on(X, I, J) are generated. Then, thanks to the statement \(X[1, 1] = 1 \), the first of them is “triggered” which one by one activates the remaining constraints. The backtracking is carried out by choosing different values for the variables I1 and J1. The delay declaration is not needed, but without it this program would be hopelessly inefficient.

It is interesting to note that in Wirth [Wir76], a classical book on programming in Pascal, the solutions to the last two problems are given as prototypical examples of recursive programs. Here recursion is implicit.

We conclude this section by one more program. It will be needed in the next section.

Problem 9 Let \(m = 50 \) and \(n = 100 \). Determine the number of different elements in an array \(X: array [1 .. m, 1 .. n] of integer. \)

Solution const m = 50.
 n = 100.
type board: array [1 .. m, 1 .. n] of integer.
rel count: (board, natural).

count(X, Number) +-
 Number = m · n -
 \#(I, J: I \in [1 .. m], J \in [1 .. n]:
 (\exists K \in [1 .. I-1] \exists L \in [1 .. n]: X[I, J] = X[K, L])
 \% X[I,J] occurs in an earlier row
 \lor (\exists L \in [1 .. J-1] X[I,J] = X[I,L]).
 \% X[I,J] occurs earlier in the same row).

Comments In this program we used the counting quantifier introduced in Gries [Gri81, page 74] and adopted in Klužniak [Klu93] in the specification language SPILL-2. In general, given lists \(L1, L2 \), the term \#(I, J: I \in L1, J \in L2: Q) stands for the number of pairs \((i, j) \) such that \(i \in L1, j \in L2 \) and for which the query \(Q(I, J) \) succeeds. It is possible to avoid the use of the counting quantifier at the expense of introducing a local array of type board. This alternative program is more laborious to write.

This concludes our presentation of selected logic programs written using arrays and bounded quantifiers. Other examples, including those involving numerical computation can be found in Barklund and Millroth [BM94].

4 Arrays and Bounded Quantifiers in Constraint Logic Programming

We now present some constraint logic: programs. These are constraint programs with finite domains in the style of van Hentenryck [vH89]). Each of them has a similar pattern: constraints are first generated, and then resolved after the possible values for variables are successively generated. To clarify their use we provide here alternative solutions to two problems discussed in the previous section.

Problem 10 Solve problem 7 by means of constraints.

Solution const n = 8.
type board: array [1 .. n] of [1 .. n].
rel queens, safe, generate: board.
queens(X) ← safe(X), generate(X).
safe(X) ← ∀I ∈ [1..n] ∀J ∈ [I+1..n] (X[I] ≠ X[J], X[I] ≠ X[J] + (J-I), X[I] ≠ X[J] + (I-J)).
generate(X) ← ∀I ∈ [1..n] ∃J ∈ dom(X[I]) X[I] = J.

Comments Here dom(X), for a (possibly subscripted) variable X, is a built-in function which denotes the list of current values in the domain of X, say in the ascending order. The value of dom(X) can change only by decreasing, by executing a constraint, so in the above program an atom of the form X ≠ t.

The relation "≠" was used in the previous section only in the case when both arguments of it were known. Here we generalizes its usage, as now allow that one or both sides of it are not known. In fact, "≠" is a built-in defined as in van Hentenryck [vH89, pages 83-84], though generalized to arbitrary non-compound types.

We require that one of the following holds:

- Both sides of "≠" are known. This case is explained in the previous section.
- At most one of the sides of "≠" is known and one of the sides of "≠", denoted below by X, is either a simple variable or a subscripted variable with a known subscript.

In the second case X ≠ t is defined as follows, where for a term s, Val(s) stands for the set of its currently possible values:

\[
\begin{cases}
\text{if Val}(X) \cap \text{Val}(t) = \emptyset \text{ then } \text{succeed} \\
\text{else if } \text{Val}(t) \text{ is a singleton then } % t \text{ is known, so } X \text{ is not known} \\
\quad \text{begin } \text{dom}(X) := \text{dom}(X) \setminus \text{Val}(t); \% \text{ dom}(X) \neq \emptyset \\
\quad \quad \text{if } \text{dom}(X) = \{t\} \text{ then } \text{X} := t \\quad \end{cases}
\]

end.

If neither \(\text{Val}(X) \cap \text{Val}(t) = \emptyset \) nor \(\text{Val}(t) \) is a singleton, then the execution of \(X \neq t \) is delayed. We treat \(t \neq X \) as \(X \neq t \).

So for example in the program fragment

```lisp
... type bool: [false, true].
var B: bool.
A: array [1..2] of bool.
...
```


In turn, in the case of the program given above the execution of an atom of the form \(X[I] = J \) for some \(I, J \in [1..n] \) can affect the domains of the variables \(X[K] \) for \(K \in [I+1..n] \).

This solution to the 8 queens problem is a forward checking program (see van Hentenryck [vH89, pages 122-127]). Note the textual similarity between this program and the one given in solution 1 to problem 7. Essentially, the calls to the safe and generate relations are now reversed. The generate relation corresponds to the labeling procedure in van Hentenryck [vH89]). In the subsequent programs the definition of the generate relation is always of the same format and is omitted.

Problem 11 Solve problem 6 by means of constraints.

Solution

```lisp
const n = 100.
rel permutation: (array [1..n] of *, array [1..n] of *).
permutation(X, Y) ←
  type board: array [1..n] of [1..n].
  perm one, generate: board.
  one, one, generate: board.
  one_one(X), generate: board.
  ∀I ∈ [1..n] ∀J ∈ [I+1..n] X[I] ≠ X[J].
  var A: board.
  one_one(A), generate(A),
  ∀I ∈ [1..n] A[I] = X[I].
```

Comments In this solution, apart from the local array declaration, we also use local type and relation declarations. The efficiency w.r.t. to the logic programming solution is increased by stating, by means of the call to the one_one relation, that \(A \) is a 1-1 function. This replaces the previously used statement that \(A \) is an onto function. The call to \(\text{one_one} \) generates \(n(n-1)/2 = 4950 \) constraints.

We conclude this section by dealing with another classic problem that of colouring a map.

Problem 12 Given is a binary relation neighbour between countries. Colour a map in such a way that no two neighbours have the same color.

Solution

```lisp
type color: [blue, green, red, yellow].
countries: [austria, belgium, france, italy, ...].
rel map.color, constrain, generate: array countries of color.
neighbour: (country, country).
map.color(X) ← constrain(X), generate(X).
```
constrain(X) ← ∀I ∈ countries ∀J ∈ countries
neighbour(I,J) → X[I] ≠ X[J].

Comments We interpret here P → Q as follows:
(P → Q) ← P, Q.
(P → Q) ← ~P.
so like the IF P THEN Q statement of Gödel. Note that in the above program at
the moment of selection of the P → Q statement P is ground. Obviously, an efficient
implementation of P → Q should avoid the reevaluation of P.
Thus the constrain relation generates here the constraints of the form X[I] ≠
X[J] for all I, J such that neighbour(I,J).

5 Adding Minimization and Maximization

Next, we introduce a construct allowing us to express in a compact way the require­
ment that we are looking for an optimal solution. To this end we introduce the
minimization operator Y = μX:Q which is defined as follows:
Y = μX:Q ← Q[X/Y], ~∃X (X < Y, Q)).
We assume here that X and Y are of the same type and that < is a built-in ordering
on the domain of the type of X and Y. The existential quantifier ∃X Q is defined by the clause
∃X Q ← Q.

The efficient implementation of the minimization operator should make use of
memoization (sometimes called tabulation) to store the solutions to the query Q
found during the successive attempts to find a minimal one.
A dual operator, the maximization operator Y = νX:Q, is defined by:
Y = νX:Q ← Q[X/Y], ~∃X (X > Y, Q)).
As before we assume that > is a built-in ordering on the domain of the type of X and
Y. In Barklund and Hill [EH95] the minimization and the maximization operators are
introduced as a form of arithmetic quantifiers, in the style of the counting quantifier
introduced earlier. The above two clauses show that they are derived concepts.
The following simple example illustrates the use of these constructs.

Problem 13 Find a minimum and a maximum of a given sequence of 100 integers.

Solution

const n = 100.
rel min_and_max: (integer, integer, array [1..n] of integer).
min_and_max(Min, Max, A) ←
Min = μX: ∃I ∈ [1..n] X = A[I],
Max = νX: ∃I ∈ [1..n] X = A[I].

Next, we use these two operators in two constraint programs.

Problem 14 The cutting stock problem (see van Hentenryck [vH89, pages 181-
187]). There are 72 configurations, 6 kinds of shelves and 4 identical boards to be
cut. Given are 3 arrays:

Shelves: array [1..72, 1..6] of natural,
Req: array [1..6] of natural,

Shelves[K,J] denotes the number of shelves of kind J cut in configurati
o~
Waste[I] denotes the waste per board in configuration I and Req[J] the required
number of shelves of kind J. The problem is to cut the required number of shelves
of each kind in such a way that the total waste is minimized.

Solution We represent the chosen configurations by the array
Conf: array [1..4] of [1..72]
where Conf[I] denotes the configuration used to cut the board I.

rel solve: (array [1..4] of [1..72], natural).
generate: array [1..4] of [1..72].
solve(Conf, Sol) ←
Sol = μTCost:
% Sol is the minimal TCost such that:
∀I ∈ [1..3] Conf[I] ≤ Conf[I+1],
% symmetry between the boards
∀I ∈ [1..6] ∑J=1 Shelves[Conf[I],J] ≥ Req[J],
% enough shelves are cut
TCost = ∑I=1 Waste[Conf[I]],
% TCost is the total waste
generate(Conf).

Comments In this program we used as a shorthand the sum notation "∑...".
In general, it is advisable to use the sum quantifier (see Gries [Gri81, page 72]),
which allows us to use ∑I=1 t as a term. The sum quantifier is adopted in SPILL-2
language of Kluzniak [Klu93]. Kluzniak’s notation for this expression is: (S I: k
32
≤ I ≤ l: t). The interpretation of the constraints of the form X ≤ t, X ≥ t
or X = t is similar to that of X ̸= t and is omitted.

We conclude by solving the following problem.

Problem 15 Let m = 50 and n = 100. Given is an array Co which assigns to each
pixel on an m by n board a colour. A region is a maximal set of adjacent pixels that
have the same colour. Determine the number of regions.

In the program below we assign to the pixels belonging to the same region the
same natural number, drawn between 1 and m*n. If we maximize the number of so
used natural numbers we obtain the desired solution.

Solution
const m = 50.
const n = 100.
type color: [blue, green, red, yellow].
pattern: array [1..m, 1..n] of color.
board: array [1..m, 1..n] of [1..m*n].
rew pixel: (pattern, natural).
no: (pattern, board).
generate: board.
count: (board, natural).

pixel(Co, Sol) ← Sol = vNumber:
 var X: board.
 no(Co, X), generate(X), count(X, Number).
no(Co, X) ← ∀I ∈ [1..m] ∀J ∈ [1..n]
 (I < m → (Co[I,J] = Co[I+1,J] ← X[I,J] = X[I+1,J])),
 (J < n → (Co[I,J] = Co[I,J+1] ← X[I,J] = X[I,J+1])).

Comments The count relation is defined in the solution to problem 9. In the
above program first 2m⋅n = (m + n) = 9850 constraints are generated. Each of
them deals with two adjacent fields and has the form of an equality or inequality.
Then the possible values for the elements of X are generated and the number Number
of so used natural numbers is counted. The maximum value for Number is then the
desired solution.

The resulting program is probably not efficient, but still it is interesting to note
that the problem at hand can be solved in a simple way without explicit recursion.

6 Conclusions

We have presented here several logic and constraint logic programs that use bounded
quantification and arrays. We hope that these examples convinced the readers about
the usefulness of these constructs. We think that this approach to programming is
especially attractive when dealing with various optimization problems, as their speci-
fications often involve arrays, bounded quantification, summation, and minimization
and maximization. Constraint programming solutions to these problems can be easily
written using arrays, bounded quantifiers, the sum and cardinality quantifiers, and
the minimization and maximization operators. As examples let us mention the
stable marriage problem, various timetabling problems and integer programming.

Of course, it is not obvious whether the solutions so obtained are efficient. We
expect, however, that after an addition of a small number of built-in’s, like deleteff
and deleteffe of van Hentenryck [vH89, pages 89-90], it will be possible to write
simple constraint programs which will be comparable in efficiency with those written
in other languages for constraint logic programming.

When introducing arrays we were quite conservative and only allowed static
arrays, i.e. arrays whose bounds are determined at compile time. Of course, in
a more realistic language proposal also open arrays, i.e. arrays whose bounds are
determined at run-time should be allowed. One might also envisage the use of
flexible arrays, i.e. arrays whose bounds can change at run-time.

In order to make this programming proposal more realistic one should provide
a smooth integration of arrays with recursive types, like lists and trees. In the
language SPILL-2 of Kluzniak [Klu93] types are present but only as sets of ground
terms, and polymorphism is not allowed. Barklund and Hill [BH98] proposed to
add arrays to Gödel (which does support polymorphism) as a system module. We
would prefer to treat arrays on equal footing with other types.

We noticed already that within the logic programming paradigm the demarkation
line between iteration and recursion differs from the one in the imperative program-
ming paradigm. In order to better understand the proposed programming style one
should first clarify when to use iteration instead of recursion. In this respect it is
useful to quote the opening sentence of Barklund and Millroth [BM94]: “Programs
operating on inductively defined data structures, such as lists, are naturally defined
by recursive programs, while programs operating on “indexable” data structures,
such as arrays, are naturally defined by iterative programs”.

We do not entirely agree with this remark. For example, the “suffix” quantifiers
mentioned in Section 2 allow us to write many list processing programs without
explicit use of recursion (see Voronkov [Vor92]) and the quicksort program written
in the logic programming style is more natural when written using recursion than
iteration.

The single assignment property of logic programming makes certain programs
that involve arrays (like Warshall’s algorithm) obviously less space efficient than
their imperative programming counterparts. This naturally motivates research on ef-
cient implementation techniques of arrays within the logic programming paradigm.

Finally, a comment about the presentation. We were quite informal when explaining the meaning of the proposed language constructs. Note that the usual definition of SLD-resolution has to be appropriately modified in presence of arrays and bounded quantification. For example, the query $X[1] = 0, \forall i \in [1..2] X[i] \neq 0$ fails but this fact can be deduced only when the formation of resolvents is formally explained. To this end substitution for subscripted variables needs to be properly defined. One possibility is to adopt one of the definitions used in the context of verification of imperative programs (see Apt [Apt81, pages 460-462]). We leave the task of defining a formal semantics to another paper.

Acknowledgements I would like to thank Jonas Barklund and Feliks Kluzniak for useful discussions on the subject of bounded quantification and Pascal van Hentenryck for encouragement at the initial stage of this work. Also, I am grateful to Feliks Kluzniak for helpful comments on this paper.

References

Completeness in Abstract Interpretation

(Invited talk)

Patrick COUSOT

LIENS – DMI
École Normale Supérieure
45 rue d’Ulm
75230 Paris cedex 05 (France)
cousot@dni.ens.fr

Abstract interpretation [1] is a method for designing hierarchies of semantics as well as specifications of program analyzers by approximation of these semantics. Because of undecidability problems such as the termination problem, abstract interpretation based program analysis methods are fundamentally incomplete. Moreover implementation techniques such as the use of widenings/narrowing to speed up convergence of iterative fixpoint computation methods give the impression that the result of the analysis performed by the abstract interpreter is not at all predictable by the user.

This is in contrast with methods such as set-based analysis à la Heinze or type inference à la Milner which look different from abstract interpretation, for which numerous completeness results have been published and for which the result of the analysis can be predicted by the user, at least in principle, through the use of a rule-based inference system.

It has been shown recently that both set-based analysis [2] and type-inference [3] are abstract interpretations. Set-based analysis uses a finite abstract symbolic domain for each particular program (although it is an infinite domain when considering all possible programs). The unification based type-inference algorithm uses an infinite abstract domain together with a rather naïve widening operator (which may not look natural to some users).

*This work was partly supported by Povarr BRA 8130 LOMAPS.
This clearly shows that when one speaks of the fundamental incompleteness of abstract interpretation in contrast with the relative completeness of type inference systems, one cannot speak of the exactly same notions.

After a brief introduction to basic abstract interpretation notions, the purpose of the talk is to solve this apparent contradiction by eliminating superfluous differences in presentation of program analysis methods and by introducing a hierarchy of different and partially comparable notions of completeness. This explains the various acceptations of the notion with regard to fixpoint inference/fusion, computer representation of the abstract domain, computability of the abstract property transformer, (iterative) fixpoint computation, rule-based inference algorithm, convergence acceleration, etc. Numerous examples are provided in the context of logic programming with a few incursions in functional programming.

References

Logical foundations for multi-agent systems

Robert Kowalski
Imperial College - Department of Computing
180 Queen's Gate, London SW7 2BZ, UK

I will summarise the current status of my work with Francesca Toni, Fariba Sadri, Jacinto Davila, Ber Permpooontanalarp, Eric Fung and Gerhard Wetzel on developing logical foundations for multi-agent systems.

The core of these foundations is a new approach to logic programming which unifies abductive logic programming and constraint logic programming. This approach allows predicates to be defined in the usual logic programming manner, augmented with integrity constraints, which are properties of the definitions. Predicates are executed backwards using the definitions, as well as forwards using the integrity constraints. The approach is being developed both to serve as the inference engine for individual agents and as a programming language paradigm in its own right. Applications of the approach to operations research problems are also being investigated.

Integrity constraints are also used to obtain activity and reactivity in individual agents. Observations, which update the knowledge base of an agent, are checked for consistency with the integrity constraints. Integrity checking generates new goals, some of which may be converted into actions to be executed by the agent.

The overall observation-reasoning-action cycle is controlled by a resource-bounded metalogic program. The resource bound allows the reasoning and planning component of the cycle to be interrupted at any time in order to obtain an executable approximation to a plan which achieves the agent’s goals. The representation of actions and temporal relationships is formulated in a version of the event calculus.

An agent’s plans can contain actions to be performed by the agent itself, as well as actions to be performed by other agents. Moreover, actions can be speech acts, in general, and can convey information or requests from one agent to another, in particular. Agents can use such speech acts to coordinate their actions. We have begun to investigate the use of argumentation theory to provide a framework for such speech acts. In addition, we intend to investigate the applicability of concepts from deontic logic (the logic of obligation, prohibition and permission) to the problem of regulating interaction among agents.
On the Abstract Diagnosis of Logic Programs

Marco Comini, Giorgio Levi
Dipartimento di Informatica, Università di Pisa
Corso Italia 40, 56125 Pisa, Italy
{comini,levi}@di.unipi.it

Giuliana Vitiello
Dipartimento di Informatica ed Applicazioni
Università di Salerno, Baronissi (Salerno), Italy
giuvit@udsab.dia.unisa.it

Abstract

Abstract diagnosis of logic programs is an extension of declarative diagnosis, where we deal with specifications of operational properties, which can be characterized as abstractions of SLD-trees (observables).

We introduce a simple and efficient method to detect incompleteness errors, which is based on the application of the immediate consequences operator to the specification. The method is proved to be correct and complete whenever the immediate consequences operator has a unique fixpoint. We prove that this property is always satisfied if the program belongs to a large class of programs (acceptable programs). We then show that the same property can be proved for any program P, if the observable belongs to a suitable class of observables. We finally consider the problem of diagnosis of incompleteness for a weaker class of observables, which are typical of program analysis.

1 Introduction

Abstract diagnosis [9, 11] is a combination of three known techniques, i.e., algorithmic (declarative) diagnosis (debugging) [25, 18, 21, 15], the s-semantics approach to the definition of program denotations modeling various observable behaviors [16, 17, 20, 4, 3], and abstract interpretation [12, 13, 14].

The diagnosis problem can formally be defined as follows. Let P be a program, $[P]_{o}$ be the behavior of P w.r.t. the observable property α, and I_{α} be the specification of the intended behavior of P w.r.t. α. The diagnosis consists of comparing
The SLD-resolution and the operational behavior. The specification is therefore the intended declarative semantics of the program, which is the least Herbrand model of P, and the set of atomic logical consequences in \mathcal{L}.

Abstract diagnosis is a generalization of declarative diagnosis, where we consider operational properties. An observable is any property which can be extracted from a goal computation, i.e., observables are abstractions of SLD-trees. Examples of useful observables are computed answers, finite failures and call patterns (e.g., procedure calls selected in an SLD-derivation). Other examples come from program analysis, e.g., depth(l)-answers (i.e., answers containing terms whose depth is $\leq l$), types, modes and ground dependencies. As we will discuss later, the relation among the observables can naturally be understood in terms of abstract interpretation.

Here are some motivations for abstract diagnosis.

1. The most natural abstract diagnosis for positive logic programs is diagnosis w.r.t. computed answers, which leads to a more precise analysis, since declarative diagnosis is related to correct answers only.

2. Diagnosis w.r.t. finite failures allows us to verify another relevant behavior, which has also a logical interpretation.

3. Less abstract observables, such as call patterns, can be useful to verify the control and data flow between different procedures, as we usually do in interactive debugging. For example, the intended behavior that we specify might be a set of assertions of the form “the execution of the procedure call $p(t_1, \ldots, t_n)$ leads to the procedure call $q(s_1, \ldots, s_m)$”.

4. Diagnosis w.r.t. depth(l)-answers makes diagnosis w.r.t. computed answers effective, since both \mathcal{I}_o and \mathcal{C}_o are finite.

5. Diagnosis w.r.t. types allows us to detect bugs as the inadmissible calls in \mathcal{C}_o.

6. Diagnosis w.r.t. modes and ground dependencies allows us to verify other partial program properties.

In declarative diagnosis, the specification is usually assumed to be given by means of an oracle. This approach is feasible even in abstract diagnosis. However, since our method can handle abstractions, we can easily come out with finite observable behaviors and specify them in an extensional way.

2 Observables

The idea of combining abstract interpretation and debugging was first proposed in [5], where abstract interpretation techniques are used to statically determine the origin of bugs in higher-order imperative languages. The result is a set of correctness conditions expressed in terms of assertions.

Our theory of abstract diagnosis is built on an algebraic semantic framework for positive logic programs [7, 8], based on the formalization of observables as abstractions. A complete description of the framework is outside the scope of this paper. In Section 2 we summarize the main properties of the framework. We will consider here an important class of observables (denotational observables) with strong semantic properties. The diagnosis problem and the diagnosis algorithms for denotational observables introduced in [9] are considered in Section 3. We show that the existing declarative diagnosis methods can be reconstructed as instances of abstract diagnosis w.r.t. denotational observables. As in the case of declarative diagnosis, incorrect clauses can be detected by applying an immediate consequences operator to the specification. The first contribution of this paper is a method to detect incompleteness errors, which is similar to the incorrectness detection method, since it is based on the application of the (abstract) immediate consequences operator $T_{\mathcal{I}_o}$ to the specification. The main result is that this method is correct and complete, if $T_{\mathcal{I}_o}$ has a unique fixpoint. In Section 4 we show that this is the case for a large class of programs (acceptable programs). Acceptable programs were defined in [2] to study termination and all the pure PROLOG programs in [26] are reported to be acceptable. The same property is then shown (Section 5) to hold for all programs and for any observable α belonging to a suitable class of denotational observables. We finally consider in Section 6 the problem of diagnosis of incompleteness for a weaker class of observables (which are called semi-denotational). Semi-denotational observables are typically the properties used in program analysis.

We consider pure logic programs with the PROLOG (leftmost) selection rule. We assume the reader to be familiar with the notions of SLD-resolution and SLD-tree (see [22, 1]). The theory of observables [7, 8] is based on a kernel semantics for SLD-trees. The kernel semantics is given by two separate constructions, i.e.,

1. a definition in denotational style,

2. a definition given in terms of a transition system.

Both definitions are expressed in terms of three semantic operators \otimes, $+$ and \bowtie, which are the semantic counterparts of the syntactic operators \land, \lor and \leftrightarrow. The denotational and operational definitions are equivalent. Moreover, there exists a goal-independent program denotation which has the following properties:

1. it can be defined in terms of the transition system (top-down definition $O(P)$), by considering the set of SLD-trees for most general atomic goals.
is the observable program equivalence induced by SLD-trees.

We obtain two abstract denotations: the top-down denotation $\mathcal{O}_a(P)$ and the bottom-up denotation $\mathcal{F}_a(P)$.

Observables are abstractions of SLD-trees. More precisely, an observable is a function α from the domain of SLD-trees \mathcal{R} to an abstract domain \mathcal{D}, which preserves the partial orders. α is an abstraction function according to abstract interpretation, i.e., there exists a function γ (concretization) from \mathcal{D} to \mathcal{R}, such that (α, γ) is a Galois insertion. The theory of abstract interpretation tells us that we can define the most precise abstract version f^* of each semantic operator f as $f^* = \alpha \circ f \circ \gamma$.

Now we can obtain an abstract transition system and an abstract denotational definition from the ones of the kernel semantics, by simply replacing the operators \circ and γ by their most precise abstract versions α, α, and γ. We obtain two abstract (goal-independent) program denotations: the top-down denotation $\mathcal{O}_a(P)$ and the bottom-up denotation $\mathcal{F}_a(P)$.

8 gives a classification of observables, where each class is characterized by a set of simple axioms relating α, γ, \circ, \mathcal{D}, and \mathcal{W}.

- **perfect observables.** For perfect observables we can compute on the abstract domain, both operationally and denotationally, without losing precision. In particular, the abstract denotations are precise, i.e., $\mathcal{O}_a(P) = \mathcal{F}_a(P) = \alpha(\mathcal{O}(P))$. Perfect observables have all the properties of the kernel semantics. Computed resultants is an example of a perfect observable.

- **denotational observables.** The abstract denotations are not precise. However, we can take the most precise approximation T_{Pa} of the T_P operator and use it in the denotational definition. The resulting abstract denotational semantics is now precise, as is the case for the bottom-up denotation $T_{Pa} \uparrow \omega = \alpha(\mathcal{O}(P))$. Denotational observables have all the properties of the kernel semantics. Computed resultants is a denotational observable.

Our basic theory of abstract diagnosis will be developed for denotational observables. In Section 6 we will mention how it can be extended to semi-denotational observables.

We show two of the T_{Pa} operators that will be later used in the examples.

- **(computed answer substitutions)**

$$T_{Pa}(I) = \{ (p(X), \theta) \}$$

1. X is a tuple of new distinct variables
2. $p(t) \vdash p_1(t_1), \ldots, p_n(t_n) \in P$
3. $p_1(X_1), \theta_1 \in I, 1 \leq i \leq n$
4. $\theta = \text{mgu}((p_1(t_1), \ldots, p_n(t_n)), (p(X), p_1(X_1)\theta_1, \ldots, p_n(X_n)\theta_n))$.

3 Abstract diagnosis w.r.t. denotational observables

Let \(P \) be a program. If \(\alpha \) is a denotational observable, we know that the actual and the intended behaviors of \(P \) for all the goals are uniquely determined by the behaviors for most general goals. The following Definitions 3.1 and 3.2 extend to abstract diagnosis the definitions given in [25, 18, 21] for declarative diagnosis. In the following \(\mathcal{I}_o \) is the specification of the abstraction of the intended behavior of \(P \) for most general atomic goals w.r.t. the denotational observable \(\alpha \) (i.e., \(\mathcal{I}_o \) is the specification of the intended \(\alpha(P) \)). The actual abstract semantics of the program \(P \) is the abstract bottom-up denotation \(\mathcal{F}_a(P) = T_{P_a} \cup \omega \), since \(\alpha \) is a denotational observable. In the case of denotational observables we can assume the partial order on the abstract domain to be \(\subseteq \) (set inclusion).

Definition 3.1

1. \(P \) is partially correct w.r.t. \(\mathcal{I}_o \), if \(\mathcal{F}_a(P) \subseteq \mathcal{I}_o \).
2. \(P \) is complete w.r.t. \(\mathcal{I}_o \), if \(\mathcal{I}_o \subseteq \mathcal{F}_a(P) \).
3. \(P \) is totally correct w.r.t. \(\mathcal{I}_o \), if \(\mathcal{F}_a(P) = \mathcal{I}_o \).

If \(P \) is not totally correct, we are left with the problem of determining the errors, which are based on the symptoms.

Definition 3.2

1. An incorrectness symptom is an element \(\sigma \) such that \(\sigma \in \mathcal{F}_a(P) \) and \(\sigma \notin \mathcal{I}_o \).
2. An incompleteness symptom is an element \(\sigma \) such that \(\sigma \in \mathcal{I}_o \) and \(\sigma \notin \mathcal{F}_a(P) \).

Note that a totally correct program has no incorrectness and no incompleteness symptoms. Our incompleteness symptoms are related to the insufficiency symptoms in [18], which are defined by taking \(\text{gfp}(T_P) \) instead of \(\text{lfp}(T_P) \) as program semantics. The two definitions, even if different, turn out to be the same for the class of programs we are interested in (see the acceptable programs in Section 4). Ferrand's choice is motivated by the fact that \(\text{gfp}(T_P) \) is related to finite failures. The approach of using two different semantics for reasoning about incorrectness and incompleteness has been pursued in [19], leading to an elegant uniform (yet non-effective) characterization of correctness and completeness.

It is worth noting that we can reconstruct the usual definitions of declarative diagnosis within our more general framework, thus showing that the use of declarative specifications can also be motivated by operational arguments (i.e., the declarative semantics are goal-independent denotations corresponding to suitable denotational observables). In particular,

- the observable \(\phi \) (ground instances of computed answers) gives us the declarative diagnosis based on the least Herbrand model [25, 21];
- the observable \(\psi \) (correct answers) gives us the declarative diagnosis based on the least term model [18].

It is straightforward to realize that an element may sometimes be an (incorrectness or incompleteness) symptom, just because of another symptom. The diagnosis determines the "basic" symptoms, and, in the case of incorrectness, the relevant clause in the program. This is captured by the definitions of incorrect clause and uncovered element, which are related to incorrectness and incompleteness symptoms, respectively.

Definition 3.3 If there exists an element \(\sigma \) such that \(\sigma \notin \mathcal{I}_o \) and \(\sigma \in T_{c(\sigma)}(\mathcal{I}_o) \), then the clause \(c \in P \) is incorrect on \(\sigma \).

Informally, \(c \) is incorrect on \(\sigma \), if it derives a wrong observation from the intended semantics. \(T_{c(\sigma)} \) is the operator associated to the program \(\{c\} \), consisting of the clause \(c \) only.

The following theorem shows the relation between partial correctness (Definition 3.1) and absence of incorrect clauses (Definition 3.3). The theorem shows the feasibility of a diagnosis method for incorrectness based on the comparison between \(\mathcal{I}_o \) and \(T_{P_o}(\mathcal{I}_o) \) and does not require to actually compute the denotation \(\mathcal{F}_a(P) \) (i.e., the least fixpoint of \(T_{P_o} \)). Note that the second part of the theorem asserts that there might be incorrect clauses even if there are no incorrectness symptoms.

In other words, if we just look at the semantics of the program, some incorrectness bugs can be "hidden" (because of an incompleteness bug).

Theorem 3.4 If there are no incorrect clauses in \(P \) according to Definition 3.3, then \(P \) is partially correct w.r.t. \(\alpha \) according to Definition 3.1 (hence there are no incorrectness symptoms). The converse does not hold.

Proof.
If $TP_\alpha(I_\alpha) \subseteq I_\alpha$, then I_α is a pre-fixpoint of TP_α. Since $F_\alpha(P) = \text{fp}(TP_\alpha)$ [7], by Tarski's theorem $F_\alpha(P) \subseteq I_\alpha$.

If $TP_\alpha(I_\alpha) \not\subseteq I_\alpha$, then for some element $\sigma, \sigma \in TP_\alpha(I_\alpha)$ and $\sigma \not\in I_\alpha$. Hence, there exists a clause c in P such that $\sigma \in T(c,\alpha)(I_\alpha)$. Therefore c is incorrect. Otherwise, if $TP_\alpha(I_\alpha) \subseteq I_\alpha$ for all $\sigma \in \alpha$ and $\sigma \in T(c,\alpha)(I_\alpha)$, then $\sigma \in TP_\alpha(I_\alpha)$. Hence $\sigma \in I_\alpha$.

Consider the program $P = \{ p :- r, r \}$ and the specification $I_\alpha = \{(r, \varepsilon)\}$. P is partially correct because $F_\alpha(P) = \emptyset \subseteq I_\alpha$. However the only clause of P is incorrect because $\{(p, \varepsilon)\} \not\subseteq F_\alpha(I_\alpha) - I_\alpha$.

As in the case of declarative diagnosis, handling completeness turns out to be more complex, since some incompletenesses cannot be detected by comparing I_α and $TP_\alpha(I_\alpha)$. One would like to base the diagnosis on the following definition.

Definition 3.5 An element σ is uncovered if

$$\sigma \in I_\alpha, \sigma \not\in TP_\alpha(I_\alpha).$$

Informally, σ is uncovered if there are no clauses deriving it from the intended semantics.

The following proposition shows that we cannot base the diagnosis of incompleteness on the detection of uncovered elements.

Proposition 3.6 There exist a program P, a denotational observable α and a specification I_α, such that

i. there are no uncovered elements in P,

ii. P is not correct w.r.t. I_α (i.e., there exist incompleteness symptoms).

Proof. Consider the program $P = \{ p(x) :- p(x) \}$ and the specification $I_\alpha = \{(p(x), \varepsilon)\}$. Then $F_\alpha(I_\alpha) = \{(p(x), \varepsilon)\}$, while $F_\alpha(P) = \emptyset$.

However, the following theorem shows that the diagnosis of incompleteness can be based on Definition 3.5 if the operator TP_α has a unique fixpoint.

Theorem 3.7 Assume TP_α has a unique fixpoint. If there are no uncovered elements, then P is complete w.r.t. I_α (hence there are no incompleteness symptoms). The converse does not hold.

Proof.

i. If $I_\alpha \subseteq TP_\alpha(I_\alpha)$, then I_α is a post-fixpoint of TP_α. By Tarski's theorem, $I_\alpha \subseteq \text{gfp}(TP_\alpha)$. Since $F_\alpha(P) = \text{fp}(TP_\alpha)$ [7] and $\text{gfp}(TP_\alpha) = \text{fp}(TP_\alpha)$, the thesis holds.

ii. Consider the program $P = \{ p :- r, r \}$ and the specification $I_\alpha = \{(p, \varepsilon)\}$. P is complete because $F_\alpha(P) = \emptyset \subseteq I_\alpha$. However the element (p, ε) is uncovered because $TP_\alpha(I_\alpha) = \{(r, \varepsilon)\}$.

In the next two sections we will consider two large classes of programs and denotational observables, for which TP_α has a unique fixpoint. For these programs and observables, the diagnosis of incompleteness is as simple as the one for correctness. Note that, if TP_α has a unique fixpoint, $\text{fp}(TP_\alpha) = \text{gfp}(TP_\alpha)$. Hence our incompleteness symptoms correspond to the insufficiency symptoms in [18].

The following corollary is a justification of the overall diagnosis method.

Corollary 3.8 Assume TP_α has a unique fixpoint. Then P is totally correct w.r.t. I_α, if and only if there are no incorrect clauses and uncovered elements according to definitions 3.3 and 3.5.

If the abstraction α guarantees that for each most general atomic goal we have finitely many observations, then the specification is finite and our diagnosis is effective. In such a case, as already mentioned, I_α can be specified in an extensional way and there is no need for the oracle.

4 Abstract diagnosis of acceptable programs

We consider here the abstract diagnosis of programs belonging to the class of acceptable programs [2], whose definition is given below. It is worth noting that acceptable programs are the left-terminating programs, i.e., those programs for which the SLD-derivations of ground goals (via the leftmost selection rule) are finite. As already mentioned, most interesting programs are acceptable (all the pure LOG programs in [26] are acceptable). The same property holds for most of the "wrong" versions of acceptable programs, since most "natural" errors do not affect the left-termination property.

Definition 4.1 [2] A level mapping for a program P is a function $\lfloor \cdot \rfloor : BP \rightarrow \mathbb{N}$ from ground atoms to natural numbers. Let $\lfloor \cdot \rfloor$ be a level mapping for P and I be a (not necessarily Herbrand) model of P. P is acceptable w.r.t. $\lfloor \cdot \rfloor$ and I, if for every clause $c :- b_1, \ldots, b_n$ in $\text{Ground}(P)$ the following implication holds for $i \in [1, n]$:

$$I \models b_1^{\lfloor b_1 \rfloor} \iff |a| > |b_i|.$$
Definition 4.2 A norm for a program P on \mathcal{R} is a function $\| \cdot \| : \mathcal{R} \to \mathbb{N}$ such that for every n the set $\{ x \in \mathcal{R} \mid \|x\| = n \}$ is finite. A program P is \mathcal{R}-acceptable, if there exists a norm s.t. for all $c \in P$ and all finite $I \in \mathcal{R}$

$$\|T(c)(I)\| > \|I\|.$$

Lemma 4.3 Every acceptable program P is \mathcal{R}-acceptable.

Proof. We just need to define $|X| = \max \{|G| \mid \{G, \theta, \delta, \phi, d\} \in X, \theta\}$, where $|\cdot|$ is the level mapping of P and $|B| = \min \{|B\psi| \mid \psi \text{ is grounding for } B\}$.

For every observable α and each n we can define a “projection” function $\pi_{\alpha,n}(I) = \alpha \circ \pi_n \circ \gamma$, where $\pi_n(I) = \{ x \in I \mid \|x\| \not= n \}$. The functions $\pi_{\alpha,n}$ are well defined if α is a denotational observable.

Lemma 4.4 Let P be an acceptable program and α be a denotational observable. Then

$$\pi_{\alpha,n} \circ T_{P,\alpha} = \pi_{\alpha,n} \circ T_{P,\alpha} \circ (\sum_{i<n} \pi_{i,\alpha}).$$

Proof. For every n, every I and for all $m \geq n$, the sets $\{\pi_n \circ T \circ \pi_m\}(I)$ are empty, because $\|T(I)\| > \|I\|$ by hypothesis. Thus $\pi_n \circ T = \pi_n \circ T \circ \sum_{i<n} \pi_i$. Then for every α

$$\pi_{\alpha,n} \circ T_{P,\alpha} = \alpha \circ \pi_n \circ \gamma \circ \alpha \circ T \circ \gamma$$

$$= \alpha \circ \pi_n \circ T \circ \gamma$$

$$= \alpha \circ (\pi_n \circ T \circ \sum_{i<n} \pi_i) \circ \gamma$$

$$= \alpha \circ \pi_n \circ \gamma \circ \alpha \circ T \circ \gamma \circ \alpha \circ \sum_{i<n} (\pi_i \circ \gamma)$$

$$= (\alpha \circ \pi_n \circ \gamma) \circ (\alpha \circ T \circ \gamma) \circ \sum_{i<n} (\alpha \circ \pi_i \circ \gamma)$$

$$= \pi_{\alpha,n} \circ T_{P,\alpha} \circ \sum_{i<n} \pi_{i,\alpha}$$

which is the claim.

We are now ready to prove the main theorem.

Theorem 4.5 (fixpoint: uniqueness) Let P be an acceptable program and α be a denotational observable. Then $T_{P,\alpha} \uparrow \omega$ is the unique fixpoint of $T_{P,\alpha}$.

Proof. Clearly $T_{P,\alpha} \uparrow \omega$ is a fixpoint. Now assume that X and Y are fixpoints. We show, by induction on n, that for all n, $\pi_{\alpha,n}(X) = \pi_{\alpha,n}(Y)$.

$$\pi_{0,\alpha}(X) = (\pi_{0,\alpha} \circ T_{P,\alpha})(X)$$

$$= (\pi_{0,\alpha} \circ T_{P,\alpha})(\bot)$$

$$= (\pi_{0,\alpha} \circ T_{P,\alpha})(Y)$$

$$= \pi_{0,\alpha}(Y)$$

Moreover, if for all $i < n \pi_{i,\alpha}(X) = \pi_{i,\alpha}(Y)$, then

$$\pi_{\alpha,n}(X) = (\pi_{\alpha,n} \circ T_{P,\alpha})(X)$$

$$= (\pi_{\alpha,n} \circ T_{P,\alpha} \circ (\sum_{i<n} \pi_{i,\alpha}))(X)$$

$$= (\pi_{\alpha,n} \circ T_{P,\alpha} \circ (\sum_{i<n} \pi_{i,\alpha}))(Y)$$

$$= (\pi_{\alpha,n} \circ T_{P,\alpha})(Y)$$

$$= \pi_{\alpha,n}(Y)$$

Hence

$$X = \sum_{n \in \mathbb{N}} \pi_{\alpha,n}(X) = \sum_{n \in \mathbb{N}} \pi_{\alpha,n}(Y) = Y.$$

Theorems 4.5 and 3.7 allow us to perform the diagnosis of incompleteness errors according to Definition 3.5.

Corollary 4.6 Let P be an acceptable program. Then P is totally correct w.r.t. I_α if and only if $T_{P,\alpha}(I_\alpha) = I_\alpha$.

It is worth noting that the property of being acceptable is undecidable. Therefore we do not mean the diagnosis to contain a test for acceptability. We just want to remark that, since all sensible programs turn out to be acceptable, the diagnosis algorithm based on the application of the bottom-up operator to the specification (both for correctness and incompleteness) is indeed feasible.

Note that this result applies to declarative diagnosis as well, because, as we have shown in Section 3, it can be explained in terms of denotational observables.

Example 4.7 Consider the acceptable program P of Figure 1, which is an "ancestor" database with a missing clause ($\text{ancestor}(X, Y) :\leftarrow \text{parent}(X, Y)$). Consider the computed answer substitutions observable γ. The specification is

$$I_\gamma = \{ \langle \text{parent}(X, Y), \{ X/\text{terach}, Y/\text{abraham} \} \rangle, \langle \text{parent}(X, Y), \{ X/\text{abraham}, Y/\text{isaac} \} \rangle, \langle \text{ancestor}(X, Y), \{ X/\text{terach}, Y/\text{isaac} \} \rangle, \langle \text{ancestor}(X, Y), \{ X/\text{terach}, Y/\text{isaac} \} \rangle \}.$$
ancestor(X, Y) :- ancestor(X, Z), parent(Z, Y).
parent(terach, abraham).
parent(terach, isaac).
parent(abraham, isaac).

Figure 1: A wrong acceptable program

while

TPξ(Iξ) = \{(parent(X, Y), \{X/terach, Y/abraham\}),
(parent(X, Y), \{X/terach, Y/isaac\}),
(ancestor(X, Y), \{X/terach, Y/isaac\}\}

The elements (ancestor(X, Y), \{X/terach, Y/abraham\}) and
(ancestor(X, Y), \{X/terach, Y/isaac\}) are diagnosed as uncovered, while the
"derived" element
(ancestor(X, Y), \{X/terach, Y/isaac\}) is not, even if it is an incompleteness symptom.

5 Abstract diagnosis of acceptable denotational observables

In this section we show that Definition 3.5 can be used to detect incompleteness errors even for non acceptable programs, if the observable α satisfies a property which guarantees that the immediate consequences operator has a unique fixpoint (acceptable observables).

Definition 5.1 An α-level mapping for a denotational observable α : R → D is a function \(|\cdot| : D → N\). Let \(|\cdot|\) be an α-level mapping, α is acceptable w.r.t. \(|\cdot|\) if for every clause c and for all finite Iα,

\(|T_\alpha(I_\alpha)| > |I_\alpha|\).

For every α-level mapping \(|\cdot|\) we can define the norm \(|X| = |\alpha(X)|\) and, therefore, the projections πα,\xi.

Lemma 5.2 Let P be a program and α be an acceptable denotational observable. Then

\(\tau_{\alpha,\xi} \circ TP_\alpha = \pi_{\alpha,\xi} \circ TP_\alpha \circ (\sum_{i<n} \pi_{i,\xi})\).

Theorem 5.3 Let P be a program and α be an acceptable denotational observable. Then TP,α has a unique fixpoint.

We show now that the basic SLD-trees observable \((id)\) is indeed acceptable. The abstraction can destroy this property. However all the denotational observables which keep some information about the length of the derivation are also acceptable. In particular this is the case of the \(l\)-answers with depth observable, which has been proposed to achieve finite extensional specifications. On the other hand, correct and computed answers substitutions are not acceptable (as shown by the program in the proof of Proposition 3.6).

Proposition 5.4 The identical denotational observable \((id) : R → R\) is acceptable.

Proposition 5.5 The observable \(\Xi\) is acceptable.

Example 5.6 Consider the program \(P\) of Figure 2 which is another "wrong" version of the "ancestor" database. This version, however, is not acceptable (the computation of the goal \(\text{?-ancestor(terach, abraham) goes into an infinite loop}\). We will show that the bug can be located by an acceptable denotational observable. Consider first the computed answer substitutions observable \(\xi\), which is not acceptable.

\(I_\xi = \{(parent(X, Y), \{X/terach, Y/abraham\}),
(parent(X, Y), \{X/terach, Y/isaac\}),
(ancestor(X, Y), \{X/terach, Y/abraham\}),
(ancestor(X, Y), \{X/terach, Y/isaac\}),
(ancestor(X, Y), \{X/abraham, Y/isaac\})\}.

Even if \(TP_\xi(I_\xi) = I_\xi\), the program has an incompleteness symptom, since the element \(\text{(ancestor}(X, Y), \{X/terach, Y/isaac\})\) does not belong to \(T_\xi(P)\).

Consider now the 6-answers with depth observable \(\xi\), which is instead acceptable.

\(I_\Xi = \{(parent(X, Y), \{X/terach, Y/abraham\}, 1),
(parent(X, Y), \{X/terach, Y/isaac\}, 1),
(ancestor(X, Y), \{X/terach, Y/abraham\}, 2),
(ancestor(X, Y), \{X/terach, Y/isaac\}, 4),
(ancestor(X, Y), \{X/abraham, Y/isaac\}, 2)\}.

The diagnosis now detects the incorrect clause \(c_2\) in addition to the uncovered element \(\text{(ancestor}(X, Y), \{X/terach, Y/isaac\}, 4)\).

6 Diagnosis of incompleteness for semi-denotational observables
Semi-denotational observables are meant to model the abstraction (with approximation) involved in program analysis (e.g., depth()-answers, types, modes, ground dependencies and sharing). Even the most precise abstract denotation $F_{a}(P)$ is just an approximation of the abstraction of the concrete semantics. Namely $\alpha(O(P)) = \alpha(F(P)) \subseteq F_{a}(P)$. The specification I_{a} is a specification of the intended behavior $\alpha(O(P))$. Hence we cannot get any information about partial correctness, since in general the following relation holds (for a complete program):

$I_{a} \subseteq F_{a}(P)$.

In other words, in a partially correct and complete program, the actual program denotation and the specification can be different, just because of the approximation introduced by the semi-denotational observable.

On the other hand, the definitions given in Section 3 related to completeness (and the corresponding diagnosis algorithm for detecting uncovered elements) are applicable to the case of semi-denotational observables as well, once we adapt our definitions to the partial ordering \preceq, which is usually different from set inclusion in semi-denotational observables. In particular, we can decide completeness by comparing I_{a} and $T_{P_{a}}(I_{a})$, if P is acceptable and α is a semi-denotational observable.

7 Conclusions

We have shown that the theory of declarative diagnosis can be extended to the case where the specification defines the intended behavior of programs w.r.t. operational properties which can be formalized as denotational or semi-denotational observables, as first suggested in [9]. The main new result w.r.t. [9] is the simple characterization of incompleteness in the case of acceptable programs or acceptable observables.

This paper is concerned with the foundations of abstract diagnosis. Hence we have not dealt with the problems of designing efficient diagnosis algorithms and of implementing the specification. Let us just mention that we can easily define top-down diagnosis algorithms, in the style of those discussed in [23], where the specification is given by an oracle, possibly implemented by querying the user. One such an algorithm, for the case of the computed answers denotational observable, is described in [10]. The top-down diagnoser uses one oracle only, and does not require to determine the symptoms in advance. The AND-compositionality property of $F_{a}(P)$ allows us to determine all the incorrect clauses and uncovered elements by considering just a finite set of atomic goals (i.e., the most general atomic goals).

The effectivity of the diagnosers relies on our ability to handle finite approximations of the specification. In fact, if I_{a} is not finite, the diagnosis is impossible since the oracle may return infinite answers to some queries. Abstract diagnosis allows us to tackle this problem, by considering abstractions (modeled by denotational observables) on finite domains. One example is the observable I-answers with depth considered in this paper, which, however, requires the user to reason in unacceptable operational terms. A second solution is to move to more natural observables, such as depth()-answers, which can be modeled as a semi-denotational observable (in this case, however, we can only reason about incompleteness). Finally, we can resort to partial specifications as defined in [10] in the case of the computed answers observable. Partial specifications are simply descriptions of finite approximations of the intended program behavior. The theory of abstract diagnosis can be extended to partial specifications, resulting in weaker results, which may be, however, very useful in the practice of diagnosis.

References

