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Abstract 

This extended abstract contains some non-technical observations about 
the roles that logic can play in the specification of computational systems. In 
particular, computation-as-deduction, meta-programming, an d higher-order 
abstract syntax are brie:fly discussed. 

l Two approaches to specifications 
In the specification of computational systems, logics are generally used in one of two 
approaches. In one approach, computations are mathematical structures, containing 
such items as nodes, transitions, and state, and logic is used in an external sense to 
ma.ke statements about those structures. That is, computations are used as models 
for logical expressions. Intensional operators, such as the modals of temporal and 
dynamic logics or the triples of Hoare logic, are often employed to express proposi­
tions about the change in state. For example, next-time modal operators are used 
to describe the possible evolution of state; expressions in the Hennessey-Milner are' 
evaluated against the transitions made by a process; and Hoare logic uses formulas 
to express pre- and post-conditions on a computation's state. We shall referto this 
approach to using logic as computation-as-model. In such approaches, the fact that 
some identifier x has value 5 is represented as, say a pair (x, 5}, within some larger 
mathematical structure, and logic is used to express propositions about such pairs: 
for example, x> 3 A x< 10. 

A second approach uses logical deduction to model computation. In this ap­
proach the fact that the identifier x has value 5 can be encoded as the proposition 
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"x has value 5." Changes in state can then be modeled by changes in propositions 
within a derivation. Of course, changing state may require that a proposition no 
longer holds while a proposition that did not hold (such as "x has value 6") may 
hold in a new state. It is a common observation that such changes are naturally sup­
ported by linear logic and that deduction (in particular, backchaining in the sense 
of logic programming) can encode the evolution of a computation. As a result, it is 
possible to see the state of a computation as a logical formula and transitions be­
tween states as steps in the construction of a proof. 'Ne shall refer to this approach 
to using logic as computation-as-deduction. 

There are many ways to contrast these two approaches to specification using 
logic. For example, consider their different approaches to the "frame problem." 
Assume that we are given a computation state described as a model, say M 1 , in 
which i t is encoded that the identifier x is bound to value 5. If we want to increment 
the value of x, we may need to characterize all those models M 2 in which x has 
value 6 and nothing else has changed. Specifying the precise formal meaning of this 
last clause is difficult computationally and conceptually. On the other hand, when 
derivations are used to represent computations directly, the frame problem is not 
solved but simply avoided: for example, backchaining over the clause 

x has value n -o x has value n + l 
might simply change the representation of state in the required fashion. 

In the first approach to specification, there is a great deal of richness available for 
modeling computation, since, in principle, such disciplines as set theory, category 
theory, functional analysis, algebras, etc., can be employed. This approach has had, 
of course, a great deal of success within the theory of computation. 

In contrast, the second approach seems thin and feeble: the syntax of logical 
formulas and proofs contains only the most simple structures for representing com­
putational state. What this approach lacks in expressiveness, however, is amelio­
rated by the fact that it is more intimately connected to computation. Deductions, 
for example, seldom make reference to infinity (something commonly clone in the 
other approach) and steps within the construction of proofs are generally simple 
and effective computations. Recent developments in proof theory and logic pro­
gramming have also provided us with logics that are surprisingly flexible and rich 
in their expressiveness. In particular, linear logic (6] provides flexible ways to model 
state, state transitions, and some simple concurrency primitives, and higher-order 
quantification over typed À-terms provides for flexible notions of abstraction and en­
codings of object-levellanguages. Also, since specifications are written using logical 
formulas, specifications can be subjected to rich forms of analysis and transforma­
tions. 

To design logics (or presentations of logics) for use in the computation-as-de­
duction setting, it has proved useful to provide a direct and natura! operational 
interpretation of logical connective. To this end, the formalization of goal-directed 
search using uniform proofs (14, 16] associates a fixed, "search semantics" to logical 
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connectives. When restricting to uniform proofs does not cause a loss of complete­
ness, logical connectives can be interpreted as fixed search primitives. In this way, 
specifier can write declarative specifications that map directly to descriptions of com­
putations. This analysis of goal-directed proof search has lead to the design of the 
logic programming languages ÀProlog, Lolli, LO, and ~Some simple examples 
witlì using these languages for specifications can be found in (1, 10, 14]. The recent 
thesis (2] provides two modest-sized Forum specifications: one being the operational 
semantics of a functional programming language containing references, exceptions, 
and continuation passing, and the other being a specification of a pipe-lined, RISC 
processar. 

2 

Observation 1. Logic can be used to make statements about compu­
tation by encoding states and transitions directly using formulas and 
proof. This use of logic fits naturally in a logic programming setting 
where backchaining can denote state transition. Both linear logic and 
higher-order quantification can add greatly to the expressiveness of this 
paradigm. 

An example 

The following specification of reversing a list and the proof of its symmetry illus­
trates how the expressiveness of higher-order linear logic can provide for natural 
speci:fications and convenient forms of reasoning. 

~ ......_wt,...,_"' " ......... reverse L K :- p i rv\ ( ()--"-
p i X\(pi M\(pi N\(rv (X: :M). N:- rv M (X::N)))) 

rv L nil). 
=> rv nil K 

~cu..u. 
-~-0 

Here we use a variant of ÀProlog syntax: in particular, lists are constructed from 
the infix : : and nil; pi X\ denotes universal quantification of the variable X; => 
denotes intuitionistic implication; and, -: and :- denote linear implication and 
its converse. This one example combines some elements of both linear logic and 
higher-order quantification. 

To illustrate this speci:fication, consider proving the query 

?- reverse (a: :b: :c: :nil) Q. 

Backchaining on the definition of reverse above yields a goal universally quantified 
by pi rv\. Proving such a goal can be clone by instantiating that quantifier with a 
new constant, say rev, and proving the result, namely, the goal 

pi X\(pi M\(pi N\(rev (X::M) N:- rev M (X: :N))))=> rev nil Q-: 
rev (a::b::c::nil) nil). 

Thus, ~ attempt will be made to prove the goal (rev (a: : b: :c: :n il) n il) from 
the two clauses 
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pi X\(pi M\(pi N\(rev (X::M) N:- rev M (X::N)))). 
rev nil Q. 

(Note. that th~ va.riable Q in the last clause is free and not implicitly universally 
quantifìed.) G1ven the use of intuitionistic and linea.r implications, the fi.rst of these 
clauses can be used any number of times while the second must be used once (natura! 
cha.racterizations of inductive and initial cases for this example). Backchaining now 
leads to the following progression of goals: 

rev (a: : b:: c: :nil) nil. 
rev (b: :c: :nil) (a: :nil). 
rev (c: :nil) (b: :a: :nil). 
rev nil (c::b::a::nil). 

an d_ the last goal will be proved by backchaining against the initial clause and binding 
Q w1th (c: :b: :a: :nil). 
. It is clear from this specifi.cation of reverse that it is a symmetric relation: the 
mformal.proof simply not~s that if the table of rev goals above is :flipped horizontally 
and vert1cally, the result 1s the core of a computation of the symmetric version of 
reverse. Given the expressiveness of this logic, the formai proof of this fact directly 
incorporates this main idea. 

Proposition. Let l and k be two lists and let P be a collection of clauses in 
which the only clause that contains an occurrence of reverse in its head is the 
one displayed above. If the goal (reverse 1 k) is provable from p then the goal 
(reverse k l) is provable from P. 

Proof. Assume that the goal (reverse l k) is provable from P. Given the re­
striction on occurrences of reverse in P, this goal is provable if and only if it is 
proved by backchaining with the above clause for reverse. Thus, the goal 

. \C 1- \d.-, p~ rv 
pi X\(pi M\(pi N\(rv (X::M) N:- rv M (X::N)))) => 
rv nil k -: rv l nil) 

is ~ro.vable from P. Sin ce this universally quantifi.ed formula is provable, any instance 
of 1.t 1s provable. Let rev be a new constant not free in p of the same type as the 
vanable rv. The formula that results from instantiating this quantifi.ed goal with 
the >.-term x\y\ (not (rev y x)) (where \ is the infi.x symbol for >.-abstraction 
and not is the logical negation, often written in linea.r logic using the superscript j_). The resulting formula, 

pi X\(pi M\(pi N\(not (rev N (X::M)) :- not (rev (X: :N) M))))=> 
not (rev k nil) -: not (rev nil l), 

is thus provable from P. This formula is logically equivalent to the following formula 
(linea.r implications and their contrapositives are equivalent in linear logic). 
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pi X\(pi M\(pi N\(rev (X::N) M:- rev N (X::M)))) => 
rev nil l -: rev k nil 

Since this code is provable and since the constant rev is not free in P, we can 
universally generalize over it; that is, the following formula is also provable. 

pi rev\( 
pi X\(pi M\(pi N\(rev (X::N) M·- rev N (X::M)))) => 
rev nil l -: rev k nil) 

From this goal and the defi.nition of reverse (and a-conversion) we can prove 
(reverse k l). Hence, reverse is symmetric. 1 

This proof should be considered elementary since it involves only simple linear 
logic identities and facts. Notice that there is no direct use of induction. The two 
symmetries mentioned above in the informai pr;;;r;;~ptured ii;.thehigher-order 
substitution x\y\ (not (rev y x)): the switching of the order of bound variables 
captures the vertical :flip and linea.r logic negation (via contrapositives) captures the 
the horizontal :flip. 

3 Meta-programming and meta-logic 
An exciting area of specifi.cation is that of specifying the meaning and behavior of 
programs and programming languages. In such cases, the code of a programming 
language must be represented and manipulated, and it is valuable to introduce the 
terms meta-language to denote the specifi.cation language and object-language to 
denote the langùage being specifi.ed. 

Given the existence of two languages, it is natura! to investigate the relationship 
that they may have to one another. That is, how can the me8JJ.il.ing of object-language 
expressions be related to the meaning of meta-level expressions. One of the major 
accomplishments in mathematicallogic in the fìrst part of this century was achieved 
by K. Godei by probing this kind of re:flection, in this case, encoding meta-level 
formulas and proofs at the the object-level [7]. 

Although much of the work on meta-level programming in logic programming ha.s 
also been focused on re:flection, this focus is rather narrow and limiting: there are 
many other ways to judge the success of a meta-programming language apa.rt from its 
ability to handle re:flection. While a given meta-programming language might not be 
successful at providing novel encodings of itself, it might provide valuable and iexible 
encodings of other programming languages. For example, the 1r-calculus provides a 
revealing encoding of evaluation in the >.-calculus [17], evaluation in object-oriented 
programming [28], and interpretation of Prolog programs [12]. Even the semaJiltic 
theory of the 1r-calculus can be fruitfully exploited to pro be the semantics of eneoded 
object-languages [27]. While it has been useful as a meta-laJitguage, it does not seem 
that the 11"-calculus would yield an interesting encoding of itself. 
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Similarly, ÀProlog has been successful in providing powerful and f!exible speci­
fìcations of functional programming languages [8, 21] and natural deduction proof 
systems [5], Forum has similarly been used to specify sequent calculi and various 
features of programming languages [2, 14]. It is not clear, however, that .>-Prolog or 
Forum would be particularly good for representing their own operational semantics. 

Observation 2. A meta-programming language does not need to cap­
ture its own semantics to be useful. More importantly, it should be 
able to capture the semantics of a large variety of languages and the 
resulting encoding should be direct enough that the semantics of the 
meta-language can provide semantically meaningful information about 
the encoded object-language. 

A particularly important aspect of meta-programming is the choice of encod­
ings far object-level expressions. Godei used natural nuu1bers and the prime fac­
torization theorem to encode syntactic values: an encoding that does not yield a 
transparent nor declarative approach to object-level syntax. Because variables in 
logic programming range over expressions, representing object-level synt;u can be 
a partìcularly simple, at least for certain expressions of the object language. For 
example, the meaning of a type in logic programming, pa10ticularly types as they 
are used in ÀProlog, is a set of expressions of a given type. In contrast, types in 
functional programming ( say, in SML) generally denote sets of values. While the 
distinction between expressions and values can be cumbersome at times in logic pro­
gramming (2 + 3 is different than 5), it can be useful in meta-programming. This 
is particularl3' true when dealing with expressions of functional type. For example, 
the type int ~·> int in functional programming denotes fundions from integers to 
integers: checking equality between two such functions is not possible, in generaL 
In logic programming, particularly in ÀProlog, this same type contains the code of 
expressions (not functions) of that type: thus i t is possible to represent the syn­
ta.x of higher-order operations in the meta-programming language and meaningfully 
compare and compute on these codes. More generally, meta-level types are most 
natu:rally used to represent object-level syntactic categories. Vl/hen using sHch an 
encoding of object-levellanguages, meta-level unification and meta-level variables 
can be used naturally to probe the structure of object-level syntax. 

Observation 3. Since types and variables in logic programming range 
over expressions, the problem of naming object-level expressions is often 
easy to achieve and the resulting specifìcations are natural and declara­
tive. 

abstract syntax 

In the last observation, we used the phrase "often easy to achieve." In fact, if 
contain bound it is a" comm.on observa.tion that 
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representing such variables using only fust-order expressions is problematic: since 
notions of bound variable names, equality up to a:-conversion, substitution, 
are not addressed naturally by the structure of first-order terms. F'rom a logic 
programming point-of-view this is particularly embarrassing sin ce all of these notions 
are part of the meta-theory of quantifìcation logic: since these issues exìst in logic 
generally, i t seems natural to expect a logical treatment of them for 
that are encoded into logic F'ortunately, the notion of higher-or-der abstmcl syntax 
is capable of declaratively dealing with these aspects of object-level syntax. 

Higher-order abstract syntax involves two concepts. First, ),-terms and their 
equational theory should be used Ull.iformly to represent syntax containing bound 
variables. Already in [3], Church was doing this to encode the universal and exis­
tential quantifiers and the definite description operatoL Following this ~,..,,..,~,~·"·le 
instantiation of quantifiers, for example, can be specified using pl-reduction. 

The second concept behind higher-orde:r abstract syntax is that for 
composing and decomposing syntax must respect at least a:-conversion of terms. 
This appears to have first been clone by Huet and Lang in [11]: they discussed the 
advantages of representi.ng object-level syntax using simply typed À-terms and ma­
nipulating such terms using matching modulo the equational rules for ;\-conversion, 
Their approach, however, was rather weak since it only used matching unifi­
cation more generally), That restrictions made i t impossible to express all but the 
simplest operations on syntax. Their approach was extended by Miller an d N adathu:r 

[15] by moving to a logic programming setting that contained ,Bry-unii'ication of 
simply typed À-terms. In that paper the central ideas and advantages behind higher­
order abstract syntax are discussed. In the context of theorem proving, Paulson also 
independently proposed similar ideas [20]. 

In [23] Pfenning and Elliot extended the observations in [15] by producing ex­
amples where the meta-language that incorporated À-abstractions contained not 
just simple types but also product types. In that paper they coined the expression 
"higher-order abstract syntax." At about this time, Harper, Honsell, and -Plotkin 
in (9] proposed representing logics in a dependent typed À-calculus. While. they did 
not deal with the computational treatment of syntax directly, that treatment vras 
addressed later by considering the unification of dependent typed À-expressions 
Elliott (4] and Pym [25]. 

The treatment of higher-order abstract syntax in the above mentioned papers 
had a couple of unfortunate aspects. First, those treatments involved unifìcation 
with respect to the full ,817-theory of the À-calculus, and this generai theory is com­
putational expensive. In [11], only second-order matching was used, an operation 
that is NP-complete; later papers used full, undecidable unifìcation. Second, various 
different type systems were used with higher .. order abstract syntax, namely 
types, product types, and dependent types. However, if abstract syiitax is essen· 
tially about a treatment of bound variables in syntax, it should ha ve a presentation 
that is independent from typing. 

The introduction of L;, in [13] provided solutions to both of 'these problems. 
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First, L>. provides a setting where the unification of À-terms is decidable and has 
most general unifiers: it was shown by Qian [26] that L>,-unification can be done 
in linear time and\space (as with first-order unification). Nipkow showed that the 
exponential unification algorithm presented in [13] can be e:ffectively used within 
theorem provers [19]. Second, it was also shown in [13] that L>,-unification can be 
described for untyped À-terms: that is, typing may impose additional constraints 
on unification but L>,-unification can be defined without types. Thus, it is possible 
then to define L>,-like unification for various typed calculi (22]. 

Observation 4. L>. appears to beone of the weakest settings in which 
higher-order abstract syntax can be supported. The main features of L>. 
can be merged with various logical systems (say, >.Prolog and Forum), 
with various type systems (say, simple types and dependent types) [21), 
and with equational reasoning systems [18, 24). 

While existing implementations of ÀProlog, Isabelle, Elf, and NuPRL ali make 
use of results about L>., there is currently no direct implementation of L>,. It should 
be a small and flexible meta-logic specification language. 
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Absiraci 

A programming language is a tool and a vehicle for applications. Logic 
Programming has proven to be a very fruitful paradigm. Recognizing the 
need to promote the evolution of Prolog towards a more expressive new logic 
programming language, a large medium-term national research project· was 
recently started under the authors' coordi.nation involving a large body of in­
vestigators from their home institutions. Extensions to Logic Programming 
are being developed with new forms of computational reasoning, with explicit 
negation, constraint programming, and parallelism and distribution support. 
The resulting language, PROLOPPE, will integrate the above aspects in the 
form of a trully efficient implementation that exploits innovative techniques, 
induding joint implicit and explicit parallelism, and distribution over het­
erogenous multiple processor architectures. This language will be used in a 
wide variety of applications such as desision support systems, natural lan­
guage processing, diagnosis, scheduling, and robot cooperation. In this paper 
we overview the main topics behind the research in the PROLOPPE project. 

This paper is an edited version, by the authors, of part of the original pro­
posal of the PROLOPPE Project which included contributions from C. Damasio, 
F. Menezes, J. C. Cunha, J. J. Alferes, L. M. Pereira, P. Barahona, P. D. Medeiros, 
S.P. Abreu, from the Universidade Nova de Lisboa, and A. Matos, A. P. Tomas, F. 
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Silva, J. P. Leal, L. Damas, L. Lopes, M. Filgueiras, N. Moreira, R. Reis and V. S. 
Costa from the Universidade do Porto, and Miguel Calejo from Servisoft. 

l Introduction 

Prolog, albeit its great success, has a number of limitations both at the language 
and at the execution levels. We propose to overcome some of these limita.tions b 

l . d. . y 
re ymg an 1mprovmg on recent results in the semantics of logic programming lan-
g.uages, where we have ourselves made relevant contributions. We think it is now 
t1me for a new step in this direction, with the proposal of a language augment­
ing the expressive :md computational power of Prolog. Our main objective is to 
promote the evolutwn ?f Prolog tow~rds a more expressive new logic programming 
lan~ua~e (ProloppeÌ, t1ed to an effiCient execution environment that exploits inno­
vative. Im_Ple~entatwn techniques, including joint implicit and explicit parallelism, 
and d1stnbutwn over heterogenous multiple processor architectures. Extensions to 
L~gic Pro~~ammin~ will be developed with new forms of computational reasoning, 
w1th explic1t negatwn, constraint programming, and parallelism and distribution 
support. 

Prolog supports a subset of Logic only, and in particular it does not include 
explicit negatio~ in the facts and in the rules. Increased expressive power of the lan­
guage.' and a w1der scope for its applications will be possible by including explicit 
negatwn as well as default negation, and exploiting new forms of non-monotonic 
reasoning (a promising field with increasing expansion at the international scale) 
Handling con~radi~t.ions an d automated methods for belief revision also brings in in~ 
creased fun~twnalit1~s. Irr:-plem:ntation of these functionalities requires the support 
of construt1ve negatwn, mtegnty constraints, and disjunction. Constraint-based 
programming methods for solving linear Diophantine equations have been developed 
by researchers in our groups, and are proved to be among the most efficient meth­
ods known. These and other methods, namely incrementai hlerarchical constraint 
s~lvers for .finite domains and the naturals, will be integrated in the implementa­
twn and w1ll ~upport r~pid prototyping of efficient applications in multiple domains 
( e.g.. s.chedulmg an d tn:le-tabling). Currently, these applications demand highly 
spec1ahzed p~ograms ~hlch are hard to specify and mantain. Integrating forms of 
~o~-.~onoto~c reas?m~g and numerica! constraints in a logic language opens pos­
sibihties for mnovatwn m the area of Decision Support Systems. 

-!' first efficient im?lementatio~ i~cluding such extensions will be developed, fol­
lowmg our past expenence, and aimmg at overcoming severallimitations of current 
l~gic prog~am~in.g systems, regarding problem solving in non-trivial AI applica­
tl.ons, and m di~tnbuted AI. The project encompasses the development of new tech­
mques concermng the followin~ aspects: optimized Prolog compilation, execution 
mod.els for the proposed extenswns, joint exploitation of implicit and explicit par­
allehsm over heterogeneous multiple processor architectures, and tools for program 
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development with sequential and parallel execution, with support for performance 
measurement, debugging and visualization. 

W e address a diversity of complex application domains requiring a pr'ogramming 
system with great expressiveness, declarativity, efficiency, and intelligence in the 
execution strategies. These aspects will contribute to the evaluation of the developed 
tools, as well as to strenghten the logic programming abilities in order to address 
non-trivial problem solving. Application development will also be pursued in other 
initiatives, extending its impact at the national and international scopes. 

In the following sections we summarize the fundamental issues that are being 
addressed in this project. 

2 Semant.ics for negation 

Recently, several authors have underscored the importance of extending logic pro­
gramming (LP) with a second kind of negation ...,, for use in knowledge representa­
tion, deductive databases and nonmonotonic reasoning (NMR) [GL90, GL92, Ino91, 
Kow90, KS90, PW90, PAA9lb, PAA91d, PAA92b, PDA93b, PDA93c, PDA93a, 
PAA93, Wag91]. [BG93] makes an overview of the use of such programs in lrnowl­
edge representation and NMR. Different semantics for extended logic programs with 
...,-negation (ELP) have appeared [DR91, GL90, KS90, PA92, PAA91a, PAA92a, 
Prz90, Prz9la, Sak92, Wag91]. Each of these semantics is a generalization for ELP 
of either the stable models semantics (SM) [GL88], or the well-founded semantics 
(WFS) [GRS91] of normal programs. 

In [Prz90, Dix91, Dix92] SM and WFS are contrasted, and it is argued that, 
by its structural properties, WFS is more suitable for an implementation (unlike 
SM, it is possible to define for WFS both bottom-up and top-down procedures 
[PAA9lc, CW92, Ros92, BD93]). To deal with the problem of floundering, the top­
down procedures need to treat negation a.s failure goals by means of procrastination, 
common to that of constraints and deterministic priority, and/or constructive meth­
ods (TS86, Prz89, KT88, CW92, Ros92, BD93, Bol93]. 

[AP92] contrasts some of these semantics regarding their use of ...,-negation, 
where distinct meanings of -. are identified ( explicit, strong an d classical), an d 
argues that, by its properties, explicit negation is preferable. By being a gener­
alization of WFS for ELP which uses explicit negation, WFSX [P A92) appears as 
a natural candidate for the base semantics of our ELP PROLOPPE implementa­
tion. (Alf93] make an extensive study on WFSX, and its relationship with several 
NMR formalisms. In [AP93b] WFSX is defined in terms of a "logic of belief and 
provability', and compared with the works of [Che93, MT93, LS93). This open the 
way for contradiction removal (cf. below), and for generalizilig WFSX to disjunctive 
programs, in the spirit of [BLM90, Prz91c, Prz91b, Prz93], where several semantics 
for disjunctive norma! programs are defined. 

By generalizing LP with either explicit negation or integrity constrains, a new is-
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sue arises: how to deal with contradiction. [DR91, Jon91, PA93b, PAA9la, PAA92a] 
present several proposal for that issue. [AP93c, PA93a] distinguish between two 
generic approaches to deal with contradiction: one consists in avoiding it; the other 
in removing it. The definition on procedures for removing contradiction has been 
generalized to dea] with two valued revisions [PDA93b], and to deal with preference 
among revisions [DNP93], with application to diagnosis, updates, and debugging 
[PDA93c]. 

Despite all the above mentioned effort on the theoretical study on ELP semantic 
and its applìcation domains, to date there is no efficient implementation of these 
semantics, nor even a formal specification of their procedures. The ELP implemen­
tation of this proposal is intended to fil] in this gap, and to allow for a practical 
application of ELP for problems of the domains studied. 

3 Constraint Logic Programming 

The characteristics of LP, namely its declarative nature, makes it particularly suit­
able to the specification of a large number of constraint satisfaction problems. Nev­
ertheless, the resolution principle, the basis of LP, is insufficient to handle efficiently 
these problems, since it does not take advantage from the specificity of some domains 
(namely numeric) nor from the characteristics of the operations defined on these do­
mains. Several extensions have thus been proposed to LP in the last few years 
that, without jeopardizing its declarative nature, allow a much better performance 
in solving these problems. In generai, these languages extend LP to Constraint 
Logic Programming (CLP), by replacing the resolution principle by more powerful 
constraint solving method in some specialised domain. 

Solving linear constraints on finite domains may also be clone by exploring the 
equivalence to the problem of solving systems of linear equations over the natura! 
numbers (Diophantine equations) an d using the specific methods developed for i t. 
Most of the recent research work on Diophantine equations is related with the de­
velopment of algorithms for unification of terms with associative and commutative 
functors (AC-unification) and with the field of Term Rewriting Systems [Dom91]. 
The use in the implementation of a CLP system of one of the methods for solving a 
system of Diophantine equations is un der research [ Con93]. Other recent results, for 
a single equation, are described in [TFar] and [FT93] and correspond to the fastest 
rnethods known to date. 

The topic of constraints over algebras of ration,) trees extends term unification, 
in a decidable way [Mah88, CL89], to the resolut10n of first order formulas with 
equality as unique predicate symbol. Extensions to Prolog in this line, are Prolog 
II [Col82], Prolog III, and more recent, systems as CLP(:FT) [Smi91], where uni­
versally quantified disequalities are used to allow logic programs with constructive 
negation. On the other hand, as was pointed out in [DMV93], the standard alge­
bra of rational trees has a dose relationship with the standard model for features 
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[Smo89], ·vvhich were establish in order to .formalize f:a.ture based gramrnar 
K • li tho" have ~"merged in the Computabonal Lmgu1shcs commumty over ,Q.c"fila sms - ~c - h · fi b "l'· 

' ' r From a practical point of view, the fact that t e satls a 1 n.y tne past 1ew years. _ _ . , . 
. bl r· <h'-'ce d· omains) is NP-hard tends to manifest itself m a dramatJC way pro em \ID ul v O ' • • • ' - • 

· t. al pp'l1'cot1"ons motivated several specialized algorithms to mmJmJze tlJ.Js m prac lC a eu • , -

- [Kas87, ED88, MK91]. . -"'- .. 
In it was argued that any pradical approach to the sat1snab1hty _ . _ 

l --ld f t · ·-· techn1"ques to reduce the size of the input formulae to wtuch s aou use ac onzatwn . . 
~v complete a.lgorithm for sa.tisfiability is applied, since such factonzatwn c<~n 

dJ fac+-~-- tho over"ll cost of the process. ln re uce an vvJ. v - • 

- DMB93] were described more factorization techmques and a 
rew:rite system fo:r satìs:fìability was provided. 

in most conventional a.rchitectures. 
fu:rther the pe:do:rmance using dired 

wde ?end Native code systems 
by-passing the emulator. can also machine-level 

Global information on how arguments 
execution. Its most common uses are in the further 0f-'v"''~c"' 

l 

usually 
direct 

to tl:w 
prograrns. V.fe believe that such 

u'""-'"'""'"'-'" C compilers. 
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can match) can be selected :first and run in and-parallel. When no such goals are available, the system can try the several alternatives to a non-determinate goal in or-parallelism. Besides the parallelism, the selection functions most natural to the Basic Andorra Model have a very useful form of implicit coroutining (SC93], which has been exploited in several Andorra-I applications [Yan89, GY92] and in the Pandora language (Bah93]. Note that Andorra-I can only exploit and-parallelism between determinate goals. Warren's Extended Andorra Model (EAM) [War89] lifts this restriction and allows a general form of and-parallelism. The EAM gives a set of general rewrite rules for logic programs, which can be subject to different con­tro! schemes. The EAM was a basis for the Kernel Andorra Prolog (KAP) (HJ90) framework which is instantiated in the AKL language, proposed by Janson and Haridi (JH91]. In these languages, guards (such as commit guards, cut guards an d wait guards) are used to control computation, which may be nondeterministic. Both or-parallelism, an d and-parallelism between non-determinate (an d determi­nate) goals can be exploited. Moreover, the search space can be much reduced over traditional Prolog systems. 

Further improvements to AKL's search rule have been performed by Abreu, Pereira and Codognet [APC92a]. The authors have studied failure-driven con:figu­ration reordering, which can be seen as an application of the :first-fail principle to the unfolding of an AKL computation. This shows that And-Or tree Rewriting sys­tems (AORS), which encompasses both AKL and the EAM, provide a fertile base for the exploitation of a-posteriori search-space pruning, i.e. pruning part of the search-space as a consequence of the execution of another portion of the program. This approach complements the a-priori search-space pruning that comes as a result of constraint propagation, another mechanism present in AKL. The differences between Prolog an d Andorra-I are more striking. Andorra-I does in fact inherit most of its implementation techniques from Parlog (Cra88) and KLl (SSM+87]. Andorra-I's abstract machine and compiler are described by San­tos Costa [SC93] (note that in practice much of the difficulties to be addressed in Andorra-I are due to parallelism support, handled by Yang's engine and by the severa! schedulers[BRSW91, Dut91]). Andorra-I incorporates some optimisations, the ones considered particularly important for Andorra-I's main goal to run real ap­plications. The compiled Andorra-I is not as optimised as current Prolog systems, being a more complex and a newer system. Great improvements can be obtained by using the new techiques that are being developed for Prolog, plus the new techiques developed for the committed-choice languages [TB93). 
The implementation of AKL and of the EAM ,Jso brings some new problems. Janson and Montelius have a prototype implementation (JM92], but again several optimisations will be needed for one such system to compete with current Prolog systems. Note that AKL (an d EAM) can be described in terms of and-boxes, an d or­boxes ( several types may ex:ist). These boxes are expanded during forward execution, but their con:figuration must be reorded upon failure. This can be made more effective through the guidance of the reordering scheme by a binding-dependency 
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h · the ob]. ect of the AKL/IP (for AKL with Intelligent maintenance system; sue 1s . k d . . tl" d . [AP93a] and [APC92b] currently bem:· .,·or e on p unmg) system ou me m ' , · 1 t li ' . r L' b AKL/IP is currently being implemented using Janson ~wl lV on e us In IS on. [JM92] as a basis, being thus a sequential implementatwn. It can ~e prototype t t" l model based on rewrite rules for an d-or trees ( as IS gued that a compu a wna 
· a~ "th AORS's) is more suited to dependency-directed search-space prumng the casetWI . g a Prolog like selection rule, because the forrner provides a built­t an sys ems usm - d efully with inl. rnechanism to describe suspension of goals ~n can cope more grac 

changes to the relative ordering of goals at run-time. 

5 Implicit and Explicit Pa:rallelism 
. min s sterns obtain high-performance by exploit~ng di~erent P aralie~ logic lrl~gra~othgi:plicit and explicit parallelism are available m logic p~o­forms o. p~a e~:r:s In explicit systems such as Delta Prolog [PMCA86] specJal gramromg ang g . d l"t . Delta Prolog) are available to control parallelisrn. types of goals ( events an sp I s m 1 1 . . . be obtained through the parallel execution of severa reso -Implic1t parallehsm can llelism or through the parallel resolution vents arising from the same query, or-para ' b l d al al d- arallelism. All these forms of parallelism can e exp ore. ac-~~:;:: to g:er;' d:;er~nt strategi:s. 'V!e ne_xt discuss the most important techmques now available to exploit parallehsm m logJc prograrns. 

5.1 I:mplidt Parallelis:m 
r- arallelism and and-parallelism have been exploited successfully in logic ~ro­Both o . p t Whereas or-parallel systems exploit much the same par~lehsm, grammmg sys ems. 

•t f d1fferent d d"ff . ly in the wav they represent the search space, qm e a ew . an 1 er mam J bl f th most Impor­forms of and-parallelism have been recogni~ed. Argua. y\~ome o .t: d-choice lan­a roaches are the following. Systems Implementmg e comrn: e ta:t e;pexploit parallelism between goals that have commited to a smgl~ claused In~ ~p!wÌent and-parallelism systems, su~h as &-Pr.olog [Hl;io\only ru~ lls~~~g~:j al whose com utation should not mterfere, m para e . n orra . :~pl~ìts and-parahelism between goals that a~e detel~t~te. The(j~~~Jldea has been generalised in the Extended Model, and m the anguage . 

5.2 Parallel Imple:mentation of the EAM and AKL 
loit and- arallelism between determinate goals. Both the ~~:r:i ~~L ~~~yt~:restrictio;. AKL an d the EAM thu:nsha~e t~e P~~erty t~~~ the computation may be carried out in parallel more natur y t an m o er para e 

dd h as can be found in t>ome Prolog lì.e. intrinsic to the execution model, not as an .a -on sue systems, or in multi-sequential parallel implementatwns. 
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logic programming systems: the approach of havi . organized as a tree of and-boxes and h . b ng the run-time data structures · c mce- oxes the requirem t · prumn~ guards, together with the fact that and-b h :n s on qmetness of potentially better locality propertie ki h oxes ave their own store lead to an d fine-grained parallelism Ind ds, tmha ~g sue a system suitable for both coarse · ee , e gams on a parall 1 · l . are very attractive, and Moolenaar[VAMD91] h e I~p ementatmn of AKL prototype for of AKL. as recently Implemented a parallel 
Finally, the promising experimentai res l t bt . . type of the AKL/IP system prompt us t ~ ~ ~ tmed Wlth the preliminary proto­o oo m o a true parallel implementation. 

5.3 Implicit Parallelism for Distributed M S . emory ystems 
Recently, new parallel architectures, namely distributed sha . tures, have been proposed and built ( th KS red memory architec-Although, in these architectures the e.g. : h R. and EDS parallel machines). ware and hardware support for ~ sh mde~otry Ils p ysically distributed there is soft-hi are vrr ua memory computat. d l Th are tectures combine the advantag f l b IOn mo e . ese the advantage of shared memory :d o artghe nu:n e: of processors ( scalability) with t' f ' are ere1ore Ideai targets fo th all l ec~ Ion o Prolog programs. These architectures . r e par e ex­logic programming systems have be d l d are qmte recent and few parallel One of the :first models has been d:: e~e op; . that understand the new issues. shown successful execution for or-par:~n~ ~ Implfemented by Silva [Sil93], and e sm m one o these architectures. 

5.4 Explicit Parallelism 
This approach consists in the de:finition of of sequenciality and concurrency synchr .cont~tructsdfor the explicit specification ' omza mn an non deter · · · l · programming language. - nnmsm m a og1c 

T?e di~ersity of proposals that have arisen in the ast ten . . pa.l a.lms: (l) search for increased flex'b'lit . th p ifi . years have two pnnci­implicit parallelism as supported by I l y ~ln edspec catl_on of parallelism, versus r . · a compier an /or run tJme 8 t (") th 10r smtable constructs for the spec'fi t' f di 'b - ys em; il e need 1 ca 1on o stn uted sy t A l of problems are naturally modelled by . lt' l s ems. arge number where the data structures and/or th ' ~~~ l~he concurrent interacting processes distributed. e en 1 168 at solve the problem are spacially 

6 Programming environment 
Mostly. sin ce the 80s severai e:fforts ha ve been made t . . gramnnng environments in order to meet th t .o bmld powerful log:tc pro-tive Prolog language in the 70s [DCLY93] Oe e~ech atmns brought by the innova­results were found by capitalizin l : ne o t e _areas where more promising ' g on oglc programnnng's own caracteristics, was 
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declarative debugging, which has grown into an area with autonomous scientific workshops, such as the recent [FN93], [Cai92]. So far one of the gre!':test eforts towards an environment integrating innovative tools has been the ESP1 T ALPES project (ANPR89], which went on between 1986 and 1988. From that work and from its sequel by the UNL team several prototype Prolog environments were developped (X-Prolog, MacLogic, StepOnProlog), associateci to various Prolog implementations (Apple Computer's Logic Manager, UNL's own na,noProlog, Universidade do Porto's YAP, University of Edinburgh's C-Prolog), sometimes in the context of externai R&D contracts (Apple, ENIDATA, Digitai, Softlog/NeXT, among others). In this project we are further improving the development tools in the environ­ment, including low-level analyzers for sequential and parallel execution, declarative 
debugging, browsers, graphics tools and interface buiders. 

7 Tasks Overview 
This project represents a significant e:ffort, at nationai scale, towards promoting the Logic Programming paradigm in severai directions: theory, language, execution models, implementations and applications. It spans a large body of researchers, and it will stimulate a diversity of teaching and training activities. Besides the semantic definitions for the new PROLOPPE language, we will pro­duce the :first usable implementation of the language and a development environ­ment to be made available to the internationai acadernic community, promoting the exploitation of AI applications. This implementation will include and extend the results that the proponents have been achieving, regarding a better Prolog execution model, applied to the support of more advanced semantics and a joint exploitation of implicit and explicit parallelism. The tasks below will produce specifications of language extensions, models and prototypes, and the prototypes themselves, which wìll be demonstrated and made available during the project. 

• Explicit Negation and Logic Programming with Non-Monotonic Reasonning, ìncluding contradiction removal, with constructive negation and disjunction. 
• Constraint Logic Programming: constraint resolution methods are investir gated and used in the implementation of constraint logic programming lan­guages: (a) resolution methods for the linear Diophantines equation systems an d other more generai constraints concerning naturais an d finite domains; (b) incrementai hierarchical constraint solvers over natural and finite domains. 
• Execution Models: optirnized compilation of the Prolog model will be ex­plored, since our past experience in the implementation of conventional Pro­log shows that great improvements can still be achieved when implementing the language. This includes: (a) the design of an Intermediate Computer De­scription, oriented to the underneath architecture; (b) .the implementation of 
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a compiler with procedure and intra-procedure level optimization, featuring 
unfol~n~: choice points eli~na.tion a.nd mode or sequentia.lity detection; (c) 
extens1b1hty support to prov1de the proposed extensions to the logic language. 

" We will develop other execution models and search strategies in the following 
aspects: (a) optimization of the sea.rch process based in "Intelligent Pruning", 
a method tha.t resembles Prolog's intelligent backtracking, but applied to AKL 
(AKL/IP) execution model; (b) sequential and parallel implementation of the 
AKL/IP language; (c) application of the AKL/IP execution model to non­
monotonic reasoning, as support to an implementation support of the previous 
extensions. 

011 Implicit and Explicit Para.llelism; implicit para.llelism of the OR and AND 
types will be explored over shared memory and distributed memory archi­
tect~e~, integrat~d with other forms of parallelism suitable to the support 
of distnbuted logic programming, its application in Distributed AI a.nd its 
implementation over heterogenous multiprocessors. ' 

® Development Environment: we will integrate the acomplished extensions in an 
environment with a set of user support tools, su eh as: (a) low-level ana.lyser 
with performance measuring tools, and sequentia.l and parallel execution trac­
ing; (b) decla.rative debugger; (c) browser; (d) graphic library an d specification 
languages for system interaction; (e) visualization of distributed computations. 

"' Some applications will be developed to evaluate, test, promote PROLOPPE: 
(a) syntactic ana.lyser for natural language (for the testing of system use in 
new formalisms based on constraints like the HPSG); (b) Constraints and 
Time-Tabling; (c) To diagnosis of distributed a.rtificial intelligence an d non­
monotoni c reasoning. 

Other aplications of non-monotonic reasoning are forseen, e.g. to planning 
~nd. to ~atura.llanguage, not ca.rried out within the project, but evaluated by 
mshtut10nal colleges of team members. The results of this evalutation will be 
report. 

Acknowledgments. This research is nationa.lly supported in pa.rt by Programa 
CIENCIA a.nd project PROLOPPE of the PRAXIS XXI programme. 
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Abstract 

The main difficulty in the definition of a static analysis framework for CC programs 
is probably related to the correct approximation of the entailment relation between 
constraints. This approximation is needed for the abstract evaluation of the ask_E;l!IJ,J_<is 
and directly in:fiuences the overall precision of the analysis. In this paper we provi de a 
solution to this problem by stating reasonable correctness conditions relating the ab­
stract an d the concrete domains of computation. The solution is domain independent 
in the sense that it can be applied to the class of downward closed observations. Prop­
erties falling in this class ( e.g. freeness) h ave already been studi ed in the context of 
the analysis of sequentiallogic programs. W e believe that the same abstract domains 
can be usefully applied to the CC context to provide meaningful ask approximations. 

l Int:roduction 

Concurrent Constraint (CC) programming [16] arises as a generalization ofboth concurrent 

logic programming and constraint logic programrning (CLP). In the_CC framework processes 

are executed concurrently in a shared store, a constraint representing the global state of 

the computation. Communication is achieved by ask and tell basic actions. A process 

telling a constraint simply adds it to the current store, in a completely asynchronous way. 

Synchronization is achieved through Q]g_c_Éirl:fL.askii~ Namely the process is suspended when 
the store does no t entail the ask constraint anditremainssuspended until the stoie entai}s' 

-~~- Whlle being~l~gantfrom a theoretlcal point ofview, this synchronization mechanism 

turns out to be very difficult to model in the çontext of sta tic analy~is. The reason for su eh 
a problem li es in the an ti-monotoni c nature of the ask operator wrt the asked constraint: 

if we replace this constraint with a weaker one we obtain stronger observations. As a 

consequence, the approximation theory developed to correctly characterize upward closed 

(i. e. closed wrt entailment) properties becomes useless when we are looking for a domain 
ìndependent solution to the ask approximation problem [18]. 

In this paper we thus consider the downward closed properties an d we specify snitable 
domain independent correctness conditions that allow to overcome the problem of a safe 

"This work has been supported by the "PARFORCE" (Pa.rallel Formal Computing Environment).BRA­
Esprit II Project n. 6707. 
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Dee. Agent 

E 

p (x):-Agent. Dee 

Stop 
tell(c) 
:1 x inAgent 
Agent Il Agent 

n 

L ask Cci)-> Agenti 
z=l 
p(y) 

Table 1: The syntax 

abstractìon of ask constraints. In particular we develop an approximation theory that correctly detects the definite suspension of an ask guard. This informatìon can be used in ~any wa~s,_ e.g. debugging of CC programs as well as identifying processes that are defi­~tely senalized (so that we avoid their harmful paraliel execution). However its usefulness 1s first of ali in the improvement of the precision of the static analysis framework, as it aliows :o cut the branc~es o~ code that will not be considered in the concrete computation. . Thi~ (pa~tml) :lass1ficatmn of CC program's observations is not new. See [12] for an mterestmg discusswn about safeiy and liveness properties, being downward dosed and upward closed_ respectively .. As a matter of fact, in the literature there already exist abst:act d_omams developed ior the stati c analysis of sequential ( constraint) logic languages de_aling -;1th down_ward closed observations, e.g. freeness in the Herbrand as well a.s in anthmet1c constramt systems [6]. It is our opinion that these same abstract domains can be usefully applied to the CC context and provide meaningful ask approximations. 

2 The language 

CC is not a language, it is a class of languages parametric wrt the underlying constraint system. In [~6] c_onstramt systems are defìned by enclosing typical cylindric algebra's operators ( cylindnficatwns an d diagonal elements [10]) in the well known formaliz· t' f · z · -r · 
a wn o partza m;ormatwn ~ystems [17], which model the gathering and the management of a set of elementary assertmns by means of a compact entailment relation. We refer to [16] for a more detailed presentation. 

Definition :2.1 
A ( cylindric) constmint system C T = (C U {false} '-1 true false Q9 n V :1 d ) · al gebraic structure where ' ' ' ' ' ' ' x, xy 18 an -

" (c, -1, true, Q9, n) is a partial information system 
false is the top element 

91 

® V is a denumerable set of variables 

., Vx,y E V, Ve, d E C, the cylindric operator :lx satisfì.es 
l. 3xfalse = false 

2. :lxc -1 c 

3. c -1 d implies :lxc -1 :lxd 
4. :lx( C Q9 :lx d) = :lx c Q9 :lx d 
5. 3x(3yc) = :ly(:lxc) 

~ Vx,y,z E V, Ve E the diagonal element dxy satisfì.es 

l. d,,x = true 
2. z =f x, y implies dxy = :lz(dxz Q9 dzy) 
3. x =f y implies c -1 dxy Q9 :lx( c Q9 dxy) 

Note that we are distinguishing between the consistent constraints C and the top element false representing inconsistency. In the following we will write C to denote the subalgebra of consistent constraints, namely the set C together with the constraint system's operators rest-;:ictedt~--l'i~rk~n-C. We will denote operators and their restrictions in the same way and we will often refer to C as a "constraint system". Tables l and 2 introduce the syntax and the operational semantics of CC languages. For notational convenience, we consider processes having one variable only in the head. Vve also assume that far ali the procedure names occurring in the program text there is a corresponding definition. The operational model is described by a transition system T = ( Conj; ----> ). Elements of Conf ( configurations) consist of an agent an d a constraint, representing the residual computation and the global stare respectively. ---> is the (mini­mal) transition relation satisfying axioms Rl~R5. The execution of an elementary tell action simply adds the constraint c to the current store d (no consistency check). Axiom RZ describes the hiding op;:rator. The syntax is extended to deal with a local store c holding informati an about the hidden variable x. Hence the information about x produced by the external environment does not affect the process behaviour and conversely the external environment cannot access the local stare. Initially the local store is empty, i. e. :1 x in A = 3( x, true) in A. Paralielism is modeled as intedeaving of basic actions. In a guarded choice operator, a branch Ai is enabled· in the current stare d iff the corresponding guard constraint ask( Ci) is entailed by the stare, i.e. d \- Ci· The guarded choice operator nondeterministically selects one enabled branch A; and behaves like it. lf there is no enabled bra,nch then it suspends, waiting for other processes to add the desired information to the store. Finaliy, when executing a procedure call, rule R5 models parameter passing without variable renaming [16], where p(x) :-A E P and t,.]; A is defined as follows [5]. 

,6,~ A = { A if x =o y , :1 x in(tell (dxy) l\ A) otherwise 
A c-computation s fora program D.A is a possibly infinite and fair sequence of configura­tions (A;, c; )i< w such that Ao = A an d co= c an d for ali i < \s\, (Ai, Ci)--->( A;+l, Ci+!). 



R1 

R2 

R3 

R4 

R5 

92 

( tell(c), d)---+( Stop, d® c) 

(A, c® 3xd)--+(A',c') 

( 3(x, c) inA, d)---+( 3(x, c') in A', d® 3xc') 

(A, c)---+( A', d) 

(A il B,c)--+(A' il B,d) 
(B Il A,c)--+(B Il A', d) 

j E {l, ... ,n} 1\ di- c· 
n 3 

(.L ask(c;)->_A..,d)--+(A- d) 
~=I J' 

p(x) :-A E P 

( p(y), d)---+( Ll.~A, d) 

Table 2: The transition system T 

Let + denote the absence of ad · "bl .. 
tion (An, Cn )_L. are called fi "t IIDSSI e tr~nsJtwns. Computations reaching con:fìgura-

1"""' m e computatwns and · th (fini ) 
constraint. If the residua! agent A t . c:n Is e te computed answer 
• n con ams some chmce 0 t th h 
mg computation is suspended othe . .t. pera ors en t e correspond-
denote An by f. ' rW!se I Is a successful computation and in this case we 

Definition 2.2 The semantics for program p = D A m" th t . 
· esorec1s 

O[D.A](c) = {d E C l (A, c)~(B' d)-f-+} 

U {d E C l (A~ co)--+ ... --+(A;, c;)-+... } 

Ao-A, Co=c, d=co® ... ®c;® ... 

Note that this semantics collects the limit constraints of. . . 
the answer constraints associated t finit . mfinite computatwns as well as 

are successful or suspended In o e computatwns, regardless of whether the latter 
· . · any case we are considering · t . 
I.e. we disregard all computations delivering false. consis ent constramts only, 

3 Program properties and approximations 

As we have seen, the operational semantics of a CC • 

c to the set of all the consistent co t . t th progr~ associates each initial stare 

c. In a sim.ilar way we de:fine a ns t~am s at we obtam by executing p = D A a t 
. seman te property ifJ as a sub t f C . 

cons1stent constraints that satisfy th T se 0 , namely the set of 

property ifJ at c i:ff the observationse ::~t:rty~ herefore a program satis:fies a semantic 

O[ p]( c) ç ifJ. Following this generai view p ~:a: ta:e a sub.set of the property, i.e. 

be formalized as a finite construct" f ' . a l? analysiS of a CC program can 
Ion o an approXImatwn (a superset) of the program 
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denota.tion. If the approximation satisfìes the semantic property, then we can correctly 

say that our program satis:fies the property too. Abstract interpretation [3] formalizes the 

approximation construction process by mapping concrete semantic objects and operators 

into corresponding abstract semantic objects and operators. 

We write i( t/>) to denote the upward closure of the program property t/>, namely the 

set {c E C /3 d E 4>. c 1- d}; a property is upward closed i:ff it is equivalent to its upward 

closure, i.e. 4> =i( tf>). Downward closed properties are de:fined dually. As an example, 

consider the Herbrand constraint system CH. If the constraint c E CH binds variable x to 

a ground term, -then all the constraints d E CH such that d 1- c will bind x to a ground 

term; therefore groundness is an upward closed property. On the other han d, freeness is 

a downward closed property. A variable x is free in c E CH i:ff there does not exist a 

term functor f /n such that c 1- (3y1 ••• 3Yn x = f(Yh ... , Yn)). Thus, if x is free in c then 

it will be free in all the constraints d E CH such that c 1- d. However, there obviously 

exist properties falling in none of these two classes, e.g. independence. Let us say that 

variables x and y share in c E CH i:ff c binds x and y to the terms t., and ty such that 

var(t.,) n var(ty) # 0. Variables x and y are independent in c if they do not share in c. 

Now, if x and y share in c, we can choose constraints d11 d2 E CH such that d1 1- c 1- d2 

and such that x and y are independent in both d1 and d2. 

Ordering closed properties are very common in the static analysis of logic languages 

and furthermore they are easier to verify, because correctness of the abstract interpretation 

can be based on a semantics returning ordering closed observations. In [18] entailment 

closed1 properties are considered. The main result is that it is inlpossible to develop a 

meaningful generalized semantics for CC languages in the style of [9], namely the only 

way to correctly abstract ask constraints in a domain independent fashion is a trivial 

approximation. 
In this work we turn our interest upon downward closed properties and we show that a 

( carefully chosen but natural) notion of correctness of the abstract domain wrt the concrete 

one allows to automatically derive a correct approximation of all the asks occurring in the 

program. Dealing with such a class of properties, the collecting semantics can be de:fined 

naturally as the downward closure of the operational semantics, as there is no bene:fit in 

considering a stronger one [18]. 

Remark 3.1 If 1> is downward closed then O[ P]( c) ç 4> <=> t(O[D](c)) ç tj>. 

As we are observing infinite computation.s aJso, we have to be careful when de:fining the 

downward closed properties that we are interested in. In particular we have to remember 

that usually the correctness of our abstract semantic construction is based on the Scott's 

induction principle; this principle is only valid for admissible properties. 

Defi.nition 3.1 A property 1> ç C is admissible i:ff 1> is closed under directed lub's. 

This de:finition means that whenever an admissible property is satis:fied by all the finite 

a.pproximations of the semantics, then the semantics will satisfy the property too. As an 

1 Due to a. dual definition of the ordering on the constraint system, in [18] entailment closed properties 

are the downwa.rd closed ones. The choice of turning the domain upside-down wa.s infl.uenced by the 

sta.nda.rd theory of sema.ntic a.pproxima.tion by mea.ns of upper Galois insertions [3]. 
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example of a property that is not admissible, consider the following definition of non­groundness: a variable x is nonground in c E Cg i:ff c binds x to a term t such that var(t) f= 0. Given the infinite chain of constraints c; = (3y x = fi(y)) E CH, for ev­ery 2 < w we h ave that x is nonground in c;. However, considering the limi t constraint c = i~w c; = (x = fw) one observes that x is noi nonground in c. In arder to gran t the correctnes: of ~his analysis, we have to redefine the property, e.g. by stating tha:t if c binds a x to an mfirnte term then x is nonground in c. 
Hen:e, in this wor~ we are inter~sted in downward closed and admissible program propertle~. Th: H?are s powerdomam [14, 17] construction aver the constraint system charactenzes this kind of observations. 

De~nition 3.2 The Hoare's powerdomain of the constraint system C is the complete latt1ce H(C) = (Pl(C),<;;,~t~ue},C,ltJ,n), where Pl(C) is the set of all the nonempty, downward closed and adrrnsSlble subsets of C; 1±1 is the closure under directed C-lub's of the set theoretical union; :{ · }: : C -+ P l( C) defìned as :{c}: = 1 {c} is the singleton embedding function. 

~he alert reader would observe that this collecting semantks models nonempty observa­tlOns only. From a semantic construction point of view, this is no t com pletely satisfactory as we cannot describe. the behaviour of a program having inconsistent computations only. Howe~er, the alternative choice of considering failed computations also would imply some negat1ve consequenceso Firstly, it would complicate the formalization of the correctness conditions., requiring a s~ecial treatment for inconsistency. Moreover it would degrade the precJsJon of .our statlc analysis, adding very little to the understanding of the pro­gram. To see this, observe that when considering downward dosed observations a failed computation has t~ be interpreted as "the program may fail", meaning that anything can happen .. ~.so cons1cd:~ that there a:e CC languages explicitly designed to statically avoid the poss1bility of a Iailing computatJOn ( see [15] for a discussion of this topi c in distributed programming). 
From now on 0 and 3x will denote the extensions of 0 and 3x over H( C). 

.,1::fS,TEPl(C).S0T=f:0{:{c®d}:i cES,dET,c®dEC} 

" V S E P l( C) . 3x S = \:0 { :{3xc}: l c E S } 

Note_that the m_e~ge ove: all paths operator [3] is provided by the lub of H( C). Also note that m generai 0 1s not Jdempotent, while being extensive. 

4 Correctness 

In this section we formalize the notion of correctness of an a.bstract domain wrt a concrete constrai~t system when downward closed properties are observed. As outlined in the previ­ous sectJOn,_we ha veto grant the existence of an upper Galois insertion relating the Hoare's powerdomam of the concrete constraint system and the abstract domain of descriptions together with suitable correctness conditions regarding the domain's operators. ' 
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Definition 4.1 An abstract domain A = (L, ç~, .L~, T~, U~, n~, ®ti, V, 3~x, d~xy) is down­correct wrt the constraint system C= (C,-I,true,®,n,V,3x,dxy) using o iff VS,T E P l( C), l::! x, y E V 

L [, = (L, çti,.Lti, Tti, U~, nti) is a complete lattice 

2. there exists ì s.t. (a,/) is an upper Galois insertion2 relatìng H(C) and .A. 
3. o(S 0 T) çu o(S) 0ti o( T) 

4. a(:Ì,S) ç~ 3tixo(S) 

5. a(:{dxy}:) çti dtixy 

From now on, we assume that the abstract domain .A is down-correct wrt the constraint system C using a and prove that such a notion of correctness implies the correctness of any a.bstract semantic construction based on the abstract interpretation theory. This means that the proof is valid for any abstract semantics that systematìcally mimics the basic concrete semantic operators (1±1, 0, 3x, dxy) and the relation -1 by using the corresJlonding abstract operators (uti, @ti, :JUx, dPxy) and the relation çti. To this end it ìs sufficient to consider the operational semantics. 

Definition 4.2 Given the concrete agent the corresponding abstract agent AP =a( A) is obtained by replacing all the concrete constraints c E C occurring in A by the corre-sponding abstractions eU= a(:{c}:) E L. 

The following le=a shows that the abstract program correctly mimics each transìtion of the concrete one. This also means that if the abstract program suspends, then the concrete program suspends too. Let A be an agent defined over the constraint system C, let c E C be a concrete stare an d let eU E L be a descriptìon such that o(:{ c}:) r;:;;U eU. 
Lemma 4.1 (cor:redness) 
(A, c)----+( B, d) implies ( a(A), c~ )-•( a(B), d~) and a(:{ d}:) çU du . 
The following proposition is proved by induction on the number of transitìons. 
Proposition 4.2 Por every concrete c-compu.tation of P yielding the constraint d E C there exists a corresponding abstract a(:{ c}: )-computation of a( P) yielding the description dti suchthat a(:{d}:) çti dti. 

Note that in generai the converse of Lemma 4.1 does not hold. In particular the concrete program may suspend while the abstract one has a transition; as a consequence, a finite concrete computation can be mapped into a corresponding abstract infinite computa.tion, Therefore, even in the case that we are interested in finite computations only, the abstract semantics must consider infinite computations in arder to be correct. 
2 Given two complete !atti c es (L, $) an d (L', $' ) , an upper Galois connection between L a.nd L' is a pali of adjoint functions (o:, ì) such that o: : L~ L' and ì: L' -+ L and \lx E L. \ly E L'. a(x) $' Y * x $ -y(y). An upper Galois insertion between L and L' is an upper Galois connection such that " is surjective ( equivalently, 'Y is o ne-to-one). 
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Definition 4.2 does not require that the abstract domain is a constraint system and 
neither that it can be obtained as the Hoare's powerdomain of a constraint system. In the 
latter case we are in an ideai situation where a simpler notion of correctness can be used 
instead. 

Defì.nition 4.3 
An abstract constraint system A = (L, -1~, J), T~, ®ti, nti, V, 3tix, dtixy) is correct wrt the 
constraint system C = (C, -1, true, ®,n, V, 3x, dxy ), using a surjective and monotonic func­
tion a: C-+ D, i:fffor each c, d E C, x,y E V 

l. a( c 0 d)-lti a(c)®~a(d) 

2. a(3xc) -Jti :Jtixa(c) 

3. a(dxy) = dtixy 

Let A be an abstract constraint system which is correct wrt the constraint system C using 
a. Observe that ®ti is the lub aver A. 

Proposition 4.3 

1. H(A) is down-correct wrt H( C) using a (the additive extension of a) 
2. a is a complete ®-morphism between C and L 
3. a is a complete @-morphism between P l( C) and P l( L) 

Defining abstract domains based on correct abstract constraint systems is a very di:fficult 
task. The previous proposition gives an explanation of this assertion: these domains ha ve 
to satisfy properties that usualiy are too strong. 

4.1 A toy example 

As a fìrst example we present the ~!'.tr<tctconstraintsystem of untouchedvariables3 V= 
( P(V) , <;;; , 0, V, ®', n , V, 3~ , d~y), w h ere . . . . - - . . ... - . -· -·· .. -- . ··--·-

S®'T 
3~S 

SUT 
S\{x} { {x,y} ifxty 

0 otw. 

Let us assume that C is a concrete constraint system having variables in V and sat­
isfying the following axiom [5]: Ve, d E C . 3xc f- d =? 3xd = d. Note that even if this 
axiom is not a consequence of Definition 2.1, it is true in almost ali the "real" constraint 
systems. 

Proposition 4.4 Let a : C -+ P(V) being defined as a( c) = {x E 11 f3xc f:. c}. The 
abstract constraint system V is corr·ect wrt C by using a. 

3 To our knowledge, thls domain has been fìrstly introduced in [8]. The formal defìnition of a was given 
to me by Catuscia Palamidessi, during an interesting discussion related to other topics. 
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Therefore, we just are in the ideal situation of Definition 4.3 an d we can define our abstract 
domain as the Hoare's powerdomain of V. Having proved correctness, we can approximate 
every concrete ask evaluation (i. e. entailment check) by the corresponding abstract ask 
evaluation. Let us see the intuition behind this result. Suppose the abstract ask evaluation 
does not succeed; this means that there exists a variable x occurring free in the concrete ask 
constraint such that x is definitely unbounded in ali the concrete constraints described by 
the abstract store. As a consequence ali the associated concrete computations will suspend 
too and we are safe. 

4.2 Abstracting the constraint system RLinEq 

Previous example seems just a toy. However, the same approach is vali d for any admissible 
downward closed property of any constraint system. Some examples ofthis kind of abstract 
domains can be found in the literature. 

[6] describes an abstract domain for the static analysis of CLP programs that is useful 
for the detection of definitely free variables in the presence of both Herbrand constraints 
as well as systems of linear equations. Let us consider the latter case. Given a linear 
equation system 

where Xl> ... , X n are variables and a;j and bj are numbers, variable X; is definitely free 
if there does not exist a linear combination of the equations in E having the form X; = n. 
Denoting le( E) the infinite set of linear combinations of equations in E, they define the 
following abstraction function. 

(E)={{x X}l (a1X1+---+kXk=b)Elc(E),} 
a 1 ' · · ·' k a.; i= O i= l, ... , k 

We refer to [6] for a complete definition of the domain and of the abstract operators. 
Intuitively, the correctness of the analysis ensures that all the possible linear combinations 
of concrete equations are described by the computed abstract element. As a particular 
case, if the abstract linear combination {X;} is not a member of the abstract store de­
scription, we can safely say that variable X; is free. [6] also shows how to correctly deal 
with inequalities and disequations (i.e. the constraint system n'fin is considered). 

5 Toward an abstract semantics 

In this section we will informaliy consider the problems related to the construction of an 
abstract semantics that correctly approximates the standard one in the case of downward 
closed observations. 

In the general case, the observations of a CC program are not invariant wrt di:fferent 
schedulings of paraliel processes, i.e. the operational semantics is not con:fluent. In princi­
ple, con:fluence is not needed to correctly define a static analysis framework. However, in 
order to be realiy useful, a static analysis must be correct wrt all the possible scheduling 
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and must not be too inefficient. Therefore, when considering programs being a little bit 
bigger than toy exa.mples, con:fluence becomes as desirable as correctness (8]. As a m~tter 
of fact, almost ali the literature concerning the stati c a.nalysis of CC languages cons1ders 
non-standard semantics that are con:fluent (1, 2, 7, 8, 18]. These semantics are correct wrt 
the standard one, but usualiy must pay in terms of accuracy of the results. 

This is not the case when considering downward closed properties, because we can 
base our sta.tic a.nalysis on a con:fluent semantics being as precise a.s the sta.ndard one. 
Con:il.uence is easily obta.ined by rea.ding the CC indeterministic progra.m as if it were an 
angelic progra.m (11], that is by interpreting ali the don't care choice operators of the 
program as don't know choice operators. In the angelic case, when consi~ering a cho~ce 
opera"tor we split the control a.nd consider ali the branches. In the opera.twnal semant1cs 
th_is di:fference is ca.ptured by repla.cing rule R4 in Table 2 with the following. 

df-c 
R41 R4" (t A;,d)--+(Aj,d) 

( ask(c)->A., d)-( A, d) 
i= l 

Observe that the only difference between the two progra.ms is that the origina} program 
has less suspensions; however, due to the monotoni c nature of CC computations, for every 
suspended cornputation ofthe angelic prograrn there exists a (terminated or suspende~ or 
infinite) computation in the original program that cornputes a stronger store. Let O be 
the operational sema.ntics based on the con:il.uent transition system. 

Propositi.on 5.1 For all c E C. l(O[P](c)) =l( O'[ P]( c)). 

Thus a. :fi.rst proposal of an abstract sema.ntic construction can be ba.sed on the confluent 
transition system operational semantics. Technical problerns rela.ted to termination ca.n 
be solved essenti:ally in the sarne way as it was done in (1]. 

In f16] it is shown how to elegantly model a deterrninistic CC process a.s an upper closure 
l h . operator (uco), i.e. a monotonic, extensive and idempotent function over t e constramt 

system. The ma.in property of this kind of representation is that any neo is fully determmed 
by the set of ìts fixpoints. Moreover alJ the sema.ntic operators on processes are naturally 
mapped into simple set theoretìc operators over their representations, e.g. the para.llel 
composition of two processes is obtained by taking the intersection of their :fi.xpoints' sets. 
[11] study the extension of such a semantics on angelic CC languages, where only local 
choice opera.tors are aliowed a.nd upward closed observations are considered. 

If the abstract domain we are dealing with is ba.sed on an abstract constra.io.t system 
(see Definition 4.3) we are in a position to develop a semantic construction very similar to 
the latter. It is worth noting that, in such a semantic construction, the process restartabzlzty 
property is a.ssumed. This property holds for determinìstic progra.ms (16] and it also holds 
far angelic prograrns when we consider upward closed observations (11], but it does not 
hold in the general case. Rowever, when considering downward closed properties, it can 
be proved that correctness is stili granted, wh_ile we pa.y something in the approximation's 
precisìon. 
. Unfortunately, many interesting abstract domains modelling downwa.rd closed prop­
erties are not constraint systems. In these cases, if we are interested in a denotational 
abstract semantic construction, we can conside.r a suitable va.riant of the approach based 
on traces in JJere the first to solve is ter_rrdnation, beca.,use 
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a trace can be infinite even if defined over a :fìnite abstract doma.in. We think that a notìon 
o:f canonica/ for tra.ces ( sìmila.r t o the one developed in [16]) would suffke. 

It is worth pointing out tÌat the approximation in this work ca,n be 
applied to any kind of sernantic construction dealing with the basic mechanism of un'"'>.lil". 
ask. Therefore, even if ali the semantics rnentioned above only observe the 7Ysults of a CC 
program, om tech_nique ca.n be also applied to semantics the way these results 
are actually computed. As an exa~ple, H we consider the true concur-Te·ncy semantics 
developed in (13], the definite suspension informatìon could be useful to obtain upper 
bounds to the degree of paralielism of a program orto discover undesiTed data 
between concurrent processes" 

Condusions related wo:rks 

The sta.tic analysis of CC langua.ges is a relatively new but very active area of research. 
To our knowledge, this is the fìrst work on this topic in which it is identified a doma.in 
independent correct approximation of ask constra.ints. Alrnost ali the previous works about 
the static analysis of CC progra.ms [1, 7, 8, 18] either consider a. specific constraint system 
or assume that a correct ask approximation ha.s already been found. In (2] a di:fferent kind 
of domain independent ask approximation ha.s been considered. In our opinion, however., 
this framework requires the satisfaction of too strong correctness conditions and ca.rmot 
be widely used. 

The approximation described in the current work allows to detect deiìnitely :;uspended 
branches of the computation an d it may be therefore useful in the debugging an d special­
ization of CC prograrns. It can be applied to a wide class of progra.m properties, 
the downward closed ones. Some property falling in this class (e. g. freeness) has 
been studi ed in the context of the stati c analysis of sequential ( constra.int) logic 
In our opinion the same abstract doma.ins can be used in the CC case, provided that a suit­
able sema.ntic construction is identified. At the same time, we strongly believ.e that such 
a general result can motivate the study of "new" downward closed properties. 

The de:fi.nition of a suitable abst:ract serna.ntics far the static n.nalysis of thls class of 
properties is an open problem. V'le have shovm that if we are interested in downward 
closed properties only then we can assume that alJ the choice opera.tors in our progrè"lll 
are local, achieving the con:!l.uence of the computation without any loss of precision. In 
our opinion, however, an extensive study of the costfprecision tradeoffs of the diJlerent ' 
abstract semantics proposals is strongly needed. 
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Modeling Real-Time in Concurrent Constraint Programming 

F.S. de Boer* M. Gabbrielli§ 

Abstract 

We develop a language for real-time programming based on the concurrent constraint 
programming (cc p) paradigm. The language, called tec p, is obtained by a natura! timed 
interpretation of the usual ccp constructs and by the addition of a simple construct 
which allows one to specify timing constraints. We define the operational semantics 
of tccp via a transition system an d introduce a compositional and fully abstract mode! 
based on timed reactive sequences. 

1 Introduction 

In the actual practice of programming many applications are time-critical. Examples of su eh 
applications are real-time process controllers and signal-processing systems. In genera!, time­
critical applications require a programmer to specify the interaction with an environment 
given some timing constraints such as that a certain input is required within a certain 
bounded period of time. The resulting systems, usually called reactive, need then suitable 
programming languages which allow for the definition of timing primitives. 

Concurrent synchronous languages such as ESTEREL [2], LUSTRE [6], SIGNAL [9] and 
Statecharts [7] have been specifically designed for reactive systems. These languages are 
based on the instantaneous reaction (or perfect synchrony) hypothesis: A program is ac­
tivated by some input signals and reacts instantly by producing the required' output. So 
computation is performed in no time, unless a statement which explicitly consumes time 
is present. Communication is done by instantaneous broadcasting to aJl the processes of 
the system and the presence or absence of a signal can be detected at any instant. The 
perfect synchrony assumption can be realized in practice by corilpiling pure programs (i.e. 
programs operating only on signals) into finite state automata whose single step execution 

time is bounded. A direct compilation of pure ESTEREL programs in hardware has also be~n 
defined. 

The perfect synchrony hypothesis, even though natural from the user point of view, 
conflicts with the inherent temporality of physical processes. As a consequence temporal 
paradoxes arise, for example, in the form of programs which require a signal to be present 
ilf it is not present. To salve this conflict, Saraswat et al. [13, 14] have proposed an 
integration of the asynchronous computational model of concurrent constraint programming 
( ccp) [Il, 12, 15] with ideas from synchronous languages. The resulting languages, called 
timed concurrent constraint programming (tec) and default tec, are designed around the 
hypothesis of bounded asynchrony: Computation takes a bounded period of time rather than 
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being instantaneous. The whole system evolves in cycles corresponding to time intervals, 
a.nd each time interval is identified with the time needed far a ccp process to terminate 
a computation. Special prirnitives are added to the standard ccp constructs to control 
the temporal evolution of the system. In particular, the programmer has to transfer 
E:xplicitly the (positive) informati an from a time instant to the next one using these temporal 
prirnitives. 

In thls p a per, analogously to the case of (default) tec, we use ccp as the starting language 
and we assume that computation takes a bounded period of time. However, differently from 
[13, 14], we introduce directly a timed interpretation of the usual programrning constructs 
of ccp by considering the primitive ccp constructs ask and tell as the elementary actions 
whose evaluation take one time unit. Thus, in our model, each time interval 1s identified 
with the time needed for the underlying constraint system to accumulate the tell's and to 
answer the queries ( ask's) issued a t each computation step by the processes of the system. 
Then we use thls interpretation as a basis for the introduction of a construct whlch allows 
one to specify timing constraints. As we discuss later, our appra<:tch requires a smooth 
extension of ccp. In particular, we do not require explicit transfer of information across 
time boundaries and we can use the usual ccp definitions fo:r hlding and recu:rsion. We 
describe semantically our timed extension of ccp both operationaliy, in terms of a transition 
system, and denotationally. The denotational semantics is based on sequences of pairs of 
constraints, so called reactive sequences, as in the untìmed case. However these reactive 
sequences are now provided with a different interpretation which accounts for the tirning 
aspects. Our main result shows that the denotational semantics is correct and fully abstract 
with respect to the operational semantics. This paper is organized as follows. In the next 
c.ection we introduce our timed extensìon of ccp and its operation:aJ semantics. Section 

describes how to derive some typical real-time constructs form the basic combinators 
of the language. In section 4 we de:fine the denotational semantics and we state the full 
abstraction result. Finally, Sectìon 5 concludes by comparing our approach to the existing 
tirned extensions of ccp and by giving some directions for future research. 

The la:nguage 

In thls section we first introduce the tccp language and provide its basic operational mtu­
itions. Then we de:fine formally the operational semantics of tccp using a tra~sition system. 
As in [13, 14] the starting point ìs ccp, so we introduce :first some basic notions related to 
this programrning paradigm. We refer to [12, 15] for more details. The ccp langua.ges are 
defined para.metrically wrt to a given constraint system. The notion of cylindric constraint 
system has been formalized in [12] following Scott's treatment of information systems [16] 
and using ideas from cylindric algebras [8] in order to treat the hiding operator of the 
language in terms of a generai notion of existential quantifier. Here we only consider the 
res1.ùtìng structure. 

Definition 2.1 Let (C,::;, U, true, false) be a complete algebraic lattice w h ere U is the lub 
operati an, an d true, false are the least an d the greatest elements of C, respectively. Assume 
g;iven a (denumerable) set ofvariables Var with typical elements x, y, z .. .. For each x E Var 
it is defined a function :lx :C~, C such that, for any c, d E C: 
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(i) Cf-- :lx( c), (ii) if cf-- d then :lx( c) f-- :lx( d), 
(iii) :lx( c U :lx( d))= :lx( c) U :lx( d), (iv) :lx(:ly(c)) = 3y(3x(c). 

Then C= (C,::;, U, true,jalse, Var, :3) is a cylindric constraint system. 

Following the standard terrninology and notation, instead of ::; we will refer to its inverse 
relation, denoted by f-- and called entailment. Formally, Ve, d E C. c f-- d <::? d < c. 
Moreover, in the sequel we will identìfy a system C with its underlying set of constr,;ints 
C. Finally, in arder to model parameter passing, diagonal elements [8] are added to the 
primitive constraints: We assume that, for x, y ranging in Var, D contains the constraints 
d,J which satisfy the following axioms: 

(i) true f- dxx, (ii) if Z-:/= x, y then dxy = :Jz(dxz U dzy), 
(iii) X -:/= y then dxy U :lx( c U dxy) f-- C. 

Note that if C models the equality theory, then the elements dxy can be thought of as the 
formulas x= y. In the following :lx( c) is denoted by :lxc with the convention that, in case of 
ambiguity, the scope of :lx is lirnited to the first constraint subexpression. (So, far instance, 
:lx c U d stands for :lx( c) U d.) 

The basic idea underlying ccp is that computation progresses via monotonic accumu­
lation of information in a global stare. Information is produced by the concurrent and 
asynchronous activity of several agents which can add (tell) a constraint to the store. More 
precisely, given a stare d, the agent tell( c) -> A updates the stare to c U d an d then behaves 
like the agent A. Dually, agents can also check ( ask) whether a constraint is entailed 
by the store, thus allowing synchranization among different agents. So the action a.sk( c) 
represents a guard, i.e. a test on the current store d, whose execution does not modify 
d: if d f-- c then ask(c) is enabled (or satisfied) in d, otherwise ask(c) is suspended. Non­
determinism arises by introducing a guarded choice opera tar: The agent L;f=1 ask( ci) -> Ai 
nondeterrninistically selects o ne ask( c;) which is enabled in the current stare an d then 
behaves like A;. If no guard is enabled, then thls agent suspends, waiting for other ·(parallel) 
agents to add information to the stare. Deterministic ccp is obtaiJJ.ed by imposing the 
restriction n = l in the above construct. The Il operator allows one to express parallel 
composìtion of two agents AllE and it is usually described in terms of interleaving. Finally 
a notion of locality is obtained by introducing the agent :JxA which behaves like with x 
considered local to A. 

\iVhen querying the stare for some information which is not present (yet) a ccp agent 
will simply suspend until the required information has ar:rived. In real-time appl.ìcations 
however often one cannot wait indefinitely for an event. Consider fo:r example the case 
of a bank teUe:r machine. Once a card is accepted and its identification numbe:r has been 
checked, the machine asks the authorization of the bank to release the requested money. If 
the authorization does not arri ve withln a reasanable amount of time, then the card should 
be given back t o the customer. A real-time language should then allo w us t o specify 
m case a given tirne bonn d is exceeded (i. e" a time-out occurs ), the waìt is interrupted 
and an alternative action is taken. Moreover in some cases it is also necessary to abart an 
<>A:tive processA a.nd to start a process B when a speci:fic event occurs (thls is usually called 
preemption of A). For example, according to a typical pattern, A is the process controlling 
the normal of some physical device, the event indlcates some abnormal sìtuation 
and B is the exception handler. 
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In order to enrich ccp agents with such real-time mechanisms, we introduce a discrete 
glabal clack and assume that ask and tell actions take one time-unit. Computation evolves in 
steps of one time-unit, so calied clock-cycles. We consider action prefudng as the syntactic 
ma;rker which distinguishes a time instant from the next one. So teH( c) -> A has now to 
be regarded as the agent which updates the current store by adding c and then, at the next 
time instant, behaves like A. Analogously, if cis entailed by the current store then the agent 
ask( c) -> A behaves like A at the next time instant. If c is not entailed at time t then the 
agent is suspended, i. e. a t time t+ l i t is checked again whether the store entails c 1 . Note 
that ifa tell( c) action is performed at time t then the updated stare will be visible only from 
time t + l onwards, since a tell takes one time-unit to be completed. Thus, for example, 
the agent A: (ask(c)-> stop) Il (tell(c)---> stop) evaluated in the empty store will take two 
time-units to successfully terminate. 

Furthermore we make the assumption that paraliel processes are executed on different 
processors, which implies that at each moment every enabled agent ofthe system is activated. 
This assumption gives rise to what is calied maximal parallelism and, for example, implies 
that previous agent A evaluated in the stare c terminates in one time-unit. The time in 
between two successive moments of the global dock intuitively corresponds to the response 
time of the underlying constraint system. Thus essentially in our model ali paraliel agents 
are synchronized by the response time of the underlying constraint system. 

So fax we have only described a timed interpretation of the usual ccp combinators. 
We stili have to introduce the notions of time aut and preemptian which, as previously 
mentioned, a;re essentiai to any reai-time language. Often weak preemptian is suffi.cient, i.e. 
it is acceptable having a unit delay between the detection of the event and the consequent 
action. However, there are some time criticai applications (see (14, l]) in which strong 
preemption is required: The abort of a process and the execution of the new one must 
happen a t the same time of the detection of the event. W e will consider h ere a form of weak 
preemption: The abort of a process and the start of the new one happen at the same time 
of the detection of the event. However, the result of the execution of the new process will be 
visible only in the next time instant. As we discuss later, this choice aliows us to obtain a 
programming paradigm useful for ma.ny applications, while maintaining a simple semantic 
m o del. 

In general, as discussed in [13], the essen ce of the reai time notions mentioned above is 
in the ability to detect the absence of an event, as well as its presence. Such a detection 
can interrupt a process and trigger some alternative actions. Since events in ccp can be 
expressed by the presence (more precisely, entailment) of a constraint in the store, we are 
lead to the following timing construct 

now c then A else B. 

-which is similar to the anaiogous construct in [13]. However, according to our notion oftime 
interval, we interpret the above construct in terms of instantaneous reaction as follows: If 
c is entailed by the store at the current time instant then the above agent behaves as A at 
the current time instant, otherwise at the current time instant it behaves as B. 

As we will show in Section 3, we can simulate the other typicai reai time constructs in 
terms of the now then else construct. Therefore we end up with the following syntax. 

1 The extension to the non-deterministic case is immediate. 
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Definition 2.2 [tccp Language] Assuming a given cylindric constraint system C the syntax 
of agents is given by the following gramma;r: 

A ::= stop l teH(c)-> A l L:i=l ask(c;)-> A; l 
now c then A else B l A Il B l :lX A l p( X) 

w h ere the c, c; are supposed to be finite constraints (i.e. aigebraic elements) in C. A ccp 
process P is then an object of the form D.A, where D is a set of procedure declarations of 
the form p( X) :: A and A is an agent. 

2.1 Operational semantics 

The operational model of tccp can be formaliy described by a standard transition system 
T = ( Conf,---+) where we assume that each transition corresponds with one clock-cycle. 
Confìgurations (in) Confare pairs consisting of a process and a constraint in C representing 
the common stare. The transition relation --->ç Canf x Conf is the least relation satisfying 
the rules Rl·R8 in Table l and cha;racterizes the (temporal) evolution of the system. So, 
(A, c)---> (B, d) means that if at time t we have the processA and the store c then at time 
t + l we have the process B and the store d. 

Let us now briefly discuss the rules in Table L The agent stop represents successful 
termination, so it cannot make any transition. Rule Rl shows that we are considering 
h ere the so calied "eventual" tell: The agent tell( c) --+ A adds c to the store d without 
checking for consistency of c U d, and then behaves as A at the next time instant. Note that 
the updated stare c U d will be visible only starting from the next time instant since each 
transition step involves exactly one time-unit. According to rule R2 the choice operator 
gives rise to global non-determinism: The externai environment can a:!fect the choice since 
ask( Cj) is enabled a t time t (an d Aj is started a t time t + l) iff the store d enta.ils Cj, an d d 
can be modified by other agents. The rules R3 and R4 show that the agent now c then A. 
else B behaves as A or B depending on the fact that c is or is not entailed by the current 
store. Note that the evaiuation of the guard is instantaneous: li (A, d) ((B,d)} can make 
a transition at time t an d c is (is not) entailed by the store d, then the agent now c then 
A else B can make the same transition at time t. Rules R5 and R6 niodel the parallel 
composition operator in terms of maximal parallelism: The agent A Il B executes in one 
time-unit ali the initiai enabled actions of A and B. The agent ::IX A behaves like A, wit:h 
X considered local to A. To describe locality in rule R7 the syntax has been extended 
an agent ::Jd X A where d is a locai store of A containing information on X which is hidden 
in the externai store. Initially the locai stare is empty, i. e. ::lx A = 3true X A. Rule R8 treats 
the case of a procedure cali when the actual parameter di:!fers from the formal parameter: It 
identifies the formal parameter as a locai alias of the actual pa;rameter. For a cali involving 
the formai parameter a simple body replacement suffi.ces (rule R9) since we a:re dealing wlth 
a cali by na.me parameter mechanism. 

Using the transition system described by (the rules in) Table l we can now define our 
notion of observables. Here and in the sequel we assume a given fìxed set of declarations 
D and we assume that P is a closed process (namely, every procedure occurring in P is 
declared in D). We denote by --->* the re:!lexive and transitive closure of -->. 

Definl.tion 2.3 Let P be a process. We define 

O(P) ={(c, d) l c E C and there exists Q s.t. (P, c)->* (Q, d) f-+}. 
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(tell( c) -+ A, d) --+ (A, c U d) 

(2::;'=1 ask(c;)-+ A;, d)--+ (Aj,d) 

{A, d) --+ {A', d') 
(now c then A else B,d)--+ (A', d') 

\B, d) --+ (B', d') 
(now c then A else B, d) --+ (B', d') 

{A, c)--+ {A', c') (B, c) --+ {B', d') 
(A Il B, c) -+ (A' Il B', c' U d') 

(A, c) -• \A', c1) (B, c) f-. 
(A Il B,c)-----> (A' Il B,c') 
(B Il A, c) ~· (B Il A', c') 

(A,dU 3xc)--+ (B,d') 
(3d X A, c) --+ (3d' X B, c U 3xd') 

(A, c) --+ (B, d) 
(p( X), c) --+ (B, d) 

j E [1, n] and d l- Cj 

di-c 

dlfc 

p(X): -A E D, X :f- Y 

p(X): -A E D 

Table l: The transition system for tccp. 

So we observe the inputfoutput behaviour of :finite computations. Note tha.t the above 
notion of observables abstracts from time. Alternatively, we could take into account tlte in­
termediate results of computations by considering sequences of constraints obtained from the 
relation --+in the obvious way. However, as we will sltow later, the resulting denotational 
model would be essentially the same (modulo a simple abstraction). For similar reasons 
as in the untimed case, the semantics which associates to a process P its observables 
ìs not compositional. VVe defer to section 4 the discussion of this point an d the definiti an a 
sìrnple composi twnal m o deL 

Previous discussion shows that the standard ccp computational model can be extended 
',cery smoothly to incorporate a notion of time. A poim Nhich is worth rnentioning here is 

differently from the untimed case, we cannot replace teH( c) -+ A far in the 
syntax of tccp. In fact, if the tell is eventual then in the untirned case -+ A can be 
equivalently rewritten as teH( c) Il A. In the timed case previous two agents in generai do 
not need to be equivalent. This is shown by the following. 

Ex!l.mple 2.4 Consider the agents A : (teH(c) -+ teU(d)) Il B and A' : (teH(c) Il 
teH(d)) Il B where B: teH(true)-+ now c U d then teH(ok) else stop and assume that 
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c, d, ok are different constraints such that ok l- d t- c. According to om operatimnl mode] 
we have that E CJ(A') \ O(A). 

We show now how some typical real time prograrnrning idioms can be derived from the 
combinators of tccp. 
Time out The timed guarded choice agent 

n 

L ask( ci) -+ A; 
i= l 

B 

waits a t most m t ime units (m 2: O) far the satisfaction of o ne of the gua"rds. Before this 
out the process behaves just lilce the guaTded choice: As soon as there exist enabled 
one of them and the corresponding branch is nondeterrninistically selected.. After waitbJ.[!; 
for m tirne unita, if no guard is enabled, the timed choice agent behaves as B, This 
can be defined as follows. Let us denote A the agent 2::;'=1 __ , 

the base case, m= O, we deiìne 2::7=1 -+A; B as the agent 

now c1 then A else c2 then A else 
( now cnthen A else ask( true) -> o o ,) 

For the inductive step we define 2::;'=1 B as 

n 

_,A; thne-out(O) (task(c;) ~,Ai 
\?,=1 

-l) B 

:rt ìs immediate to check that the above inductively defined agent has the opera-
tional behaviour. Consider fo:r example the base case. Ii' the cmrent store entails one of 

Ci V~re have that by rule the agent 2:~1 -+ is executed 
that is, in the next tirne instant one of the agents A; (for which the- corresponding 

is executed, Otherwise, the agent B is executed .~.t the next time instant. 
These an~ preemption prirnitiv,es of such lo,nguages as ESTEHEL 

a.re used to inte:rrupt the activity of a process on signal :t'rom a event: 
framework, since events are constraints, can be de:lined as 
:process 

which behaves as A, a,s as c is not entailed by the store; when is entailed, the ]H002Dc; 

A ls imrnediately aborted. Notice tha,t, as discussed above, we hav'3 instantaneous reacdon 
ìn the sense th:at A is aborted at the same time instant of the detection of the entailment 
of c, However, to the computational model, i:f cis detected at tirne t then c ha.s 
to be at time t' with t' < t. Thus we have a form of weak preemption. 

Previous watchdog agent can be defined induction on the stl'Ucture of A a,s foJJows. 
1n the following we use now c as a shorthand for now c then stop. 



stop '* tell(d)-+ B '* 2:?=1 ask( c;) -+ A; '* now d then A else B '* 
AllE '* 3XA '* 
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stop, 
now d else tell( c) -+ do B watching c, 
now c else 2:f=1 ask( c;) -+ do A; watching c, 
now c else now d then do A watching c else 

do B watching c, 
now c else do A watching c Il do B watching c, 
now c else 3X do A watching c, 

(So the agent on the rhs of the arrow -+ is the translation of the agent do A watching c, 
where A is the agent on lhs.) Analogously we can de:fine the agent do A watching c else B · 
which behaves as the previous watchdog an d also activates the process B when A is aborted 
(i.e. when cis entailed). 

4 Denotational semantics 

In this section we give a denotational semantics for tccp programs. Denotationally we 
represent a (timed) computation by a sequence of the form (cl, d1) · · · (cn, dn), a so called 
timed reactive sequence. A pair (c;, d;) indicates that at time i the process itself produces c; 
while at the same time its environment produces d;. The set of all timed reactive sequences 
we denote by S. Elements of S are denoted by s, .... We de:fine D(A)s ç S, i.e. the set of 
timed reactive sequences of A sta.rting from the initial sequence s. Given the initial sequence 
s, the agent Stop does not modify it. Thus D(Stop )s = s. The meaning of tell( c) -+ A is 
de:fined by 

D(tell(c)-+ A)s ={s'l for some d, s'E D(A)(s ·(c, d))} 

where s ·(c, d) denotes the sequence resulting from appending (c, d) to s. Thus, given the ,. 
initial sequence s, the agent A in tell(c) -+ A sta.rts its computation, after execution of 
tell(c), in the sequence s ·(c, d), where d represents the contributions of the environment, 
which· occur at the same time as the execution of tell( c). The meaning of I:;ask( c;) -+ A; 
is de:fined by 

D(I:?=1ask(c;)-+ A;)s = U;{s' l there exists s11 and d such that s -+* s", 
s" f- c; and s1 E D(A;)(s" · (true,d))} 

where s f- c holds if the least upper bound (lub for short) of all the constraints occurring 
in s entails c, and -+* denotes the re:H.exive transitive closure of the relation -+ between 
elements of S de:fined by: 

s -+s' if s lf Cj, for l ::; j::; n; and s'= s · (true, d), for some d. 

Given the initial sequence s, a sequence s' such that s -+* s' represents an extension 
of s which consists of a period of waiting for one of the constraints c;. Note that during 
this waiting period only the environment is active. The addition of a pair (true, d) to the 
waiting period corresponds to the assumption that the ask takes one time-unit. The agent 
A; then sta.rts its computation in an extension of the initial computation s which consists 
of a waiting period after which c;, for some l ::; i ::; n, has arrived. The meaning of 
now c then A else B can be simply de:fined by: 

D(now c then A else B)s ={s'l s f- c and s'E D(A)s} U {s'l slf c and s'E D(B)s} 
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To describe denotationally the parallel composition we introduce the following .C com­
mutative) pa.rtial operator IlE S x S -+ S: Let n ::; m, and d; f- c; U e;, fc~ l $ t $ n, 

then ( d ) (et, d1) · · · (cn, dn) Il (el, dt) · · · em, m = 
(c1 U el> d1) .. · (cn U em dn) · (en+l• dn+I) · "(em, dm) 

In all other cases the pa.rallel composition is unde:fined. Note that we require the two 
arguments of the _pa.rallel operator to agree at each point of time with respect to the 
environment. The condition d; f- c; u e; corresponds with .that the environment ~f one 
component has to include the contributions of the pa.rallel component. Now we can s1mply 
de:fine 

D(A Il B)s = D(A)s Il D(B)s 

where 11 denotes the obvious extension of the above de:fin:d operator to set of seq~en~es. 
To describe denotationally the hiding of local variables we mtroduce the operators 3.,, 3., E 
S -+S: 

an d 
3~( (cl, d1) · · · (cn, dn)) = (cb 3.,dl) · · · (cn, 3.,dn) 

The operator 31 thus removes at each point of time the information on the (local) va.riable 
th t · the 'in:rormation on x produced by the process itself. On the other hand, the 

:;era~o:s3; removes at each point of time the information on the (global) variable x, that 
is the information on x produced by the environment. Then we de:fine 
' 

D(3XA)s = {3~s' l s'E D(A)3~s} 

Note that the operator 3; removes information on the global x while 3!, removes the 
information on the local x. Recursion :finally is de:fined as follows: Let p( X) be decla.red as 
A. Then 

D(p(X))s = D(A)s and D(p(Y))s = D(3d"•XA) 

in case the actual pa.rameter y di:ffers from the formai pa.rameter X:-Thls ·recursive de:finition 
can be easily justi:fied by a least :fixed-point construction de:fined m terms of the cpo 'P( S) 
with the ordering of simple set-inclusion. . . 

Correctness of the denotational semantics D with respect to the operatlonal semant1cs 
is expressed by the following theorem: ' 1 

Theorem 4.1 (Correctness) For any agent A, 

O(A)c ={d l there exists (c, c) .. ·(d,d) E D(A)(c,c)}. 

Note that a sequence (cl> c1) ... (cn, cn) represents a computati~n where. the a~sumed 
contributions of the environment are already produced by the agent 1tself. I t 1s strrughtfor­
wud to prove that such a sequence indeed correspond~ with a computation as de:fined by 
the operational semantics. So the model de:fined by D 1s correct. . . 

However this model introduces unnecessa.ry distinctions. For example, cons1dermg the 
agents A: tell(c u d) -+ tell(c)-+ stop and B : tell(c U d)-+ tell(d)-+ stop, w~ ~~ve that 
D( A)~:-:/= D(B)~: ( € denotes the empty sequence) while for any context C[] and m1tial stare 
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c we have that O(C[A])c- O(C[B]) (A [ J · 
t C[A] th - c. context C IS simply an agent wìth a 'hole' the 

agen en represents the result of replacing the hole in C by A ) Th · t h ' . 

:;:t ~:~:::; s~ong;r con~trai~t c U d has ~een produced, i t does not ~atter :1~~~er =~r 1; 
.P . . o or er to Identify agents like the previous ones, we introduce th :!; n o 

abs,ractwn mc on sequences. This operation adds to each left t f e o owmg 

~r t:: p(rcevidou)s· ~~f(t codmp) oneSnts ofhs, thus transforming s into c::~~~::re:su:gs:~~::~:e~ 
h l Cn, n E we t en define 

inc(s) ==(ci, dr). (cl U c2, d2) ... (cl U c2 U ... U Cn, dn)· 

num~~;e:;~:p:;i:i::~::~~edi~:!~~:!e~~~t-~o~e=~) /eq~nces which differ only far the 

and C' : tell(c) --> tell(c) -+ stop should be identifi d~ e,Th e agents C : tell(c) __,. stop 
b t t' l e · us we need also the following 

~f: ;:~t~0:f :1 t~: ;:r:n~·e:s~ ~:~~:~:~ i!~::ti~e~ :: !e;:~::b;e~(f:)(~ !h:n;b of the 

• rep(s·(c,d))=={ rep(s) ifleft(s)l-c 
s·(c,d) ifleft(s)l(c 

t Le: us dfefi:e D"'(A)s as rep(inc(D(A)s)), where we denote by rep and inc the obvious 

ex enswn o t e ab~~e operators to sets of sequences. It is immediate to show that the 

;nodel defined by D IS also correct and compositional. Moreover we have that D"' does t 

mtroduce unnecessary distinctions, i.e. the semantics defined by DO/ is fully abstract: no 

Theorem 4.2 For any agents A and B if D"(A) i: D"'(B) fi 
a context C such that O(C[A])c =f. O(Crl1])c, for· s:me c. s or some s, then there exists 

5 A comparison with (default) tec and future research 

A t~ed version ~f ccp, ca.lled tec, a.nd a. further extension ca.lled default tec ha ve recenti 

~;e; ~n~r~~uced m ~3J. and (14]. To compare these approaches with our proposallet us firs~ 
e c. r~e Y tec. s m tccp and differently from the case of synchronous lan a es com-

p~tatmn m tec ta.kes a bounded period of time rather than being insta.iit gu gH ' 
differently from · . aneous. owever 

our. ca.se, a tlme mterval for tec is identifìed with the time needed far ~ 

~f pr~c~~s to. terr:ate a comput~ti?n: Computation evolves asynchronously in cycles: 

eac . Ime ~nter ~ c~p detern:urushc process is executed. The pr~cess accumulates 

m~~o-~oruc~y mf~rma:wn I~ the ~tore, according to the standard ccp computational model 

un 1 reac es a restmg pomt", Le. a terminai state in which no more information can b ' 

generated. The resting point is then seen as the marker whlch distinvnishes t' . t al e 
When the restin · t · h d o~ rme m erv s 

. . g pom IS reac e the absence of events can be checked and it can tr' . 

actlOns m the next time interval. More precisely, the process A . now c else B . al Igtgedr 
t " t' t' " If · IS ev ua e 

a res mg 1m e : the stare obtained at the end of previous time interval does not entail 

c t~en A be~a~e~ as. the process B in the next time interval, otherwise A is discarded A 

~nzt ~elay pnm1t1ve 1s also present: next B is the process whlch behaves lik B . th · 
trme mterval. e m e next 

20n the other hand, a.ssuming that c, d, ok are different constr . 
B: tell(c)-+ tell(d)-+ stop and B' : tell(c)-+ tell(c)-+ t ll(d) a.mts such that. o~ 1- .d 1- c, the agents 

A · te/l( true) -+ ( d h ( ) e -+ stop must be distmgUIShed. In fact for 
· now t en tell ok else stop), we have that (true, ok) E O(B 11 A)\ O(B' 11 A). ' 
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A crucial design decision far ttc was to enforce the programmer to transfer explicitly 

the information from one time interval to the next one. At the end of ;: time interval 

a.ll the constraints accumulated are discarded, as well as all the processea ·hlch are not 

argument to a next orto a (satisfied) now else command. Thus basicall~ "'tec program 

specifies for each momen.t in time a ordinary ( deterministic) ccp program to be executed at 

that particular moment. Since the next moment in time occurs when the ccp program has 

reached a resting point, to ensure that the next time instant is reached such an ordinary 

ccp program has to be a finite agent. 

Our starting point however is to interpret action-prefixing itself as the next-tìme opera­

tar. In our framework a time interval is identified with the time the underlying constraint 

system needs to respond to the initial actions of all the agents of the system, that is, to 

accumulate a.ll the told constraints and to answer a.ll the ask's. Thus a real-time program in 

our case is basica.lly just a usual ccp program (apart from the now construct). The real-time 

aspects are mainly implicit in the interpretation of the basic actions an d the interpretation 

of action-prefixing. As such the style of programming in tccp is more similar to the usual 

one for asynchronous monotonic languages, also because in our framework the global store 

persists from one moment to the other. For example, the operators of hiding local variables 

and recursion do not differ in an essential manner from their 'untimed' versions. This is 

to be contrasted with the language tec, where the fact that the stare is killed each next 

moment complicates the real-time interpretation of recursion and hiding of local variables 

(the information on the local variables is killed too each next time instant). Also we do 

not need any syntactic restriction to ensure that the next time instant is reached, since at 

each moment there are only a finite number of para.llel agents an d the next moment in time 

occurs as soon as the underlying constra:i.nt system has responded to the initial actions of 

a.ll the current agents of the system. 
Default tec is essentia.lly like tec, except that at each time interval a default ccp 

program (rather then a ccp program) is executed. Thus previous discussion applies also 

to the case of Default tec. The advantage òf Default tec over tec and ,tccp is that 

the former language a.llows one to express strong preemption by using agents of the form 

c """' A: If c is not entailed by the current store then A is immediate]y evaluated. Differently 

from the case of tccp, the result of this evaluation is visible within the sa.me time interval. 

This increased expressive power of Default tec comes with a price since, as previously 

mentioned, in generai strong preemption can cause paradoxes: If the agent A produces c 

then the construct c"" A could have ambiguous interprétations. To avoid these problems 

Default tec uses assumptions about the future evolution of the system. If c is abs~nt 

when evaluating c"""' A, then it is assumed that c will also be absent in the future, i.e. A 

and the other processes being evaluated in para.llel cannot produce c. These assumptions 

semantica.lly are modeled by using pairs of constraints. The pair (c, d) in the denotat.ion 

of an agent A means that A reaches a resting point c given the guess d about the final 

result. The resulting model however, as discussed in [14], does not a.llow for the definition 

of fust-order existentials. Thus, differently from tccp, Default tec does not a.llow hiding. 

Moreover, the simplicity of both the tec and the Default tec models, sequences of 

constraints and sequences of pair of constraints, is due to the restriction to deterministic 

programs. An extension to non-determinism would require complicated models based on se­

quences of sequences. On the other hand, our real-time extension a.llows a simple opera.tional 

and denotational fully abstract semantics for non-deterministic real-time programs. 
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Concluding, we have defined an extension of ccp to model real-time which, altough inspired by the motivations in [13], as discussed above di:ffers from tec and default tec both in the language design and in the semantic model. We believe that our proposal provides a smooth extension of ccp and therefore allows to retain as much as possible the usual ccp programming style also for real time applications. Moreover, the simplicity of our semantic model seems a promising basis to define tools for the verification and the analysis of tccp programs, following the guidelines of [3] and [5]. In pa.rticular, we are now studying an extension based on temporallogic [lO] of the proof system defined in [3] to reason about the correctness of tccp programs. 
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Abstract 

In this paper an extension of Ca.ml Light language that _attempts 
to achieve distributed computation using a client-serv~r m~del. on a 
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l Introduction and Previous Work 

This work is aimed to use the facilities of the functional languages to ex­
ploit the pamllelism. In sequential Von Neumann machines (contro! fio w 
machines), instructions are executed sequentially, controlled by a program 
counter. A new philosophy has been proposed to improve the performance: 
the data fiow machines. These allow us to forget about counters and in­
structions fl.ow because instructions are carried out as data and operands are 
available, leaning on the properties of the functional paradigm. To illustrate 
this possibility with a real implementation, we have used the Carni Light lan­
guage [l, 2, 3], a variant of CAML. Further information about this language 
can be seen in [4]. 

W e ha ve employed the PVM1 software package [5] which allows us to write 
programs that exploit the distributed computation mode] on heterogeneus 
networks with the unique imposition that ali the computers work under the 
Unix operating system (also under OSF-1 for Alpha machines). 

This paper appears as an evolution of [6, 7], in which a heterogeneous 
computation mode! is presented in order to integrate functional and impera­
tive modules on a client-server architecture. In [8) the same model re:fined is 
discussed an d applied to an example, an d a mechanism for the automatic (or 
semiautomatic) construction of the Functional Lenguage and Operate Sys­
tem interface based on the type of the kernel functions we want to use from 
the client side is introduced. 

2 Breaking the synchron:ism the typ-

JI/Iost of the functionallanguages (or extensions of them) that pursue parallel 
computation, employ the non-strict (lazy) evaluation order since there is not 
synchronism between the demand of a computation and the obtention of the 
result. In this way, it is possible to introduce annotations in the code to 
suggest the moment in which the evaluation of an expression should start, 
the temporal de p endences of the evaluation in relation to evaluations of other 
expressions, and the end of the evaluatìon, like the para-language of Haskell 

10ther possible systems available are ISIS, P4, Express and Linda 
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presented by P.Hudak in [9]. , 
The synchronism introduced in the strict languages prevents from a.aopt­

ing this solution (at least immediately). Some of theselangu~~es ,. 
primitives to generate new processes or threads, control~ed, aiJ the '"J:Ue .. 

and "o handle the interprocess commumca;;JOn by s1de-effects programmer, ~ . . . 
in a similar way to I/O handling, thus losmg referentJal transparency. 

To salve this problem we adopted a solution res~mblmg th~t used _m 
lazy languages, but preserving the Caml Light eval~at10n me~hamsm (sc~Jct 
evaluation) and its referential transparency. The Jdea. cons1sts o! mak~ng 
the request to a server in such a way tha_t we do not n~ed to wa1t for ~e 
remote result, continuing the evaluation oì other expresswns, carry~~g thc~c 
·. ll l 'r'' we should wait for the result of the remote evaluacwn, the 1n para e . L • • , L. . •• ." 

ll l. · ld no+ be possible The solutJOn res1des m che consb UCLJon para e 1sm wou " · . . . . • Lr .. . 
of a new datatype, ·whose behaviour 1s q m te SIIDllar to a d"'tac.1 pc (a 
deferred datatype) Remo t e val. . , 

A client-server mode! has been used so that remote evalu~twn requests 
b f rmed b-· the Catul Light function request wh1ch has as Jts can e per o _ y . 

arguments an integer identifying one suitable service, and the arguments to 
·h" · ···h 'a "n d that returns a va.lue of 'b Remoteval t JS servi ce WlL , o. -

w h ere 'b is the type of the value returned the servi ce (in t - > 'a . - > 'b 
Remoteva.l). If the function has more than one argument, say n of types 
'ai. 'a2 .... , 'an, we can transform thern into only ·)ne parameter usmg t~e 

d, t ; (unrurry'J" 'a - 'ai * 'a2 * " , . * 'an. Since 'a can be pro uc Gype ~ . . - . . . . . . , 
any type, we can define and use serv1ces of mul~1ple argume~ts by JOmmg 
them together in a that will be unfolded m the serover. ' 

On the other hand, smce request a.chieves the evaluabon request to "he 
server t be va1ue returned the function, an instance of ftemot e val, does llOt 

' ·' . ·'hc --ecu1t' o·1<t111"e evaluation Remotcwal is an .ADT con\.aln ~., c _{ " ...._ ~ . · . , .L 

Data Type) which can be used to encapsulate the ac~eso w the res_ult o! ,,he 
remote evaluatìon val) vvhen needed. This ADT hl 3~ ~aml 

, " , the deterrninisrn iHd.es an ~u .• ,._, ... ~·v• 

the evaluatio:n. and the referential transparency due to its access function 

val. h . . I'" The ADT is created at request time, storing the result w en 1t arnves. ·~ 
we to access the data contained in it before they arrive, the process musé 
waìt until are available. There are two different approaches about value 
reception: 


