
GUEST TALKS

Observations about using logic as a
specification language

Dale Miller *
200 S. 33rd Street, Computer Science Department

University of Pennsylvania, Philadelphia, PA 19104-6389 USA
dale@saul.cis.upenn.edu

Phone: +1-215-898-1593, Fax: +1-215-898-0587

Abstract

This extended abstract contains some non-technical observations about
the roles that logic can play in the specification of computational systems. In
particular, computation-as-deduction, meta-programming, an d higher-order
abstract syntax are brie:fly discussed.

l Two approaches to specifications
In the specification of computational systems, logics are generally used in one of two
approaches. In one approach, computations are mathematical structures, containing
such items as nodes, transitions, and state, and logic is used in an external sense to
ma.ke statements about those structures. That is, computations are used as models
for logical expressions. Intensional operators, such as the modals of temporal and
dynamic logics or the triples of Hoare logic, are often employed to express proposi­
tions about the change in state. For example, next-time modal operators are used
to describe the possible evolution of state; expressions in the Hennessey-Milner are'
evaluated against the transitions made by a process; and Hoare logic uses formulas
to express pre- and post-conditions on a computation's state. We shall referto this
approach to using logic as computation-as-model. In such approaches, the fact that
some identifier x has value 5 is represented as, say a pair (x, 5}, within some larger
mathematical structure, and logic is used to express propositions about such pairs:
for example, x> 3 A x< 10.

A second approach uses logical deduction to model computation. In this ap­
proach the fact that the identifier x has value 5 can be encoded as the proposition

*The work reported here has been funded in part by ONR N00014-93-1-1324, NSF CCR-91-
02753, and NSF CCR-92-09224.

62

"x has value 5." Changes in state can then be modeled by changes in propositions
within a derivation. Of course, changing state may require that a proposition no
longer holds while a proposition that did not hold (such as "x has value 6") may
hold in a new state. It is a common observation that such changes are naturally sup­
ported by linear logic and that deduction (in particular, backchaining in the sense
of logic programming) can encode the evolution of a computation. As a result, it is
possible to see the state of a computation as a logical formula and transitions be­
tween states as steps in the construction of a proof. 'Ne shall refer to this approach
to using logic as computation-as-deduction.

There are many ways to contrast these two approaches to specification using
logic. For example, consider their different approaches to the "frame problem."
Assume that we are given a computation state described as a model, say M 1 , in
which i t is encoded that the identifier x is bound to value 5. If we want to increment
the value of x, we may need to characterize all those models M 2 in which x has
value 6 and nothing else has changed. Specifying the precise formal meaning of this
last clause is difficult computationally and conceptually. On the other hand, when
derivations are used to represent computations directly, the frame problem is not
solved but simply avoided: for example, backchaining over the clause

x has value n -o x has value n + l
might simply change the representation of state in the required fashion.

In the first approach to specification, there is a great deal of richness available for
modeling computation, since, in principle, such disciplines as set theory, category
theory, functional analysis, algebras, etc., can be employed. This approach has had,
of course, a great deal of success within the theory of computation.

In contrast, the second approach seems thin and feeble: the syntax of logical
formulas and proofs contains only the most simple structures for representing com­
putational state. What this approach lacks in expressiveness, however, is amelio­
rated by the fact that it is more intimately connected to computation. Deductions,
for example, seldom make reference to infinity (something commonly clone in the
other approach) and steps within the construction of proofs are generally simple
and effective computations. Recent developments in proof theory and logic pro­
gramming have also provided us with logics that are surprisingly flexible and rich
in their expressiveness. In particular, linear logic (6] provides flexible ways to model
state, state transitions, and some simple concurrency primitives, and higher-order
quantification over typed À-terms provides for flexible notions of abstraction and en­
codings of object-levellanguages. Also, since specifications are written using logical
formulas, specifications can be subjected to rich forms of analysis and transforma­
tions.

To design logics (or presentations of logics) for use in the computation-as-de­
duction setting, it has proved useful to provide a direct and natura! operational
interpretation of logical connective. To this end, the formalization of goal-directed
search using uniform proofs (14, 16] associates a fixed, "search semantics" to logical

63

connectives. When restricting to uniform proofs does not cause a loss of complete­
ness, logical connectives can be interpreted as fixed search primitives. In this way,
specifier can write declarative specifications that map directly to descriptions of com­
putations. This analysis of goal-directed proof search has lead to the design of the
logic programming languages ÀProlog, Lolli, LO, and ~Some simple examples
witlì using these languages for specifications can be found in (1, 10, 14]. The recent
thesis (2] provides two modest-sized Forum specifications: one being the operational
semantics of a functional programming language containing references, exceptions,
and continuation passing, and the other being a specification of a pipe-lined, RISC
processar.

2

Observation 1. Logic can be used to make statements about compu­
tation by encoding states and transitions directly using formulas and
proof. This use of logic fits naturally in a logic programming setting
where backchaining can denote state transition. Both linear logic and
higher-order quantification can add greatly to the expressiveness of this
paradigm.

An example

The following specification of reversing a list and the proof of its symmetry illus­
trates how the expressiveness of higher-order linear logic can provide for natural
speci:fications and convenient forms of reasoning.

~_wt,...,_"' " reverse L K :- p i rv\ (()--"-
p i X\(pi M\(pi N\(rv (X: :M). N:- rv M (X::N))))

rv L nil).
=> rv nil K

~cu..u.
-~-0

Here we use a variant of ÀProlog syntax: in particular, lists are constructed from
the infix : : and nil; pi X\ denotes universal quantification of the variable X; =>
denotes intuitionistic implication; and, -: and :- denote linear implication and
its converse. This one example combines some elements of both linear logic and
higher-order quantification.

To illustrate this speci:fication, consider proving the query

?- reverse (a: :b: :c: :nil) Q.

Backchaining on the definition of reverse above yields a goal universally quantified
by pi rv\. Proving such a goal can be clone by instantiating that quantifier with a
new constant, say rev, and proving the result, namely, the goal

pi X\(pi M\(pi N\(rev (X::M) N:- rev M (X: :N))))=> rev nil Q-:
rev (a::b::c::nil) nil).

Thus, ~ attempt will be made to prove the goal (rev (a: : b: :c: :n il) n il) from
the two clauses

64

pi X\(pi M\(pi N\(rev (X::M) N:- rev M (X::N)))).
rev nil Q.

(Note. that th~ va.riable Q in the last clause is free and not implicitly universally
quantifìed.) G1ven the use of intuitionistic and linea.r implications, the fi.rst of these
clauses can be used any number of times while the second must be used once (natura!
cha.racterizations of inductive and initial cases for this example). Backchaining now
leads to the following progression of goals:

rev (a: : b:: c: :nil) nil.
rev (b: :c: :nil) (a: :nil).
rev (c: :nil) (b: :a: :nil).
rev nil (c::b::a::nil).

an d_ the last goal will be proved by backchaining against the initial clause and binding
Q w1th (c: :b: :a: :nil).
. It is clear from this specifi.cation of reverse that it is a symmetric relation: the
mformal.proof simply not~s that if the table of rev goals above is :flipped horizontally
and vert1cally, the result 1s the core of a computation of the symmetric version of
reverse. Given the expressiveness of this logic, the formai proof of this fact directly
incorporates this main idea.

Proposition. Let l and k be two lists and let P be a collection of clauses in
which the only clause that contains an occurrence of reverse in its head is the
one displayed above. If the goal (reverse 1 k) is provable from p then the goal
(reverse k l) is provable from P.

Proof. Assume that the goal (reverse l k) is provable from P. Given the re­
striction on occurrences of reverse in P, this goal is provable if and only if it is
proved by backchaining with the above clause for reverse. Thus, the goal

. \C 1- \d.-, p~ rv
pi X\(pi M\(pi N\(rv (X::M) N:- rv M (X::N)))) =>
rv nil k -: rv l nil)

is ~ro.vable from P. Sin ce this universally quantifi.ed formula is provable, any instance
of 1.t 1s provable. Let rev be a new constant not free in p of the same type as the
vanable rv. The formula that results from instantiating this quantifi.ed goal with
the >.-term x\y\ (not (rev y x)) (where \ is the infi.x symbol for >.-abstraction
and not is the logical negation, often written in linea.r logic using the superscript j_). The resulting formula,

pi X\(pi M\(pi N\(not (rev N (X::M)) :- not (rev (X: :N) M))))=>
not (rev k nil) -: not (rev nil l),

is thus provable from P. This formula is logically equivalent to the following formula
(linea.r implications and their contrapositives are equivalent in linear logic).

65

pi X\(pi M\(pi N\(rev (X::N) M:- rev N (X::M)))) =>
rev nil l -: rev k nil

Since this code is provable and since the constant rev is not free in P, we can
universally generalize over it; that is, the following formula is also provable.

pi rev\(
pi X\(pi M\(pi N\(rev (X::N) M·- rev N (X::M)))) =>
rev nil l -: rev k nil)

From this goal and the defi.nition of reverse (and a-conversion) we can prove
(reverse k l). Hence, reverse is symmetric. 1

This proof should be considered elementary since it involves only simple linear
logic identities and facts. Notice that there is no direct use of induction. The two
symmetries mentioned above in the informai pr;;;r;;~ptured ii;.thehigher-order
substitution x\y\ (not (rev y x)): the switching of the order of bound variables
captures the vertical :flip and linea.r logic negation (via contrapositives) captures the
the horizontal :flip.

3 Meta-programming and meta-logic
An exciting area of specifi.cation is that of specifying the meaning and behavior of
programs and programming languages. In such cases, the code of a programming
language must be represented and manipulated, and it is valuable to introduce the
terms meta-language to denote the specifi.cation language and object-language to
denote the langùage being specifi.ed.

Given the existence of two languages, it is natura! to investigate the relationship
that they may have to one another. That is, how can the me8JJ.il.ing of object-language
expressions be related to the meaning of meta-level expressions. One of the major
accomplishments in mathematicallogic in the fìrst part of this century was achieved
by K. Godei by probing this kind of re:flection, in this case, encoding meta-level
formulas and proofs at the the object-level [7].

Although much of the work on meta-level programming in logic programming ha.s
also been focused on re:flection, this focus is rather narrow and limiting: there are
many other ways to judge the success of a meta-programming language apa.rt from its
ability to handle re:flection. While a given meta-programming language might not be
successful at providing novel encodings of itself, it might provide valuable and iexible
encodings of other programming languages. For example, the 1r-calculus provides a
revealing encoding of evaluation in the >.-calculus [17], evaluation in object-oriented
programming [28], and interpretation of Prolog programs [12]. Even the semaJiltic
theory of the 1r-calculus can be fruitfully exploited to pro be the semantics of eneoded
object-languages [27]. While it has been useful as a meta-laJitguage, it does not seem
that the 11"-calculus would yield an interesting encoding of itself.

66

Similarly, ÀProlog has been successful in providing powerful and f!exible speci­
fìcations of functional programming languages [8, 21] and natural deduction proof
systems [5], Forum has similarly been used to specify sequent calculi and various
features of programming languages [2, 14]. It is not clear, however, that .>-Prolog or
Forum would be particularly good for representing their own operational semantics.

Observation 2. A meta-programming language does not need to cap­
ture its own semantics to be useful. More importantly, it should be
able to capture the semantics of a large variety of languages and the
resulting encoding should be direct enough that the semantics of the
meta-language can provide semantically meaningful information about
the encoded object-language.

A particularly important aspect of meta-programming is the choice of encod­
ings far object-level expressions. Godei used natural nuu1bers and the prime fac­
torization theorem to encode syntactic values: an encoding that does not yield a
transparent nor declarative approach to object-level syntax. Because variables in
logic programming range over expressions, representing object-level synt;u can be
a partìcularly simple, at least for certain expressions of the object language. For
example, the meaning of a type in logic programming, pa10ticularly types as they
are used in ÀProlog, is a set of expressions of a given type. In contrast, types in
functional programming (say, in SML) generally denote sets of values. While the
distinction between expressions and values can be cumbersome at times in logic pro­
gramming (2 + 3 is different than 5), it can be useful in meta-programming. This
is particularl3' true when dealing with expressions of functional type. For example,
the type int ~·> int in functional programming denotes fundions from integers to
integers: checking equality between two such functions is not possible, in generaL
In logic programming, particularly in ÀProlog, this same type contains the code of
expressions (not functions) of that type: thus i t is possible to represent the syn­
ta.x of higher-order operations in the meta-programming language and meaningfully
compare and compute on these codes. More generally, meta-level types are most
natu:rally used to represent object-level syntactic categories. Vl/hen using sHch an
encoding of object-levellanguages, meta-level unification and meta-level variables
can be used naturally to probe the structure of object-level syntax.

Observation 3. Since types and variables in logic programming range
over expressions, the problem of naming object-level expressions is often
easy to achieve and the resulting specifìcations are natural and declara­
tive.

abstract syntax

In the last observation, we used the phrase "often easy to achieve." In fact, if
contain bound it is a" comm.on observa.tion that

67

representing such variables using only fust-order expressions is problematic: since
notions of bound variable names, equality up to a:-conversion, substitution,
are not addressed naturally by the structure of first-order terms. F'rom a logic
programming point-of-view this is particularly embarrassing sin ce all of these notions
are part of the meta-theory of quantifìcation logic: since these issues exìst in logic
generally, i t seems natural to expect a logical treatment of them for
that are encoded into logic F'ortunately, the notion of higher-or-der abstmcl syntax
is capable of declaratively dealing with these aspects of object-level syntax.

Higher-order abstract syntax involves two concepts. First,),-terms and their
equational theory should be used Ull.iformly to represent syntax containing bound
variables. Already in [3], Church was doing this to encode the universal and exis­
tential quantifiers and the definite description operatoL Following this ~,..,,..,~,~·"·le
instantiation of quantifiers, for example, can be specified using pl-reduction.

The second concept behind higher-orde:r abstract syntax is that for
composing and decomposing syntax must respect at least a:-conversion of terms.
This appears to have first been clone by Huet and Lang in [11]: they discussed the
advantages of representi.ng object-level syntax using simply typed À-terms and ma­
nipulating such terms using matching modulo the equational rules for ;\-conversion,
Their approach, however, was rather weak since it only used matching unifi­
cation more generally), That restrictions made i t impossible to express all but the
simplest operations on syntax. Their approach was extended by Miller an d N adathu:r

[15] by moving to a logic programming setting that contained ,Bry-unii'ication of
simply typed À-terms. In that paper the central ideas and advantages behind higher­
order abstract syntax are discussed. In the context of theorem proving, Paulson also
independently proposed similar ideas [20].

In [23] Pfenning and Elliot extended the observations in [15] by producing ex­
amples where the meta-language that incorporated À-abstractions contained not
just simple types but also product types. In that paper they coined the expression
"higher-order abstract syntax." At about this time, Harper, Honsell, and -Plotkin
in (9] proposed representing logics in a dependent typed À-calculus. While. they did
not deal with the computational treatment of syntax directly, that treatment vras
addressed later by considering the unification of dependent typed À-expressions
Elliott (4] and Pym [25].

The treatment of higher-order abstract syntax in the above mentioned papers
had a couple of unfortunate aspects. First, those treatments involved unifìcation
with respect to the full ,817-theory of the À-calculus, and this generai theory is com­
putational expensive. In [11], only second-order matching was used, an operation
that is NP-complete; later papers used full, undecidable unifìcation. Second, various
different type systems were used with higher .. order abstract syntax, namely
types, product types, and dependent types. However, if abstract syiitax is essen·
tially about a treatment of bound variables in syntax, it should ha ve a presentation
that is independent from typing.

The introduction of L;, in [13] provided solutions to both of 'these problems.

68

First, L>. provides a setting where the unification of À-terms is decidable and has
most general unifiers: it was shown by Qian [26] that L>,-unification can be done
in linear time and\space (as with first-order unification). Nipkow showed that the
exponential unification algorithm presented in [13] can be e:ffectively used within
theorem provers [19]. Second, it was also shown in [13] that L>,-unification can be
described for untyped À-terms: that is, typing may impose additional constraints
on unification but L>,-unification can be defined without types. Thus, it is possible
then to define L>,-like unification for various typed calculi (22].

Observation 4. L>. appears to beone of the weakest settings in which
higher-order abstract syntax can be supported. The main features of L>.
can be merged with various logical systems (say, >.Prolog and Forum),
with various type systems (say, simple types and dependent types) [21),
and with equational reasoning systems [18, 24).

While existing implementations of ÀProlog, Isabelle, Elf, and NuPRL ali make
use of results about L>., there is currently no direct implementation of L>,. It should
be a small and flexible meta-logic specification language.

References

(l) J.M. Andreoli and R. Pareschi. Linear objects: Logical processes with built-in
inheritance. New Generation Computing, 9(3-4):445-473, 1991.

(2] Jawahar Chirimar. Proof Theoretic Approach to Specification Languages. PhD
thesis, University of Pennsylvania, February 1995.

[3] Alonzo Church. A formulation of the simple theory of types. Journal of Symbolic
Logic, 5:56-68, 1940.

[4) Conal Elliott. Higher-order unification with dependent types. In Rewrit­
ing Techniques and Applications, volume 355, pages 121-136. Springer-Verlag
LNCS, April1989.

(5) Amy Felty. Implementing tactics and tacticals in a higher-order logic program­
ming language. Journal of Automated Reasoning, 11(1):43-81, August 1993.

[6) Jean-Yves Girard. Linear logic. Theoretical Computer Science, 50:1-102, 1987.

[7) Kurt Godei. On formally undecidable propositions of the principia mathematica
and related systems. I. In Martin Davis, The Undecidable. Raven Press, 1965.

[8) John Hannan. Extended natura! semantics. Journal of Functional Program­
ming, 3(2):123-152, April1993.

69

[91 Robert Harper, Furio Honsell, and Gordon Plotkin. A framework for defining
logics. In Second Annual Symposium on Logic in Computer Science, pages
194-204, Ithaca, NY, June 1987.

[IO} Joshua Hodas and Dale Miller. Logic programming in a fragment of intuition­
istic linear logic. Information and Computation, 110(2):327-365, 1994.

[11] Gérard Huet and Bernard Lang. Proving and applying program transformations
expressed with second-order patterns. Acta Informatica, 11:31-55, 1978.

[12) Benjamin Li. A 1r-calculus specification of Prolog. In Proc. ESOP 1994, 1994.

Jr; [13} Dale Miller. A logic programming language with lambda-a~acti_2n, function
variables,~~~~J>kJlnifica~io~. Journal of Logic and Computation, 1(4):497-
536, 1991. "'- , ,~~..,a ·

)t [14] Dale Miller. A multiple-conclusion meta-logic. In S. Abramsky, editor, Ninth
Annual Symposium on Logic in Computer Science, pages 272-281, Paris, July
1994.

1t [15) Dale Miller and Gopalan Nadathur. A logic programming approach to manip­
ulating formulas and programs. In Seif Haridi, editor, IEEE Symposium on
Logic Programming, pages 379-388, San Francisco, September 1987.

K [16] Dale Miller, Gopalan Nadathur, Frank Pfenning, and Andre Scedrov. ~
I>roofs as a foundationJor l.Q&i_<:~~a.J?lming. Annals of Pure and Applied
Logic, 51:125-157, 1991.

[17] Robin Milner. Functions as processes. 17th Int. Coli. Automata, Languages
and Programming Warwick University, UK, LNCS 443, pp. 167-180, Springer
Verlag July 1990.

[18] Tobias Nipkow. Y:igher-order critical pairs. In G. Kahn, editor, Sixth Annual
Symposium on Logic in Computer Science, pages 342-349. IEEE, July 1991.

[19] Tobias Nipkow. Functional unification of higher-order patterns. In M. Vardi,'
editor, Eighth Annual Symposium on Logic in Computer Science, pages 64-74.
IEEE, June 1993.

[20] Lawrence C. Paulson. Natural deduction as higher-order resol.u.tion. Journal ef
Logic Programming, 3:237-258, 1986.

[21] Frank Pfenning. Elf: A language for logic definition and verified metapro­
gramming. In Fourth Annua[Symposium on Logic in Computer $cience, pages
313-321, Monterey, CA, June 1989.

[22] Frank Pfenning. Unification and anti-unification in the Calculus of Construc­
tions. In G. Kahn, editor, Sixth Annual Symposium an Logic in Computer
Science, pages 74-85. IEEE, July 1991.

[23] Frank Pfenning and Conal ElliotL Higher-order abstract syntax. In Proceed­
ings ofthe ACM-SIGPLAN Conference on Programming Language Design and
Implementation, pages 199-208. ACM Press, June 1988.

[24] Christian Prehofer. Solving Higher-Order Equations: From Logic to Program­
ming. PhD thesis, Technische Universitat Munchen, 1995.

[25] David Pym. Proofs, Search and Computation in Genera[Logic. PhD thesis,
LFCS, University of Edinburgh, 1990.

[26] Zhenyu Qian. Linear unification of higher-order patterns. In J.-P. Jouannaud,
editor, Proc. 1993 Coll. Trees in Algebra and Programming. Springer Verlag
LNCS, 1993.

[2'7] Davide Sangiorgi. The lazy lambda calculus in a concurrency scenario. lnfor­
mation and Computation, 111(1):120-153, May 1994.

[28] David Vvalker. n--calculus semantics of object-oriented programming languages.
LFCS Report Series ECS-LFCS-90-122, University of Edinburgh, October 1990.

PARALLEL LOGIC PROGRAMMING
WITH EXTENSIONS

Luis Moniz Pe:reira and José C. Cunha
Project Coordinators

Departamento de Informatica
Universidade Nova de Lisboa

P-2825 Monte da Caparica, Portugal
Lu.:i's Damas

Pr~J=:'ct0c"c7;~;a.r~~tor
Laboratorio de Inteligéncia Artificial e

Ciencia dos Computadores
Universidade do Porto

R. Campo Alegre 823, 4100 fg.!:~o, Portugal

Absiraci

A programming language is a tool and a vehicle for applications. Logic
Programming has proven to be a very fruitful paradigm. Recognizing the
need to promote the evolution of Prolog towards a more expressive new logic
programming language, a large medium-term national research project· was
recently started under the authors' coordi.nation involving a large body of in­
vestigators from their home institutions. Extensions to Logic Programming
are being developed with new forms of computational reasoning, with explicit
negation, constraint programming, and parallelism and distribution support.
The resulting language, PROLOPPE, will integrate the above aspects in the
form of a trully efficient implementation that exploits innovative techniques,
induding joint implicit and explicit parallelism, and distribution over het­
erogenous multiple processor architectures. This language will be used in a
wide variety of applications such as desision support systems, natural lan­
guage processing, diagnosis, scheduling, and robot cooperation. In this paper
we overview the main topics behind the research in the PROLOPPE project.

This paper is an edited version, by the authors, of part of the original pro­
posal of the PROLOPPE Project which included contributions from C. Damasio,
F. Menezes, J. C. Cunha, J. J. Alferes, L. M. Pereira, P. Barahona, P. D. Medeiros,
S.P. Abreu, from the Universidade Nova de Lisboa, and A. Matos, A. P. Tomas, F.

72

Silva, J. P. Leal, L. Damas, L. Lopes, M. Filgueiras, N. Moreira, R. Reis and V. S.
Costa from the Universidade do Porto, and Miguel Calejo from Servisoft.

l Introduction

Prolog, albeit its great success, has a number of limitations both at the language
and at the execution levels. We propose to overcome some of these limita.tions b

l . d. . y
re ymg an 1mprovmg on recent results in the semantics of logic programming lan-
g.uages, where we have ourselves made relevant contributions. We think it is now
t1me for a new step in this direction, with the proposal of a language augment­
ing the expressive :md computational power of Prolog. Our main objective is to
promote the evolutwn ?f Prolog tow~rds a more expressive new logic programming
lan~ua~e (ProloppeÌ, t1ed to an effiCient execution environment that exploits inno­
vative. Im_Ple~entatwn techniques, including joint implicit and explicit parallelism,
and d1stnbutwn over heterogenous multiple processor architectures. Extensions to
L~gic Pro~~ammin~ will be developed with new forms of computational reasoning,
w1th explic1t negatwn, constraint programming, and parallelism and distribution
support.

Prolog supports a subset of Logic only, and in particular it does not include
explicit negatio~ in the facts and in the rules. Increased expressive power of the lan­
guage.' and a w1der scope for its applications will be possible by including explicit
negatwn as well as default negation, and exploiting new forms of non-monotonic
reasoning (a promising field with increasing expansion at the international scale)
Handling con~radi~t.ions an d automated methods for belief revision also brings in in~
creased fun~twnalit1~s. Irr:-plem:ntation of these functionalities requires the support
of construt1ve negatwn, mtegnty constraints, and disjunction. Constraint-based
programming methods for solving linear Diophantine equations have been developed
by researchers in our groups, and are proved to be among the most efficient meth­
ods known. These and other methods, namely incrementai hlerarchical constraint
s~lvers for .finite domains and the naturals, will be integrated in the implementa­
twn and w1ll ~upport r~pid prototyping of efficient applications in multiple domains
(e.g.. s.chedulmg an d tn:le-tabling). Currently, these applications demand highly
spec1ahzed p~ograms ~hlch are hard to specify and mantain. Integrating forms of
~o~-.~onoto~c reas?m~g and numerica! constraints in a logic language opens pos­
sibihties for mnovatwn m the area of Decision Support Systems.

-!' first efficient im?lementatio~ i~cluding such extensions will be developed, fol­
lowmg our past expenence, and aimmg at overcoming severallimitations of current
l~gic prog~am~in.g systems, regarding problem solving in non-trivial AI applica­
tl.ons, and m di~tnbuted AI. The project encompasses the development of new tech­
mques concermng the followin~ aspects: optimized Prolog compilation, execution
mod.els for the proposed extenswns, joint exploitation of implicit and explicit par­
allehsm over heterogeneous multiple processor architectures, and tools for program

73

development with sequential and parallel execution, with support for performance
measurement, debugging and visualization.

W e address a diversity of complex application domains requiring a pr'ogramming
system with great expressiveness, declarativity, efficiency, and intelligence in the
execution strategies. These aspects will contribute to the evaluation of the developed
tools, as well as to strenghten the logic programming abilities in order to address
non-trivial problem solving. Application development will also be pursued in other
initiatives, extending its impact at the national and international scopes.

In the following sections we summarize the fundamental issues that are being
addressed in this project.

2 Semant.ics for negation

Recently, several authors have underscored the importance of extending logic pro­
gramming (LP) with a second kind of negation ...,, for use in knowledge representa­
tion, deductive databases and nonmonotonic reasoning (NMR) [GL90, GL92, Ino91,
Kow90, KS90, PW90, PAA9lb, PAA91d, PAA92b, PDA93b, PDA93c, PDA93a,
PAA93, Wag91]. [BG93] makes an overview of the use of such programs in lrnowl­
edge representation and NMR. Different semantics for extended logic programs with
...,-negation (ELP) have appeared [DR91, GL90, KS90, PA92, PAA91a, PAA92a,
Prz90, Prz9la, Sak92, Wag91]. Each of these semantics is a generalization for ELP
of either the stable models semantics (SM) [GL88], or the well-founded semantics
(WFS) [GRS91] of normal programs.

In [Prz90, Dix91, Dix92] SM and WFS are contrasted, and it is argued that,
by its structural properties, WFS is more suitable for an implementation (unlike
SM, it is possible to define for WFS both bottom-up and top-down procedures
[PAA9lc, CW92, Ros92, BD93]). To deal with the problem of floundering, the top­
down procedures need to treat negation a.s failure goals by means of procrastination,
common to that of constraints and deterministic priority, and/or constructive meth­
ods (TS86, Prz89, KT88, CW92, Ros92, BD93, Bol93].

[AP92] contrasts some of these semantics regarding their use of ...,-negation,
where distinct meanings of -. are identified (explicit, strong an d classical), an d
argues that, by its properties, explicit negation is preferable. By being a gener­
alization of WFS for ELP which uses explicit negation, WFSX [P A92) appears as
a natural candidate for the base semantics of our ELP PROLOPPE implementa­
tion. (Alf93] make an extensive study on WFSX, and its relationship with several
NMR formalisms. In [AP93b] WFSX is defined in terms of a "logic of belief and
provability', and compared with the works of [Che93, MT93, LS93). This open the
way for contradiction removal (cf. below), and for generalizilig WFSX to disjunctive
programs, in the spirit of [BLM90, Prz91c, Prz91b, Prz93], where several semantics
for disjunctive norma! programs are defined.

By generalizing LP with either explicit negation or integrity constrains, a new is-

74

sue arises: how to deal with contradiction. [DR91, Jon91, PA93b, PAA9la, PAA92a]
present several proposal for that issue. [AP93c, PA93a] distinguish between two
generic approaches to deal with contradiction: one consists in avoiding it; the other
in removing it. The definition on procedures for removing contradiction has been
generalized to dea] with two valued revisions [PDA93b], and to deal with preference
among revisions [DNP93], with application to diagnosis, updates, and debugging
[PDA93c].

Despite all the above mentioned effort on the theoretical study on ELP semantic
and its applìcation domains, to date there is no efficient implementation of these
semantics, nor even a formal specification of their procedures. The ELP implemen­
tation of this proposal is intended to fil] in this gap, and to allow for a practical
application of ELP for problems of the domains studied.

3 Constraint Logic Programming

The characteristics of LP, namely its declarative nature, makes it particularly suit­
able to the specification of a large number of constraint satisfaction problems. Nev­
ertheless, the resolution principle, the basis of LP, is insufficient to handle efficiently
these problems, since it does not take advantage from the specificity of some domains
(namely numeric) nor from the characteristics of the operations defined on these do­
mains. Several extensions have thus been proposed to LP in the last few years
that, without jeopardizing its declarative nature, allow a much better performance
in solving these problems. In generai, these languages extend LP to Constraint
Logic Programming (CLP), by replacing the resolution principle by more powerful
constraint solving method in some specialised domain.

Solving linear constraints on finite domains may also be clone by exploring the
equivalence to the problem of solving systems of linear equations over the natura!
numbers (Diophantine equations) an d using the specific methods developed for i t.
Most of the recent research work on Diophantine equations is related with the de­
velopment of algorithms for unification of terms with associative and commutative
functors (AC-unification) and with the field of Term Rewriting Systems [Dom91].
The use in the implementation of a CLP system of one of the methods for solving a
system of Diophantine equations is un der research [Con93]. Other recent results, for
a single equation, are described in [TFar] and [FT93] and correspond to the fastest
rnethods known to date.

The topic of constraints over algebras of ration,) trees extends term unification,
in a decidable way [Mah88, CL89], to the resolut10n of first order formulas with
equality as unique predicate symbol. Extensions to Prolog in this line, are Prolog
II [Col82], Prolog III, and more recent, systems as CLP(:FT) [Smi91], where uni­
versally quantified disequalities are used to allow logic programs with constructive
negation. On the other hand, as was pointed out in [DMV93], the standard alge­
bra of rational trees has a dose relationship with the standard model for features

75

[Smo89], ·vvhich were establish in order to .formalize f:a.ture based gramrnar
K • li tho" have ~"merged in the Computabonal Lmgu1shcs commumty over ,Q.c"fila sms - ~c - h · fi b "l'·

' ' r From a practical point of view, the fact that t e satls a 1 n.y tne past 1ew years. _ _ . , .
. bl r· <h'-'ce d· omains) is NP-hard tends to manifest itself m a dramatJC way pro em \ID ul v O ' • • • ' - •

· t. al pp'l1'cot1"ons motivated several specialized algorithms to mmJmJze tlJ.Js m prac lC a eu • , -

- [Kas87, ED88, MK91]. . -"'- ..
In it was argued that any pradical approach to the sat1snab1hty _ . _

l --ld f t · ·-· techn1"ques to reduce the size of the input formulae to wtuch s aou use ac onzatwn . .
~v complete a.lgorithm for sa.tisfiability is applied, since such factonzatwn c<~n

dJ fac+-~-- tho over"ll cost of the process. ln re uce an vvJ. v - •

- DMB93] were described more factorization techmques and a
rew:rite system fo:r satìs:fìability was provided.

in most conventional a.rchitectures.
fu:rther the pe:do:rmance using dired

wde ?end Native code systems
by-passing the emulator. can also machine-level

Global information on how arguments
execution. Its most common uses are in the further 0f-'v"''~c"'

l

usually
direct

to tl:w
prograrns. V.fe believe that such

u'""-'"'""'"'-'" C compilers.

76
can match) can be selected :first and run in and-parallel. When no such goals are available, the system can try the several alternatives to a non-determinate goal in or-parallelism. Besides the parallelism, the selection functions most natural to the Basic Andorra Model have a very useful form of implicit coroutining (SC93], which has been exploited in several Andorra-I applications [Yan89, GY92] and in the Pandora language (Bah93]. Note that Andorra-I can only exploit and-parallelism between determinate goals. Warren's Extended Andorra Model (EAM) [War89] lifts this restriction and allows a general form of and-parallelism. The EAM gives a set of general rewrite rules for logic programs, which can be subject to different con­tro! schemes. The EAM was a basis for the Kernel Andorra Prolog (KAP) (HJ90) framework which is instantiated in the AKL language, proposed by Janson and Haridi (JH91]. In these languages, guards (such as commit guards, cut guards an d wait guards) are used to control computation, which may be nondeterministic. Both or-parallelism, an d and-parallelism between non-determinate (an d determi­nate) goals can be exploited. Moreover, the search space can be much reduced over traditional Prolog systems.

Further improvements to AKL's search rule have been performed by Abreu, Pereira and Codognet [APC92a]. The authors have studied failure-driven con:figu­ration reordering, which can be seen as an application of the :first-fail principle to the unfolding of an AKL computation. This shows that And-Or tree Rewriting sys­tems (AORS), which encompasses both AKL and the EAM, provide a fertile base for the exploitation of a-posteriori search-space pruning, i.e. pruning part of the search-space as a consequence of the execution of another portion of the program. This approach complements the a-priori search-space pruning that comes as a result of constraint propagation, another mechanism present in AKL. The differences between Prolog an d Andorra-I are more striking. Andorra-I does in fact inherit most of its implementation techniques from Parlog (Cra88) and KLl (SSM+87]. Andorra-I's abstract machine and compiler are described by San­tos Costa [SC93] (note that in practice much of the difficulties to be addressed in Andorra-I are due to parallelism support, handled by Yang's engine and by the severa! schedulers[BRSW91, Dut91]). Andorra-I incorporates some optimisations, the ones considered particularly important for Andorra-I's main goal to run real ap­plications. The compiled Andorra-I is not as optimised as current Prolog systems, being a more complex and a newer system. Great improvements can be obtained by using the new techiques that are being developed for Prolog, plus the new techiques developed for the committed-choice languages [TB93).
The implementation of AKL and of the EAM ,Jso brings some new problems. Janson and Montelius have a prototype implementation (JM92], but again several optimisations will be needed for one such system to compete with current Prolog systems. Note that AKL (an d EAM) can be described in terms of and-boxes, an d or­boxes (several types may ex:ist). These boxes are expanded during forward execution, but their con:figuration must be reorded upon failure. This can be made more effective through the guidance of the reordering scheme by a binding-dependency

77

h · the ob]. ect of the AKL/IP (for AKL with Intelligent maintenance system; sue 1s . k d . . tl" d . [AP93a] and [APC92b] currently bem:· .,·or e on p unmg) system ou me m ' , · 1 t li ' . r L' b AKL/IP is currently being implemented using Janson ~wl lV on e us In IS on. [JM92] as a basis, being thus a sequential implementatwn. It can ~e prototype t t" l model based on rewrite rules for an d-or trees (as IS gued that a compu a wna
· a~ "th AORS's) is more suited to dependency-directed search-space prumng the casetWI . g a Prolog like selection rule, because the forrner provides a built­t an sys ems usm - d efully with inl. rnechanism to describe suspension of goals ~n can cope more grac

changes to the relative ordering of goals at run-time.

5 Implicit and Explicit Pa:rallelism
. min s sterns obtain high-performance by exploit~ng di~erent P aralie~ logic lrl~gra~othgi:plicit and explicit parallelism are available m logic p~o­forms o. p~a e~:r:s In explicit systems such as Delta Prolog [PMCA86] specJal gramromg ang g . d l"t . Delta Prolog) are available to control parallelisrn. types of goals (events an sp I s m 1 1 . . . be obtained through the parallel execution of severa reso -Implic1t parallehsm can llelism or through the parallel resolution vents arising from the same query, or-para ' b l d al al d- arallelism. All these forms of parallelism can e exp ore. ac-~~:;:: to g:er;' d:;er~nt strategi:s. 'V!e ne_xt discuss the most important techmques now available to exploit parallehsm m logJc prograrns.

5.1 I:mplidt Parallelis:m
r- arallelism and and-parallelism have been exploited successfully in logic ~ro­Both o . p t Whereas or-parallel systems exploit much the same par~lehsm, grammmg sys ems.

•t f d1fferent d d"ff . ly in the wav they represent the search space, qm e a ew . an 1 er mam J bl f th most Impor­forms of and-parallelism have been recogni~ed. Argua. y\~ome o .t: d-choice lan­a roaches are the following. Systems Implementmg e comrn: e ta:t e;pexploit parallelism between goals that have commited to a smgl~ claused In~ ~p!wÌent and-parallelism systems, su~h as &-Pr.olog [Hl;io\only ru~ lls~~~g~:j al whose com utation should not mterfere, m para e . n orra . :~pl~ìts and-parahelism between goals that a~e detel~t~te. The(j~~~Jldea has been generalised in the Extended Model, and m the anguage .

5.2 Parallel Imple:mentation of the EAM and AKL
loit and- arallelism between determinate goals. Both the ~~:r:i ~~L ~~~yt~:restrictio;. AKL an d the EAM thu:nsha~e t~e P~~erty t~~~ the computation may be carried out in parallel more natur y t an m o er para e

dd h as can be found in t>ome Prolog lì.e. intrinsic to the execution model, not as an .a -on sue systems, or in multi-sequential parallel implementatwns.

78

logic programming systems: the approach of havi . organized as a tree of and-boxes and h . b ng the run-time data structures · c mce- oxes the requirem t · prumn~ guards, together with the fact that and-b h :n s on qmetness of potentially better locality propertie ki h oxes ave their own store lead to an d fine-grained parallelism Ind ds, tmha ~g sue a system suitable for both coarse · ee , e gams on a parall 1 · l . are very attractive, and Moolenaar[VAMD91] h e I~p ementatmn of AKL prototype for of AKL. as recently Implemented a parallel
Finally, the promising experimentai res l t bt . . type of the AKL/IP system prompt us t ~ ~ ~ tmed Wlth the preliminary proto­o oo m o a true parallel implementation.

5.3 Implicit Parallelism for Distributed M S . emory ystems
Recently, new parallel architectures, namely distributed sha . tures, have been proposed and built (th KS red memory architec-Although, in these architectures the e.g. : h R. and EDS parallel machines). ware and hardware support for ~ sh mde~otry Ils p ysically distributed there is soft-hi are vrr ua memory computat. d l Th are tectures combine the advantag f l b IOn mo e . ese the advantage of shared memory :d o artghe nu:n e: of processors (scalability) with t' f ' are ere1ore Ideai targets fo th all l ec~ Ion o Prolog programs. These architectures . r e par e ex­logic programming systems have be d l d are qmte recent and few parallel One of the :first models has been d:: e~e op; . that understand the new issues. shown successful execution for or-par:~n~ ~ Implfemented by Silva [Sil93], and e sm m one o these architectures.

5.4 Explicit Parallelism
This approach consists in the de:finition of of sequenciality and concurrency synchr .cont~tructsdfor the explicit specification ' omza mn an non deter · · · l · programming language. - nnmsm m a og1c

T?e di~ersity of proposals that have arisen in the ast ten . . pa.l a.lms: (l) search for increased flex'b'lit . th p ifi . years have two pnnci­implicit parallelism as supported by I l y ~ln edspec catl_on of parallelism, versus r . · a compier an /or run tJme 8 t (") th 10r smtable constructs for the spec'fi t' f di 'b - ys em; il e need 1 ca 1on o stn uted sy t A l of problems are naturally modelled by . lt' l s ems. arge number where the data structures and/or th ' ~~~ l~he concurrent interacting processes distributed. e en 1 168 at solve the problem are spacially

6 Programming environment
Mostly. sin ce the 80s severai e:fforts ha ve been made t . . gramnnng environments in order to meet th t .o bmld powerful log:tc pro-tive Prolog language in the 70s [DCLY93] Oe e~ech atmns brought by the innova­results were found by capitalizin l : ne o t e _areas where more promising ' g on oglc programnnng's own caracteristics, was

79

declarative debugging, which has grown into an area with autonomous scientific workshops, such as the recent [FN93], [Cai92]. So far one of the gre!':test eforts towards an environment integrating innovative tools has been the ESP1 T ALPES project (ANPR89], which went on between 1986 and 1988. From that work and from its sequel by the UNL team several prototype Prolog environments were developped (X-Prolog, MacLogic, StepOnProlog), associateci to various Prolog implementations (Apple Computer's Logic Manager, UNL's own na,noProlog, Universidade do Porto's YAP, University of Edinburgh's C-Prolog), sometimes in the context of externai R&D contracts (Apple, ENIDATA, Digitai, Softlog/NeXT, among others). In this project we are further improving the development tools in the environ­ment, including low-level analyzers for sequential and parallel execution, declarative
debugging, browsers, graphics tools and interface buiders.

7 Tasks Overview
This project represents a significant e:ffort, at nationai scale, towards promoting the Logic Programming paradigm in severai directions: theory, language, execution models, implementations and applications. It spans a large body of researchers, and it will stimulate a diversity of teaching and training activities. Besides the semantic definitions for the new PROLOPPE language, we will pro­duce the :first usable implementation of the language and a development environ­ment to be made available to the internationai acadernic community, promoting the exploitation of AI applications. This implementation will include and extend the results that the proponents have been achieving, regarding a better Prolog execution model, applied to the support of more advanced semantics and a joint exploitation of implicit and explicit parallelism. The tasks below will produce specifications of language extensions, models and prototypes, and the prototypes themselves, which wìll be demonstrated and made available during the project.

• Explicit Negation and Logic Programming with Non-Monotonic Reasonning, ìncluding contradiction removal, with constructive negation and disjunction.
• Constraint Logic Programming: constraint resolution methods are investir gated and used in the implementation of constraint logic programming lan­guages: (a) resolution methods for the linear Diophantines equation systems an d other more generai constraints concerning naturais an d finite domains; (b) incrementai hierarchical constraint solvers over natural and finite domains.
• Execution Models: optirnized compilation of the Prolog model will be ex­plored, since our past experience in the implementation of conventional Pro­log shows that great improvements can still be achieved when implementing the language. This includes: (a) the design of an Intermediate Computer De­scription, oriented to the underneath architecture; (b) .the implementation of

80

a compiler with procedure and intra-procedure level optimization, featuring
unfol~n~: choice points eli~na.tion a.nd mode or sequentia.lity detection; (c)
extens1b1hty support to prov1de the proposed extensions to the logic language.

" We will develop other execution models and search strategies in the following
aspects: (a) optimization of the sea.rch process based in "Intelligent Pruning",
a method tha.t resembles Prolog's intelligent backtracking, but applied to AKL
(AKL/IP) execution model; (b) sequential and parallel implementation of the
AKL/IP language; (c) application of the AKL/IP execution model to non­
monotonic reasoning, as support to an implementation support of the previous
extensions.

011 Implicit and Explicit Para.llelism; implicit para.llelism of the OR and AND
types will be explored over shared memory and distributed memory archi­
tect~e~, integrat~d with other forms of parallelism suitable to the support
of distnbuted logic programming, its application in Distributed AI a.nd its
implementation over heterogenous multiprocessors. '

® Development Environment: we will integrate the acomplished extensions in an
environment with a set of user support tools, su eh as: (a) low-level ana.lyser
with performance measuring tools, and sequentia.l and parallel execution trac­
ing; (b) decla.rative debugger; (c) browser; (d) graphic library an d specification
languages for system interaction; (e) visualization of distributed computations.

"' Some applications will be developed to evaluate, test, promote PROLOPPE:
(a) syntactic ana.lyser for natural language (for the testing of system use in
new formalisms based on constraints like the HPSG); (b) Constraints and
Time-Tabling; (c) To diagnosis of distributed a.rtificial intelligence an d non­
monotoni c reasoning.

Other aplications of non-monotonic reasoning are forseen, e.g. to planning
~nd. to ~atura.llanguage, not ca.rried out within the project, but evaluated by
mshtut10nal colleges of team members. The results of this evalutation will be
report.

Acknowledgments. This research is nationa.lly supported in pa.rt by Programa
CIENCIA a.nd project PROLOPPE of the PRAXIS XXI programme.

References

[Alf93] José Julio Alferes. Semantics of Logic Programs with Explicit Negation. PhD thesis
Universidade Nova de Lisboa, October 1993. '

[ANPR89] J.A.S. Alegria, A. Natali, N. Preston, and C. (ec!itors) Ruggieri. Alpes final report
(esprit p973 project). Technical report, Universidadade Nova de Lisboa, 1989.

i1U92]

[M"93a]

[."lr93bJ

[Bah93]

[BD93)

[Cal92J

81

J. J. Alferes and L. M. Pereira. On logic program semantics with two kinds of
negation. In K. Apt, editor, Int. Joint Con[. and Symp. on LP, pages 574-588. MIT
Press, 1992.

Salvador Abreu and Lu:fs Moniz Pereira. Design for akl with intelligent pruning. In
Roy Dyckhoff, editor, Workshop on Extensions of Logic Programming, pages 1-6.
University of St. Andrews, Scotla.nd, 1993.

J. J. Alferes and L. M. Pereira. Belief, provability, and logic programs (draft). Tech­
nical report, CENTRlA, 1993. Submitted to KR'94.

J. J. Alferes and L. M. Pereira. Contradiction: when avoidance equal remo;al. Part
L :m R. Dyckhoff, editor, 4th Int. Ws. on Extensions of LP, pages 7-16. Umv. of St.
Andrews, 1993.

Salvador Abreu Luis Moniz Pereira, and Philippe Codognet. Improving backward
executi:on in th~ andorra family of languages. In Krzysztof Apt, editor, Proceedings
o[the Joint Intemational Conference and Symposium on Logic Programm.ing, pages
384-398, Wa.shington, USA, 1992. The MIT Press.

Salvador Abreu, Luis Moniz Pereira, and Philippe Codognet. Improving Backward
Execution in Non-deterministic Concurrent Logic Languages. In Ryuzo Hasegawa and
Mark Stickel, editors, Workshop on Automated Deduction, Fifth Generation Com­
puter Systems. Institute for New Generation Computing, 1992.

Reem Bahgat. Non-Deterministic Concurrent Logic Programming in P andora. World
Scientific, 1993.

R.N. Bo! and L. Degerstedt. Tabulated resolution for well-founded semantics. In
Proc. Int. Logic Program.m.ing Symposium '93. MIT Press, 1993.

C. Bara! and M. Gelfond. Logic programming and knowledge representation (draft).
Technical report, University of Texas at El Pa.so, 1993.

C. Baral, J. Lobo, and J. Minke:r. Generalized disjunctive well-founded semantics.
In C. Delobel, M. Kifer, and Y. Masunaga, eclitors, 10th Int. Con[. on Autom.ated
Deduction, pages 102-116. LNAI 449, Spriger-Verlag, 1990.

R.N. Bol. Loop checking and negation. Joumal of Logic Progra171.m.ing, 15(2):147-175,
1993 ..

Anthony Beaumont, S Muthu Raman, Péter Szeredi, and David H. D. Warren. Flex­
ilble Scheduling of OR-Parallelism in Aurora: The Bristol Scheduler. In PARLE91:
Conference on Parallel Architectures and Languages Europe, volume 2, pages 403-420.
Springer Ver!ag, June 1991.

Miguel Calejo. A Pramework far Declarative Prolog Debugging. PhD thesis, Univer­
sidade Nova de Lisboa, March 1992.

J!. Ch€111.. Minimal knowledge + negation a.s failure = only knowing (sometimes). In
L. M. Pereira and A. Nerode, editors, 2nd Int. Ws. on LP & NMR, pages 132-150.
MIT Press, 1993.

H. Comon and Pierre Lescanne. Equational problems and clisunification. Journal of
Symbol.ic Computation, 7:317-425, 1989.

Alain Colmerauer. Prolog and infinite trees. In S. A. Tarnlund, editor, Logic Pro­
gramm.ing. AC, 1982.

82

[Col86] Alai~ Colmerauer. Theoretìcal Mode! of Prolog II. In Miche! van Caneghen and
Dav1d H. D. Warren, edìtors, Logic Programming and its Applications pages 3-31.
Ablex Publishìng Corporation, 1986. '

[Con93] Evelyne C~ntejean .. Solving linear diophantine constraints incrementally. In D. S.
Warren, ed1tor, Logzc Programming: Proceedings of the 10th International Conference
on Logic Programming. MIT Press, 1993.

[Cra88) J. A. Cramm~nd. Implementation of Committed Choice Logic Languages on Shared
Memory Multzprocessors. PhD thesis, Heriot-Watt University, Edinburgh, May 1988.
Research Report PAR 88/4, Dept. of Computing, Imperia! College, London.

[CW92] W. Ch:n and D. S. Warren. A goal--oriented approach to computing well-founded
semant1cs. In K. Apt, editor, lnt. Joint Conf and Symp. on LP, pages 589-603. MIT
Press, 1992.

[DCLY93] M. Ducassé, B. Charlier, Y. Lin, and Ù. Yalcinalp, editors. Post Conf Ws. on Logic
Programming Environments. ILPS'93, 1993.

[Dix91] J. Dix. Classifying semantics of logic programs. In A. Nerode, W. Marek, and V. S.
Subrahmanian, editors, LP f3 NMR, pages 166-180. MIT Press, 199"1.

[Dix92J ~· Dix. A framework for representing and characterizing semantics of logic programs.
ln B. Nebel, C. llich, and W. Swart~ut, edìtors, 3rd lnt. Conf. on Principles of
Knowledge Representatzon and Reasonmg. Morgan Kaufmann, 1992.

[DJ\IIB93] Luis J?amas, Nelma Moreira, and Sabine Broda. Resolution of constraints in algebras
of rat~onal trees. In Miguel Filgueiras and Luis Damas, editors, Progress in Artificial
lntellzgence - 6th Portuguese Conference on Artificial lnielligence, volume 727 of
Lecture Notes in Artificiallntelligence. Springer-Verlag, 1993.

[DMV93]

[DNP93]

[Dom91]

[DR91]

[Dut91]

[DV92]

[ED88]

[FN93]

Lufs Damas, Nelma Moreira, and Giovanni B. Varile. The formai and computational
th:ory of complex constraint so!ution. In C. Rupp, M. Rosner, and R. Johnson,
ed1tors, Constraznts, Language, and Computation. Academic Press, London, 1993.

G V. Damasio, W. Nejdl, and L. M. Pereirao REVISE: An extended logic program­
mmg system for revising knowledge bases (draft). Technical report, CENTRlA and
RTHW-Aachen, 19930 Submitted to KR'94.

Eric Domenjoud. Outils pour la Déduction A utomatique dans !es Théon:es
Associatives-Commutatives. PhD thesis, Université de Nancy I, 1991.

P. M. Dung and P. Ruamviboonsuk. Well foundecl reasoning with classica! negatìon.
In A. Nerode, W. Marek, and V. S. Subrahmanian, editors, LP fj NJJfR, paues 120--
132. MIT Press, 1991. 0

Ines Dutra. A Flexible Scheduler for the Andorra-I System. In LllfCS 569, ICLP'9.1
Pre~Conference Workshop on Pamllel Execution of Logic Programs, pages 70-82.
Sprmger-Verlag, June 1991.

Lufs Damas and Giovanni B. Varile. On the satis:fiability of complex constraints. In
Coling'92, Nantes, France, 1992. .

A. Eisele an dJ. Diirre. Unification of disjunctive feature descriptions. In 26th Annual
Meeting of the Association far Computational Linguistics, Buffalo, New York, 19880

P. Fritzson a,nd H. Nilsson, e.ditors. ls: Int. Ws. on Automatic Algorithmic Debugging,
AADEBUG 93. Preproceedmgs by Lmkoping Univ., 1993. To aopear in Springer:_
Ver!ag LNCS. .

l~L90]

:[HJ90]

83

Miguel Filgueiras and Ana Paula Tomas. Fast methods for solving lìnear Diophan­
tine equations. In M. Filgueiras and Lo Damas, editors, Pmceedings of the 6th Por­
tuguese Conference on Artificio/ Intelligence, pages 297-306. LNAI 727, Springer­
Verlag, 1993.

M. Gelfond and V. Lifschitz. The stable mode! semantics for logic programming. In
R Kowalski and K. A. Bowen, editors, 5th Int. Conf an LP, pages 1070-1080. MIT,
Press, 1988.

I\4:_ Gelfond and V. Lifschitz. Logic programs vvith classica! negation. In Warren and
Szeredi, editors, 7th Int. Conf. on LP, pages 579-597. MIT Press, 1990.

M. Gelfond and V. Lifschitz. Representing actions in extended logic programs. In
K. Apt, editor, Int. Joint Conf and Symp. an LP, pages 559-5"73. MIT Press, 1992.

A. V an Gelder, K. A. Ross, an dJ o S. Schlipf The welì-founded semantics for generai
logic progra.mso Journal of the ACM, 38(3):620-650, 1991.

Steve Gregory and Rong Yang. Parallel Constraint Sol->'ing in Andorra-I. In Inter­
natiorwl Conferoence on Fifth Generotion Computer Systems 1992, pages 843-8500
ICOT, Tokyo, Japan, June 1992.

M. V. Hermenegildo and K. Greene. &-Prolog and its Performance: Exploiting Inde­
pendent And-Parallelism. In Pmceedings of the Seventh Intematiorwl Conference on
Logic Programming, pages 253-268. MIT Press, June 1990.

Seif Haridi and Sverker Jansson. Kernel Andorra Pro!og and its Computational
Mode!. In D.H.D. vVarren and P. Szeredi, editors, Proceedings of the Seventh In­
ternational Conference on Logic Progromming, pages 31-46. MIT Press, 1990.

K. Inoue. Extended logic programs with default a.ssumptions. In Koichi Furukawa,
editor, 8th lnt. Conf. on LP, pages 490-504. MIT Press, 1991.

Sverker Janson and SeifHaridi. Prog·tamming Paradigms ofthe Andorra Kemel Lan­
guageo In Logic Progromming: Proceedings of the International Logic Progromming
Symposium, pages 167-186. MIT Press, October 1991.

Svedrer .Janson and Johan Montelius. Design of a Sequential Prototype Imp!e;nenta­
tion cf the Andorra Kemel Languageo Sics research report, in preparation, S-;vedwh

j[ouker:o On the semantics of corrilit resolution Ìil truth maintenance systema.
Teclmicai leport, Univ. of Utrecht, 1991.

R. T. Kasper. Unification :method for disjunctive featme descriptions. In 27th Amnwl
1VfeetÙ74J Associati o n fo·r Comp:uta~~ional Linguistics, Standfordj 1:987.

RobertA. Kowalskio Logic ji:;n· Problern Solving. Elsevi.er North-Holland Inc., 19790

R. KoV<r?Jski. Problems and promises of computationallogic. In John Lloyd, editor,
Computatìoncl Logic, pages 1-036. Basic Research Series, Springer-Verlag, 1990.

Kawalski and F. Sadri. Logic programs with exceptionso In 1Narren and Szerec'lÌ.,
editors, 7th lnt. Con/. on LP. MIT Press, 1990.

D. B. Kemp and R. ìN. Topor. Completeness of a top-d query evaluation procedure
far strati:fied databases. In Kowalski and Bowen, editors, Proc. of the Fifth lnt. Conf.
~ Sog,'mposium on Logic Progmmming, pages 178-19L1. ALP, MIT Press, 1988.

84

[LS93] V. Lifschitz and G. Schwarz. Extended logic prograrns as autoepistemic theories. In
L. M. Pereira and A. Nerode, editors, 2nd Int. Ws. on LP f!j NMR, pages 101-114.
MIT Press, 1993.

[Mah88] Michae] J. Maher. Complete axiomatizations of the algebras of finite, rational and
infinite trees. Technical report, IBM Thomas J. Watson Research Center, P.O. Box
704, Yorktown Heights, NY 10598, U.S.A., 1988.

[MK91] John T. MaJc-well and Ronald M. Kaplan. A method for disjunctive constraint sat­
isfaction. In Massaru Tomita, editor, Current lssues in Parsing Technology. Kluwer
Academic Publishers, 1991.

[MT93] V. Marek and M. Truszczynski. Reflexive autoepistemic logic and logic programming.
In L. M. Pereira and A. Nerode, editors, 2nd lnt. Ws. on LP & NMR, pages 115-131.
MIT Press, 1993.

[Nai85] Lee Naish. Negation and Contro[in Prolog. Lecture notes in Computer Science 238.
Springer-Verlag, 1985.

[PA92] L. M. Pereira. a.nd J. J. Alferes. Well founded sema.ntics for logic programs with
explicit negation. In B. Neuma.nn, editor, European Conf on AI, pages 102-106.
John Wiley & Sons, 1992.

[PA93a] L. M. Pereira and J. J. Alferes. Contradiction: when a.voidance equa! removal. Part
II. In R. Dyckhoff, editor, 4th Int. Ws. on Extensions of LP, pages 17-26. Univ. of
St. Andrews, 1993.

[PA93b] L. M. Pereira. a.nd J. J. Alferes. Optative reasoning with scenario semantics. In D. S.
Warren, editor, 10th lnt. Conf on LP, pages 60!-615. MIT Press, 1993.

[PAA91a] L. M. Pereira, J. J. Alferes, and J. N. Aparfcio. Contradiction Remava! within Well
Founded Semantics. In A. Nerode, W. Marek, and V. S. Subrahmanian, editors, LP
f!j NMR, pages 105-119. MIT Press, 1991.

[PAA91b] L. M. Pereira, J. N. Aparfcio, and J. J. Alferes. Counterfactual reasoning based on
revising assumptions. In Ueda and Saraswat, editors, lnt. LP Symp., pages 566-577.
MIT Press, 1991.

[PAA91c] L. M. Pereira, J. N. Aparicio, and J. J. Alferes. A derivation procedure for extended
stable mode!s. In lnt. Joint Conf on Al. Morgan Kaufmann, 1991.

[PAA91d] L. M. Pereira, J. N. Aparicio, and J. J. Alferes. Nonmonotonic reasoning with well
founded sema.ntics. In Koichi Furukawa, editor, 8th Int. Conf on LP, pages 475-489.
MIT Press, 1991.

[PAA92a] L. M. Pereira, J. J. Alferes, and J. N. Aparfcio. Contradiction remava! semantics
with explicit negation. In Applied Logic Conf Preproceedings by ILLC, Amsterdam,
1992. To appear in Springer-Verlag LNAI.

[PAA92b] L. M. Pereira, J. N. Aparfcio, and J. J. Alferes. Logic programmingfor nonmonotonic
reasoning. In Applied Logic Conf Preproceedings by ILLC, Amsterdam, 1992. To
appear in Springer-Verlag LNAI.

[PAA93] L. M. Pereira, J. N. Aparfcio, and J. J. Alferes. Non-monotonic reasoning with logic
programming. Journal of LP. Special issue on Nonmonotonic reasoning, 17(2), 1993.

[PDA93a] L. M. Pereira, C. Damasio, and J. J. Alferes. Debugging by diagnosing assumptions. In
P. Fritzson and H. Nilsson, editors, 1st Int. W s. on Automatic Algorithmic Debugging,
AADEBUG'93. Preproceedings by Linkoping Univ., 1993. To appea.r in Springer­
Verlag LNCS.

85

[PDA93b] · C D ' · dJ J Alferes Diagnosis an d debugging as contradiction L M Perena . amas10, an . . ·
. . 1 I L, M Pere1"ra and A Nerode editors, 2nd Int. Ws. on LP & NMR, pa.ges remova. n . . . ,

316-330. MIT Press, 1993.

[PDA93c] L M P · c Damasio an dJ. J. Alferes. Diagnosis an d debugging as contradiction . ere1ra, . , d" 6th p t r~moval in Jogic programs. In M. Filgueiras and L. Damas, e 1tors, or uguese
AI Conf. Springer-Verlag, 1993.

[PMCA86] Luis Moniz Pereira, Luis Monteiro, José Cunha, and Joaquim N. Aparfci~. Delt_a
P 1 . distributed backtracking extension with events. In Ehud Shap1ro, ed1-

ro og. a · p · L don pages 69-83 tor, Third Jnternational Conference on Logzc rogrammmg, on , ·

[PP79]

[Prz89]

[Prz90]

[Prz9la]

[Prz91b]

[Prz91c]

[Prz93]

[PW90]

[Ros92]

[Sak92]

[SC93]

Springer-Verlag, 1986.

L M Pereira and A. Porto. Intelligent Backtracking and Sidetrack~g in H~rn C_lause
P~og~ams _ the Theory. Report 2/79, Departamento de Informatica, Umvers1dade
Nova de Lisboa, October 1979.

T Przymusinski. Every Jogic program has a natura! stratification and an iterated
fi~ed point model. In 8th Symp. on Principles of Database Systems. ACM SIGACT­
SIGMOD, 1989.

T. Przymusinski. Extended stable semantics for norma! and disjunctive programs. In
S d. d"t 7th Jnt Conf on LP pages 459--477. MIT Press, 1990. Warren and zere 1, e 1 ors, . · ,

T. Przymusinski. A semantics for disjunctive logic p:ograms. In Loveland, Lobo, and
R · k ed1"tors JLPS'91 Ws. in Disjunctive Logzc Programs, 1991. aJase ar, ,

T. Przymusinski. Stable semantics for disjunctive programs. New Generation Com­
puting, 9:401-424, 1991.

T. Przymusinski. Stationary semantics for normal and disjunctive programs. In
c. Delobel, M. Kifer, and Y. Masunaga, editors, 2nd lnt. Conf. on DOOD. LNCS
566, Spriger-Verlag, 1991.

T. Przymusinski. Static semantics for norma! ~nd ~isjunc~ive ?rograms. Technical
report, Dep. of Computer Science, Univ. of Cahforma at Rivers1de, 1993. .

D P d G Wagner Reasoning with negative information I: Strong nega.twn . earce an · · .. .1 dit o L
· l · 8 In 1 Haaparanta M Kusch and I. Nun1 uoto, e ore, anguage, m og1c program · · ' · ' · · 49 1990
Knowledge and Jntentionality, pages 430-453. Acta Philosophica Fenmca , ·

K. Ross. A procedura! semantics for well-founded negation in logic programs. Journal
of Logic Programming, 13(1):1-22, 1992.

c Sak Extended well-founded semantics for paraconsistent logic programs. In
Fifth ;::~tion Computer Systems, pages 592-599. ICOT, 1992.

V. Santos Costa. Compii e- Time Analysis for the Parallel Execution of Logic Programs
in Andorra-l. PhD thesis, University of Bristol, August 1993.

V S t C t D H D Warren and R. Yang. Andorra-I: A Parallel Prolog System [SCWY9la] an os 08 a, · · · ' "rd ACM SIGPLAN
that Transparently Exploits both And- and Or-Parallelism. ~ Thz
Symposium on Principles f!j Practice of Parallel Programmzng PPOPP, pages 83-93.
ACM press, April1991. SIGPLAN Notices vol 26(7), July 1991.

V. Santos Costa, D. H. D. Warren, and R. Yang. The ~dorra-I Engine: A parallel
[SCWY91b] implementation of the Basic Andorra model. In Proceedmgs of the Ezghth Interna-

tiana! Conference an Logic Programming, pa.ges 825-839. MIT Press, June 1991.

86

[SCWY9lc] V. Santos Costa, D. H. D. Warren, a.nd R. Yang. The Andona-I Preprocessor: Sup­
porting full Prolog on the Basic Andorra mode!. In Proceedings of the Eighth Inter­
rwtional Conferencc on Logic Progmmmmg, pages 443-456. MIT Press, June 1991.

[Sil93] Fernando M. A. Silva. An Implementation of Or-Parallel Prolog on a Distributed
Shared 1Vfemm·y Architecture. PhD thesis, Dept. ofComputer Science, Uni v. of IV[anch­
ester, September 1993.

[Smi91] Donald Smith. Constraint operations for clp(FT). In Koichi Fumkawa, editor, Logic
Programming: Proceedings of lhe 8th Intemational Con.ference. MIT Press, 199L

[Smo89] Gert Smolka. Feature constraint logics for unification grammars. Technical report,
IBM Wisaenscbailiches Zentrum, Institut fiir VVissensbasierte Systeme, 1989. I"WBS
Report 93.

[SSM+87J M. Sato, H. Shim]zu, A. Matsumoto, K. Rokusawa, and A. Goto. KLl Executìon
Mode! for PIM Clust,òr with Shared I•.!l:emory. In Jean-Louis [,assez, editor, Proceed-
2.ngs of the FCn~rth Intcmational c·onference on Logic lVIIT Press Seri es
in Logic Programming, pages 338-355. University of "MIT Press", Ma.y
1987.

[Tay90J A. Taylor. LIPS on a MIPS: Hesults from a ProJog Compiler fora .RJSC. In Proceedings
of the 8eventh International Conference on Logic pages 174-185. MIT
Presa, June 1990.

[TB93] E. Tick and C. Ba,nerjee. Performance evaluation of Monaco compiler and runtime
kemel. In ICLP93, page,s 757"-773, 1993.

[TS86]

[Van90]

r.ran89]

Ana PauJ.a. Tom6J3 and M. Fil.gueiras. Solving diophantine equations, Repor,ts
of the In&tl:hrte of Cybet·neiics, Tatb:nn 1 1.,o appear.

H. Tamaki and T. Sato. Old resolution with tabulation. In Proc, of 3rd International
Confer-ence on Logic pages 84-98, 19813.

fienk ~Van Adcer) Remco lVioolena~x..:i.:') and Ba.:r·t))emoen. paraHel implementation
of AKL. Presented at the H,PS vmrkshop on Parall.el Logic October
1991.

P. ·van Roy. Caro Logic E':r:ecui;e as .l:ì'ast Gs lrn,p~rotive
PhD thesis, UniverJity of California aJ, Berkeley, Ncvember 1990.

Vlagner. A da.tabaCJe needs two kinds ofnegation. In B. 1'halheim, .J.
and H-D. JVIathematical Fòttndatiorw Datahase

1991.

Davi.d H. D. Warren. An Abstract Prolog Instruction Set. Technicai Note 309, Sl.U
1983,

Dav1d H. D. Vtlarren. The Andana mode). Present,"d at Gigalips Project workshop,
\Jniversity oi March 1988.

David H. :C. Yvarren. Extended Andana model. PEPMA Project workshop, Univer­
sity of Bristol, October 1989.

Hong Yang.
Si:cth Interrwfiondl
June 1989.

,Simple Substitution Cìphers in Andorra-I. In of the
Coaference an Logic pages 113-128. MIT PTess,

' "' ~--~--- c _., __ ,1

---------·-----~-=·u·=~·~-~=="~·'="~=~#~•·~-~"';="-""'P';liK!&!!Iliol!ltìt~iU.lf!!it!1W!!W'i1!'.ijl)!gl.ko.f•!i~_rtta.:in;','i!tfiì='&.W,o~'èJiiiìli}'~l@t\

Domain Independent
Ask Approximation in CCP*

Enea Zaffanella
Dipartimento di Informatica

Università di Pisa
Corso Italia 4 O, 56125 Pisa

zaffanel@di.unipi.it

Abstract

The main difficulty in the definition of a static analysis framework for CC programs
is probably related to the correct approximation of the entailment relation between
constraints. This approximation is needed for the abstract evaluation of the ask_E;l!IJ,J_<is
and directly in:fiuences the overall precision of the analysis. In this paper we provi de a
solution to this problem by stating reasonable correctness conditions relating the ab­
stract an d the concrete domains of computation. The solution is domain independent
in the sense that it can be applied to the class of downward closed observations. Prop­
erties falling in this class (e.g. freeness) h ave already been studi ed in the context of
the analysis of sequentiallogic programs. W e believe that the same abstract domains
can be usefully applied to the CC context to provide meaningful ask approximations.

l Int:roduction

Concurrent Constraint (CC) programming [16] arises as a generalization ofboth concurrent

logic programming and constraint logic programrning (CLP). In the_CC framework processes

are executed concurrently in a shared store, a constraint representing the global state of

the computation. Communication is achieved by ask and tell basic actions. A process

telling a constraint simply adds it to the current store, in a completely asynchronous way.

Synchronization is achieved through Q]g_c_Éirl:fL.askii~ Namely the process is suspended when
the store does no t entail the ask constraint anditremainssuspended until the stoie entai}s'

-~~- Whlle being~l~gantfrom a theoretlcal point ofview, this synchronization mechanism

turns out to be very difficult to model in the çontext of sta tic analy~is. The reason for su eh
a problem li es in the an ti-monotoni c nature of the ask operator wrt the asked constraint:

if we replace this constraint with a weaker one we obtain stronger observations. As a

consequence, the approximation theory developed to correctly characterize upward closed

(i. e. closed wrt entailment) properties becomes useless when we are looking for a domain
ìndependent solution to the ask approximation problem [18].

In this paper we thus consider the downward closed properties an d we specify snitable
domain independent correctness conditions that allow to overcome the problem of a safe

"This work has been supported by the "PARFORCE" (Pa.rallel Formal Computing Environment).BRA­
Esprit II Project n. 6707.

Pro gr

Dee

Agent

90

Dee. Agent

E

p (x):-Agent. Dee

Stop
tell(c)
:1 x inAgent
Agent Il Agent

n

L ask Cci)-> Agenti
z=l
p(y)

Table 1: The syntax

abstractìon of ask constraints. In particular we develop an approximation theory that correctly detects the definite suspension of an ask guard. This informatìon can be used in ~any wa~s,_ e.g. debugging of CC programs as well as identifying processes that are defi­~tely senalized (so that we avoid their harmful paraliel execution). However its usefulness 1s first of ali in the improvement of the precision of the static analysis framework, as it aliows :o cut the branc~es o~ code that will not be considered in the concrete computation. . Thi~ (pa~tml) :lass1ficatmn of CC program's observations is not new. See [12] for an mterestmg discusswn about safeiy and liveness properties, being downward dosed and upward closed_ respectively .. As a matter of fact, in the literature there already exist abst:act d_omams developed ior the stati c analysis of sequential (constraint) logic languages de_aling -;1th down_ward closed observations, e.g. freeness in the Herbrand as well a.s in anthmet1c constramt systems [6]. It is our opinion that these same abstract domains can be usefully applied to the CC context and provide meaningful ask approximations.

2 The language

CC is not a language, it is a class of languages parametric wrt the underlying constraint system. In [~6] c_onstramt systems are defìned by enclosing typical cylindric algebra's operators (cylindnficatwns an d diagonal elements [10]) in the well known formaliz· t' f · z · -r ·
a wn o partza m;ormatwn ~ystems [17], which model the gathering and the management of a set of elementary assertmns by means of a compact entailment relation. We refer to [16] for a more detailed presentation.

Definition :2.1
A (cylindric) constmint system C T = (C U {false} '-1 true false Q9 n V :1 d) · al gebraic structure where ' ' ' ' ' ' ' x, xy 18 an -

" (c, -1, true, Q9, n) is a partial information system
false is the top element

91

® V is a denumerable set of variables

., Vx,y E V, Ve, d E C, the cylindric operator :lx satisfì.es
l. 3xfalse = false

2. :lxc -1 c

3. c -1 d implies :lxc -1 :lxd
4. :lx(C Q9 :lx d) = :lx c Q9 :lx d
5. 3x(3yc) = :ly(:lxc)

~ Vx,y,z E V, Ve E the diagonal element dxy satisfì.es

l. d,,x = true
2. z =f x, y implies dxy = :lz(dxz Q9 dzy)
3. x =f y implies c -1 dxy Q9 :lx(c Q9 dxy)

Note that we are distinguishing between the consistent constraints C and the top element false representing inconsistency. In the following we will write C to denote the subalgebra of consistent constraints, namely the set C together with the constraint system's operators rest-;:ictedt~--l'i~rk~n-C. We will denote operators and their restrictions in the same way and we will often refer to C as a "constraint system". Tables l and 2 introduce the syntax and the operational semantics of CC languages. For notational convenience, we consider processes having one variable only in the head. Vve also assume that far ali the procedure names occurring in the program text there is a corresponding definition. The operational model is described by a transition system T = (Conj; ---->). Elements of Conf (configurations) consist of an agent an d a constraint, representing the residual computation and the global stare respectively. ---> is the (mini­mal) transition relation satisfying axioms Rl~R5. The execution of an elementary tell action simply adds the constraint c to the current store d (no consistency check). Axiom RZ describes the hiding op;:rator. The syntax is extended to deal with a local store c holding informati an about the hidden variable x. Hence the information about x produced by the external environment does not affect the process behaviour and conversely the external environment cannot access the local stare. Initially the local store is empty, i. e. :1 x in A = 3(x, true) in A. Paralielism is modeled as intedeaving of basic actions. In a guarded choice operator, a branch Ai is enabled· in the current stare d iff the corresponding guard constraint ask(Ci) is entailed by the stare, i.e. d \- Ci· The guarded choice operator nondeterministically selects one enabled branch A; and behaves like it. lf there is no enabled bra,nch then it suspends, waiting for other processes to add the desired information to the store. Finaliy, when executing a procedure call, rule R5 models parameter passing without variable renaming [16], where p(x) :-A E P and t,.]; A is defined as follows [5].

,6,~ A = { A if x =o y , :1 x in(tell (dxy) l\ A) otherwise
A c-computation s fora program D.A is a possibly infinite and fair sequence of configura­tions (A;, c;)i< w such that Ao = A an d co= c an d for ali i < \s\, (Ai, Ci)--->(A;+l, Ci+!).

R1

R2

R3

R4

R5

92

(tell(c), d)---+(Stop, d® c)

(A, c® 3xd)--+(A',c')

(3(x, c) inA, d)---+(3(x, c') in A', d® 3xc')

(A, c)---+(A', d)

(A il B,c)--+(A' il B,d)
(B Il A,c)--+(B Il A', d)

j E {l, ... ,n} 1\ di- c·
n 3

(.L ask(c;)->_A..,d)--+(A- d)
~=I J'

p(x) :-A E P

(p(y), d)---+(Ll.~A, d)

Table 2: The transition system T

Let + denote the absence of ad · "bl ..
tion (An, Cn)_L. are called fi "t IIDSSI e tr~nsJtwns. Computations reaching con:fìgura-

1"""' m e computatwns and · th (fini)
constraint. If the residua! agent A t . c:n Is e te computed answer
• n con ams some chmce 0 t th h
mg computation is suspended othe . .t. pera ors en t e correspond-
denote An by f. ' rW!se I Is a successful computation and in this case we

Definition 2.2 The semantics for program p = D A m" th t .
· esorec1s

O[D.A](c) = {d E C l (A, c)~(B' d)-f-+}

U {d E C l (A~ co)--+ ... --+(A;, c;)-+... }

Ao-A, Co=c, d=co® ... ®c;® ...

Note that this semantics collects the limit constraints of. . .
the answer constraints associated t finit . mfinite computatwns as well as

are successful or suspended In o e computatwns, regardless of whether the latter
· . · any case we are considering · t .
I.e. we disregard all computations delivering false. consis ent constramts only,

3 Program properties and approximations

As we have seen, the operational semantics of a CC •

c to the set of all the consistent co t . t th progr~ associates each initial stare

c. In a sim.ilar way we de:fine a ns t~am s at we obtam by executing p = D A a t
. seman te property ifJ as a sub t f C .

cons1stent constraints that satisfy th T se 0 , namely the set of

property ifJ at c i:ff the observationse ::~t:rty~ herefore a program satis:fies a semantic

O[p](c) ç ifJ. Following this generai view p ~:a: ta:e a sub.set of the property, i.e.

be formalized as a finite construct" f ' . a l? analysiS of a CC program can
Ion o an approXImatwn (a superset) of the program

93

denota.tion. If the approximation satisfìes the semantic property, then we can correctly

say that our program satis:fies the property too. Abstract interpretation [3] formalizes the

approximation construction process by mapping concrete semantic objects and operators

into corresponding abstract semantic objects and operators.

We write i(t/>) to denote the upward closure of the program property t/>, namely the

set {c E C /3 d E 4>. c 1- d}; a property is upward closed i:ff it is equivalent to its upward

closure, i.e. 4> =i(tf>). Downward closed properties are de:fined dually. As an example,

consider the Herbrand constraint system CH. If the constraint c E CH binds variable x to

a ground term, -then all the constraints d E CH such that d 1- c will bind x to a ground

term; therefore groundness is an upward closed property. On the other han d, freeness is

a downward closed property. A variable x is free in c E CH i:ff there does not exist a

term functor f /n such that c 1- (3y1 ••• 3Yn x = f(Yh ... , Yn)). Thus, if x is free in c then

it will be free in all the constraints d E CH such that c 1- d. However, there obviously

exist properties falling in none of these two classes, e.g. independence. Let us say that

variables x and y share in c E CH i:ff c binds x and y to the terms t., and ty such that

var(t.,) n var(ty) # 0. Variables x and y are independent in c if they do not share in c.

Now, if x and y share in c, we can choose constraints d11 d2 E CH such that d1 1- c 1- d2

and such that x and y are independent in both d1 and d2.

Ordering closed properties are very common in the static analysis of logic languages

and furthermore they are easier to verify, because correctness of the abstract interpretation

can be based on a semantics returning ordering closed observations. In [18] entailment

closed1 properties are considered. The main result is that it is inlpossible to develop a

meaningful generalized semantics for CC languages in the style of [9], namely the only

way to correctly abstract ask constraints in a domain independent fashion is a trivial

approximation.
In this work we turn our interest upon downward closed properties and we show that a

(carefully chosen but natural) notion of correctness of the abstract domain wrt the concrete

one allows to automatically derive a correct approximation of all the asks occurring in the

program. Dealing with such a class of properties, the collecting semantics can be de:fined

naturally as the downward closure of the operational semantics, as there is no bene:fit in

considering a stronger one [18].

Remark 3.1 If 1> is downward closed then O[P](c) ç 4> <=> t(O[D](c)) ç tj>.

As we are observing infinite computation.s aJso, we have to be careful when de:fining the

downward closed properties that we are interested in. In particular we have to remember

that usually the correctness of our abstract semantic construction is based on the Scott's

induction principle; this principle is only valid for admissible properties.

Defi.nition 3.1 A property 1> ç C is admissible i:ff 1> is closed under directed lub's.

This de:finition means that whenever an admissible property is satis:fied by all the finite

a.pproximations of the semantics, then the semantics will satisfy the property too. As an

1 Due to a. dual definition of the ordering on the constraint system, in [18] entailment closed properties

are the downwa.rd closed ones. The choice of turning the domain upside-down wa.s infl.uenced by the

sta.nda.rd theory of sema.ntic a.pproxima.tion by mea.ns of upper Galois insertions [3].

94

example of a property that is not admissible, consider the following definition of non­groundness: a variable x is nonground in c E Cg i:ff c binds x to a term t such that var(t) f= 0. Given the infinite chain of constraints c; = (3y x = fi(y)) E CH, for ev­ery 2 < w we h ave that x is nonground in c;. However, considering the limi t constraint c = i~w c; = (x = fw) one observes that x is noi nonground in c. In arder to gran t the correctnes: of ~his analysis, we have to redefine the property, e.g. by stating tha:t if c binds a x to an mfirnte term then x is nonground in c.
Hen:e, in this wor~ we are inter~sted in downward closed and admissible program propertle~. Th: H?are s powerdomam [14, 17] construction aver the constraint system charactenzes this kind of observations.

De~nition 3.2 The Hoare's powerdomain of the constraint system C is the complete latt1ce H(C) = (Pl(C),<;;,~t~ue},C,ltJ,n), where Pl(C) is the set of all the nonempty, downward closed and adrrnsSlble subsets of C; 1±1 is the closure under directed C-lub's of the set theoretical union; :{ · }: : C -+ P l(C) defìned as :{c}: = 1 {c} is the singleton embedding function.

~he alert reader would observe that this collecting semantks models nonempty observa­tlOns only. From a semantic construction point of view, this is no t com pletely satisfactory as we cannot describe. the behaviour of a program having inconsistent computations only. Howe~er, the alternative choice of considering failed computations also would imply some negat1ve consequenceso Firstly, it would complicate the formalization of the correctness conditions., requiring a s~ecial treatment for inconsistency. Moreover it would degrade the precJsJon of .our statlc analysis, adding very little to the understanding of the pro­gram. To see this, observe that when considering downward dosed observations a failed computation has t~ be interpreted as "the program may fail", meaning that anything can happen .. ~.so cons1cd:~ that there a:e CC languages explicitly designed to statically avoid the poss1bility of a Iailing computatJOn (see [15] for a discussion of this topi c in distributed programming).
From now on 0 and 3x will denote the extensions of 0 and 3x over H(C).

.,1::fS,TEPl(C).S0T=f:0{:{c®d}:i cES,dET,c®dEC}

" V S E P l(C) . 3x S = \:0 { :{3xc}: l c E S }

Note_that the m_e~ge ove: all paths operator [3] is provided by the lub of H(C). Also note that m generai 0 1s not Jdempotent, while being extensive.

4 Correctness

In this section we formalize the notion of correctness of an a.bstract domain wrt a concrete constrai~t system when downward closed properties are observed. As outlined in the previ­ous sectJOn,_we ha veto grant the existence of an upper Galois insertion relating the Hoare's powerdomam of the concrete constraint system and the abstract domain of descriptions together with suitable correctness conditions regarding the domain's operators. '

95

Definition 4.1 An abstract domain A = (L, ç~, .L~, T~, U~, n~, ®ti, V, 3~x, d~xy) is down­correct wrt the constraint system C= (C,-I,true,®,n,V,3x,dxy) using o iff VS,T E P l(C), l::! x, y E V

L [, = (L, çti,.Lti, Tti, U~, nti) is a complete lattice

2. there exists ì s.t. (a,/) is an upper Galois insertion2 relatìng H(C) and .A.
3. o(S 0 T) çu o(S) 0ti o(T)

4. a(:Ì,S) ç~ 3tixo(S)

5. a(:{dxy}:) çti dtixy

From now on, we assume that the abstract domain .A is down-correct wrt the constraint system C using a and prove that such a notion of correctness implies the correctness of any a.bstract semantic construction based on the abstract interpretation theory. This means that the proof is valid for any abstract semantics that systematìcally mimics the basic concrete semantic operators (1±1, 0, 3x, dxy) and the relation -1 by using the corresJlonding abstract operators (uti, @ti, :JUx, dPxy) and the relation çti. To this end it ìs sufficient to consider the operational semantics.

Definition 4.2 Given the concrete agent the corresponding abstract agent AP =a(A) is obtained by replacing all the concrete constraints c E C occurring in A by the corre-sponding abstractions eU= a(:{c}:) E L.

The following le=a shows that the abstract program correctly mimics each transìtion of the concrete one. This also means that if the abstract program suspends, then the concrete program suspends too. Let A be an agent defined over the constraint system C, let c E C be a concrete stare an d let eU E L be a descriptìon such that o(:{ c}:) r;:;;U eU.
Lemma 4.1 (cor:redness)
(A, c)----+(B, d) implies (a(A), c~)-•(a(B), d~) and a(:{ d}:) çU du .
The following proposition is proved by induction on the number of transitìons.
Proposition 4.2 Por every concrete c-compu.tation of P yielding the constraint d E C there exists a corresponding abstract a(:{ c}:)-computation of a(P) yielding the description dti suchthat a(:{d}:) çti dti.

Note that in generai the converse of Lemma 4.1 does not hold. In particular the concrete program may suspend while the abstract one has a transition; as a consequence, a finite concrete computation can be mapped into a corresponding abstract infinite computa.tion, Therefore, even in the case that we are interested in finite computations only, the abstract semantics must consider infinite computations in arder to be correct.
2 Given two complete !atti c es (L, $) an d (L', $') , an upper Galois connection between L a.nd L' is a pali of adjoint functions (o:, ì) such that o: : L~ L' and ì: L' -+ L and \lx E L. \ly E L'. a(x) $' Y * x $ -y(y). An upper Galois insertion between L and L' is an upper Galois connection such that " is surjective (equivalently, 'Y is o ne-to-one).

96

Definition 4.2 does not require that the abstract domain is a constraint system and
neither that it can be obtained as the Hoare's powerdomain of a constraint system. In the
latter case we are in an ideai situation where a simpler notion of correctness can be used
instead.

Defì.nition 4.3
An abstract constraint system A = (L, -1~, J), T~, ®ti, nti, V, 3tix, dtixy) is correct wrt the
constraint system C = (C, -1, true, ®,n, V, 3x, dxy), using a surjective and monotonic func­
tion a: C-+ D, i:fffor each c, d E C, x,y E V

l. a(c 0 d)-lti a(c)®~a(d)

2. a(3xc) -Jti :Jtixa(c)

3. a(dxy) = dtixy

Let A be an abstract constraint system which is correct wrt the constraint system C using
a. Observe that ®ti is the lub aver A.

Proposition 4.3

1. H(A) is down-correct wrt H(C) using a (the additive extension of a)
2. a is a complete ®-morphism between C and L
3. a is a complete @-morphism between P l(C) and P l(L)

Defining abstract domains based on correct abstract constraint systems is a very di:fficult
task. The previous proposition gives an explanation of this assertion: these domains ha ve
to satisfy properties that usualiy are too strong.

4.1 A toy example

As a fìrst example we present the ~!'.tr<tctconstraintsystem of untouchedvariables3 V=
(P(V) , <;;; , 0, V, ®', n , V, 3~ , d~y), w h ere - - - . -· -·· .. -- . ··--·-

S®'T
3~S

SUT
S\{x} { {x,y} ifxty

0 otw.

Let us assume that C is a concrete constraint system having variables in V and sat­
isfying the following axiom [5]: Ve, d E C . 3xc f- d =? 3xd = d. Note that even if this
axiom is not a consequence of Definition 2.1, it is true in almost ali the "real" constraint
systems.

Proposition 4.4 Let a : C -+ P(V) being defined as a(c) = {x E 11 f3xc f:. c}. The
abstract constraint system V is corr·ect wrt C by using a.

3 To our knowledge, thls domain has been fìrstly introduced in [8]. The formal defìnition of a was given
to me by Catuscia Palamidessi, during an interesting discussion related to other topics.

97

Therefore, we just are in the ideal situation of Definition 4.3 an d we can define our abstract
domain as the Hoare's powerdomain of V. Having proved correctness, we can approximate
every concrete ask evaluation (i. e. entailment check) by the corresponding abstract ask
evaluation. Let us see the intuition behind this result. Suppose the abstract ask evaluation
does not succeed; this means that there exists a variable x occurring free in the concrete ask
constraint such that x is definitely unbounded in ali the concrete constraints described by
the abstract store. As a consequence ali the associated concrete computations will suspend
too and we are safe.

4.2 Abstracting the constraint system RLinEq

Previous example seems just a toy. However, the same approach is vali d for any admissible
downward closed property of any constraint system. Some examples ofthis kind of abstract
domains can be found in the literature.

[6] describes an abstract domain for the static analysis of CLP programs that is useful
for the detection of definitely free variables in the presence of both Herbrand constraints
as well as systems of linear equations. Let us consider the latter case. Given a linear
equation system

where Xl> ... , X n are variables and a;j and bj are numbers, variable X; is definitely free
if there does not exist a linear combination of the equations in E having the form X; = n.
Denoting le(E) the infinite set of linear combinations of equations in E, they define the
following abstraction function.

(E)={{x X}l (a1X1+---+kXk=b)Elc(E),}
a 1 ' · · ·' k a.; i= O i= l, ... , k

We refer to [6] for a complete definition of the domain and of the abstract operators.
Intuitively, the correctness of the analysis ensures that all the possible linear combinations
of concrete equations are described by the computed abstract element. As a particular
case, if the abstract linear combination {X;} is not a member of the abstract store de­
scription, we can safely say that variable X; is free. [6] also shows how to correctly deal
with inequalities and disequations (i.e. the constraint system n'fin is considered).

5 Toward an abstract semantics

In this section we will informaliy consider the problems related to the construction of an
abstract semantics that correctly approximates the standard one in the case of downward
closed observations.

In the general case, the observations of a CC program are not invariant wrt di:fferent
schedulings of paraliel processes, i.e. the operational semantics is not con:fluent. In princi­
ple, con:fluence is not needed to correctly define a static analysis framework. However, in
order to be realiy useful, a static analysis must be correct wrt all the possible scheduling

98

and must not be too inefficient. Therefore, when considering programs being a little bit
bigger than toy exa.mples, con:fluence becomes as desirable as correctness (8]. As a m~tter
of fact, almost ali the literature concerning the stati c a.nalysis of CC languages cons1ders
non-standard semantics that are con:fluent (1, 2, 7, 8, 18]. These semantics are correct wrt
the standard one, but usualiy must pay in terms of accuracy of the results.

This is not the case when considering downward closed properties, because we can
base our sta.tic a.nalysis on a con:fluent semantics being as precise a.s the sta.ndard one.
Con:il.uence is easily obta.ined by rea.ding the CC indeterministic progra.m as if it were an
angelic progra.m (11], that is by interpreting ali the don't care choice operators of the
program as don't know choice operators. In the angelic case, when consi~ering a cho~ce
opera"tor we split the control a.nd consider ali the branches. In the opera.twnal semant1cs
th_is di:fference is ca.ptured by repla.cing rule R4 in Table 2 with the following.

df-c
R41 R4" (t A;,d)--+(Aj,d)

(ask(c)->A., d)-(A, d)
i= l

Observe that the only difference between the two progra.ms is that the origina} program
has less suspensions; however, due to the monotoni c nature of CC computations, for every
suspended cornputation ofthe angelic prograrn there exists a (terminated or suspende~ or
infinite) computation in the original program that cornputes a stronger store. Let O be
the operational sema.ntics based on the con:il.uent transition system.

Propositi.on 5.1 For all c E C. l(O[P](c)) =l(O'[P](c)).

Thus a. :fi.rst proposal of an abstract sema.ntic construction can be ba.sed on the confluent
transition system operational semantics. Technical problerns rela.ted to termination ca.n
be solved essenti:ally in the sarne way as it was done in (1].

In f16] it is shown how to elegantly model a deterrninistic CC process a.s an upper closure
l h . operator (uco), i.e. a monotonic, extensive and idempotent function over t e constramt

system. The ma.in property of this kind of representation is that any neo is fully determmed
by the set of ìts fixpoints. Moreover alJ the sema.ntic operators on processes are naturally
mapped into simple set theoretìc operators over their representations, e.g. the para.llel
composition of two processes is obtained by taking the intersection of their :fi.xpoints' sets.
[11] study the extension of such a semantics on angelic CC languages, where only local
choice opera.tors are aliowed a.nd upward closed observations are considered.

If the abstract domain we are dealing with is ba.sed on an abstract constra.io.t system
(see Definition 4.3) we are in a position to develop a semantic construction very similar to
the latter. It is worth noting that, in such a semantic construction, the process restartabzlzty
property is a.ssumed. This property holds for determinìstic progra.ms (16] and it also holds
far angelic prograrns when we consider upward closed observations (11], but it does not
hold in the general case. Rowever, when considering downward closed properties, it can
be proved that correctness is stili granted, wh_ile we pa.y something in the approximation's
precisìon.
. Unfortunately, many interesting abstract domains modelling downwa.rd closed prop­
erties are not constraint systems. In these cases, if we are interested in a denotational
abstract semantic construction, we can conside.r a suitable va.riant of the approach based
on traces in JJere the first to solve is ter_rrdnation, beca.,use

99

a trace can be infinite even if defined over a :fìnite abstract doma.in. We think that a notìon
o:f canonica/ for tra.ces (sìmila.r t o the one developed in [16]) would suffke.

It is worth pointing out tÌat the approximation in this work ca,n be
applied to any kind of sernantic construction dealing with the basic mechanism of un'"'>.lil".
ask. Therefore, even if ali the semantics rnentioned above only observe the 7Ysults of a CC
program, om tech_nique ca.n be also applied to semantics the way these results
are actually computed. As an exa~ple, H we consider the true concur-Te·ncy semantics
developed in (13], the definite suspension informatìon could be useful to obtain upper
bounds to the degree of paralielism of a program orto discover undesiTed data
between concurrent processes"

Condusions related wo:rks

The sta.tic analysis of CC langua.ges is a relatively new but very active area of research.
To our knowledge, this is the fìrst work on this topic in which it is identified a doma.in
independent correct approximation of ask constra.ints. Alrnost ali the previous works about
the static analysis of CC progra.ms [1, 7, 8, 18] either consider a. specific constraint system
or assume that a correct ask approximation ha.s already been found. In (2] a di:fferent kind
of domain independent ask approximation ha.s been considered. In our opinion, however.,
this framework requires the satisfaction of too strong correctness conditions and ca.rmot
be widely used.

The approximation described in the current work allows to detect deiìnitely :;uspended
branches of the computation an d it may be therefore useful in the debugging an d special­
ization of CC prograrns. It can be applied to a wide class of progra.m properties,
the downward closed ones. Some property falling in this class (e. g. freeness) has
been studi ed in the context of the stati c analysis of sequential (constra.int) logic
In our opinion the same abstract doma.ins can be used in the CC case, provided that a suit­
able sema.ntic construction is identified. At the same time, we strongly believ.e that such
a general result can motivate the study of "new" downward closed properties.

The de:fi.nition of a suitable abst:ract serna.ntics far the static n.nalysis of thls class of
properties is an open problem. V'le have shovm that if we are interested in downward
closed properties only then we can assume that alJ the choice opera.tors in our progrè"lll
are local, achieving the con:!l.uence of the computation without any loss of precision. In
our opinion, however, an extensive study of the costfprecision tradeoffs of the diJlerent '
abstract semantics proposals is strongly needed.

References

[l] M. Codìsh, M. Falaschi, K. Marriott, and W. Winsborough. Efficient Analysis of Concmrent
Constraint Logic Programs. In A. Lingas, R. Karlsson, and S. Carlsson, editors, Proc of the
20th Internatìona./ Col/oqui"IJ.m on Automata, Languages, and Programming, volume 700 of
Lecture Notes in Computer Science, pages 633-644, 1993.

[2] C. Codognet an d P. Codognet. A genera] semantics for Concurrent Constraint Languages an d
their Abstract Interpretation. In M. Meyer, editor, Workshop on C'onstraint Processing ai the
International Congress on Computer Systems and App/ied Maihematics, CSAM'93, 1993.

100

[3] P. Cousot and R. Cousot. Systematic Design of Program Analysis Frameworks. In Proc. Sixth
ACM Symp. Principles of Programming Languages, pages 269--282, 1979.

[4] F.S. de Boer and C. Palamidessi. A Fully Abstract Mode! for Concurrent Constraint Pro­
gramming. In S. Abramsky and T. Maibaum, editors, Proc. TAPSOFT'91, volume 493 of
Lecture Notes in Computer Science, pages 296-319. Springer-Verlag, Berlin, 1991.

[5] F.S. de Boer, C. Palarnidessi, and A. Di Pierre. Infinite Computations in Nondeterministic
Constraint Programming. Theoretical Computer Science. To appear.

[6] V. Dumortier, G. Janssens, M. Bruynooghe, and M. Codish. Freeness analysis in the pres­
ence of numerica! constraints. In D. S. Warren, editor, Proc. Tenth Int'l Conf on Logic
Programming, pages 100-115. The MIT Press,. Cambridge, Mass., 1993.

[7] M. Falaschi, M. Gabbrielli, K. Marriott, and C. Palamidessi. Compositional Analysis for
Concurrent Constraint Programming. In Proc. of the Eight Annua/ IEEE Symposium on
Logic in Computer Science, pages 210-221. IEEE Computer Society Press, 1993.

[8] M. Falaschi, M. Gabbrielli, K. Marriott, and C. Palarnidessi. Con:fluence and Concurrent Con­
straint Programming. In Proc. of the Fourth International Conference on Algebraic Method­
ology andSojtware Technology (AMAST'95}, Montreal, Canada, 1995.

[9] R. Giacobazzi, S. K. Debray, and G. Levi. A Generalized Semantics for Constraint Logic
Programs. In Proc. of the International Conference o n Fijth Generation Computer Systems
1992, pages 581-591, 1992.

[10] L. Henkin, J.D. Monk, and A. Tarski. Cylindric Algebras. Pari I and Il. North-Holland,
Amsterdam, 1971.

[11] R. Jagadeesan, V. Shanbhogue, and V. Saraswat. Angelic non-determinism in concurrent
constraint programming. Technical report, System Science Lab., Xerox PARC, 1991.

[12] M. Z. Kwiatkowska. Infinite Behaviour and Fairness in Concurrent Constraint Programming.
In J.W. de Bakker, W.P. de Roever, and G. Rozenberg, editors, Semantics: Foundations and
Applications, volume 666 of Lecture Notes in Computer Science, pages 348-383, Beekbergen
The Netherlands, June 1992. REX Workshop, Springer-Verlag, Berlin.

[13] U. Montanari and F. Rossi. Contextual Occurrence Nets and Concurrent Constraint Program­
ming. In Proc. Dagstuh/ Seminar on Graph Transformations in Computer Science, volume
776 of Lecture Notes in Computer Science. Springer-Verlag, Berlin, 1994.

[14] G.D. Plotkin. Pisa lecture notes. Unpublished notes, 1981-82.

[15] V. A. ~araswat, K Kahn, and J. Levy. Janus: A step towards distributed constraint pro­
grammmg. In S. K. Debray and M. Hermenegildo, editors, Proc. North American Conf on
Logic Programming'90, pages 431-446. The MIT Press, Cambridge, Mass., 1990.

[16] V. A. Saraswat, M. Rinard, and P. Panangaden. Semantic Foundation of Concurrent Con­
straint Programming. In Proc. Eighteenth Annua/ ACM Symp. on Principles of Programming
Languages, pages 333-353. ACM, 1991.

[17] D. Scott. Domains for Denotational Semantics, In M. Nielsen and E. M. Schmidt editors
Proc. Ninth Int. Coli. on Automata, Languages and Programming, volume 140 of Lectur~
Notes in Computer Science, pages 577-613. Springer-Verlag, Berlin, 1982.

1/ [18] E. Zaffanella, G. Levi, and R. Giacobazzi. Abstracting Synchronization in Concurrent Con­
straint Programming. In M. Hermenegildo and J. Penjam, editors, Proc. Sixth Int'l Symp.
on Programmzng Language Implementation and Logic Programming, volume 844 of Lecture
Notes in Computer Science, pages 57-72. Springer-Verlag, 1994.

Modeling Real-Time in Concurrent Constraint Programming

F.S. de Boer* M. Gabbrielli§

Abstract

We develop a language for real-time programming based on the concurrent constraint
programming (cc p) paradigm. The language, called tec p, is obtained by a natura! timed
interpretation of the usual ccp constructs and by the addition of a simple construct
which allows one to specify timing constraints. We define the operational semantics
of tccp via a transition system an d introduce a compositional and fully abstract mode!
based on timed reactive sequences.

1 Introduction

In the actual practice of programming many applications are time-critical. Examples of su eh
applications are real-time process controllers and signal-processing systems. In genera!, time­
critical applications require a programmer to specify the interaction with an environment
given some timing constraints such as that a certain input is required within a certain
bounded period of time. The resulting systems, usually called reactive, need then suitable
programming languages which allow for the definition of timing primitives.

Concurrent synchronous languages such as ESTEREL [2], LUSTRE [6], SIGNAL [9] and
Statecharts [7] have been specifically designed for reactive systems. These languages are
based on the instantaneous reaction (or perfect synchrony) hypothesis: A program is ac­
tivated by some input signals and reacts instantly by producing the required' output. So
computation is performed in no time, unless a statement which explicitly consumes time
is present. Communication is done by instantaneous broadcasting to aJl the processes of
the system and the presence or absence of a signal can be detected at any instant. The
perfect synchrony assumption can be realized in practice by corilpiling pure programs (i.e.
programs operating only on signals) into finite state automata whose single step execution

time is bounded. A direct compilation of pure ESTEREL programs in hardware has also be~n
defined.

The perfect synchrony hypothesis, even though natural from the user point of view,
conflicts with the inherent temporality of physical processes. As a consequence temporal
paradoxes arise, for example, in the form of programs which require a signal to be present
ilf it is not present. To salve this conflict, Saraswat et al. [13, 14] have proposed an
integration of the asynchronous computational model of concurrent constraint programming
(ccp) [Il, 12, 15] with ideas from synchronous languages. The resulting languages, called
timed concurrent constraint programming (tec) and default tec, are designed around the
hypothesis of bounded asynchrony: Computation takes a bounded period of time rather than

•uruversiteit Utrecht. Utrecht, The Netherlands. frankMlcs .ruu.nl.
§Dipartimento di Informatica, Università di Pisa, Corso Italia 40, 56125 Pisa, Italy. gabbrii'ldi. unipi. H,

102

being instantaneous. The whole system evolves in cycles corresponding to time intervals,
a.nd each time interval is identified with the time needed far a ccp process to terminate
a computation. Special prirnitives are added to the standard ccp constructs to control
the temporal evolution of the system. In particular, the programmer has to transfer
E:xplicitly the (positive) informati an from a time instant to the next one using these temporal
prirnitives.

In thls p a per, analogously to the case of (default) tec, we use ccp as the starting language
and we assume that computation takes a bounded period of time. However, differently from
[13, 14], we introduce directly a timed interpretation of the usual programrning constructs
of ccp by considering the primitive ccp constructs ask and tell as the elementary actions
whose evaluation take one time unit. Thus, in our model, each time interval 1s identified
with the time needed for the underlying constraint system to accumulate the tell's and to
answer the queries (ask's) issued a t each computation step by the processes of the system.
Then we use thls interpretation as a basis for the introduction of a construct whlch allows
one to specify timing constraints. As we discuss later, our appra<:tch requires a smooth
extension of ccp. In particular, we do not require explicit transfer of information across
time boundaries and we can use the usual ccp definitions fo:r hlding and recu:rsion. We
describe semantically our timed extension of ccp both operationaliy, in terms of a transition
system, and denotationally. The denotational semantics is based on sequences of pairs of
constraints, so called reactive sequences, as in the untìmed case. However these reactive
sequences are now provided with a different interpretation which accounts for the tirning
aspects. Our main result shows that the denotational semantics is correct and fully abstract
with respect to the operational semantics. This paper is organized as follows. In the next
c.ection we introduce our timed extensìon of ccp and its operation:aJ semantics. Section

describes how to derive some typical real-time constructs form the basic combinators
of the language. In section 4 we de:fine the denotational semantics and we state the full
abstraction result. Finally, Sectìon 5 concludes by comparing our approach to the existing
tirned extensions of ccp and by giving some directions for future research.

The la:nguage

In thls section we first introduce the tccp language and provide its basic operational mtu­
itions. Then we de:fine formally the operational semantics of tccp using a tra~sition system.
As in [13, 14] the starting point ìs ccp, so we introduce :first some basic notions related to
this programrning paradigm. We refer to [12, 15] for more details. The ccp langua.ges are
defined para.metrically wrt to a given constraint system. The notion of cylindric constraint
system has been formalized in [12] following Scott's treatment of information systems [16]
and using ideas from cylindric algebras [8] in order to treat the hiding operator of the
language in terms of a generai notion of existential quantifier. Here we only consider the
res1.ùtìng structure.

Definition 2.1 Let (C,::;, U, true, false) be a complete algebraic lattice w h ere U is the lub
operati an, an d true, false are the least an d the greatest elements of C, respectively. Assume
g;iven a (denumerable) set ofvariables Var with typical elements x, y, z For each x E Var
it is defined a function :lx :C~, C such that, for any c, d E C:

103

(i) Cf-- :lx(c), (ii) if cf-- d then :lx(c) f-- :lx(d),
(iii) :lx(c U :lx(d))= :lx(c) U :lx(d), (iv) :lx(:ly(c)) = 3y(3x(c).

Then C= (C,::;, U, true,jalse, Var, :3) is a cylindric constraint system.

Following the standard terrninology and notation, instead of ::; we will refer to its inverse
relation, denoted by f-- and called entailment. Formally, Ve, d E C. c f-- d <::? d < c.
Moreover, in the sequel we will identìfy a system C with its underlying set of constr,;ints
C. Finally, in arder to model parameter passing, diagonal elements [8] are added to the
primitive constraints: We assume that, for x, y ranging in Var, D contains the constraints
d,J which satisfy the following axioms:

(i) true f- dxx, (ii) if Z-:/= x, y then dxy = :Jz(dxz U dzy),
(iii) X -:/= y then dxy U :lx(c U dxy) f-- C.

Note that if C models the equality theory, then the elements dxy can be thought of as the
formulas x= y. In the following :lx(c) is denoted by :lxc with the convention that, in case of
ambiguity, the scope of :lx is lirnited to the first constraint subexpression. (So, far instance,
:lx c U d stands for :lx(c) U d.)

The basic idea underlying ccp is that computation progresses via monotonic accumu­
lation of information in a global stare. Information is produced by the concurrent and
asynchronous activity of several agents which can add (tell) a constraint to the store. More
precisely, given a stare d, the agent tell(c) -> A updates the stare to c U d an d then behaves
like the agent A. Dually, agents can also check (ask) whether a constraint is entailed
by the store, thus allowing synchranization among different agents. So the action a.sk(c)
represents a guard, i.e. a test on the current store d, whose execution does not modify
d: if d f-- c then ask(c) is enabled (or satisfied) in d, otherwise ask(c) is suspended. Non­
determinism arises by introducing a guarded choice opera tar: The agent L;f=1 ask(ci) -> Ai
nondeterrninistically selects o ne ask(c;) which is enabled in the current stare an d then
behaves like A;. If no guard is enabled, then thls agent suspends, waiting for other ·(parallel)
agents to add information to the stare. Deterministic ccp is obtaiJJ.ed by imposing the
restriction n = l in the above construct. The Il operator allows one to express parallel
composìtion of two agents AllE and it is usually described in terms of interleaving. Finally
a notion of locality is obtained by introducing the agent :JxA which behaves like with x
considered local to A.

\iVhen querying the stare for some information which is not present (yet) a ccp agent
will simply suspend until the required information has ar:rived. In real-time appl.ìcations
however often one cannot wait indefinitely for an event. Consider fo:r example the case
of a bank teUe:r machine. Once a card is accepted and its identification numbe:r has been
checked, the machine asks the authorization of the bank to release the requested money. If
the authorization does not arri ve withln a reasanable amount of time, then the card should
be given back t o the customer. A real-time language should then allo w us t o specify
m case a given tirne bonn d is exceeded (i. e" a time-out occurs), the waìt is interrupted
and an alternative action is taken. Moreover in some cases it is also necessary to abart an
<>A:tive processA a.nd to start a process B when a speci:fic event occurs (thls is usually called
preemption of A). For example, according to a typical pattern, A is the process controlling
the normal of some physical device, the event indlcates some abnormal sìtuation
and B is the exception handler.

104

In order to enrich ccp agents with such real-time mechanisms, we introduce a discrete
glabal clack and assume that ask and tell actions take one time-unit. Computation evolves in
steps of one time-unit, so calied clock-cycles. We consider action prefudng as the syntactic
ma;rker which distinguishes a time instant from the next one. So teH(c) -> A has now to
be regarded as the agent which updates the current store by adding c and then, at the next
time instant, behaves like A. Analogously, if cis entailed by the current store then the agent
ask(c) -> A behaves like A at the next time instant. If c is not entailed at time t then the
agent is suspended, i. e. a t time t+ l i t is checked again whether the store entails c 1 . Note
that ifa tell(c) action is performed at time t then the updated stare will be visible only from
time t + l onwards, since a tell takes one time-unit to be completed. Thus, for example,
the agent A: (ask(c)-> stop) Il (tell(c)---> stop) evaluated in the empty store will take two
time-units to successfully terminate.

Furthermore we make the assumption that paraliel processes are executed on different
processors, which implies that at each moment every enabled agent ofthe system is activated.
This assumption gives rise to what is calied maximal parallelism and, for example, implies
that previous agent A evaluated in the stare c terminates in one time-unit. The time in
between two successive moments of the global dock intuitively corresponds to the response
time of the underlying constraint system. Thus essentially in our model ali paraliel agents
are synchronized by the response time of the underlying constraint system.

So fax we have only described a timed interpretation of the usual ccp combinators.
We stili have to introduce the notions of time aut and preemptian which, as previously
mentioned, a;re essentiai to any reai-time language. Often weak preemptian is suffi.cient, i.e.
it is acceptable having a unit delay between the detection of the event and the consequent
action. However, there are some time criticai applications (see (14, l]) in which strong
preemption is required: The abort of a process and the execution of the new one must
happen a t the same time of the detection of the event. W e will consider h ere a form of weak
preemption: The abort of a process and the start of the new one happen at the same time
of the detection of the event. However, the result of the execution of the new process will be
visible only in the next time instant. As we discuss later, this choice aliows us to obtain a
programming paradigm useful for ma.ny applications, while maintaining a simple semantic
m o del.

In general, as discussed in [13], the essen ce of the reai time notions mentioned above is
in the ability to detect the absence of an event, as well as its presence. Such a detection
can interrupt a process and trigger some alternative actions. Since events in ccp can be
expressed by the presence (more precisely, entailment) of a constraint in the store, we are
lead to the following timing construct

now c then A else B.

-which is similar to the anaiogous construct in [13]. However, according to our notion oftime
interval, we interpret the above construct in terms of instantaneous reaction as follows: If
c is entailed by the store at the current time instant then the above agent behaves as A at
the current time instant, otherwise at the current time instant it behaves as B.

As we will show in Section 3, we can simulate the other typicai reai time constructs in
terms of the now then else construct. Therefore we end up with the following syntax.

1 The extension to the non-deterministic case is immediate.

105

Definition 2.2 [tccp Language] Assuming a given cylindric constraint system C the syntax
of agents is given by the following gramma;r:

A ::= stop l teH(c)-> A l L:i=l ask(c;)-> A; l
now c then A else B l A Il B l :lX A l p(X)

w h ere the c, c; are supposed to be finite constraints (i.e. aigebraic elements) in C. A ccp
process P is then an object of the form D.A, where D is a set of procedure declarations of
the form p(X) :: A and A is an agent.

2.1 Operational semantics

The operational model of tccp can be formaliy described by a standard transition system
T = (Conf,---+) where we assume that each transition corresponds with one clock-cycle.
Confìgurations (in) Confare pairs consisting of a process and a constraint in C representing
the common stare. The transition relation --->ç Canf x Conf is the least relation satisfying
the rules Rl·R8 in Table l and cha;racterizes the (temporal) evolution of the system. So,
(A, c)---> (B, d) means that if at time t we have the processA and the store c then at time
t + l we have the process B and the store d.

Let us now briefly discuss the rules in Table L The agent stop represents successful
termination, so it cannot make any transition. Rule Rl shows that we are considering
h ere the so calied "eventual" tell: The agent tell(c) --+ A adds c to the store d without
checking for consistency of c U d, and then behaves as A at the next time instant. Note that
the updated stare c U d will be visible only starting from the next time instant since each
transition step involves exactly one time-unit. According to rule R2 the choice operator
gives rise to global non-determinism: The externai environment can a:!fect the choice since
ask(Cj) is enabled a t time t (an d Aj is started a t time t + l) iff the store d enta.ils Cj, an d d
can be modified by other agents. The rules R3 and R4 show that the agent now c then A.
else B behaves as A or B depending on the fact that c is or is not entailed by the current
store. Note that the evaiuation of the guard is instantaneous: li (A, d) ((B,d)} can make
a transition at time t an d c is (is not) entailed by the store d, then the agent now c then
A else B can make the same transition at time t. Rules R5 and R6 niodel the parallel
composition operator in terms of maximal parallelism: The agent A Il B executes in one
time-unit ali the initiai enabled actions of A and B. The agent ::IX A behaves like A, wit:h
X considered local to A. To describe locality in rule R7 the syntax has been extended
an agent ::Jd X A where d is a locai store of A containing information on X which is hidden
in the externai store. Initially the locai stare is empty, i. e. ::lx A = 3true X A. Rule R8 treats
the case of a procedure cali when the actual parameter di:!fers from the formal parameter: It
identifies the formal parameter as a locai alias of the actual pa;rameter. For a cali involving
the formai parameter a simple body replacement suffi.ces (rule R9) since we a:re dealing wlth
a cali by na.me parameter mechanism.

Using the transition system described by (the rules in) Table l we can now define our
notion of observables. Here and in the sequel we assume a given fìxed set of declarations
D and we assume that P is a closed process (namely, every procedure occurring in P is
declared in D). We denote by --->* the re:!lexive and transitive closure of -->.

Definl.tion 2.3 Let P be a process. We define

O(P) ={(c, d) l c E C and there exists Q s.t. (P, c)->* (Q, d) f-+}.

Rl

R2

R::l

R4

R5

R6

R7

R8

Rifli

106

(tell(c) -+ A, d) --+ (A, c U d)

(2::;'=1 ask(c;)-+ A;, d)--+ (Aj,d)

{A, d) --+ {A', d')
(now c then A else B,d)--+ (A', d')

\B, d) --+ (B', d')
(now c then A else B, d) --+ (B', d')

{A, c)--+ {A', c') (B, c) --+ {B', d')
(A Il B, c) -+ (A' Il B', c' U d')

(A, c) -• \A', c1) (B, c) f-.
(A Il B,c)-----> (A' Il B,c')
(B Il A, c) ~· (B Il A', c')

(A,dU 3xc)--+ (B,d')
(3d X A, c) --+ (3d' X B, c U 3xd')

(A, c) --+ (B, d)
(p(X), c) --+ (B, d)

j E [1, n] and d l- Cj

di-c

dlfc

p(X): -A E D, X :f- Y

p(X): -A E D

Table l: The transition system for tccp.

So we observe the inputfoutput behaviour of :finite computations. Note tha.t the above
notion of observables abstracts from time. Alternatively, we could take into account tlte in­
termediate results of computations by considering sequences of constraints obtained from the
relation --+in the obvious way. However, as we will sltow later, the resulting denotational
model would be essentially the same (modulo a simple abstraction). For similar reasons
as in the untimed case, the semantics which associates to a process P its observables
ìs not compositional. VVe defer to section 4 the discussion of this point an d the definiti an a
sìrnple composi twnal m o deL

Previous discussion shows that the standard ccp computational model can be extended
',cery smoothly to incorporate a notion of time. A poim Nhich is worth rnentioning here is

differently from the untimed case, we cannot replace teH(c) -+ A far in the
syntax of tccp. In fact, if the tell is eventual then in the untirned case -+ A can be
equivalently rewritten as teH(c) Il A. In the timed case previous two agents in generai do
not need to be equivalent. This is shown by the following.

Ex!l.mple 2.4 Consider the agents A : (teH(c) -+ teU(d)) Il B and A' : (teH(c) Il
teH(d)) Il B where B: teH(true)-+ now c U d then teH(ok) else stop and assume that

107

c, d, ok are different constraints such that ok l- d t- c. According to om operatimnl mode]
we have that E CJ(A') \ O(A).

We show now how some typical real time prograrnrning idioms can be derived from the
combinators of tccp.
Time out The timed guarded choice agent

n

L ask(ci) -+ A;
i= l

B

waits a t most m t ime units (m 2: O) far the satisfaction of o ne of the gua"rds. Before this
out the process behaves just lilce the guaTded choice: As soon as there exist enabled
one of them and the corresponding branch is nondeterrninistically selected.. After waitbJ.[!;
for m tirne unita, if no guard is enabled, the timed choice agent behaves as B, This
can be defined as follows. Let us denote A the agent 2::;'=1 __ ,

the base case, m= O, we deiìne 2::7=1 -+A; B as the agent

now c1 then A else c2 then A else
(now cnthen A else ask(true) -> o o ,)

For the inductive step we define 2::;'=1 B as

n

_,A; thne-out(O) (task(c;) ~,Ai
\?,=1

-l) B

:rt ìs immediate to check that the above inductively defined agent has the opera-
tional behaviour. Consider fo:r example the base case. Ii' the cmrent store entails one of

Ci V~re have that by rule the agent 2:~1 -+ is executed
that is, in the next tirne instant one of the agents A; (for which the- corresponding

is executed, Otherwise, the agent B is executed .~.t the next time instant.
These an~ preemption prirnitiv,es of such lo,nguages as ESTEHEL

a.re used to inte:rrupt the activity of a process on signal :t'rom a event:
framework, since events are constraints, can be de:lined as
:process

which behaves as A, a,s as c is not entailed by the store; when is entailed, the]H002Dc;

A ls imrnediately aborted. Notice tha,t, as discussed above, we hav'3 instantaneous reacdon
ìn the sense th:at A is aborted at the same time instant of the detection of the entailment
of c, However, to the computational model, i:f cis detected at tirne t then c ha.s
to be at time t' with t' < t. Thus we have a form of weak preemption.

Previous watchdog agent can be defined induction on the stl'Ucture of A a,s foJJows.
1n the following we use now c as a shorthand for now c then stop.

stop '* tell(d)-+ B '* 2:?=1 ask(c;) -+ A; '* now d then A else B '*
AllE '* 3XA '*

108

stop,
now d else tell(c) -+ do B watching c,
now c else 2:f=1 ask(c;) -+ do A; watching c,
now c else now d then do A watching c else

do B watching c,
now c else do A watching c Il do B watching c,
now c else 3X do A watching c,

(So the agent on the rhs of the arrow -+ is the translation of the agent do A watching c,
where A is the agent on lhs.) Analogously we can de:fine the agent do A watching c else B ·
which behaves as the previous watchdog an d also activates the process B when A is aborted
(i.e. when cis entailed).

4 Denotational semantics

In this section we give a denotational semantics for tccp programs. Denotationally we
represent a (timed) computation by a sequence of the form (cl, d1) · · · (cn, dn), a so called
timed reactive sequence. A pair (c;, d;) indicates that at time i the process itself produces c;
while at the same time its environment produces d;. The set of all timed reactive sequences
we denote by S. Elements of S are denoted by s, We de:fine D(A)s ç S, i.e. the set of
timed reactive sequences of A sta.rting from the initial sequence s. Given the initial sequence
s, the agent Stop does not modify it. Thus D(Stop)s = s. The meaning of tell(c) -+ A is
de:fined by

D(tell(c)-+ A)s ={s'l for some d, s'E D(A)(s ·(c, d))}

where s ·(c, d) denotes the sequence resulting from appending (c, d) to s. Thus, given the ,.
initial sequence s, the agent A in tell(c) -+ A sta.rts its computation, after execution of
tell(c), in the sequence s ·(c, d), where d represents the contributions of the environment,
which· occur at the same time as the execution of tell(c). The meaning of I:;ask(c;) -+ A;
is de:fined by

D(I:?=1ask(c;)-+ A;)s = U;{s' l there exists s11 and d such that s -+* s",
s" f- c; and s1 E D(A;)(s" · (true,d))}

where s f- c holds if the least upper bound (lub for short) of all the constraints occurring
in s entails c, and -+* denotes the re:H.exive transitive closure of the relation -+ between
elements of S de:fined by:

s -+s' if s lf Cj, for l ::; j::; n; and s'= s · (true, d), for some d.

Given the initial sequence s, a sequence s' such that s -+* s' represents an extension
of s which consists of a period of waiting for one of the constraints c;. Note that during
this waiting period only the environment is active. The addition of a pair (true, d) to the
waiting period corresponds to the assumption that the ask takes one time-unit. The agent
A; then sta.rts its computation in an extension of the initial computation s which consists
of a waiting period after which c;, for some l ::; i ::; n, has arrived. The meaning of
now c then A else B can be simply de:fined by:

D(now c then A else B)s ={s'l s f- c and s'E D(A)s} U {s'l slf c and s'E D(B)s}

109

To describe denotationally the parallel composition we introduce the following .C com­
mutative) pa.rtial operator IlE S x S -+ S: Let n ::; m, and d; f- c; U e;, fc~ l $ t $ n,

then (d) (et, d1) · · · (cn, dn) Il (el, dt) · · · em, m =
(c1 U el> d1) .. · (cn U em dn) · (en+l• dn+I) · "(em, dm)

In all other cases the pa.rallel composition is unde:fined. Note that we require the two
arguments of the _pa.rallel operator to agree at each point of time with respect to the
environment. The condition d; f- c; u e; corresponds with .that the environment ~f one
component has to include the contributions of the pa.rallel component. Now we can s1mply
de:fine

D(A Il B)s = D(A)s Il D(B)s

where 11 denotes the obvious extension of the above de:fin:d operator to set of seq~en~es.
To describe denotationally the hiding of local variables we mtroduce the operators 3.,, 3., E
S -+S:

an d
3~((cl, d1) · · · (cn, dn)) = (cb 3.,dl) · · · (cn, 3.,dn)

The operator 31 thus removes at each point of time the information on the (local) va.riable
th t · the 'in:rormation on x produced by the process itself. On the other hand, the

:;era~o:s3; removes at each point of time the information on the (global) variable x, that
is the information on x produced by the environment. Then we de:fine
'

D(3XA)s = {3~s' l s'E D(A)3~s}

Note that the operator 3; removes information on the global x while 3!, removes the
information on the local x. Recursion :finally is de:fined as follows: Let p(X) be decla.red as
A. Then

D(p(X))s = D(A)s and D(p(Y))s = D(3d"•XA)

in case the actual pa.rameter y di:ffers from the formai pa.rameter X:-Thls ·recursive de:finition
can be easily justi:fied by a least :fixed-point construction de:fined m terms of the cpo 'P(S)
with the ordering of simple set-inclusion. . .

Correctness of the denotational semantics D with respect to the operatlonal semant1cs
is expressed by the following theorem: ' 1

Theorem 4.1 (Correctness) For any agent A,

O(A)c ={d l there exists (c, c) .. ·(d,d) E D(A)(c,c)}.

Note that a sequence (cl> c1) ... (cn, cn) represents a computati~n where. the a~sumed
contributions of the environment are already produced by the agent 1tself. I t 1s strrughtfor­
wud to prove that such a sequence indeed correspond~ with a computation as de:fined by
the operational semantics. So the model de:fined by D 1s correct. . .

However this model introduces unnecessa.ry distinctions. For example, cons1dermg the
agents A: tell(c u d) -+ tell(c)-+ stop and B : tell(c U d)-+ tell(d)-+ stop, w~ ~~ve that
D(A)~:-:/= D(B)~: (€ denotes the empty sequence) while for any context C[] and m1tial stare

110

c we have that O(C[A])c- O(C[B]) (A [J ·
t C[A] th - c. context C IS simply an agent wìth a 'hole' the

agen en represents the result of replacing the hole in C by A) Th · t h ' .

:;:t ~:~:::; s~ong;r con~trai~t c U d has ~een produced, i t does not ~atter :1~~~er =~r 1;
.P . . o or er to Identify agents like the previous ones, we introduce th :!; n o

abs,ractwn mc on sequences. This operation adds to each left t f e o owmg

~r t:: p(rcevidou)s· ~~f(t codmp) oneSnts ofhs, thus transforming s into c::~~~::re:su:gs:~~::~:e~
h l Cn, n E we t en define

inc(s) ==(ci, dr). (cl U c2, d2) ... (cl U c2 U ... U Cn, dn)·

num~~;e:;~:p:;i:i::~::~~edi~:!~~:!e~~~t-~o~e=~) /eq~nces which differ only far the

and C' : tell(c) --> tell(c) -+ stop should be identifi d~ e,Th e agents C : tell(c) __,. stop
b t t' l e · us we need also the following

~f: ;:~t~0:f :1 t~: ;:r:n~·e:s~ ~:~~:~:~ i!~::ti~e~ :: !e;:~::b;e~(f:)(~ !h:n;b of the

• rep(s·(c,d))=={ rep(s) ifleft(s)l-c
s·(c,d) ifleft(s)l(c

t Le: us dfefi:e D"'(A)s as rep(inc(D(A)s)), where we denote by rep and inc the obvious

ex enswn o t e ab~~e operators to sets of sequences. It is immediate to show that the

;nodel defined by D IS also correct and compositional. Moreover we have that D"' does t

mtroduce unnecessary distinctions, i.e. the semantics defined by DO/ is fully abstract: no

Theorem 4.2 For any agents A and B if D"(A) i: D"'(B) fi
a context C such that O(C[A])c =f. O(Crl1])c, for· s:me c. s or some s, then there exists

5 A comparison with (default) tec and future research

A t~ed version ~f ccp, ca.lled tec, a.nd a. further extension ca.lled default tec ha ve recenti

~;e; ~n~r~~uced m ~3J. and (14]. To compare these approaches with our proposallet us firs~
e c. r~e Y tec. s m tccp and differently from the case of synchronous lan a es com-

p~tatmn m tec ta.kes a bounded period of time rather than being insta.iit gu gH '
differently from · . aneous. owever

our. ca.se, a tlme mterval for tec is identifìed with the time needed far ~

~f pr~c~~s to. terr:ate a comput~ti?n: Computation evolves asynchronously in cycles:

eac . Ime ~nter ~ c~p detern:urushc process is executed. The pr~cess accumulates

m~~o-~oruc~y mf~rma:wn I~ the ~tore, according to the standard ccp computational model

un 1 reac es a restmg pomt", Le. a terminai state in which no more information can b '

generated. The resting point is then seen as the marker whlch distinvnishes t' . t al e
When the restin · t · h d o~ rme m erv s

. . g pom IS reac e the absence of events can be checked and it can tr' .

actlOns m the next time interval. More precisely, the process A . now c else B . al Igtgedr
t " t' t' " If · IS ev ua e

a res mg 1m e : the stare obtained at the end of previous time interval does not entail

c t~en A be~a~e~ as. the process B in the next time interval, otherwise A is discarded A

~nzt ~elay pnm1t1ve 1s also present: next B is the process whlch behaves lik B . th ·
trme mterval. e m e next

20n the other hand, a.ssuming that c, d, ok are different constr .
B: tell(c)-+ tell(d)-+ stop and B' : tell(c)-+ tell(c)-+ t ll(d) a.mts such that. o~ 1- .d 1- c, the agents

A · te/l(true) -+ (d h () e -+ stop must be distmgUIShed. In fact for
· now t en tell ok else stop), we have that (true, ok) E O(B 11 A)\ O(B' 11 A). '

111

A crucial design decision far ttc was to enforce the programmer to transfer explicitly

the information from one time interval to the next one. At the end of ;: time interval

a.ll the constraints accumulated are discarded, as well as all the processea ·hlch are not

argument to a next orto a (satisfied) now else command. Thus basicall~ "'tec program

specifies for each momen.t in time a ordinary (deterministic) ccp program to be executed at

that particular moment. Since the next moment in time occurs when the ccp program has

reached a resting point, to ensure that the next time instant is reached such an ordinary

ccp program has to be a finite agent.

Our starting point however is to interpret action-prefixing itself as the next-tìme opera­

tar. In our framework a time interval is identified with the time the underlying constraint

system needs to respond to the initial actions of all the agents of the system, that is, to

accumulate a.ll the told constraints and to answer a.ll the ask's. Thus a real-time program in

our case is basica.lly just a usual ccp program (apart from the now construct). The real-time

aspects are mainly implicit in the interpretation of the basic actions an d the interpretation

of action-prefixing. As such the style of programming in tccp is more similar to the usual

one for asynchronous monotonic languages, also because in our framework the global store

persists from one moment to the other. For example, the operators of hiding local variables

and recursion do not differ in an essential manner from their 'untimed' versions. This is

to be contrasted with the language tec, where the fact that the stare is killed each next

moment complicates the real-time interpretation of recursion and hiding of local variables

(the information on the local variables is killed too each next time instant). Also we do

not need any syntactic restriction to ensure that the next time instant is reached, since at

each moment there are only a finite number of para.llel agents an d the next moment in time

occurs as soon as the underlying constra:i.nt system has responded to the initial actions of

a.ll the current agents of the system.
Default tec is essentia.lly like tec, except that at each time interval a default ccp

program (rather then a ccp program) is executed. Thus previous discussion applies also

to the case of Default tec. The advantage òf Default tec over tec and ,tccp is that

the former language a.llows one to express strong preemption by using agents of the form

c """' A: If c is not entailed by the current store then A is immediate]y evaluated. Differently

from the case of tccp, the result of this evaluation is visible within the sa.me time interval.

This increased expressive power of Default tec comes with a price since, as previously

mentioned, in generai strong preemption can cause paradoxes: If the agent A produces c

then the construct c"" A could have ambiguous interprétations. To avoid these problems

Default tec uses assumptions about the future evolution of the system. If c is abs~nt

when evaluating c"""' A, then it is assumed that c will also be absent in the future, i.e. A

and the other processes being evaluated in para.llel cannot produce c. These assumptions

semantica.lly are modeled by using pairs of constraints. The pair (c, d) in the denotat.ion

of an agent A means that A reaches a resting point c given the guess d about the final

result. The resulting model however, as discussed in [14], does not a.llow for the definition

of fust-order existentials. Thus, differently from tccp, Default tec does not a.llow hiding.

Moreover, the simplicity of both the tec and the Default tec models, sequences of

constraints and sequences of pair of constraints, is due to the restriction to deterministic

programs. An extension to non-determinism would require complicated models based on se­

quences of sequences. On the other hand, our real-time extension a.llows a simple opera.tional

and denotational fully abstract semantics for non-deterministic real-time programs.

112

Concluding, we have defined an extension of ccp to model real-time which, altough inspired by the motivations in [13], as discussed above di:ffers from tec and default tec both in the language design and in the semantic model. We believe that our proposal provides a smooth extension of ccp and therefore allows to retain as much as possible the usual ccp programming style also for real time applications. Moreover, the simplicity of our semantic model seems a promising basis to define tools for the verification and the analysis of tccp programs, following the guidelines of [3] and [5]. In pa.rticular, we are now studying an extension based on temporallogic [lO] of the proof system defined in [3] to reason about the correctness of tccp programs.

References
[1] G. Berry. Preemption in concurrent systems. In Proc of FSTTCS, volume 761 of LNCS, pages 72-92. Springer-Verlag, 1993.
[2] G. Berry and G. Gonthier. The ESTEREL programming language: Design, semantics and implementation. Science of Computer Programming, 19(2):87-152, 1992.
[3] F.S. de Bo~, M. Gabbrielli, E. Marchiori, and C. Pala.midessi. Proving Concurrent Constraint Programs Correct. In Proc. of Twentyfirst POPL, ACM Presa, 1994.
[4] F.S. de Boer and C. Pala.midessi. A Fully Abstract Model for Concurrent Constraint Programming. In S. Abrarnsky and T.S.E. Maibaum, editors, Proc. of TAPSOFT/CAAP, LNCS 493, pages 296-319. Springer-Verlag, 1991.
[5] M. Falaschi, M. Gabbrielli, K. Marriott, and C. Palamidessi. Compositional Analysis for Concurrent Constraint Programming. In Proc. of Eighth LICS, pages 210-221. IEEE Computer Society Presa, 1993.
[6] N. Halbwachs, P. Caspi, and D. Pilaud. The synchronous programming language LUSTRE. In Special issue on Another Look at Real-time Systems, Proceedings of the IEEE, 1991.
[7] D. Harel. Statecharts: A Visual Formalism for Complex Systems. Science of Computer Programming 8, pages 231-274, 1987.
[8] L. Henkin, J.D. Monk, and A. Tarski. Cylindric Algebras {PartI). North-Holland, 1971.
[9] P. Le Gut>.rnic, M. Le Borgue, T. Gauthier, and C. Le Marie. Programmingreal time applica.tions with SIGNAL. In Special issue on Another Look at Real-time Systems, Proceedings ofthe IEEE, 1991.

[lO] z. Manna and A. Pnueli. The temporallogic of reactive systems. Springer- Verlag, 1991.
[11] V.A. Saraswat. Concurrent Constraint Programming Languages. PhD thesis, Carnegie-Mellon University, January 1989. Published by The MIT Presa, U.S.A., 1991.
[12] V.A. Saraswat and M. Rinard. Concurrent constraint programming. In Proc. of POPL, pages 232-245, 1990.
[13] V.A. Saraswat, R. Jagadeesan, a.nd V. Gupta. Foundations of Timed Concurrent Constraint Programming. In Proc. o/ LICS, 1994.
[14] V.A. Saraswat, R. Jagadeesa.n, and V. Gupta. Default Timed Concurrent Qonstraint Programming. In Proc. of POPL, 1995.
[15] V.A. Saraswat, M. Rinard, and P. Pa.na.ngaden. Sema.ntics foundations of Concurrent Constraint Prograrnming. In Proc. of POPL, 1991.
[16] D. Scott. Domains for denotational semantics. In Proc. of ICALP, 1982.

Extending CAML Light
to perform distributed computation*

J. L. Freire Nistal
LFCIA, University of A Coruiia, 15071 La Coruiia, Spain

freire@dc. fi. udc. es Phone: +81-102552, Fax: +81-102736
B. B. Fraguela Rodriguez

Dpto. de Electr6nica y Sistemas, University of A Coruiia
basilio@des.fi.udc.es

V. M. Gulfas Fernandez
Dpt. of Computer Science, University of Yale

gulias@cs.yale.edu

Abstract

In this paper an extension of Ca.ml Light language that _attempts
to achieve distributed computation using a client-serv~r m~del. on a
set of computers in a network is presented. To succee~ m ~omg 1t, ';e have used a distributed-memory multiprocessor machine s1mulator m
which we have implemented a system that can be used to c~ns.truct
distributed programs ma.intaining some important charactenst1cs of
functional progra.ms such as referential transparen.cy a~d the de:er-. · f Ca.ml Light evaluation order. The modi:ficatiOns requrred IDJillSID O th t "t l "t to transform a given sequential program in su~ a way . ~ l exp 01 8
the parallelism derived from our implementat10n are rmrumal.

Keywords: Distributed and parallel architectures, data typ~s and
data structures, functional programming, program transformatlon

*Supported by Xunta·de Galicia XUGA10502B94

114

l Introduction and Previous Work

This work is aimed to use the facilities of the functional languages to ex­
ploit the pamllelism. In sequential Von Neumann machines (contro! fio w
machines), instructions are executed sequentially, controlled by a program
counter. A new philosophy has been proposed to improve the performance:
the data fiow machines. These allow us to forget about counters and in­
structions fl.ow because instructions are carried out as data and operands are
available, leaning on the properties of the functional paradigm. To illustrate
this possibility with a real implementation, we have used the Carni Light lan­
guage [l, 2, 3], a variant of CAML. Further information about this language
can be seen in [4].

W e ha ve employed the PVM1 software package [5] which allows us to write
programs that exploit the distributed computation mode] on heterogeneus
networks with the unique imposition that ali the computers work under the
Unix operating system (also under OSF-1 for Alpha machines).

This paper appears as an evolution of [6, 7], in which a heterogeneous
computation mode! is presented in order to integrate functional and impera­
tive modules on a client-server architecture. In [8) the same model re:fined is
discussed an d applied to an example, an d a mechanism for the automatic (or
semiautomatic) construction of the Functional Lenguage and Operate Sys­
tem interface based on the type of the kernel functions we want to use from
the client side is introduced.

2 Breaking the synchron:ism the typ-

JI/Iost of the functionallanguages (or extensions of them) that pursue parallel
computation, employ the non-strict (lazy) evaluation order since there is not
synchronism between the demand of a computation and the obtention of the
result. In this way, it is possible to introduce annotations in the code to
suggest the moment in which the evaluation of an expression should start,
the temporal de p endences of the evaluation in relation to evaluations of other
expressions, and the end of the evaluatìon, like the para-language of Haskell

10ther possible systems available are ISIS, P4, Express and Linda

115

presented by P.Hudak in [9]. ,
The synchronism introduced in the strict languages prevents from a.aopt­

ing this solution (at least immediately). Some of theselangu~~es ,.
primitives to generate new processes or threads, control~ed, aiJ the '"J:Ue ..

and "o handle the interprocess commumca;;JOn by s1de-effects programmer, ~ . . .
in a similar way to I/O handling, thus losmg referentJal transparency.

To salve this problem we adopted a solution res~mblmg th~t used _m
lazy languages, but preserving the Caml Light eval~at10n me~hamsm (sc~Jct
evaluation) and its referential transparency. The Jdea. cons1sts o! mak~ng
the request to a server in such a way tha_t we do not n~ed to wa1t for ~e
remote result, continuing the evaluation oì other expresswns, carry~~g thc~c
·. ll l 'r'' we should wait for the result of the remote evaluacwn, the 1n para e . L • • , L. . •• ."

ll l. · ld no+ be possible The solutJOn res1des m che consb UCLJon para e 1sm wou " · • Lr .. .
of a new datatype, ·whose behaviour 1s q m te SIIDllar to a d"'tac.1 pc (a
deferred datatype) Remo t e val. . ,

A client-server mode! has been used so that remote evalu~twn requests
b f rmed b-· the Catul Light function request wh1ch has as Jts can e per o _ y .

arguments an integer identifying one suitable service, and the arguments to
·h" · ···h 'a "n d that returns a va.lue of 'b Remoteval t JS servi ce WlL , o. -

w h ere 'b is the type of the value returned the servi ce (in t - > 'a . - > 'b
Remoteva.l). If the function has more than one argument, say n of types
'ai. 'a2 , 'an, we can transform thern into only ·)ne parameter usmg t~e

d, t ; (unrurry'J" 'a - 'ai * 'a2 * " , . * 'an. Since 'a can be pro uc Gype ~ . . - ,
any type, we can define and use serv1ces of mul~1ple argume~ts by JOmmg
them together in a that will be unfolded m the serover. '

On the other hand, smce request a.chieves the evaluabon request to "he
server t be va1ue returned the function, an instance of ftemot e val, does llOt

' ·' . ·'hc --ecu1t' o·1<t111"e evaluation Remotcwal is an .ADT con\.aln ~., c _{ "_ ~ . · . , .L

Data Type) which can be used to encapsulate the ac~eso w the res_ult o! ,,he
remote evaluatìon val) vvhen needed. This ADT hl 3~ ~aml

, " , the deterrninisrn iHd.es an ~u .• ,._, ... ~·v•

the evaluatio:n. and the referential transparency due to its access function

val. h . . I'" The ADT is created at request time, storing the result w en 1t arnves. ·~
we to access the data contained in it before they arrive, the process musé
waìt until are available. There are two different approaches about value
reception:

