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Abstract

This extended abstract contains some non-technical observations about
the roles that logic can play in the specification of computational systems. In
particular, computation-as-deduction, meta-programming, and higher-order
abstract syntax are briefly discussed.

1 Two approaches to specifications

In the specification of computational systems, logics are generally used in one of two
approaches. In one approach, computations are mathematical structures, containing
such items as nodes, transitions, and state, and logic is used in an external sense to
make statements about those structures. That is, computations are used as models
for logical expressions. Intensional operators, such as the modals of temporal and
dynamic logics or the triples of Hoare logic, are often employed to express proposi-
tions about the change in state. For example, next-time modal operators are used
to describe the possible evolution of state; expressions in the Hennessey-Milner are
evaluated against the transitions made by a process; and Hoare logic uses formulas
to express pre- and post-conditions on a computation’s state. We shall refer to this
approach to using logic as computation-as-model. In such approaches, the fact that
some identifier z has value 5 is represented as, say a pair (z,5), within some larger
mathematical structure, and logic is used to express propositions about such pairs:
for example, z >3 Az < 10.

A second approach uses logical deduction to model computation. In this ap-
proach the fact that the identifier # has value 5 can be encoded as the proposition
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“z has value 5.” Changes in state can then be modeled by changes in propositions
within a derivation. Of course, changing state may require that a proposition no
longer holds while a proposition that did not hold (such as “z has value 6”) may
hold in a new state. It is a common observation that such changes are naturally sup-
ported by linear logic and that deduction (in particular, backchaining in the sense
of logic programming) can encode the evolution of a computation. As a result, it is
possible to see the state of a computation as a logical formula and transitions be-
tween states as steps in the construction of a proof. We shall refer to this approach
to using logic as computation-as-deduction.

There are many ways to contrast these two approaches to specification using
logic. For example, consider their different approaches to the “frame problem.”
Assume that we are given a computation state described as a model, say M, in
which it is encoded that the identifier z is bound to value 5. If we want to increment
the value of z, we may need to characterize all those models M, in which z has
value 6 and nothing else has changed. Specifying the precise formal meaning of this
last clause is difficult computationally and conceptually. On the other hand, when
derivations are used to represent computations directly, the frame problem is not
solved but simply avoided: for example, backchaining over the clause

z has valuen —o z has valuen +1

might simply change the representation of state in the required fashion.

In the first approach to specification, there is a great deal of richness available for
modeling computation, since, in principle, such disciplines as set theory, category
theory, functional analysis, algebras, etc., can be employed. This approach has had,

of course, a great deal of success within the theory of computation.

In contrast, the second approach seems thin and feeble: the syntax of logical
formulas and proofs contains only the most simple structures for representing com-
putational state. What this approach lacks in expressiveness, however, is amelio-
rated by the fact that it is more intimately connected to computation. Deductions,
for example, seldom make reference to infinity (something commonly done in the
other approach) and steps within the construction of proofs are generally simple
and effective computations. Recent developments in proof theory and logic pro-
gramming have also provided us with logics that are surprisingly flexible and rich
in their expressiveness. In particular, linear logic [6] provides flexible ways to model
state, state transitions, and some simple concurrency primitives, and higher-order
quantification over typed A-terms provides for flexible notions of abstraction and en-
codings of object-level languages. Also, since specifications are written using logical
formulas, specifications can be subjected to rich forms of analysis and transforma-
tions.

To design logics (or presentations of logics) for use in the computation-as-de-
duction setting, it has proved useful to provide a direct and natural operational
interpretation of logical connective. To this end, the formalization of goal-directed
search using uniform proofs [14, 16] associates a fixed, “search semantics” to logical
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connectives. When restricting to uniform proofs does not cause a loss of complete-
ness, logical connectives can be interpreted as fixed search primitives. In this way,
specifier can write declarative specifications that map directly to descriptions of com-
putations. This analysis of goal-directed proof search has lead to the design of the
logic programming languages AProlog, Lolli, LO, and Forum. Some simple examples
with using these languages for specifications can be found in [1, 10, 14]. The recent
thesis [2] provides two modest-sized Forum specifications: one being the operational
semantics of a functional programming language containing references, exceptions,
and continuation passing, and the other being a specification of a pipe-lined, RISC
Processor.

Observation 1. Logic can be used to make statements about compu-
tation by encoding states and transitions directly using formulas and
proof. This use of logic fits naturally in a logic programming setting
where backchaining can denote state transition. Both linear logic and
higher-order quantification can add greatly to the expressiveness of this
paradigm.

2 An example

The following specification of reversing a list and the proof of its symmetry illus-
trates how the expressiveness of higher-order linear logic can provide for natural
specifications and convenient forms of reasoning.

qu".‘lg( e
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reverse L K :- pi rv\( N \ .

pi X\(pi M\(pi N\ (zv (X::M) N :- rv M (X::N)))) => rv nil K -:
rv L nil).

Here we use a variant of AProlog syntax: in particular, lists are constructed from
the infix :: and nil; pi X\ denotes universal quantification of the variable X; =>
denotes intuitionistic implication; and, -: and :- denote linear implication and
its converse. This one example combines some elements of both linear logic and
higher-order quantification.

To illustrate this specification, consider proving the query

7- reverse (a::b::c::nil) Q.

Backchaining on the definition of reverse above yields a goal universally quantified
by pi rv\. Proving such a goal can be done by instantiating that quantifier with a
new constant, say rev, and proving the result, namely, the goal

pi X\(pi M\(pi N\(rev (X::M) N :- rev M (X::N)))) => rev nil Q -:
rev (a::b::c::nil) nil).

Thus, an attempt will be made to prove the goal (rev (a::b::c::nil) nil) from
the two clauses
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pi X\(pi M\(pi N\(rev (X::M) N :- rev M (X::N)))).
rev nil Q.

(Note that the variable Q in the last clause is free and not implicitly universally
quantified.) Given the use of intuitionistic and linear implications, the first of these
clauses can be used any number of times while the second must be used once (natural
characterizations of inductive and initial cases for this example). Backchain

ing now
leads to the following progression of goals: i

rev (a::b::c::nil) nil.
rev (b::c::nil) (a::nil).
rev (c::nil) (b::a::nil).
rev nil (c::b::a::nil).

and the last goal will be proved by backchaining against the initial clause and binding
Q with (c::b::a::nil).

It is clear from this specification of reverse that it is a symmetric relation: the
informal proof simply notes that if the table of rev goals above is flipped horizontally
and vertically, the result is the core of a computation of the symmetric version of

reverse. Given the expressiveness of this logic, the formal proof of this fact directly
incorporates this main idea.

Prfaposition. Let 1 and k be two lists and let P be a collection of clauses in
which the only clause that contains an occurrence of reverse in its head is the

one displayed above. If the goal (reverse 1 k) is provable from P then the goal
(reverse k 1) is provable from P.

. Proof. Assume that the goal (reverse 1 k) is provable from 7. Given the re-

striction on occurrences of reverse in P, this goal is provable if and only if it is
proved by backchaining with the above clause for reverse. Thus, the goal

A = ‘Y/r\y

pi rv\(
pi X\(pi M\(pi N\(rv (X::M) N :- rv M (X::N)))) =>
rv nil k -: rv 1 nil)

is provable from P. Since this universally quantified formula is provable, any instance
of it is provable. Let rev be a new constant not free in P of the same type as the
variable rv. The formula that results from instantiating this quantified goal with
the A-term x\y\(not (rev y %)) (where \ is the infix symbol for A-abstraction

and not is the logical negation, often written in linear logic using the superscript
L). The resulting formula,

pi X\(pi M\ (pi N\(not (rev N (X::M)) :- not (rev (X::N) M)))) =>
not (rev k nil) -: not (rev nil 1),

is'thus provable from P. This formula is logically equivalent to the following formula
(linear implications and their contrapositives are equivalent in linear logic).
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pi X\(pi M\(pi N\(zev (X::N) M :- rev N (X::M)))) =>
rev nil 1 -: rev k nil

Since this code is provable and since the constant rev is not free in P, we can
universally generalize over it; that is, the following formula is also provable.

pi rev\(
pi X\(pi M\(pi N\(rev (X::N) M :- rev N (X::M)))) =>
rev nil 1 -: rev k nil)

From this goal and the definition of reverse (and o-conversion) we can prove
(reverse k 1). Hence, reverse is symmetric. §

This proof should be considered elementary since it involves only simple linear
logic identities and facts. Notice that there is no direct use of induction. The two
symmetries mentioned above in the informal proof are captured in the higher-order
substitution x\y\(not (rev y x)): the switching of the order of bound variables
captures the vertical flip and linear logic negation (via contrapositives) captures the
the horizontal flip.

3 Meta-programming and meta-logic

An exciting area of specification is that of specifying the meaning and behavior of
programs and programming languages. In such cases, the code of a programming
language must be represented and manipulated, and it is valuable to introduce the
terms meta-language to denote the specification language and object-language to
denote the language being specified.

Given the existence of two languages, it is natural to investigate the relationship
that they may have to one another. That is, how can the meaning of object-language
expressions be related to the meaning of meta-level expressions. One of the major
accomplishments in mathematical logic in the first part of this century was achieved
by K. Godel by probing this kind of reflection, in this case, encoding meta-level
formulas and proofs at the the object-level [7].

Although much of the work on meta-level programming in logic programming has
also been focused on reflection, this focus is rather narrow and limiting: there are
many other ways to judge the success of a meta-programming language apart from its
ability to handle reflection. While a given meta-programming language might not be
successful at providing novel encodings of itself, it might provide valuable and flexible
encodings of other programming languages. For example, the 7-calculus provides a
revealing encoding of evaluation in the A-calculus [17], evaluation in object-oriented
programming (28], and interpretation of Prolog programs [12]. Even the semantic
theory of the m-calculus can be fruitfully exploited to probe the semantics of encoded
object-languages [27]. While it has been useful as a meta-language, it does not seem
that the r-calculus would yield an interesting encoding of itself.
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Similarly, AProlog has been successful in providing powerful and flexible speci-
fications of functional programming languages [8, 21] and natural deduction proof
systems [5]. Forum has similarly been used to specify sequent calculi and various
features of programming languages [2, 14]. It is not clear, however, that AProlog or
Forum would be particularly good for representing their own operational semantics.

Observation 2. A meta-programming language does not need to cap-
ture its own semantics to be useful. More importantly, it should be
able to capture the semantics of a large variety of languages and the
resulting encoding should be direct enough that the semantics of the
meta-language can provide semantically meaningful information about
the encoded object-language.

A particularly important aspect of meta-programming is the choice of encod-
ings for object-level expressions. Godel used natural numbers and the prime fac-
torization theorem to encode syntactic values: an encoding that does not yield a
transparent nor declarative approach to object-level syntax. Because variables in
logic programming range over expressions, representing object-level syntax can be
a particularly simple, at least for certain expressions of the object language. For
example, the meaning of a type in logic programming, pasticularly types as they
are used in AProlog, is a set of expressions of a given type. In contrast, types in
functional programming (say, in SML) generally denote sets of values. While the
distinction between expressions and values can be cumbersome at times in logic pro-
gramming (2 + 3 is different than 5), it can be useful in meta-programming. This
is particularly true when dealing with expressions of functional type. For example,
the type int -> int in functional programming denotes functions from integers to
integers: checking equality between two such functions is not possible, in general.
In logic programming, particularly in AProlog, this same type contains the code of
expressions (not functions) of that type: thus it is possible to represent the syn-
tax of higher-order operations in the meta-programming language and meaningfully
compare and compute on these codes. More generally, meta-level types are most
naturally used to represent object-level syntactic categories. When using such an
encoding of object-level languages, meta-level unification and meta-level variables
can be used naturally to probe the structure of object-level syntax.

Observation §. Since types and variables in logic programming range
over expressions, the problem of naming object-level expressions is often
easy to achieve and the resulting specifications are natural and declara-
tive.

4 Higher-order abstract syntax

In the last observation, we used the phrase “often easy to achieve.” In fact, if
object-level expressions contain bound variables, it is a common observation that
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representing such variables using only first-order expressions is problematic since
notions of bound variable names, equality up to a-conversion, substitution, efc.,
are not addressed naturally by the structure of first-order terms. From a logic
programming point-of-view this is particularly embarrassing since all of these notions
are part of the meta-theory of quantification logic: since these issues exist in logic
generally, it seems natural to expect a logical treatment of them for ob ject-languages
that are encoded into logic. Fortunately, the notion of higher-order abstract syniax
is capable of declaratively dealing with these aspects of object-level syntax.

Higher-order abstract syntax involves two concepts. First, A-terms and their
equational theory should be used uniformly to represent syntax containing bound
variables. Already in [3], Church was doing this to encode the universal and exis-
tential quantifiers and the definite description operator. Following this approach,
instantiation of quantifiers, for example, can be specified using #-reduction.

The second concept behind higher-order abstract syntax is that operations for
composing and decomposing syntax must respect at least a-conversion of terms.
This appears to have first been done by Huet and Lang in [11]: they discussed the
advantages of representing object-level syntax using simply typed A-terms and ma-
nipulating such terms using matching modulo the equational rules for A-conversion.
Their approach, however, was rather weak since it only used matching (net unifi-
cation more generally). That restrictions made it impossible to express all but the
simplest operations on syntax. Their approach was extended by Miller and Nadathur
i [15] by moving to a logic programming setting that contained Sy-unification of
simply typed A-terms. In that paper the central ideas and advantages behind higher-
order abstract syntax are discussed. In the context of theorem proving, Paulson also
independently proposed similar ideas [20].

In [23] Pfenning and Elliot extended the observations in [15] by producing ex-
amples where the meta-language that incorporated A-abstractions contained not
just simple types but also product types. In that paper they coined the expression
“higher-order abstract syntax.” At about this time, Harper, Honsell, and Plotkin
in [9] proposed representing logics in a dependent typed A-calculus. While they did
not deal with the computational treatment of syntax directly, that treatment was
addressed later by considering the unification of dependent typed A-expressions by
Elliott [4] and Pym [25].

The treatment of higher-order abstract syntax in the above mentioned papers
had a couple of unfortunate aspects. First, those treatments involved unification
with respect to the full A9-theory of the A-calculus, and this general theory is com-
putational expensive. In [11], only second-order matching was used, an operation
that is NP-complete; later papers used full, undecidable unification. Second, various
different type systems were used with higher-order abstract syntax, namely simple
types, product types, and dependent types. However, if abstract syntax is essen-
tially about a treatment of bound variables in syntax, it should have a presentation
that is independent from typing. _ \

The introduction of Ly in [13] provided solutions to both of these problems.
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First, L provides a setting where the unification of \-terms is decidable and has
most general unifiers: it was shown by Qian [26] that L,-unification can be done
in linear time and space (as with first-order unification). Nipkow showed that the
exponential unification algorithm presented in [13] can be effectively used within
theorem provers [19]. Second, it was also shown in [13] that Lj-unification can be
described for untyped A-terms: that is, typing may impose additional constraints
on unification but Ly-unification can be defined without types. Thus, it is possible
then to define Ly-like unification for various typed calculi [22].

Observation 4. L, appears to be one of the weakest settings in which
higher-order abstract syntax can be supported. The main features of L A
can be merged with various logical systems (say, AProlog and Forum),
with various type systems (say, simple types and dependent types) [21]
and with equational reasoning systems [18, 24].

7

While existing implementations of AProlog, Isabelle, Elf, and NuPRL all make
use of results about Ly, there is currently no direct implementation of Ly. It should
be a small and flexible meta-logic specification language.
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Abstract

A programming language is a tool and a vehicle for applications. Logic
Programming has proven to be a very fruitful paradigm. Recognizing the
need to promote the evolution of Prolog towards a more expressive new logic
programming language, a large medium-term national research project was
recently started under the authors’ coordination involving a large body of in-
vestigators from their home institutions. Extensions to Logic Programming
are being developed with new forms of computational reasoning, with explicit
negation, constraint programming, and parallelism and distribution support.
The resulting language, PROLOPPE, will integrate the above aspects in the
form of a trully efficient implementation that exploits innovative techniques,
including joint implicit and explicit parallelism, and distribution over het-
erogenous multiple processor architectures. This language will be used in a
wide variety of applications such as desision support systems, natural lan-
guage processing, diagnosis, scheduling, and robot cooperation. In this paper
we overview the main topics behind the research in the PROLOPPE project.

This paper is an edited version, by the authors, of part of the original pro-
posal of the PROLOPPE Project which included contributions from C. Damésio,
F. Menezes, J. C. Cunha, J. J. Alferes, L. M. Pereira, P. Barahona, P. D. Medeiros,
S.P. Abreu, from the Universidade Nova de Lisboa, and A. Matos, A. P. Tomés, F.
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Silva, J. P. Leal, L. Damas, L. Lopes, M. Filgueiras, N. Moreira, R. Reis and V. S.
Costa from the Universidade do Porto, and Miguel Calejo from Servisoft.

.1 Introduction

Prolog, albeit its great success, has a number of limitations both at the language
and at the execution levels. We propose to overcome some of these limitations by
relying and improving on recent results in the semantics of logic programming lan-
guages, where we have ourselves made relevant contributions. We think it is now
time for a new step in this direction, with the proposal of a language augment-
ing the expressive and computational power of Prolog. Our main objective is to
promote the evolution of Prolog towards a more expressive new logic programming
language (Proloppe), tied to an efficient execution environment that exploits inno-
vative implementation techniques, including joint implicit and explicit parallelism,
and distribution over heterogenous multiple processor architectures. Extensions to
Logic Programming will be developed with new forms of computational reasoning,
with explicit negation, constraint programming, and parallelism and distribution
support.

Prolog supports a subset of Logic only, and in particular it does not include
explicit negation in the facts and in the rules. Increased expressive power of the lan-
guage, and a wider scope for its applications will be possible by including explicit
negation as well as default negation, and exploiting new forms of non-monotonic
reasoning (a promising field with increasing expansion at the international scale).
Handling contradictions and automated methods for belief revision also brings in in-
creased functionalities. Implementation of these functionalities requires the support
of construtive negation, integrity constraints, and disjunction. Constraint-based
programming methods for solving linear Diophantine equations have been developed
by researchers in our groups, and are proved to be among the most efficient meth-
ods known. These and other methods, namely incremental hierarchical constraint
solvers for finite domains and the naturals, will be integrated in the implementa-
tion and will support rapid prototyping of efficient applications in multiple domains
(e.g. scheduling and time-tabling). Currently, these applications demand highly
specialized programs which are hard to specify and mantain. Integrating forms of
non-monotonic reasoning and numerical constraints in a logic language opens pos-
sibilities for innovation in the area of Decision Support Systems.

A first efficient implementation including such extensions will be developed, fol-
lowing our past experience, and aiming at overcoming several limitations of current
logic programming systems, regarding problem solving in non-trivial Al applica-
tions, and in distributed AL The project encompasses the development of new tech-
niques concerning the following aspects: optimized Prolog compilation, execution
models for the proposed extensions, joint exploitation of implicit and explicit par-
allelism over heterogeneous multiple processor architectures, and tools for program

73

development with sequential and parallel execution, with support for performance
measurement, debugging and visualization. ‘

We address a diversity of complex application domains requiring a programming
system with great expressiveness, declarativity, efficiency, and_ intelligence in the
execution strategies. These aspects will contribute to the evaluation of the developed
tools, as well as to strenghten the logic programming abilities in order to .address
non-trivial problem solving. Application development will also be pursued in other
initiatives, extending its impact at the national and international scopes. .

In the following sections we summarize the fundamental issues that are being
addressed in this project.

2 Semantics for negation

Recently, several authors have underscored the importa.nc.e of extending logic pro-
gramming (LP) with a second kind of negation —, for use in knowledge representa-
tion, deductive databases and nonmonotonic reasoning (NMR) [GL90, GL92, Ino91,
Kow90, KS90, PW90, PAA91b, PAA91d, PAA92b, PDA93b, PDA93c, 'PDA93a,
PAA93, Wag91]. [BG93] makes an overview of the use of such programs in knox‘»vl—
edge representation and NMR. Different semantics for extended logic programs with
——negation (ELP) have appeared [DR91, GL90, KS90, PA92, PA{XQl'a, PAA92a,
Prz90, Prz91a, Sak92, Wagdl]. Each of these semantics is a generalization for EI',P
of either the stable models semantics (SM) [GL88], or the well-founded semantics
(WFS) [GRS91] of normal programs. .

In [Prz90, Dix91, Dix92] SM and WFS are contrasted,. and it is argued th.at,
by its structural properties, WFS is more suitable for an implementation (unlike
SM, it is possible to define for WFS both bottom—up and top—dowr} procedures
[PAA91c, CW92, Ros92, BD93]). To deal with the problem of floundering, t.he t'op—
down procedures need to treat negation as failure goals by means of procraﬁtmatlon,
common to that of constraints and deterministic priority, and/or constructive meth-
ods [TS86, Prz89, KT88, CW92, Ros92, BD93, B0193].. _ .

[AP92] contrasts some of these semantics regarding their use of ﬂ—‘negatlon,
where distinct meanings of — are identified (explicit, strong and classical), and
argues that, by its properties, explicit negation is preferable. By being a gener-
alization of WFS for ELP which uses explicit negation, WFSX [PA92] appears as
a natural candidate for the base semantics of our ELP PROLOPPE implementa-
tion. [Alf93] make an extensive study on WFSX, and its relationsh.ip with .several
NMR formalisms. In [AP93b] WFSX is defined in terms of a “logic of. belief and
provability’, and compared with the works of [Che93, MT93? 1593]. Thls.o.pen 1Ehe
way for contradiction removal (cf. below), and for generalizing WFSX to d1s3unct1.ve
programs, in the spirit of [BLM90, Prz91c, Prz91b, Prz93], where several semantics
for disjunctive normal programs are defined. . ' ‘ '

By generalizing LP with either explicit negation or integrity constrains, a new is-
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sue arises: how to deal with contradiction. [DR91, Jon91, PA93b, PAA9la, PAA92a]
present several proposal for that issue. [AP93c, PA93a] distinguish between two
generic approaches to deal with contradiction: one consists in avoiding it; the other
in removing it. The definition on procedures for removing contradiction has been
generalized to deal with two valued revisions [PDA93b], and to deal with preference
among revisions [DNP93], with application to diagnosis, updates, and debugging
[PDA93c].

Despite all the above mentioned effort on the theoretical study on ELP semantic
and its application domains, to date there is no efficient implementation of these
semantics, nor even a formal specification of their procedures. The ELP implemen-
tation of this proposal is intended to fill in this gap, and to allow for a practical
application of ELP for problems of the domains studied.

3 Constraint Logic Programming

The characteristics of LP, namely its declarative nature, makes it particularly suit-
able to the specification of a large number of constraint satisfaction problems. Nev-
ertheless, the resolution principle, the basis of LP, is insufficient to handle efficiently
these problems, since it does not take advantage from the specificity of some domains
(namely numeric) nor from the characteristics of the operations defined on these do-
mains. Several extensions have thus been proposed to LP in the last few years
that, without jeopardizing its declarative nature, allow a much better performance
in solving these problems. In general, these languages extend LP to Constraint
Logic Programming (CLP), by replacing the resolution principle by more powerful
constraint solving method in some specialised domain.

Solving linear constraints on finite domains may also be done by exploring the
equivalence to the problem of solving systems of linear equations over the natural
numbers (Diophantine equations) and using the specific methods developed for it.
Most of the recent research work on Diophantine equations is related with the de-
velopment of algorithms for unification of terms with associative and commutative
functors (AC-unification) and with the field of Term Rewriting Systems [Dom91]
The use in the implementation of a CLP system of one of the methods for solving a
system of Diophantine equations is under research [Con93]. Other recent results, for
a single equation, are described in [TFar] and [FT93] and correspond to the fastest
methods known to date.

The topic of constraints over algebras of rational trees extends term unification,
in a decidable way [Mah8s, CL89], to the resolution of first order formulas with
equality as unique predicate symbol. Extensions to Prolog in this line, are Prolog
IT [Col82], Prolog III, and more recent, systems as CLP(FT) [Smi91], where uni-
versally quantified disequalities are used to allow logic programs with constructive
negation. On the other hand, as was pointed out in [DMV93], the standard alge-
bra of rational trees has a close relationship with the standard model for features
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logics, [Smo89], which were establish in order to .forma.li'ze f(f,at.ure based grammar
formalisms that have emerged in the Computational Linguistics commu.mty over
the past few years. From a practical point of view, the fa,;ct tha:t the sa,tlsﬁ.ablhty
problem (in these domains) is NP-hard tends to n:lamfest 1t.self ina dI‘;a,Il"la‘l:,lC way
in practical applications, motivated several specialized algorithms to minimize this
587, ED88, MKI1]. N
ngeig\[g;] 81’67 was aréued thi‘t any practical approach to t}_:le satisfiability problfam
should use factorization techniques to reduce the size of .the input formul'ae tf) which
any complete algorithm for satisfiability is applied, since such factorization C%ﬁ
reduce by an exponential factor the overall compu"ta,tloﬁal cgst of the process. J‘:n
[DMV93, DMB93] were described more factorization techniques and a complete
rewrite system for satisfiability was provided.

4 Compilers for Prolog with Extensions

Prolog adapts well to conventional computer architectures. Prolog’s selection func-
tion and search rule are simple operations. Moreover, the fact thf?t Prolog only uﬁs&s
terms means that the state of the computation can be coded qul‘te- efficiently. lhe
basis for most of the current implementations of logic programming languages is
the Warren Abstract Machine [War83], or WAM, an “a?bstra,ct machine” usefull a,sL 2
target for the compilation of Prolog because it can be lmPIemented very efﬁc:uendy
in most conventional architectures. Recent efforts on the. 1mpiemen§;at1'on of Prolﬂog
have tried to improve further the performance by using direct compl.la,tlon to native
code and global analysis [Van90, Tay90]. Native code sys1.;ems gain pt?rfgrr?:ance
by by-passing the emulator. They can also perform machine-level 0pt1m}samo;nsi
(zlobal analysis provides information on how argument's are wa,ctuaﬂy 'usedo dumngz
sxecution. Its most common uses are in the further specialisation of unification and
in more sophisticated indexing. "

The above-mentioned systems are not portable, that is, they usgally depend.@n
knowledge of some computer architectures. A portable approach, direct generat}om
of “C” code, has been proposed by Debray among others, b'ut can lead to the
generation of huge and hard to compile “C” programs. We ?b;eheve that such work
zeuld benefit from well-established work on portable C compilers.

4.1 New execution models

From the very beginnings of logic programming there.has been a desire to obtain
good execution models [Kow79] [PP79] [Col86] I[Na;185]q More ;ecently the need
for such models has been made even clearer by the new goal of exp}ormg np&fa&-
lelism in logic programs. One such important model is the Warren sﬁBasicml_Lm:
dorra Model [War88], used in the the Andorra-I system [SCWY91b, “‘oC“W ¥9ic].
In this model determinate goals (that is, goals for which at most a single clause
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can match) can be selected first and run in and-parallel. When no such goals are
available, the system can try the several alternatives to a non-determinate goal
in or-parallelism. Besides the parallelism, the selection functions most natural to
the Basic Andorra Model have a very useful form of implicit coroutining [SC93],
which has been exploited in several Andorra-I applications [Yan89, GY92] and in
the Pandora language [Bah93]. Note that Andorra-I can only exploit and-parallelism
between determinate goals. Warren’s Extended Andorra Model (EAM) [War89] lifts
this restriction and allows a general form of and-parallelism. The EAM gives a set
of general rewrite rules for logic programs, which can be subject to different con-
trol schemes. The EAM was a basis for the Kernel Andorra Prolog (KAP) [HJ 90]
framework which is instantiated in the AKL language, proposed by Janson and
Haridi [JH91]. In these languages, guards (such as commit guards, cut guards
and wait guards) are used to control computation, which may be nondeterministic.
Both or-parallelism, and and-parallelism between non-determinate (and determi-
nate) goals can be exploited. Moreover, the search space can be muc
traditional Prolog systems.

Further improvements to AKL’s search rule have been performed by Abreu,
Pereira and Codognet [APC92a]. The authors have studied failure-driven configu-
ration reordering, which can be seen as an application of the first-fail principle to
the unfolding of an AKL computation. This shows that And-Or tree Rewriting sys-
tems (AORS), which encompasses both AKL and the EAM, provide a fertile base
for the exploitation of a-posteriori search-space pruning, i.e. pruning part of the
search-space as a consequence of the execution of another portion of the program.
This approach complements the a-priori search-space pruning that comes as a result
of constraint propagation, another mechanism present in AKL.

The differences between Prolog and Andorra-I are more striking. Andorra-I
does in fact inherit most of its implementation techniques from Parlog [Cra88] and
KL1 [SSM*87]. Andorra-I’s abstract machine and compiler are described by San-
tos Costa [SC93] (note that in practice much of the difficulties to be addressed in
Andorra-I are due to parallelism support, handled by Yang’s engine and by the
several schedulers BRSW91, Dut91]). Andorra-
the ones considered particularly important for Andorra-I’s main goal to run real ap-
plications. The compiled Andorra-I is not as optimised as current Prolog systems,
being a more complex and a newer system. Great improvements can be obtained by
using the new techiques that are being developed for Prolog, plus the new techiques
developed for the committed-choice languages [TB93] :

The implementation of AKL and of the EAM :lso brings some new problems.
Janson and Montelius have a prototype implementation [JM92], but again several
optimisations will be needed for one such system to compete with current Prolog
systems. Note that AKL (and EAM) can be described in terms of and-boxes, and or-
boxes (several types may exist). These boxes are expanded during forward execution,
but their configuration must be reorded upon failure. This can be made more

effective through the guidance of the reordering scheme

h reduced over

I incorporates some optimisations,

by a binding-dependency
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maintenance system; such is the object of the AKL/]IP (for ‘?IKI}; v§7ith Inti]liige;:
i i 2b], currently bein:: “vorke
ing) system outlined in [AP93a] and [APC92b], : P on
ilzln},?s%i)n. yAKL/ IP is currently being implemented using Janson and Monteln;)s
prototype [JM92] as a basis, being thus a sequential 1$plet{nenta(’;1on.lG It cazzs i:
i ite rules for and-or trees
that a computational model based on rewri : '
:lr)geu:aie w?th AORg’s) is more suited to dependency-directed search—sp.ace prun1-111g
than systems using a Prolog-like selection rule, because the former prov1d§sl.? bm't;
in! mechanism to describe suspension of goals a'nd can cope more gracefully wi
changes to the relative ordering of goals at run-time.

5 Implicit and Explicit Parallelism

Parallel logic programming systems obtain high-performance by eﬁpﬁiti'ngl differer;t
. i implici ici allelism are available in logic pro-
f parallelism. Both implicit and explicit par .
fomnz languages. In explicit systems such as Deltfm Prolog [PMCAS86] ﬁpﬁcml
fr es of goals (events and splits in Delta Prolog) are available to -control pa.rale SI‘EIL.
Islg)p]jcit parallelism can be obtained through the parallel ex};ecflon oflfelvera fisiz;
isi - llelism, or through the parallel resolu
vents arising from the same query, or-para , : csolution
] { parallelism can be explored ac
al goals, and-parallelism. All these fon:ns o : '
:i:;i‘:gr togvery’different strategies. We next discuss the most important techniques
now available to exploit parallelism in logic programs.

5.1 Implicit Parallelism

i i loited successfully in logic pro-
-parallelism and and-parallelism have been exp ' :
gﬁ;iifga 'rsys:ems. Whereas or-parallel systems exploit much the.sa,mefpa.rgg;ehsmg
i i i t the search space, quite a few differen
and differ mainly in the way they represen & :
i ised. Arguably, some of the most impor
f and-parallelism have been recognised bly, . . -
f;?.n?ji;proachis are the following. Systems implementing “che comrm.tted-chome la,In
ages, exploit parallelism between goals that have commited to a smglfe cla,use.d n;;
g‘;pend,ent and-parallelism systems, such as &-Prolog [HGE;O] ,A ondly runI 1[15%{);1; 931;]
i hould not interfere, in parallel. Andorra- .
goals, whose computation s . domar] (BGWY91a]
i i that are determinate. e la
xploits and-parallelism between goals 1
Zezn generalised in the Extended Model, and in the AKL language[JH91].

5.2 Parallel Implementation of the EAM and AKL

i 1 determinate goals. Both the

-1 only exploit and-parallelism between
gﬁ?ﬁd 1:?(% liftythi);?;estriction. AKL and the EAM thus share tl:}e property that1
the computation ma,jr be carried out in parallel more naturally than in other paralle

i found in some Prolog
1j.e. intrinsic to the execution mode'l, not as an 'add-on such as can be foun
systems, or in multi-sequential parallel implementations.
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logic programming systems: the approach of having the run-time data structures
organized as a tree of and-boxes and choice-boxes, the requirements on quietness of
pruning guards, together with the fact that and-boxes have their own store lead to
potentially better locality properties, making such 2 syster suitable for both coarse
and fine-grained parallelism. Indeed, the gains on a parallel implementation of AKI,
are very attractive, and Moolenaar[VAMDO1] has recently implemented a parallel
prototype for of AKL.

Finally, the promising experimental results obtained with the preliminary proto-
type of the AKL/IP system prompt us to look into a true parallel implementation.

5.3 Implicit Parallelism for Distributed Memory Systems

Recently, new parallel architectures, namely distributed shared memory architec-
tures, have been proposed and built (e.g. the KSR and EDS parallel machines).
Although, in these architectures, the memory is physically distributed there is soft-
ware and hardware support for a shared virtual memory computation model. Thege
architectures combine the advantages of large number of processors (scalability) with
the advantage of shared memory, and are therefore ideal targets for the parallel ex-
ecution of Prolog programs. These architectures are quite recent and few parallel
logic programming systems have been developed that understand the new issues.
One of the first models has been designed and implemented by Silva [Sil93], and
shown successful execution for or-parallelism in one of these architectures.

5.4 Explicit Parallelism

This approach consists in the definition of constructs for the explicit specification
of sequenciality and concurrency, synchronization and non-determinism in a logic
programrning language.

The diversity of proposals that have arisen in the past ten years have two princi-
pal aims: (i) search for increased flexibility in the specification of parallelism, versus
implicit parallelism as supported by a compiler and/or run-time system; (ii) the need
for suitable constructs for the specification of distributed systems. A large number
ol problems are naturally modelled by wultiple concurrent interacting processes

where the data structures and/or the entities that solve the problem are spacially
distributed.

6 Programming environment

Mostly since the 80s several efforts have been made to build powerful logic pro-
gramming environments, in order to meet the expectations brought by the innova-
tive Prolog language in the 70s [DCLY93]. One of the areas where more promising
results were found, by capitalizing on logic programming’s own caracteristics, was
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i i into an area with autonomous scientific
declarative debugging, which has grown in e i
workshops, such as t];e recent [FN93], [Ca%92]. So far one ththgsgég ﬁsl Ie: ;;:E Ss
towards an environment integrating innovative tools has been the ESF AL
project [ANPRS9], which went on between 1986 and 1988: From tthat W:ré{eigloppe&
i al prototype Prolog environments wer '
its sequel by the UNL team sever . e entorins
i OnProlog), associated to various g il !
P e rosie ’ Prolog, Universidade do Porto’s
j ’ ic Manager, UNL’s own nanoProlog,
e s Logl'c ! 1 etimes in the context of external
University of Edinburgh’s C-Pro‘og), somm
&% contracts }EApple, ENIDATA, Digital, Softloag/ NleXT, a,ilrl‘f)ng1 oitﬁirlji. e
i i ols ] -
is project we are further improving t]?e evelopment tools | g
I}t:eelﬁ1 glcljuﬁllgjg low-level analyzers for sequential a,nd parallel execution, declarative
debuéging, browsers, graphics tools and interface buiders.

7 Tasks Overview

igni ional scale, towards promoting
i j nts a significant effort, at nation , ot
;,[’hhlng riog ef(’::ogzrr;zing parafi?gm in several directions: theory, language, «zce(,utlog
m:delsg implementations and applications. It spans a lax.‘g(.a *.body of researchers, an
it will s’timulate a diversity of teaching and training act1v1t1esl. e will pro
Besides the semantic definitions for the new PROLOP:E :ngu{a;g ,ent vl pro-
i tation of the language and a developm -
duce the first usable implemen . ‘ " ot environ
i i tional academic community, pro: g
t to be made available to the mterga ‘ corr »
::cep];oit(;tion of AI applications. This 1mplementatlonlwﬂl 1}1)1(:&1(1@1)&11;:1 éeﬁziittiﬁz
been achieving, regarding a better Prolog & cuti
results that the proponents have : ¢ 8 better “xo recution
joint exp
ied to the support of more advance semant : i
I?iii]-’l?cliaf izd explicit ;I:ara,llelism. The tasks below will produce spec1$catxon§_ o}f
;)a,nguige extensions, models and prototypes, and the prt?totypes themselves, whic
will be demonstrated and made available during the project.

o Explicit Negation and Logic Programming with Non—Mcfnotonic Re;asow:?mg?
incll)uding contradiction removal, with constructive negation and disjunction.

o Constraint Logic Programming: constraint resol}ltion 1.nethods are Ewizii

ted and used in the implementation of const?ami; 1051(: programmi gt o

o : (a) resolution methods for the linear Diophantines egua‘tlon systems

izzgzs];erwmore general constraints concerning naturals and ﬁmt.«z? dzmam.m; (b)
incremental hierarchical constraint solvers over natural and finite domains.

o Execution Models: optimized compilation of the Pr‘ologfmodel “\zr_ﬂ;;epif—
ince jence in the implementation of conventio: ro-
plored, since our past experienc : . e s

i an still be achieved when 1mp
h that great improvements can s : . .
}5(1)1%3 iazgfage T%Jis includes: (a) the design of an Kntermed@te Compute.r DL{
scription, oriented to the underneath architecture; (b) the implementation o
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a compiler with procedure and intra-procedure leve] optimization, featuring
unfolding, choice points elimination and mode or sequentiality detection; (c)
extensibility support to provide the proposed extensions to the logic language.

e We will develop other execution models and search strategies in the following
aspects: (a) optimization of the search process based in ”Intelligent Pruning”,
a method that resembles Prolog’s intelligent backtracking, but applied to AKL
(AKL/IP) execution model; (b) sequential and parallel implementation of the
AKL/IP language; (c) application of the AKL/IP execution model to non-

monotonic reasoning, as support to an implementation support of the previous
extensions.

e Implicit and Explicit Parallelism: implicit parallelism of the OR and AND
types will be explored over shared memory and distributed memory archi-
tectures, integrated with other forms of parallelism suitable to the support

of distributed logic programming, its application in Distributed Al and its
implementation over heterogenous multiprocessors.

e Development Environment: we will integrate the acomplished extensions in an
environment with a set of user support tools, such as: (a) low-level analyser
with performance measuring tools, and sequential and parallel execution trac-
ing; (b) declarative debugger; (c) browser; (d) graphic library and specification
languages for system interaction; (e) visualization of distributed computations.

e Some applications will be developed to evaluate, test, promote PROLOPPE:
(a) syntactic analyser for natural language (for the testing of system use in
new formalisms based on constraints like the HPSG); (b) Constraints and

Time-Tabling; (c) To diagnosis of distributed artificial intelligence and non—
monotonic reasoning.

Other aplications of non-monotonic reasoning are forseen, e.g. to planning

and to natural language, not carried out within the project, but evaluated by

institutional colleges of team members. The results of this evalutation will be
report.

'Acknowledgments. This research is nationally supported in part by Programa
CIENCIA and project PROLOPPE of the PRAXIS XXI programme.
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Abstract

The main difficulty in the definition of a static analysis framework for CC programs
is probably related to the correct approximation of the entailment relation between
constraints. This approximation is needed for the abstract evaluation of the ask guards
and directly influences the overall precision of the analysis. In this paper we provide a
solution to this problem by stating reasonable correctness conditions relating the ab-
stract and the concrete domains of computation. The solution is domain independent
in the sense that it can be applied to the class of downward closed observations. Prop-
erties falling in this class (e.g. freeness) have already been studied in the context of
the analysis of sequential logic programs. We believe that the same abstract domains
can be usefully applied to the CC context to provide meaningful ask approximations.

1 Introduction

Concurrent Constraint (CC) programming [16] arises as a generalization of both concurrent
logic programming and constraint logic programming (CLP). In the CC framework processes
are executed concurrently in a shared store, a constraint representing the global state of
the computation. Communication is achieved by ask and tell basic actions. A process
telling a constraint simply adds it to the current store, in a completely asynchronous way.
Synchronization is achieved through blocking asks. Namely the process is suspended when
the store does not entail the ask constraint and it remains suspended until the store entails
it. While being elegant from a theoretical point of view, this synchronization mechanism
turns out to be very difficult to model in the context of static analysis. The reason for such
a problem lies in the anti-monotonic nature of the ask operator wrt the asked constraint:
if we replace this constraint with a weaker one we obtain stronger observations. As a
consequence, the approximation theory developed to correctly characterize upward closed
(i.e. closed wrt entailment) properties becomes useless when we are looking for a domain
independent solution to the ask approximation problem [18].

In this paper we thus consider the downward closed properties and we specify suitable
domain independent correctness conditions that allow to overcome the problem of a safe

*This work has been supported by the “PARFORCE” (Parallel Formal Computing Environment) BRA-
Esprit II Project n. 6707.



90
Progr = Dec. Agent
Dec u= €

| p(x):-Agent. Dec

Agent = Stop

| tell(e)
|  3IxinAgent
l %gent || Agent
|
l

; ask(c;)->Agent,
p(y)

Table 1: The syntax

i

abstraction of ask constraints. Tn particular we develop an approximation theory that
correctly detects the definite suspension of an ask guard. This information can be u};ed ?n
n?any ways, e.g. debugging of cC programs as well as identifying processes that are defi-
-mtely serialized (so that we avoid their harmful parallel execution). However its usefulness
is first of all in the improvement of the precision of the static analysis framework, as it
allows ‘to cut the branches of code that will not be considered in the concrete comput’ation
' Thls. (partial) classification of GC program’s observations is not new. See [12] for an.
Interesting discussion about safety and liveness properties, being downward closed and
upward closed respectively. As a matter of fact, in the literature there already exist
abst.ract domains developed for the static analysis of sequential (constraint) logic lanyua
de.a.hng v.vith downward closed observations, e.g. freeness in the Herbrand as We]lg asggi
arithmetic constraint systems [6]. Tt is our opinion that these same abstract domains ca;
be usefully applied to the ¢ context and provide meaningful ask approximations. :

2 The language

CC is not a language, it is a class of languages parametric wrt the underlying constraint
system. In [16] constraint systems are defined by enclosing typical cylindric aleebra’

oper.ato.rs (cylindrifications and diagonal elements [10]) in the well known forrna.h'za,gtim.la ?
partial information systems [17], which model the gathering and the management of a szt

of elementary assertions by means of a compact entailment relation. We refer to [16]

a more detailed presentation. o

Definition 2.1 I o

A (Cy].indric) constraint system C'1 = ( C U { fal -l N
- 70 t 9y . i -
gebraic structure where ( {false} rue, false, ®,,V, o sy ) Is an al

® (C,H,true,®,N) is a partial information system

e false is the top element

" { P \ 3 £ [ ]
Y’j[/\,"f\-z‘x Ol Cooasnting a o § aroawall et

e V is a denumerable set of variables

e Yo,y € V,Ve,d € C, the cylindric operator 3, satisfies
1. 3. false = false ¥ Botetl g
2. 3gce
3. ¢4 d implies J.c 4 3.d
4. 37(c® 3pd) = Fpc® 3d
5. 32(3y¢) = 3y(3z0) bo ke parpansede |

N TP S

e Vz,y,2 €V, Vc e, the diagonal element d, satisfies

1. dgz = true
2. z# z,y implies dgy = 3,(dpz ® dsy)
3. = # y implies ¢ 1 dzy ® Jz(c ® dyy)

Note that we are distinguishing between the consistent constraints C and the top element
false representing inconsistency. In the following we will write C to denote the subalgebra
of consistent constraints, namely the set C together with the constraint system’s operators
restricted to work on C. We will denote operators and their restrictions in the same way
and we will often refer to € as a “constraint system?”.

Tables 1 and 2 introduce the syntax and the operational semantics of CC languages.
For notational convenience, we consider processes having one variable only in the head.
We also assume that for all the procedure names occurring in the program text there is
a corresponding definition. The operational model is described by a transition system
T = (Conf,—). Elements of Conf (configurations) consist of an agent and a constraint,
representing the residual computation and the global store respectively. — is the (mini-
mal) transition relation satisfying axioms R1-RS5. )

The execution of an elementary tell action simply adds the constraint ¢ to the current
store d (no consistency check). Axiom R2 describes the hiding operator. The syntax is
extended to deal with a local store ¢ holding information about the hidden variable z.
Hence the information about z produced by the external environment does not affect the
process behaviour and conversely the external environment cannot access the local store.
Initially the local store is empty, i.e. IxinA = I(z,irue)in A. Parallelism is modeled
as interleaving of basic actions. In a guarded choice operator, a branch 4; is enabled
in the current store d iff the corresponding guard constraint ask(c;) is entailed by the
store, i.e. d I ¢;. The guarded choice operator nondeterministically selects one enabled
branch A; and behaves like it. If there is no enabled branch then it suspends, waiting
for other processes to add the desired information to the store. Finally, when executing a
procedure call, rule R5 models parameter passing without variable renaming [16], where
p(x):-A € P and A¥ A is defined as follows [5].

A4 = A fx=y
* JIxin(tell(dgy) || A) otherwise

A c-computation s for a program D.A is a possibly infinite and fair sequence of configura-
tions ( A;, ¢i);., such that Ag = 4 and ¢o = ¢ and for all i < ||, (Aiyci)—( Aig1, Gp1 ).
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R1 (tell(e),d)—s(Stop,d ® c)
R2 (4,c® axd)__’<Al7cl)
(3(z,c) ind,d)—(3(z,c)ind" d® 3z¢")
R (A,c)—(4,d)
(Al B,c)—(A"] B,d)
(Bl A4,c)—(B| 4,d)
R4 njE{l,...,n}/\dl—cj
<i§1 ask(c)=>4;,d)—(A;,d)
LRS p(x):-Ae€P
(p(),d)—(A4,d) N

Table 2: The transition system T'

Let .

tion—(/z dintgte the absence of z?,dm_lsmble transitions. Computations reaching confj

constraﬁ;; nIf-'ZkT are' called finite computations and Cn is the (finite) computed ang vor

ing Compu-t ationei SreSJdua.ldaient ];4" contains some choice operators then the corresp(s):gr
suspended, ot ise it i . -

denote 4, by e. » Otherwise 1t is a successful computation and in this case we

Definition 2.2 The semantics for program P = D.A in the store ¢ is
O[D.AYe) = {decC [(4,c)(B, d)+}

U {dec

(Ao,c0>—>._.——>(Ai,ci)—>...
A():A, c=c, d=60®...®c1‘®... }

Note that this semantics collects the
the answer constraints associated to

o ‘ : ie.
» the static analysis of a cc program can
approximation (a superset) of the program
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denotation. If the approximation satisfies the semantic property, then we can correctly
say that our program satisfies the property too. Abstract interpretation [3] formalizes the
approximation construction process by mapping concrete semantic objects and operators
into corresponding abstract semantic objects and operators.

We write 7(¢) to denote the upward closure of the program property ¢, namely the
set {c€ C |3d € ¢.ct d};aproperty is upward closed iff it is equivalent to its upward
closure, i.e. ¢ =7(¢). Downward closed properties are defined dually. As an example,
consider the Herbrand constraint system Cg. If the constraint ¢ € Cy binds variable z to
a ground term, then all the constraints d € Cy such that d ¢ will bind z to a ground
term; therefore groundness is an upward closed property. On the other hand, freeness is
a downward closed property. A variable z is free in ¢ € Cpg iff there does not exist a
term functor f/n such that ¢ b (3y, ... 3y, ¢ = f(v1,.- -yYn)). Thus, if z is free in ¢ then
it will be free in all the constraints d € Cg such that ¢ - d. However, there obviously
exist properties falling in none of these two classes, e.g. independence. Let us say that
variables z and y share in ¢ € Cy iff ¢ binds z and y to the terms ?; and iy such that
var(tz) N var(ty) # 0. Variables z and y are independent in c if they do not share in c.
Now, if z and y share in ¢, we can choose constraints dyi,dy € Cg such that dy Fc k- dy
and such that z and y are independent in both d; and dj.

Ordering closed properties are very common in the static analysis of logic languages
and furthermore they are easier to verify, because correctness of the abstract interpretation
can be based on a semantics returning ordering closed observations. In [18] entailment
closed! properties are considered. The main result is that it is impossible to develop a
meaningful generalized semantics for CC languages in the style of [9], namely the only
way to correctly abstract ask constraints in a domain independent fashion is a trivial
approximation.

In this work we turn our interest upon downward closed properties and we show that a
(carefully chosen but natural) notion of correctness of the abstract domain wrt the concrete
one allows to automatically derive a correct approximation of all the asks occurring in the
program. Dealing with such a class of properties, the collecting semantics can be defined
naturally as the downward closure of the operational semantics, as there is no benefit in
considering a stronger one [18].

Remark 3.1 If ¢ is downward closed then O[ P](c) C ¢ « L(O[D](c)) C ¢.

As we are observing infinite computations also, we have to be careful when defining the
downward closed properties that we are interested in. In particular we have to remember
that usually the correctness of our abstract semantic construction is based on the Scott’s
induction principle; this principle is only valid for admissible properties.

Definition 3.1 A property ¢ C C is admissible iff ¢ is closed under directed lub’s.

This definition means that whenever an admissible property is satisfied by all the finite
approximations of the semantics, then the semantics will satisfy the property too. As an

1Due to a dual definition of the ordering on the constraint system, in [18] entailment closed properties
are the downward closed ones. The choice of turning the domain upside-down was influenced by the
standard theory of semantic approximation by means of upper Galois insertions [3].




94

example of a property that is not admissible, consider the following definition of non-
groundness: a variable z is nonground in ¢ € Cyg iff ¢ binds z to a term t such that
var(t) # 0. Given the infinite chain of constraints ¢; = (3yz = fi(y)) € Cp, for ev-
ery ¢ < w we have that z is nonground in ¢;. However, considering the limit constraint

€= ®c = (2 = f“) one observes that z is not nonground in ¢. In order to grant the
1<w
correctness of this analysis, we have to redefine the property, e.g. by stating that if ¢ binds
a  to an infinite term then z is nonground in c.
Hence, in this work we are interested in downward closed and admissible program

properties. The Hoare’s powerdomain [14, 17] construction over the constraint system
characterizes this kind of observations.

Definition 3.2 The Hoare’s powerdomain of the constraint system C is the complete
lattice H(C) = (P|(C), C,{true},C,w,n), where PYC) is the set of all the nonempty,
downward closed and admissible subsets of C; & is the closure under directed C-lub’s

of the set theoretical union; {} 1 C = PUC) defined as {e}: = [{c} is the singleton
embedding function.

The alert reader would observe that this collecting semantics models nonempty observa-
tions only. From a semantic construction point of view, this is not completely satisfactory
as we cannot describe the behaviour of a program having inconsistent computations only.
However, the alternative choice of considering failed computations also would imply some
negative consequences. Firstly, it would complicate the formalization of the correctness
conditions, requiring a special treatment for inconsistency. Moreover it would degrade
the precision of our static analysis, adding very little to the understanding of the pro-
gram. To see this, observe that when considering downward closed observations a failed
computation has to be interpreted as “the program may fail”, meaning that anything can
happen. Also consider that there are CC languages explicitly designed to statically avoid
the possibility of a failing computation (see [15] for a discussion of this topic in distributed
programming).

From now on ® and 3, will denote the extensions of ® and 3, over H(C).

o VS,Tepi(C).S®T=Lﬂ{:{c®d}:l c€S,deT,c@deC }
o V5 €PC). ézszw{:{axc}:/ ces }

Note that the merge over all paths operator [3] is provided by the lub of H(C). Also note
that in general & is not idempotent, while being extensive.

4 Correctness

In this section we formalize the notion of correctness of an abstract domain wrt a concrete
constraint system when downward closed properties are observed. As outlined in the previ-
ous section, we have to grant the existence of an upper Galois insertion relating the Hoare’s
powerdomain of the concrete constraint system and the abstract domain of descriptions,
together with suitable correctness conditions regarding the domain’s operators.
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i i —
Definition 4.1 An abstract domain A = ( L,C! 18 TH Lt nt @ v, E‘HI,d ?yi%fl\sﬁgo;ne
correct wrt the constraint system C = (C,H,true,®,M,V,3;,dgy ) using « R
PUC),Vz,y eV

1. L= (Lt 18 78 Uf 1" is a complete lattice

2. there exists 7 s.t. (e, ) is an upper Galois insertion? relating H(C) and .A.
. o(S®T)CHa(S) @ o(T)

. a(3.5)Ch 3 a(9)

5. a({dy}) Chdly,

> W

From now on, we assume that the abstract domain A is dm{m—c?rrect wrt the const;a.mt
system C using o and prove that such a notion of correc?ness 1mph(?s the correctnhiss of any
abstract semantic construction based on the abstract mterpretatl.on theorhy.' T }i rc}t)eax'ls
that the proof is valid for any abstract semantics that .systematlcz.ﬂly mimics the dzsllc
concrete semantic operators (¥, ®, 3z, dyy) and the relatnu)n - by using t]f\e ‘corr?%pfmt tg
abstract operators (Llu, ot M, d“xy) and the relation C. To this end it is sufficient to
consider the operational semantics.

Definition 4.2 Given the concrete agent A, the corresponding abs.tra,c't agent Al = a(A)
is obtained by replacing all the concrete constraints ¢ € C occurring in A by the corre-
sponding abstractions cf = a(:{c}:) € L.

The following lemma shows that the abstract program correctly mimics each trznsnlin
of the concrete one. This also means that if the abstract program suspen.ds, then Ce
concrete program suspends too. Let A be an agent de.ﬁnfad over the constran.lt sgfs‘gem ,
let ¢ € C be a concrete store and let cf € I be a description such that a(:{c}:) Tt ¢l

emma 4.1 (correctness) _
%A, c)—%(lB(, d) implies (a(A), ! )—(a(B), d') and o(:{d}:) Cld!.

The following proposition is proved by induction on the number of transitions.

Proposition 4.2 For every concrete c-computation of P yielding vtheAconstmint d. E.C
there exists a corresponding abstract a(:{c}:)-computation of a(P) yielding the description
d' such that o({d}:) Ctdt.

Note that in general the converse of Lemma 4.1 does not ?1(.)1(1. In particular the congreite
program may suspend while the abstract one has a tra.flsmon; as a consequence, a nite
concrete computation can be mapped into a corresponding a,bstract. infinite computation.
Therefore, even in the case that we are interested in finite computations only, the abstract
semantics must consider infinite computations in order to be correct.

. ) /- .
*Given two complete lattices { L, <)and (L', <’), an upper Galois conneciion bletween L’a.ud L 1s<a Ppair
of adjoint functions («,y) such that @ : L — L' and y: L' — LandVz € L .Vg'l el .a(z)<"y &< 7(y)
An upper Galois insertion between L and L' is an upper Galois connection such that o is surjective
(equivalently, v is one-to-one).
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Definition 4.2 does not require that the abstract domain is a constraint system and
neither that it can be obtained as the Hoare’s powerdomain of a constraint system. In the
latter case we are in an ideal situation where a simpler notion of correctness can be used
instead.

Definition 4.3
An abstract constraint system A4 = (L, L8 T @t v, Hﬂx,dﬂry) is correct wrt the

constraint system C = (C, , true, ®, M, V, 3y, dgy ), using a surjective and monotonic func-
tion a: C — D, iff for each ¢,d € C, z,y € V

L. a(c® d) ¥ a(c)®ka(d)
2. a(3c) 3 a(c)
3. a(dgy) = duw

Let A be an abstract constraint system which is correct wrt the constraint system C using
a. Observe that @' is the lub over .A.

Proposition 4.3
1. 'H(A) is down—correct wrt H(C) using & (the additive eztension of a )
2. a is a complete ®-morphism between C and L
3. & is a complete ® —morphism between P|(C) and PIU(L)

Defining abstract domains based on correct abstract constraint systems is a very difficult
task. The previous proposition gives an explanation of this assertion: these domains have
to satisfy properties that usually are too strong.

4.1 A toy example

As a first example we present the abstract constraint system of untouched variables® V =

(P(V),C,0,V,®, ﬂ,V,E'I,d'zy),where

S5Q'T = SuUT 4 - {z,y} ifzzy
38 = S\{z} v 0 otw.

Let us assume that C is a concrete constraint system having variables in V and sat-
istying the following axiom [5]: ¥e,d € C . 3,c+d = 3,d = d. Note that even if this
axiom is not a consequence of Definition 2.1, it is true in almost all the “real” constraint
systems. )

Proposition 4.4 Let a : C — P(V) being defined as o(c) = {z €V |Jpc#c}. The
abstract constraint system V is correct wrt C by using a.

®To our knowledge, this domain has been firstly introduced in [8]. The formal definition of & was given
to me by Catuscia Palamidessi, during an interesting discussion related to other topics.
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Therefore, we just are in the ideal situation of Definition 4.3 and we can define our abstract
domain as the Hoare’s powerdomain of V. Having proved correctness, we can approximate
every concrete ask evaluation (i.e. entailment check) by the corresponding abstract ask
evaluation. Let us see the intuition behind this result. Suppose the abstract ask evaluation
does not succeed; this means that there exists a variable z occurring free in the concrete ask
constraint such that z is definitely unbounded in all the concrete constraints described by
the abstract store. As a consequence all the associated concrete computations will suspend
too and we are safe.

4.2 Abstracting the constraint system Rpi,g,

Previous example seems just a toy. However, the same approach is valid for any admissible
downward closed property of any constraint system. Some examples of this kind of abstract
domains can be found in the literature.

[6] describes an abstract domain for the static analysis of CLP programs that is useful
for the detection of definitely free variables in the presence of both Herbrand constraints
as well as systems of linear equations. Let us consider the latter case. Given a linear
equation system

anXi 4+ anXo +...4 @.X, =b
am1 X1 + amaXs +...+ ampX, = bm

where X1,..., X, are variables and a;; and b; are numbers, variable X; is definitely free
if there does not exist a linear combination of the equations in E having the form X; = n.
Denoting lc(E) the infinite 'set of linear combinations of equations in E, they define the
following abstraction function.

a(E):{{Xl,...,Xk} a;#0 i=1,...,k

(@1 X1 +... 4+ kX), =b) € le(E), }

We refer to [6] for a complete definition of the domain and of the abstract operators.
Intuitively, the correctness of the analysis ensures that all the possible linear combinations
of concrete equations are described by the computed abstract element. As a particular
case, if the abstract linear combination {X;} is not a member of the abstract store de-
scription, we can safely say that variable X; is free. [6] also shows how to correctly deal
with inequalities and disequations (i.e. the constraint system 'R,fm is considered).

5 Toward an abstract semantics

In this section we will informally consider the problems related to the construction of an
abstract semantics that correctly approximates the standard one in the case of downward
closed observations.

In the general case, the observations of a CC program are not invariant wrt different
schedulings of parallel processes, i.e. the operational semantics is not confluent. In princi-
ple, confluence is not needed to correctly define a static analysis framework. However, in
order to be really useful, a static analysis must be correct wrt all the possible scheduling
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and must not be too inefficient. Therefore, when considering programs being a little bit
bigger than toy examples, confluence becomes as desirable as correctness [8]. As a matter
of fact, almost all the literature concerning the static analysis of CC languages considers
non-standard semantics that are confluent [1, 2, 7, 8, 18]. These semantics are correct wrt
the standard one, but usually must pay in terms of accuracy of the results.

This is not the case when considering downward closed properties, because we can
base our static analysis on a confluent semantics being as precise as the standard one.
Confluence is easily obtained by reading the CC indeterministic program as if it were an
angelic program [11], that is by interpreting all the don’ care choice operators of the
program as don’t know choice operators. In the angelic case, when considering a choice
operator we split the control and consider all the branches. In the operational semantics
this difference is captured by replacing rule R4 in Table 2 with the following.

dtec Je{l,...,n}
T

R4/ R4”
(ask(e)=>4,d)—(4,d) (3 Aisd)—(45,d)

Observe that the only difference between the two programs is that the original program
has less suspensions; however, due to the monotonic nature of CC computations, for every
suspended computation of the angelic program there exists a (terminated or suspended or
infinite) computation in the original program that computes a stronger store. Let (0 be
the operational semantics based on the confluent transition system.

Proposition 6.1 Forallce C. [(O[ P](c)) = [(O'[P](c)).

Thus a first proposal of an abstract semantic construction can be based on the confluent
transition system operational semantics. Technical problems related to termination can
be solved essentially in the same way as it was done in [1].

In [16] it is shown how to elegantly model a deterministic CC process as an upper closure
operator (uco), i.e. a monotonic, extensive and idempotent function over the constraint
system. The main property of this kind of representation is that any uco is fully determined
by the set of its fixpoints. Moreover all the semantic operators on processes are naturally
mapped into simple set theoretic operators over their representations, e.g. the parallel
composition of two processes is obtained by taking the intersection of their fixpoints’ sets.
[11] study the extension of such a semantics on angelic CC languages, where only local
choice operators are allowed and upward closed observations are considered.

If the abstract domain we are dealing with is based on an abstract constraint system
(see Definition 4.3) we are in a position to develop a semantic construction very similar to
the latter, It is worth noting that, in such a semantic construction, the process restartability
property is assumed. This property holds for deterministic programs [16] and it also holds
for angelic programs when we consider upward closed observations [11], but it does not
hold in the general case. However, when considering downward closed properties, it can
be proved that correctness is still granted, while we pay something in the approximation’s
precision.

Unfortunately, many interesting abstract domains modelling downward closed prop-
erties are not constraint systems. In these cases, if we are interested in a denotational
abstract semantic construction, we can consider a suitable variant of the approach based
on ask/tell traces developed in [4]. Here the first problem to solve is termination, because
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a trace can be infinite even if defined over a finite abstract domain. We think that a notion
of canonical form for traces (similar to the one developed in [16]) would suffice.

It is worth pointing out that the approximation theory developed in this work can be
applied to any kind of semantic construction dealing with the basic mechanism of blocking
ask. Therefore, even if all the semantics mentioned above only observe the resuits of a CC
program, our technique can be also applied to semantics observing the way these results
are actually computed. As an example, if we consider the true concurrency semantics
developed in [13], the definite suspension information could be useful to obtain upper
bounds to the degree of parallelism of a program or to discover undesired data dependencies
between concurrent processes.

6 Conclusions and related works

The static analysis of CC languages is a relatively new but very active area of research.
To our knowledge, this is the first work on this topic in which it is identified a domain
independent correct approximation of ask constraints. Almost all the previous works about
the static analysis of CC programs [1, 7, 8, 18] either consider a specific constraint system
or assumne that a correct ask approximation has already been found. In [2] a different kind
of domain independent ask approximation has been considered. In our opinion, however,
this framework requires the satisfaction of too strong correctness conditions and cannot
be widely used.

The approximation described in the current work allows to detect definitely suspended
branches of the computation and it may be therefore useful in the debugging and special-
ization of CC programs. It can be applied to a wide class of program properties, namely
the downward closed ones. Some property falling in this class (e.g. freeness) has already
been studied in the context of the static analysis of sequential (constraint) logic languages.
In our opinion the same abstract domains can be used in the CC case, provided that a suit-
able semantic construction is identified. At the same time, we strongly believe that such
a general result can motivate the study of “new” downward closed properties.

The definition of a suitable abstract semantics for the static analysis of this class of
properties is an open problem. We have shown that if we are interested in downward
closed properties only then we can assume that all the choice operators in our program
are local, achieving the confluence of the computation without any loss of precision. In
our opinion, however, an extensive study of the cost/precision tradeoffs of the different
abstract semantics proposals is strongly needed.
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Modeling Real-Time in Concurrent Constraint Programming

F.S. de Boer* M. Gabbriellif

Abstract

We develop a language for real-time programming based on the concurrent const}-aint
programming (ccp) paradigm. The language, called iccp, is obtained by a natural timed
interpretation of the usual ccp constructs and by the addition of a simple constru'ct
which allows one to specify timing constraints. We define the operational semantics
of tccp via a transition system and introduce a compositional and fully abstract model
based on timed reactive sequences.

1 Introduction

In the actual practice of programming many applications are time-critical. Examples of .such
applications are real-time process controllers and signal-processing systems. In general, time-
critical applications require a programmer to specify the interaction with an environmel.xt
given some timing constraints such as that a certain input is required within a certain
bounded period of time. The resulting systems, usually called reactive, need then suitable
programming languages which allow for the definition of timing primitives.

Concurrent synchronous languages such as ESTEREL (2], LUSTRE [6], SIGNAL [9] and

. Statecharts [7] have been specifically designed for reactive systems. These languages are

based on the instantaneous reaction (or perfect synchrony) hypothesis: A program is ac-
tivated by some input signals and reacts instantly by producing the required output. ‘ So
computation is performed in no time, unless a statement which e_xp].icitly consumes time
is present. Communication is done by instantaneous broadcasting to all the processes of
the system and the presence or absence of a signal can be detected at any instant. 'I"he
perfect synchrony assumption can be realized in practice by compiling pure programs (.1.e.
programs operating only on signals) into finite state automata whose single step execution
time is bounded. A direct compilation of pure ESTEREL programs in hardware has also been
defined. .
The perfect synchrony hypothesis, even though natural from the user point of view,
conflicts with the inherent temporality of physical processes. As a consequence temporal
paradoxes arise, for example, in the form of programs which require a signal to be present
iff it is not present. To solve this conflict, Saraswat et al. [13, 14] have proposed an
integration of the asynchronous computational model of concurrent constraint programming
(cep) [11, 12, 15] with ideas from synchronous languages. The resulting languages, called
timed concurrent constraint programming (tcc) and default tcc, are designed around the
hypothesis of bounded asynchrony: Computation takes a bounded period of time rather than

*Universiteit Utrecht. Utrecht, The Netherlands. frankb@cs.ruu.nl. . o
$Dipartimento di Informatica, Universita di Pisa, Corso Italia 40, 56125 Pisa, Italy. gabbri@di.unipi.it.
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being instantaneous. The whole system evolves in cycles corresponding to time intervals,
and each time interval is identified with the time needed for a ccp process to terminate
a computation. Special primitives are added to the standard ccp comstructs to control
the temporal evolution of the system. In particular, the programmer has to transfer
explicitly the (positive) information from a time instant to the next one using these temporal
primitives.

In this paper, analogously to the case of (default) tcc, we use ccp as the starting language
and we assume that computation takes a bounded period of time. However, differently from
[13, 14], we introduce directly a timed interpretation of the usual programming constructs
of ccp by considering the primitive ccp constructs ask and tell as the elementary actions
whose evaluation take one time unit. Thus, in our model, each time interval is identified
with the time needed for the underlying constraint system to accumulate the tell’s and to
answer the queries (ask’s) issued at each computation step by the processes of the system.
Then we use this interpretation as a basis for the introduction of a construct which allows
one to specify timing constraints. As we discuss later, our approach requires a smooth
extension of ccp. In particular, we do not require explicit transfer of information across
time boundaries and we can use the usual ccp definitions for hiding and recursion. We
describe semantically our timed extension of ccp both operationally, in terms of a transition
system, and denotationally. The denotational semantics is based on sequences of pairs of
constraints, so called reactive sequences, as in the untimed case. However these reactive
sequences are now provided with a different interpretation which accounts for the timing
aspects. Qur main result shows that the denotational semantics is correct and fully abstract
with respect to the operational semantics. This paper is organized as follows. In the next
section we introduce our timed extension of ccp and its operational semantics. Section
3 describes how to derive some typical real-time constructs form the basic combinators
of the language. In section 4 we define the denotational semantics and we state the full
abstraction result. Finally, Section 5 concludes by comparing our approach to the existing
timed extensions of ccp and by giving some directions for future research.

2 The language

In this section we first introduce the icep language and provide its basic operational intu-
itions. Then we define formally the operational semantics of tccp using a transition system.
As in [13, 14] the starting point is ccp, so we introduce first some basic notions related to
this programming paradigm. We refer to [12, 15] for more details. The ccp languages are
defined parametrically wrt to a given constraint system. The notion of cylindric constraint
system has been formalized in [12] following Scott’s treatment of information systems [16]
and using ideas from cylindric algebras [8] in order to treat the hiding operator of the
language in terms of a general notion of existential quantifier. Here we only consider the
resulting structure. ’

Definition 2.1 Let (C, <, U, true, false) be a complete algebraic lattice where Ll is the lub
operation, and true, false are the least and the greatest elements of C, respectively. Assume
given a (denumerable) set of variables Var with typical elements ,y, 2. ... For each z € Var
it is defined a function 3, : C — C such that, for any ¢,d € C:
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(7) ¢+ 3z(e), (3) if ckd then 3I(c)F 3.(d),
(444) 3z(cU 3z(d)) = Fo(e) U 3(d), (iv) Fu(Fy(c)) = Fy(3u(c).

Then C = (C, <, U, true, false, Var,3) is a cylindric constraint system.

Following the standard terminology and notation, instead of < we will refer to its inverse
relation, denoted by F and called entailment. Formally, Ve,d € C. ¢+ d & d < e
Moreover, in the sequel we will identify a system C with its underlying set of constraints
C. Finally, in order to model parameter passing, diagonal elements [8] are added to the
primitive constraints: We assume that, for z,y ranging in Var, D contains the constraints
dgy which satisfy the following axioms:

(7) true F dgg,

(i) if 2 # 2,y then doy = 3,(dyz U dyy),
(#i1) z # y then dgy U 3p(c U dyy) F e

Note that if C models the equality theory, then the elements dy, can be thought of as the
formulas z = y. In the following 3. (c) is denoted by 3¢ with the convention that, in case of
ambiguity, the scope of 3, is limited to the first constraint subexpression. (So, for instance,
Jzc U d stands for 3,(c) U d.)

The basic idea underlying ccp is that computation progresses via monotonic accumu-
lation of information in a global store. Information is produced by the concurrent and
asynchronous activity of several agents which can add (tell) a constraint to the store. More
precisely, given a store d, the agent tell(c) — A updates the store to cL!d and then behaves
like the agent A. Dually, agents can also check (ask) whether a constraint is entailed
by the store, thus allowing synchronization among different agents. So the action ask(c)
represents a guard, i.e. a test on the current store d, whose execution does not modify
d: if d - ¢ then ask(c) is enabled (or satisfied) in d, otherwise ask(c) is suspended. Non-
determinism arises by introducing a guarded choice operator: The agent Y1 ; ask(c;) — A;
nondeterministically selects one ask(c;) which is enabled in the current store and then
behaves like A;. If no guard is enabled, then this agent suspends, waiting for other '(para.]lel)
agents to add information to the store. Deterministic ccp is obtained by imposing the
restriction n» = 1 in the above construct. The || operator allows one to express parallel
composition of two agents A|B and it is usually described in terms of interleaving. Finally
a notion of locality is obtained by introducing the agent 3xA which behaves like 4, with z
considered local to A.

When querying the store for some information which is not present (yet) a ccp agent
will simply suspend until the required information has arrived. In real-time applications
however often one cannot wait indefinitely for an event. Consider for example the case
of a bank teller machine. Once a card is accepted and its identification number has been
checked, the machine asks the authorization of the bank to release the requested momney. If
the authorization does not arrive within a reasonable amount of time, then the card should
be given back to the customer. A real-time language should then allow us to specify that,
in case a given time bound is exceeded (i.e. a time-out occurs), the wait is interrupted
and an alternative action is taken. Moreover in some cases it is also necessary to abort an
active process 4 and to start a process B when a specific event occurs (this is usually called
preemption of A). For example, according to a typical pattern, 4 is the process controlling
the normal activity of some physical device, the event indicates some abnormal situation
and B is the exception handler.
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In order to enrich ccp agents with such real-time mechanisms, we introduce a discrete
global clock and assume that ask and tell actions take one time-unit. Computation evolves in
steps of one time-unit, so called clock-cycles. We consider action prefixing as the syntactic
marker which distinguishes a time instant from the next one. So tell(c) — A has now to
be regarded as the agent which updates the current store by adding ¢ and then, at the next
time instant, behaves like A. Analogously, if ¢ is entailed by the current store then the agent
ask(c) — A behaves like A at the next time instant. If ¢ is not entailed at time ¢ then the
agent is suspended, i.e. at time ¢ + 1 it is checked again whether the store entails ¢ . Note
that if a tell(c) action is performed at time ¢ then the updated store will be visible only from
time ¢ 4+ 1 onwards, since a tell takes one time-unit to be completed. Thus, for example,
the agent A : (ask(c) — stop) || (tell(c) — stop) evaluated in the empty store will take two
time-units to successfully terminate.

Furthermore we make the assumption that parallel processes are executed on different
processors, which implies that at each moment every enabled agent of the system is activated.
This assumption gives rise to what is called mazimal parallelism and, for example, implies
that previous agent A4 evaluated in the store ¢ terminates in one time-unit. The time in
between two successive moments of the global clock intuitively corresponds to the response
time of the underlying constraint system. Thus essentially in our model all parallel agents
are synchronized by the response time of the underlying constraint system.

So far we have only described a timed interpretation of the usual ccp combinators.
We still have to introduce the notions of time out and preemption which, as previously
mentioned, are essential to any real-time language. Often weak preemption is sufficient, i.e.
it is acceptable having a unit delay between the detection of the event and the consequent
action. However, there are some time critical applications (see [14, 1]) in which strong
preemption is required: The abort of a process and the execution of the new one must
happen at the same time of the detection of the event. We will consider here a form of weak
preemption: The abort of a process and the start of the new one happen at the same time
of the detection of the event. However, the result of the execution of the new process will be
visible only in the next time instant. As we discuss later, this choice allows us to obtain a
programming paradigm useful for many applications, while maintaining a simple semantic
model.

In general, as discussed in [13], the essence of the real time notions mentioned above is
in the ability to detect the absence of an event, as well as its presence. Such a detection
can interrupt a process and trigger some alternative actions. Since events in ccp can be
expressed by the presence (more precisely, entailment) of a constraint in the store, we are
lead to the following timing construct

now c then A else B.

-which is similar to the analogous construct in [13]. However, according to our notion of time

interval, we interpret the above construct in terms of instantaneous reaction as follows: If
¢ is entailed by the store at the current time instant then the above agent behaves as A4 at
the current time instant, otherwise at the current time instant it behaves as B.

As we will show in Section 3, we can simulate the other typical real time constructs in
terms of the now then else construct. Therefore we end up with the following syntax.

1The extension to the non-deterministic case is immediate.
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Definition 2.2 [tccp Language] Assuming a given cylindric constraint system C the syntax
of agents is given by the following grammar:

A u= stop |tell(c) — A| L, ask(e;) — A |
now c then Aelse B|A || B|3XA4|p(X)

where the c, ¢; are supposed to be finite constraints (i.e. algebraic elements) in C. A ccp
process P is then an object of the form D.A, where D is a set of procedure declarations of
the form p(X) :: A and A is an agent.

2.1 Operational semantics

The operational model of tccp can be formally described by a standard transition system
T = (Conf,—) where we assume that each transition corresponds with one clock-cycle.
Configurations (in) Conf are pairs consisting of a process and a constraint in C representing
the common store. The transition relation —C Conf x Conf is the least relation satisfying
the rules R1-R8 in Table 1 and characterizes the (temporal) evolution of the system. So,
(A, c) — (B,d) means that if at time ¢ we have the process A and the store c then at time
t + 1 we have the process B and the store d.

Let us now briefly discuss the rules in Table 1. The agent stop represents successful
termination, so it cannot make any transition. Rule R1 shows that we are considering
here the so called “eventual” tell: The agent tell(c) — A adds ¢ to the store d without
checking for consistency of cUd, and then behaves as A at the next time instant. Note that
the updated store ¢ U d will be visible only starting from the next time instant since each
transition step involves exactly one time-unit. According to rule R2 the choice operator
gives rise to global non-determinism: The external environment can affect the choice since
ask(c;) is enabled at time ¢ (and A; is started at time t + 1) iff the store d entails c;, and d
can be modified by other agents. The rules R3 and R4 show that the agent now ¢ then A
else B behaves as A or B depending on the fact that ¢ is or is not entailed by the current
store. Note that the evaluation of the guard is instantaneous: If (4,d) ((B,d)) can make
a transition at time ¢ and c is (is not) entailed by the store d, then the agent now c¢ then
A else B can make the same transition at time ¢{. Rules R5 and R6 model the parallel
composition operator in terms of marimal parallelism: The agent A || B executes in one
time-unit all the initial enabled actions of A and B. The agent 3X A behaves like A, with
X considered local to A. To describe locality in rule R7 the syntax has been extended by
an agent 32X A where d is a local store of A containing information on X which is hidden
in the external store. Initially the local store is empty, i.e. 324 = I'™¢ X A. Rule RS treats
the case of a procedure call when the actual parameter differs from the formal parameter: It
identifies the formal parameter as a local alias of the actual parameter. For a call involving
the formal parameter a simple body replacement suffices (rule R9) since we are dealing with
a call by name parameter mechanism. :

Using the transition system described by (the rules in) Table 1 we can now define our
notion of observables. Here and in the sequel we assume a given fixed set of declarations
D and we assume that P is a closed process (namely, every procedure occurring in P is
declared in D). We denote by —* the reflexive and tramnsitive closure of —.

Definition 2.3 Let P be a process. We define
O(P) = {(¢,d) | ¢ € C and there exists @ s.t. (P,c) —* (@,d) /—}.
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R1  (tell(c) — A,d) — (4,cUd)
R2 (3% ask(e;) — Ai, d) — (4;,d) jel,nlanddt ¢;

(4,d) — (A" d)

R3
(now c then A else B,d) — (4',d') ke
B,d) — (B, d)
ne (5.0)— (5,
(now c then A else B,d) — (B, d') dfe
RS (4,¢) — (4", Y (B,c) — (B',d)

(All Bie) — (A" B/, U d')

R6 (d,¢) — (4',¢"Y  (B,c) /—
(4|l B,e) — (A"|| B,¢)
(Bl A,c) — (B 4,¢)

(A,dU3ze) — (B,d)

R7 .
(37X 4,c) — (37X B,cu3.d)
%= X A, c¢) —s (B, d :
RS Q(p(Y),c).cL (}.<3,d) : p(X):—AeD, X#Y
RO g TE p(X):~A€D

{p(X),¢) — (B,d)

Table 1: The transition system for tccp.

So we observe the input/output behaviour of finite computations. Note that the above
notion of observables abstracts from time. Alternatively, we could take into account the in-
termediate results of computations by considering sequences of constraints obtained from the
relation — in the obvious way. However, as we will show later, the resulting denctational
model would be essentially the same (modulo a simple abstraction). For similar reasons
as in the untimed case, the semantics which associates to a process P its observables O(P)
is not compositional. We defer to section 4 the discussion of this point and the definition a
simple compositional model.

Previous discussion shows that the standard ccp computational model can be extended
very smoothly to incorporate a notion of time. A point which is worth mentioning here is
that, differently from the untimed case, we cannot replace tell(c) — A for tell(c) in the
syntax of tecp. In fact, if the tell is eventual then in the untimed case tell(c) — A can be
equivalently rewritten as tell(c) || A. In the timed case previous two agents in general do
not need to be equivalent. This is shown by the following.

Example 2.4 Consider the agents A : (tell(c) — tell(d)) || B and A’ : (tell(c) ||
tell(d)) || B where B : tell(irue) — now c Ll d then tell(ok) else stop and assume that
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¢, d, ok are different constraints such that ok F d F ¢. According to our operational model
we have that (frue, ok) € O(A")\ O(4).

3 Some derived combinators

We show now how some typical real time programming idioms can be derived from the basic
combinators of icep.
Time out The timed guarded choice agent

m
> ask(c;) — A; time-out(m) B
i=1

waits at most m time units (m > 0) for the satisfaction of one of the guards. Before this time
out the process behaves just like the guarded choice: As soon as there exist enabled guards,
one of them and the corresponding branch is nondeterministically selected. After waiting
for m time units, if no guard is enabled, the timed choice agent behaves as B. This agent
can be defined inductively as follows. Let us denote by A the agent ) 7, ask(c;) — A;. In

the base case, m = 0, we define Y~ ; ask(¢;) — A; time-out(0) B as the agent
H =1

now c¢; then 4 else (now ¢y then A else
. (now c,then A else ask(true) — B) ...)

v
1=1

For the inductive step we define 7 ; ask(c;) — 4; time-out(m) B as

5 ask(e;) — A; time-out(0) (E ask(c;) — A; time-out(m ~ 1) B > .

=1 i=1

It is immediate to check that the above inductively defined agent has the expected opera-
tional behaviour. Consider for example the base case. If the current store entails one of the
guards ¢; we have that by rule R3 the agent ) o, ask(c;) — A; is executed immediately,
that is, in the next time instant one of the agents A; (for which the corrésponding guard ¢;
is enabled) is executed. Otherwise, the agent B is executed at the next time instant.
Watchdogs These are typical preemption primitives of such languages as ESTEREL. Watch-
dogs are used to interrupt the activity of a process on signal from a specific event: In our
framework, since events are expressed by constraints, a watchdog can be defined as the
process
do A watching ¢

which behaves as A, as long as ¢ is not entailed by the store; when ¢ is entailed, the process
A is immediately aborted. Notice that, as discussed above, we have instantaneous reaction
in the sense that A is aborted at the same time instant of the detection of the entailment
of ¢. However, according to the computational model, if ¢ is detected at time ¢ then ¢ has
to be produced at time 1’ with ' < ¢. Thus we have a form of weak preemption.

Previous watchdog agent can be defined by induction on the structure of A as follows.
In the following we use now ¢ as a shorthand for now ¢ then stop.
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stop = stop,

tell(d) - B = now d else tell(c) —» do B watching c,
>or g ask(c;) — A = mnow celse} 7 ; ask(c;) — do A; watching c,
now d then 4 else B =

now c else now d then do 4 watching c else
do B watching c,

now c else do A watching c || do B watching e,

now c else 3X do A watching c,

AllB
IXA

by

(So the agent on the rhs of the arrow — is the translation of the agent do A watching c,

where A is the agent on lhs.) Analogously we can define the agent do 4 watching ¢ else B

which behaves as the previous watchdog and also activates the process B when A is aborted
(i.e. when cis entailed).

4 Denotational semantics

In this section we give a denotational semantics for tecp programs. Denotationally we
represent a (timed) computation by a sequence of the form (c;,d;) - -- (cn,dn), a so called
timed reactive sequence. A pair (c;, d;) indicates that at time i the process itself produces ¢;
while at the same time its environment produces d;. The set of all timed reactive sequences
we denote by S. Elements of § are denoted by s,.... We define D(A)s C 8, i.e. the set of
timed reactive sequences of A starting from the initial sequence s. Given the initial sequence
s, the agent Stop does not modify it. Thus D(Stop)s = s. The meaning of tell(c) — A is
defined by }
D(tell(c) = A)s = {s' | for some d, s’ € D(A)(s - (c,d))}

where s - (c,d) denotes the sequence resulting from appending (c,d) to s. Thus, given the
initial sequence s, the agent A in tell(c) — A starts its computation, after execution of
tell(c), in the sequence s - (c,d), where d represents the contributions of the environment,

which occur at the same time as the execution of tell(c). The meaning of S;ask(c;) — A;
is defined by

D(Z ask(c;) — Ag)s = U;{s'| there exists s” and d such that s —* s",
: 8" b ¢; and s’ € D(A4;)(s" - (true,d))}

where s F ¢ holds if the least upper bound (lub for short) of all the constraints occurring

in s entails ¢, and —* denotes the reflexive transitive closure of the relation — between
elements of S defined by:

s~ ¢ if sl ¢jfor 1 <j<nand &' = s- (true, d), for some d.

Given the initial sequence s, a sequence s’ such that s —* & represents an extension
of s which consists of a period of waiting for one of the constraints ¢;. Note that during
this waiting period ounly the environment is active. The addition of a pair (irue,d) to the
waiting period corresponds to the assumption that the ask takes one time-unit. The agent
A; then starts its computation in an extension of the initial computation s which consists
of a waiting period after which ¢;, for some 1 < i < =, has arrived. The meaning of
now c then A else B can be simply defined by:

D(now c then 4 else B)s = {s'| stcand s’ € D(A)s}U{s'| st cand s’ € D(B)s}
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To describe denotationally the parallel composition we introduce the following '(com-
mutative) partial operator ||€ § X § — S: Let n < m, and d; F c; Ue;, fer 1 <1 < n,

e (e1,ds) -~ {enrdn) | (2, ) - (e ) =

(Cl u el:dl) s (cn U en, dn) . (en+17 dn+1) i '(em, dm)
In all other cases the parallel composition is undefined. Note 'that we require the two
arguments of the parallel operator to agree at each point of time WIt};E respect to the
environment. The condition d; b ¢; U e; corresponds with that the environment o.f one
component has to include the contributions of the parallel component. Now we can simply

define

D(A || B)s = D(A)s || D(B)s
where || denotes the obvious extension of the above defined operator to set of sequ;enc;es.
To describe denotationally the hiding of local variables we introduce the operators 33,32 €

S—=8:
3;((Cla dy) - (" dn)) = (3z€1, d1) -+ (3, dn)

. ':'li((cl, dy) - {cn, dn)) = (e, 3zdi) - - - (€, Fdn)

The operator 3L thus removes at each point of time the infctrmation on the (local) variab]ie
z, that is, the information on z produced by the process itself. On the othér hand, ]tl i
operator 32 removes at each point of time the information on the (globél) variable z, tha
is, the information on z produced by the environment. Then we define

D(3XA)s = {315 | ' € D(4)31s}

Note that the operator 32 temoves information on the global ¢ while 3; removes the
information on the local z. Recursion finally is defined as follows: Let p(X) be declared as
A. Then .
D(p(X))s = D(A)s and D(p(Y))s'= D(F*X A)

in case the actual parameter Y differs from the formal parameter X . This recursive definition
can be easily justified by a least fixed-point construction defined in terms of the cpo P(S)
with the ordering of simple set-inclusion. . .

Correctness of the denotational semantics D with respect to the operational semantics
is expressed by the following theorem:

Theorem 4.1 (Correctness) For any agent A,
O(A)c = {d| there exists (c,¢)---(d,d) € D(4){c, c)}.

Note that a sequence {c1,¢1) - (¢n,Cn) Tepresents a computatic?n where'the a.ssumed
contributions of the environment are already produced by the agent 1tse1f.. It is straightfor-
ward to prove that such a sequence indeed correspond's with a computation as defined by
the operational semantics. So the model defined by D Is correct. o

However this model introduces unnecessary distinctions. For example, considering the
agents A : tell(cU d) — tell(c) — stop and B : tell'(c U d) — tell(d) — stop, ;ve .h:.i;rle tthat
D(A)e # D(B)e (¢ denotes the empty sequence) while for any context C[] and initial store
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:Uvgethgvzth;t O(C[ADe = O(C[B))e. (A context Cl]1is simply an agent with a ‘hole’, the
g P [4] then represents the result of replacing the hole in C by A.) The point h re i
that once the stronger constraint ¢l d has been produced, it do } o d
are prodﬂuced. In order to identify agents like the previous one
abstraction inc on sequences. This operation adds to each left component of a sequence s

e p it ]. ft com; ents i 8 SI0T H elft-1ncreasin seguenc
al hF‘ revious ie ponen o1 38, h transfo Imng 8 to a g q €.
or § = (C] 5 d]) . <C’n,7 dn> (S we hen de ne

es not matter whether ¢ or d
s, we introduce the following

iTLC(S) = (Cl7d1> . <C1 N 6290{2) . -(Cl U co ... 1 C,,“dn).

Moreover, we should not distingnish (left-increasing) sequences which differ only f
nurgbqer of rgpetitions of the last element: For example, the agents O : feil0° ’ I‘Or b
adnd‘ o tell(c) — tell(c) — stop should be identified?. Thus we n;ef: a.isc; f]l(t)f H S?OP
abstraction rep on left increasing sequences, For s € & we denote by le;ft (s) th el % O"N'mg
left parts of all the pairs in s. We define rep inductively as féﬂowé: 'iep(e)( = aen; o

o ren(s- o | rep(s) i left(s) -
pls- e, d)) = 1 s {e,d)y i left(s% lfi

exte];eszois ;i;al:i;ie Db"‘(A)s as rep(inc(D(A)s)), where we denote by rep and inc the obvious
€ above operators to sets of sequences. It is immediat

” - . r iate to show that th

umodel defined by D® is e?.ls? correct and compositional. Moreover we have that D¢ does no:

mtroduce unnecessary distinctions, i.e. the semantics defined by D? is fully abstract:

Theorem 4.2 For any agenis A and B if DY(A '
] s DYB £ b om ;
a contezt C' such that O(C[A])c # O(C[B))e, fér 10?@8 c. B0 for some o, hen there i

5 A comparison with (default) tcc and future research

A tin - o .
}: ul.]j:ed version of ccp, called tee, and a further extension called default tee have recently
been intr >d i and [14 o ¢ ‘ ’
een introduced in [13] and [14]. To compare these approaches with our proposal 1
sketch briefly tee. As in tcep and diff b . e Dozt v,
1 boielly tec. As in tecp and differently from the case of synchronous languages, com

4 T . . - 8 4] ——.J o £ogs . ; ) ‘ i
utation in tcc takes 2 bounded period of time rather than being instatfitaneous Ho“;vever
g eyt o ;o o 2 e 3y & A n . N ? ) ) ) i
ferently from our case, a time interval for tec is identified with the time needed fo 7
ccp process to terminate a ¢ ti Computati ; cycles:
P Process fo termin be @ tion.  Computation evolves asynchronously in cycles:
At each time interval a cep deterministic process is executed. The prdcess accumulates
monot frnd LI PR Ra H -

t:z o onically information in the stors, according to the standard cep computational mode]
until it 3 A “restine meint? e inal R '

il it ?@;acgeo a “resting point”, i.e. a terminal state in which no more information can be7
generated. The resting point is then seen as the marker which distinewi ime i
gonere p g P 7 whic stinguishes time intervals.

€ resting point is reached the ahsence of events can be checl

mctions in the next time interval. More precisely, the process 4 : now
at ’ V

ked and it can trigger

one 1n the nex : ¢ else B is evaluated
resting time”: If the store obtained at the end of previous time interval does not entail

c then A behaves as the process B in the next time interval, otherwise A is discarded. A

unit deloy primitive is also present: : i i i
il celow o p : next B is the process which behaves like B in the next

3 s

5. gz(zl)ie om;h?lr dha.nd, assuming 'that c,d, ok are different constraints such that ok - d F ¢, the agents

z ; bt — tell(d) — stop and B’ : tell(c) — tell(c) — tell(d) — stop must be disti.nguished.’ In fac% for
: rue) — (now d then tell(ok) else stop), we have {hat (true,ok) € O(B || A)\ O(B' || 4) !
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A crucial design decision for ttc was to enforce the programmer to transfer explicitly
the information from one time interval to the next one. At the end of » time interval
all the constraints accumulated are discarded, as well as all the processes hich are not
atgument to a next or to a (satisfied) now else command. Thus basically a tce program
specifies for each moment in time a ordinary (deterministic) ccp program to be executed at
that particular moment. Since the next moment in time occurs when the ccp program has
reached a resting point, to ensure that the next time instant is reached such an ordinary
ccp program has to be a finite agent.

Our starting point however is to interpret action-prefixing itself as the next-time opera-
tor. In our framework a time interval is identified with the time the underlying constraint
system needs to respond to the initial actions of all the agents of the system, that is, to
accumulate all the told constraints and to answer all the ask’s. Thus a real-time program in
our case is basically just a usual ccp program (apart from the now construct). The real-time
aspects are mainly implicit in the interpretation of the basic actions and the interpretation
of action-prefixing. As such the style of programming in tccp is more similar to the usual
one for asynchronous monotonic languages, also because in our framework the global store
persists from one moment to the other. For example, the operators of hiding local variables
and recursion do not differ in an essential manner from their ‘untimed’ versions. This is
to be contrasted with the language tce, where the fact that the store is killed each next
moment complicates the real-time interpretation of recursion and hiding of local variables
(the information on the local variables is killed too each mext time instant). Also we do
not need any syntactic restriction to ensure that the next time instant is reached, since at
each moment there are only a finite number of parallel agents and the next moment in time
occurs as soon as the underlying constraint system has responded to the initial actions of
all the current agents of the system.

Default tcc is essentially like tcc, except that at each time interval a default ccp
program (rather then a ccp program) is executed. Thus previous discussion applies also
to the case of Default tcc. The advantage of Default tcc over tcc and fccp is that
the former language allows one to express strong preemption by using agents of the form
¢~ A: If ¢ is not entailed by the current store then A is immediately evaluated. Differently
from the case of tccp, the result of this evaluation is visible within the same time interval.
This increased expressive power of Default tcc comes with a price since, as previously
mentioned, in general strong preemption can cause paradoxes: If the agent A produces ¢
then the construct ¢ ~+ 4 could have ambiguous interpretations. To avoid these problems
Default tec uses assumptions about the future evolution of the system. If c is absent
when evaluating ¢ ~+ 4, then it is assumed that ¢ will also be absent in the future, ie. A
and the other processes being evaluated in parallel cannot produce c. These assumptions
semantically are modeled by using pairs of constraints. The pair {¢,d) in the denotation
of an agent A means that A reaches a resting point ¢ given the guess d about the final

result. The resulting model however, as discussed in [14], does not allow for the definition
of first-order existentials. Thus, differently from tccp, Default tcc does not allow hiding.

Moreover, the simplicity of both the tcc and the Default tcc models, sequences of
constraints and sequences of pair of constraints, is due to the restriction to deterministic
programs. An extension to non-determinism would require complicated models based on se-
quences of sequences. On the other hand, our real-time extension allows 2 simple operational
and denotational fully abstract semantics for non-deterministic real-time programs.
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Concluding, we have defined an extension of ccp to model real-time which, altough
inspired by the motivations in [13], as discussed above differs from tcc and default tecc
both in the language design and in the semantic model. We believe that our proposal
provides a smooth extension of cep and therefore allows to retain as much as possible the
usual ccp programming style also for real time applications. Moreover, the simplicity of our
semantic model seems a promising basis to define tools for the verification and the analysis
of tccp programs, following the guidelines of [3] and [5]. In particular, we are now studying
an extension based on temporal logic [10] of the proof system defined in [3] to reason about
the correctness of tcep programs.
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In this paper an extension of Caml Light language that attempts
to achieve distributed computation using a c]ient-servc.er mc‘)del. on a
set of computers in a network is presented. To succeec? in (%omg it, we
have used a distributed-memory multiprocessor machine simulator in
which we have implemented a system that can be used to cc‘ms.truct
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functional programs such as referential transparency a.]'ld the de'ter-
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1 Introduction and Previous Work

Thl's work is aimed to use the facilities of the functional languages to ex-
ploit 'the parallelism. In sequential Von Neumann machines (control flow
machines), instructions are executed sequentially, controlled by a program
counter. A new philosophy has been proposed to improve the performance:
the data flow machines. These allow us to forget about counters and in—-
strl%ctions flow because instructions are carried out as data and operands are
av‘aula,ble, leaning on the properties of the functional paradigm. To illustrate
this possibility with a real implementation, we have used the Caml Light lan-
guage [1, 2, 3], a variant of CAML. Further information about this langua
can be seen in [4]. s

We have employed the PVM? software package [5] which allows us to write
programs that exploit the distributed computation model on heterogeneus
net.vvorks with the unique imposition that all the computers work under the
Unix o'perating system (also under OSF-1 for Alpha machines).

This baper appears as an evolution of [6, 7], in which a heterogeneous
c.omputatlon model is presented in order to integrate functional and impera-
tl've modules on a client-server architecture. In (8] the same model refined is
dlscyssed and applied to an example, and a mechanism for the automatic (or
semiautomatic) construction of the Functional Lenguage and Operate Sys-

tem interface based on the type of the kernel f i
: : unctions we want t
the client side is introduced. it o use from

2 Breaking down the synchronism of the typ-
ical evaluation sequence

Most of the functional languages (or extensions of them) that pursue parallel
computation, employ the non-strict (lazy) evaluation order since there is not
synchronism between the demand of a computation and the obtention of the
result. In this way, it is possible to introduce annotations n the code to
suggest the moment in which the evaluation of an expression should start

the tem.pora,l dependences of the evaluation in relation to evaluations of othe;
expressions, and the end of the evaluation, like the para-language of Haskell

!Other possible systems available are ISIS, P4, Express and Linda

presented by P.Hudak in [9].

The synchronism introduced in the strict languages prevents from adopt-
ing this solution (at least immediately). Some of these languages incorporate
primitives to generate new processes or threads, controlled all the time by the
programmer, and to handle the interprocess communication by side-effects
n a similar way to I/O handling, thus losing referential transparency.

To solve this problem we adopted a solution resembling that used in
lazy languages, but preserving the Caml Light evaluation mechanism (strict
evaluation) and its referential transparency. The idea consists of making
the request to a server in such a way that we do not need to wait for the
remote result, continuing the evaluation of other expressions, carrying them
in parallel. If we should wait for the result of the remote evaluation, the
parallelism would not be possible. The solution resides in the construction
of a new datatype, whose behaviour is quite similar to a lazy datatype (a
deferred datatype) Remoteval. ,

A client-server model has been used so that remote evaluation requests
can be performed by the Caml Light function request which has as its
arguments an integer identifying one suitable service, and the arguments to
this service with type ’a, and that returns a value of type ’b Remoteval
where °b is the type of the value returned by the service (int -> ’a -> b
Remoteval). If the function has more than one argument, say n of types
‘al, ’a2,..., 'an, we can transform them into only one parameter using the
product type (uncurry): ’a = ’al % ’a2 % ... % ‘an. Since 'a can be
any type, we can define and use services of multiple arguments by joining
them together in a n-tuple that will be unfolded in the server.”

On the other hand, since request achieves the evaluation request to the
server, the value returned by the function, an instance of Remoteval, does not
contain initially the result of the evaluation. Remotevalis an ADT (Abstract
Data Type) which can be used to encapsulate the access to the result of the
remote evaluation (function val) when needed. This ADT (defined in a Caml
Light module) hides an imperative structure, safeguarding the determinism
in the evaluation and the referential transparency due to its access function
val.

The ADT is created at request time, storing the result when it arrives. If
we try to access the data contained in it before they arrive, the process must
wait until they are available. There are two different approaches about value
reception:



