116

o the client receives the result and then associates it to its Remoteval.
To do it, we must enable a listening process that waits for a response
packet from any server and then unpacks the value, associating it to
the corresponding Remoteval.

e we do not worry about packets that arrive to the client until the val
function is applied. At this moment, the client process must wait for
the packet corresponding to the Remoteval on which val has been
applied. While this packet does not arrive,

the client process unpacks other packets which were previously received
and associates them to their own Remotevals instead of remaining in-
active. This approach needs a process to store the packets coming from
the servers until they are processed by val.

The latter approach is more suitable than the former to our problem
because the subsystem used for the interprocess communication (PVM) offers
some facilities to store messages in its internal buffers, until the target process
wants to read them. Thus, we can use the PVM daemon to store packed
values until they can be processed by the val function.

In both cases, we must know which Remoteval corresponds to a given
response and how to access this Remoteval, since it is not necessary passed

as an argument to the val function. The former problem can be easily.

solved: it is enough to associate each request with an unique identifier which
is put both in the Remoteval and in the packet sent to the server, which will
send back the response packet with this identifier. In this way, a possible
implementation of the ADT may be:

type ’a Remoteval = Val of bool * int * ’a;;
(¥ flag * id * result-value *)

where bool is a flag that points out if the result has already arrived, int is
the identifier of the request and ’a is the response value, if it has already
arrived. This datatype, implemented at low level, can modify itself (a mutable

-datatype) and holds an inconsistent value in ’a during the period of time

that the flag has a false value. The access to the field ’a is restricted only

to the function val, guaranteeing the transparency of these changes in the
structure. '

117
request \? req\iest \‘?
val
val
Figure 1: Success Figure 2: Fault

The latter problem can be solved by using a list which has all the Remotevals
whose results have not arrived yet to the client. We should include this list
into the data involved in the Caml Light garbage collector mechanism, so
that we can assure that this list will always have valid references to the
Remotevals in evaluation all the time.

It will be enough to insert the Remoteval into the list when the client
makes the request in which it is created. On receiving the response, the
Remoteval with the same identifier as the response packet must be searched
and then removed from the list. At this moment, the response value, received
in the packet, is associated to the field ’a in the ADT, and the lock ﬂag. is
set to true, enabling the access to the data field (a locking mechanism like
the one proposed in [10]).

Now, we must think about the different moments in which the result of
the remote evaluation can be available in relation to the point in which its
value is required. We can identify three different temporal situations:

e Cuase I: Success. The server sends the result before the client demands
it back. (figure 1). In this case, there is no problem because when
val function is executed, in order to access the data encoded in the
Remoteval, the desired value, which has been received previously, is
obtained, although it may be still packed. If the lock flag is set to
true then the result is already stored in the data field of the ADT.
Otherwise, val needs to unpack and decode the result, build the value
’a and store it in the ’a Remoteval.

e Case 2: Fault. The server has not sent back the result yet when ‘?he
client requires it. (figure 2). In this case, val must stop the evaluation

118

request

—

—
!
—

request

O
Q/

\

Figure 3: Useless in scope Figure 4: Useless out of scope

until the packet containing the result arrives.
for any packet coming from any
the results of other ADTs receive

The client process waits
server, performing the unpacking of
d before the expected one arrives.

® bC'ases 3 and 4: Useleﬂss. It is also possible that the result will never
e used (an effect derived from the strict evaluation). In this case, we
b

never apply val on the obtained Remoteval. Mor
T a L. eov
be distinguished: e e cases can

a) the case in which the value is received in the scope in which its
ey 5 r "
Remoteval exists (Useless in scope, figure 3)

b) and the case in which the Remoteval is out of its scope when the
result arrives (Useless out of scope, figure 4).

’ In fact, this last case is not a problem if the result arrives before its
ﬁeméﬁenval gets out of scope, since the client receives it uﬂpé,cks 1t, associat
1t with its Remoteval and then, when its ADT gets amz of scope t7he arbaes
collector removes it from the heap. However, if the result arri,ves a?ter tgz
Re:moteval has been removed from the Caml Light heap, a serious problem
arises because we must implement a mechanism that shouid be able tg de’g :‘"w‘
tTﬂej out-of-scope condition of a value and, later, stop the evaluation of 1?1’;6
defer‘r‘ed v_aluf; to avoid the access to a non-existing object. This fa;z't implies a
modification in the system of creation /destruction of values, and even iI; this
.case, aresponse may arrive from the sérver just before the arrival of the signal
which gtops the server evaluation process, perhaps due to the propa, afio
Flelays m'the communication across the network. The implementedpso%utiog
is based in transforming the case 4 into the case 3, keeping the Remoteval

119

in scope until the arrival of its result. This can be done using the list of
Remotevals whose results have not arrived yet, as the presence in the list
forces the garbage collector mechanism to avoid the removal of the Remoteval
from the memory (as there is one reference to the object at least). That is
why the Remoteval list solves two problems simultaneously.

3 Distributed execution of processes

Our approach makes sense, that is, improves the computational time, only
if the server or servers used reside in several machines, the optimal situation
being that in which each server resides on a different machine, with the client
in another computer.

In order to develop the approach, the PVM software package (Parallel
Virtual Machine) has been used. The package allows to simulate a multipro-
cessor virtual machine with distributed memory on a set of machines which
can have different architectures and that are connected by nets which can
also be of several kinds, the only restriction being the need that all the com-
puters involved run under the Unix operative system. PVM uses the message
passing paradigm, as most of the software of this kind [11].

The client must use the function client_init to create the servers. This
function takes as its argument an integer representing the number of servers
the client wishes to use, and returns a unit value. In a similar way, the
client must use the function client_exit, with type unit -> unit, when
the servers are to be climinated, and so the distributed evaluation mode
exited. ‘

The servers must also use a function called server_init to link to the
PVM system and communicate with the client.

The main loop of each server receives the requests and orders the pertinent
executions using the function get_next_req, which waits for the reception
of a request and returns the identifier of the service required, which is used
to index the vector of service functions. All these functions are of type unit
-> unit and have the following form:

let remote_func () =
let (x1, %2, ..., xn) = get_args ()
in response (local_func xi x2 ... xn);;

120

where the function get_args unpacks the arguments of the service. These
arguments are used by the function that accomplishes the most important
work, called local_<func> in our example, whose result is packed and sent
to the client by the function response.

Since our system has a distributed memory, in the packets that the pro-
cesses interchange we must not send the pointers to the data to transmit,
but the data themselves. That is why we need to know the structure that
the Caml Light objects adopt internally, in order to be able to decode them
in the messages the client interchanges with the servers, and, later, rebuild
accurately those objects in the destination process. The functions that de-
velop these tasks are called, respectively, encode and decode, and are located
both in the client and in the servers, since they all need to encode objects
for their sending, and unpack them for their processing (these functions are
identical to those used in [8], but using the PVM packing primitives for the
basic types).

4 Transformation of a sequential code

In order to show our approach, we will show the modifications needed to
transform a program initially executed in a totally sequential fashion in an
equivalent code which can be executed in a distributed fashion. The program
selected, as simple as useless, is the following:)

let sqr x = x * x;;
let addsqrs x y = (sqr x) + (sqr y);;

The obtention of a distributedly executable program from a sequential
one has two steps:

o Creation of the program corresponding to the servers or slaves from the
functions we want to execute in retnote nodes (function level granular-
ity).

e Creation of the client or master program, that uses the services present
in the slave processes through the interface provided by the ADT
Remoteval, which guarantees the referential transparency and the de-
terminism in the program execution.

121

In the first step we create the functions to evaluate remotely, which v.vill
constitute the service functions, using the template presented in the preceding
section. In our example, in order to execute remotely sqr, we would use a

service function of the form:

(* services area *)
let sqr x = x * X;;

(* services interfaces area *)
let remote_sqr () =

let (x1) = get_args ()

in response (sqr x1);;

In order that the server can identify the service function rec':luired 'by each
request, these functions are included in a list or vector, whic.h is possible .due
to the fact that they all have type unit -> unit, encapsulating the functions
that do the real work:

(* services table *)
let services_table = [| ...; remote_sqr; ... |1;;

The main body of the server initiates the process (including. it in the PVM
virtual machine) and manages the reception-evaluation-answering cycle of ‘ghe

requests.

server_init();;
let process services =
while (true) do
services. (get_next_req()) ()
domne;;
process services_table;;

In the second step we are to generate the interfaces for the remote func-
tions in the client, in such a way that if in the original program we have a
function with type 'al -> ’a2 -> ... an -> ’b, the corresponding new
function will be of type ’al -> a2 -> ... an -> ’b Remoteval. In gen-
eral, the template to use will be of the form:

122

let <func> (x1:<’al>) (x2:<’a2>) ... (xn:<’and>) =
((request <remote_func_id> (x1,%2,...,x0)): <'b> Remoteval);;

In our example, the template form is:

(* remote interface area %)

let sqr (x1:int) = ((request <remote_sqr_id> (x1)): int Remoteval);;

The original function is transformed, requesting the anticipated evalua-
tion of all the remote functions at the beginning of the scope in which they
will be used and replacing the references to those values with the access

through val to the requests previously encapsulated in the Remotevals. In
our example:

let addsqrs x y = let X_S = sqr X
and y_s = sqr y
in val x_s + val y_8;;

After this, it only remains to define the number of slave processes that
will participate in the computations with client_init before requesting any

remote evaluation. When we desire to finish the calculations, we terminate
the slave processes with client_exit.

client_init 2;;
addsqgrs 2 4;;
client_exit ();;

5 Results

As an example to show the improvements that can be achieved using the
proposed approach, we have constructed a server which provides, among
others, an evaluation service of the well-known function of Fibonacci, and a
client that requests the application of this function on the list of the integers
from 1 to n, where n adopts the values 12, 16, 20, 24, 28 and 32. In each
proof the real elapsed times of computation required for a given value of n
using a normal Caml Light program have been compared with those obtained
using our approach. For the latter case 1, 2,4, 8 and 16 servers were used,

residing each one on a different machine. All the computers used were SUN
SPARCstations ELC. See table 1.

123

List | Sequential Distributed execution

size | execution | 1 serv. | 2 servs. | 4 servs. | 8 servs. | 16 servs.
12 0.035 0.120 0.180 0.093 0.137 0.817
16 0.240 0.351 0.248 0.189 0.206 0.191
20 1.641 1.804 1.137 0.841 0.843 0.824
24 11.251 | 11.433 7.088 5.138 4.616 4.504
28 77.100 | 77.423 | 47.894 | 34.640 | 30.361 29.807
32 528.492 | 529.580 | 327.921 | 236.903 | 206.777 | 202.495

Table 1: Times for the sequential and distributed executions of the Fibonacci
function in seconds

References

(1] Leroy, X. The Caml Light system, release 0.6 Documentation and user’s
manual, Project Formel, INRIA Rocquencourt, Sep. 1993.

[2] Mauny, M. Functional programming using Caml Light, Project Formel,
INRIA Rocquencourt, Sep. 1993.

[3] Leroy, X., Weis, P. Le Langage Caml, InterEditions, Paris, 1993.
[4] Cosineau, G., Huet, G. The CAML primer, INRIA-ENS V. 2.6.

[5] Geist, G.A., Beguelin, A., Dongarra, J.J., Jiang, W., Manchel, R., Sun-
deram, V.S. PVM 8 User’s Guide and Reference Manual, Technical Re-
port ORNL/TM-12187, Oak Ridge National Laboratory, May 1993.

[6] Gulias, V.M. Interfaz Grdfica para una implementacion del A-cdlculo,
construida sobre entornos heterogéneos, Master thesis, Departamento
de Computacién, Universidad de La Corufia, Jul. 1994.

[7] Freire, J.L., Gulias, V.M., Molinelli, J.M. Utilizacidn de la pmgmm/acio’n
funcional para la construccidn de servidores ennentornos heterogéneos,
In Joint Conference On Declarative Programming GULP-PRODE'94,
vol. 2, pp. 351-365, Sep. 1994.

[8] Gulfas, V.M., Valderruten, A. Une interface graphique distribué p,ou'r
le lambda-calcul supporteé par des Serveurs Fonctionnels, In JFLA’95,
INRIA Jan. 1995.

124

9] Hudak, P. Para-Functional Programming in Haskell, In Paralell Func-
tional Languages and Compilers, ACM Press, pp. 159-196, 1991.

[10] Notes On Parallel Computation, In Structure and Interpretation of Com-
puter Programs, Department of Electrical Engineering and Computer

Science, MIT, Dec 1990.

[11] Dongarra, J.J., Geist, G.A., Manchek, R., Sunderam, V.S. Integrated
PVM Framework Supports Heterogeneus Network Computing, Jan. 1993.

A Logic Language based on
GAMMA-like Multiset Rewriting

Paolo Ciancarini, Daniela Fogli*fand Mauro Gaspari
Dipartimento di Scienze dell’Informazione
Universita di Bologna - Italy
Piazza Porta S. Donato 5 - 40127 Bologna, Italy
E-mail: {cianca,gaspari}@cs.unibo.it

Abstract

This paper describes Gammaldg, a logic language based on multiset rewrit-
ing. The language combines the ability of describing parallel programs made
of multiset transformation rules as in GAMMA with the execution model of
logic programming in a strongly typed framework as in Godel. We describe the
design choices, the syntax and the semantics of the language, and a prototype
implementation.

Keywords: Parallel Logic Programming, Gamma, Multiset Rewriting.

-

1 Introduction

Languages like FCP [19] and Parlog [10] deal with parallelism by adding ex-
plicit mechanisms for synchronization and communication to the logic programming
paradigm. These languages are based mostly on a model of parallel programming
called the stream-based process model: processes execute logic rules that can spawn
new processes communicating via streams; special constraints on streams rule the
synchronization among producer and consumer processes. An open issue for this
class of languages is to define a satisfactory model-theoretic semantics to provide a
declarative characterization of concurrency. .

Recently, a paradigm of coordination based on the concepts of generative commu-
mication in a shared dataspace is becoming popular [14]. Generative communication
means that processes use no channel to communicate: they simply output tuples in
a shared dataspace; processes which need input access the tuples associatively. Tu-
ples have a persistence, that is messages survive to processes which originated them.

*Daniela Fogli’s current address is Dipartimento di Elettronica per I’Automazione, Universita
di Brescia, Via Branze 38 - 25123 Brescia, Italy, E-mail: fogli@idea.ing.unibs.it

126

Some languages have been proposed which follow such a paradigm, for instance:
Linda [6], and GAMMA [3]. The shared dataspace model has also been investigated
in logic programming: Shared Prolog [5], ulog [18] and LO [1] are examples of logic
languages based on shared dataspaces. Like the stream-based ones, these logic lan-
guages have no standard model-theoretic semantics, even though some of them offer
a non standard declarative semantics. For instance the model-theoretic sernantics of
plog (18] is based on a notion of truth with respect to traces (e.g. truth depends on
the sequence of communication events which may occur during the computation).

In this paper we present Gammaldg, a parallel logic language which provides
a standard model theoretic semantics expressed in terms of multiset rewritings as
in GAMMA. We describe the semantics of the language and an implementation
based on Godel [17]. The abstractions provided by GAMMA are made available in
a logic programming framework, thus they benefit of all the classical advantages of
this paradigm, in particular the ability to have executable specifications which are
proved to be correct by the underlying logic formalism. Moreover, the strongly typed
framework and the modularity which are inherited from Gédel provide the basis for
a rigorous approach to the design and the development of parallel programs.

Another advantage of Gammaldg is to provide an executable version of GAMMA
Gammaldg programs are compiled by the Godel compiler. Thus, we provide also
a tool for practical experimentation with multiset rewriting as a programming
paradigm.

2 GAMMA

- GAMMA programs are described in terms of multiset transformations without in-

troducing unnecessary sequentiality [3]. The basic data structure used in GAMMA
is the multiset. A multiset is just a bag containing items which are stored without
any constraint or relationship among one - another. The control structure associated
with multisets is the I' operator; its formal definition can be stated as follows 13
D((R, A)(M) =

V2,2, € M,~ R(zy,...,2,)

then M

else let z4,...,z, € M, be such that R(z1,...,2,) in

PR, A))(M — {z1,....z.}) + A(z1, ..., 20)).

where (R, A) is a pair of functions specifying the rewriting rule which can be applied
on the multiset. Ris a reaction condition, namely a boolean function which specifies
if the rule is applicable. A is an action, namely a multiset rewriting, executed when
the reaction succeeds. Operationally the T operator searches for a subset of M,
{21, ..., 2.}, such that R(z,,...,z,) holds. When the reaction succeeds the elements
satisfying it are removed from the multiset and the action A(zy,...,z,) generates
new elements to be inserted in the multiset. Otherwise, if no elements of M satisfy
the reaction condition (Vaq,...,7, € M, ~ R(z1,...,z,)) the T operator terminates

127

and the result is M. '
What follows is a GAMMA program which calculates the maximum element of
a set.
maz_element(s) = T((R, A))(s) where
R(z,y)=c <y
Az, y) = {v}. o

GAMMA provides two operators which enable one to combine s.u"nple programs
and have been introduced in [16]. They are the sequential composition P o @ and
parallel composition P + Q operators. In the rest of this paper we assume that th.e
sequential composition operator is interpreted left to right, i.e. the program Q is
executed with the multiset returned by P as an input only when the program P is
terminated®. ‘

The sequential and the parallel operators enable one to build complex pro-
grams starting from simple GAMMA programs. For instance‘, the program Pos-
itive_Integers which computes the number of positive integers in a multiset can be
expressed as the composition of three simple programs, as follows:

Positive_Integers(m)=(Ones + Non_neg) o Add o
where Add, is a program which returns the sum of elements of a multiset; it can be
written as follows:
Add =T(((R, A))(s) where
R(z,y) = true
A(z,y)={z+y} ' .
Ones is the programs which transforms to 1 all the positive integers in a multiset:
Ones = T(((R, A))(s) where
Rz)=z>1
Ae) = {1} |
finally, Non_neg is a program which selects all the positive numbers of a multiset of
integers. It can be defined in GAMMA as follows:
Non_neg = T(((R, A))(s) where
R(z)=2<0 -
Alz) = {}

This means that to compute the number of positive values in a multiset we can
execute the first two GAMMA programs in parallel on a shared multise‘t.and Wl?en
the two programs terminate we compute the number of ones in the multiset (using

llAdd}})‘

3 Embedding GAMMA in Logic Programming

A GAMMA program consists of a multiset transformation rule; its semantics can be
modeled as a relationship on multisets, thus we can represent GAMMA programs as

Yinstead, in [16] the result of P o { is obtained by executing the programs from right to left.

128

predicates on multisets provided that we extend logic programming with this new
data structure. A GAMMA program then can be translated into a predicate taking
two arguments: the first one represents the initial multiset and the second the final
one.

In order to add multisets in logic programming we will redefine the approach
presented in [11] to add sets. We will use double angle brackets << and >>
to denote multisets; we also represent partially known multisets in this way:
<< Z1,.4,2q | Test >> is a multiset containing some known elements T1, .oy Ty
whereas rest represents the rest of the multiset. The unification algorithm, which has
to take into account the new equality defined on multisets becomes non-deterministic
since in general a unification between two multisets has more than one solution. For
instance, << £,y >>=<< 1,2 >> returns two substitutions: {z =1,y = 2} and
{z = 2,y = 1} which are both correct. Formal aspects related to this issue are
described in an extended version of this paper [8]. In this section we suppose we
have defined an extension of logic programming supporting first class multisets. A
real implementation of this extension is described in [13].

3.1 Gamma predicates

Given the multiset extension, the translation of the T operator in logic program-
ming with multisets is immediate (in the following we denote predicates names with
identifiers beginning with upper case letters, while a variable begins with a lower
case letter; this is also the choice of Godel):

Program(m_1, m_3)<-
StepProgram(m-1, m_2) &
Program(m 2, m_3).

Program (m_.1, m_1)<-

End Program(m_1) .

where Step Program is a predicate which expresses one step of multiset transforma-
tion. The second clause represents the termination condition for the program.

The predicate Step_Program is associated to the pair (R, A) representing the
multiset transformation rule in the source GAMMA program.

Step Program(<<xi,...,%p [rest>>, << yy,...,yp |rest>>)<—
R(X1,...,xn) &]
A(x1, .oy X0, ¥4, ey Ym) -

The reaction condition R is translated into a logical predicate which takes
X1,-..,Xn as arguments; the action A needs also the additional arguments Vs -y Ym0
representing the elements that must be added to the multiset replacing x4, ..., %p.

The terminal condition is expressed by the predicate End_Program which tests if
the reaction condition does not hold (the symbol ~ stands for negation as failure).

End Program(<< x; >>).
End Program(<< xi,%p >>).

129

End Program(<< xi,...,Xp_1 >>).
End Program(<< xi,...,Xp |rest>>)<- ~R(xy,....xp).
For instance, the translation of the maximum element program presented in
Section 2 is as follows:
Max_element(m_1, m_3)<—
StepMax_element(m 1, m2) &
Max_element(m 2, m_3).
Max_element(m.1, m_1)<- End Max_element (m.1).
Step Max element (<<x, y|rest>>, <<z|rest>>)<-
R(x, y) &
Az, v, z).
End Max_element (<<x>>).
End Max_element (<<x,y|rest>>)<- ~R(x,y).
R(x, y) <- x =< y.
Az, v, ¥
We remark that the predicate Max_element never fails and according to
the definition of the I' operator, we assume that if R(x1,...,%n) succeeds also
A(X1,...; Xn, 1, -, ¥n) Succeeds.

3.2 Translating GAMMA operators

The sequential composition operator o states that the two GAMMA programs are
executed one after the other; it can be translated with a conjunction where the

~multiset resulting from the execution of the first program is taken as an nput of the

second program.

To translate the parallel composition operator + we built a new predicate which
has three clauses: the first two clauses express the transformation rules of the com-
posing programs, and the last clause is the joint termination condition expressed by
the conjunction of the termination conditions of the two programs.

For instance, the program Positive Integers described in Section 2 which
computes the number of positive values in a multiset can be translated in logic
programming as presented in Figure 1. The different clauses of “Ones+Non neg” can
be executed in OR parallel on the same multiset.

3.3 Gammalog

Gammalog is a logic programming language extended with multisets plus the two
connectives: I' and =. The former connective allows one to define programs (gamma
clauses) following the GAMMA style by specifying the multiset transformation re-
actions and actions; the latter provides a way to define new programs (definition
clauses) exploiting the composition operators o and +.

130

Positive Integers(mi, m3) <—
‘Ones+Fonneg’(m1, m2) & Add(m2, m.3).

‘Ones+Bonneg’(m1, m3) <-

Step_Ones(m1, m2) & ‘Ones+Nonneg’(m2, m.3).
‘Ones+Nonneg’(m1, m3) <-

StepNonneg(mi, m2) & ‘Ones+Nonneg’(m2, m3).
‘Ones+Nonneg’(m1, m1) <-

End Ones(m1) & End Nonneg(m1).

Step_Ones(<<x|rest>>,<<y|rest>>)<—
R_Ones(x) & ADnes(x, y).
End_Ones (<<x|rest>>)<- ~R_Ones(x).

R.Ones(x) <—x > 1.
AOnes(x, 1).

StepWon neg(<<x[rest>>,rest) <—
RBonneg(x) & ANonneg.

End Bon neg(<<x|rest>>) <- ~R_Bonneg(x).

RTFonmeg(x) <- x < 0.

A Hon neg.

Add(m1, m3) <- Step-Add(m1, m2) & Add(m2, m3).
Add(m1, m1) <— End-Add(m1).

StepAdd(<<x, ylrest>>,<<z|rest>>) <-
R_Add(x, y) & AAdd(x, ¥y, z).
End_Add(<<x>>) .
End_Add(<<x,y|rest>>)<- ~R_Add(x, y).
R-Add(x, y). '
¢ AAdd(x, y, x+y).

Figure 1: Translating Gamma Operators.

The I' connective has the following syntax:

Max_element (<<x, y|rest>>, <<z|rest>>)T
R(x, y) &
Az, v, z).
R(x, y) <— x =< 5.
Az, v, v).
where the first clause is a Gamma clause and both R(x, y) and A(x, y, z) are
predicates.
The connective = allows one to define new predicates, starting from predicates
defined with the I' connective. As an example, a definition clause has the form:

Positive Integers = Ones + Pos o Add
where + has the higher precedence and parentheses are not allowed. This restriction
is necessary to guarantee a correct translation: in fact, Gamma programs like (P o
@)+ H cannot be translated correctly into clauses exploiting the proposed technique.

Definition 3.1 - Gammalog Program. A Gammalog program P is composed by
a set of Gamma clauses PT, a set of definition clauses P= and a set of standard
clauses PLT defining the reaction PR and actions P4 predicates.

Definition 3.2 - Gammalog Query. A Gammalog query Q is a conjunction of
positive literals involving predicates defined in PT or in P=.

131
4 Semantics

We present the soundness and completeness results for Gammalog, in particular:
the soundness of Gammalog and the completeness of classes of Gammalog programs
with respect to the extended SLD resolution. The extension of logic programming
with multisets is described in in an extended version of this paper [8]. The related
equality axioms are presented in Figure 2.

(Z) In(0, £, <<>>) the empty multiset contains no elements;

@) In(n+1, g, Incom(y, z)) = (z# y A In(n, 3, 2) V (z =y A In(n, z, z).
this rule specifies how the function Inc.m operates;

n

(W) In(n, y, z) — 32(In(0, 3, z) A © = Inc_m(y, Inc.m(y, ..., Inc.m(y, 2),...)
(that is y is inserted m times in z); it is the ‘‘without’’ axiom which guarantees the
existence of the multiset z without any v;

(L) In(n+1, v, z) = z(Tn(n, y, z) A © = Inc.m(y, z))
‘‘less’’ axiom to guarantee the existence of the multiset z \ <<y>>;

(E) Inc.m(z, v) = Incom(y, w) <
(z=yAv=w)V3zv=Incm(y, z) A w=Tncm(s, z))
‘‘equality’’ axiom to establish when two multisets are equal;

R) 3=Vy(In(n, y,) — (In(m, 2z,) A In(0, y, z))

‘‘regularity’’ axiom; it guarantees the membership does not generate loops.

(U) flm1y.--,00) #<<>> A In(0, 3, f(@1,-..,20))
where f/n # <<>>/0 and f/n # Inc.m/2.

" Figure 2: Multiset Axioms.

The axiom (I) corresponds to the axioms (W1) and (W2) in [12], while the
axioms (W) and (L) correspond to the axiom (L), in the same paper.

Note that, as with sets, a special equality is required on multisets because the
order of elements in a multiset is irrelevant; thus, the permutativity property holds.
The axiom (E) guarantees this property: it is easy to prove applying it and (I) that
the following equality holds:

Incm(z,Incm(y,x)) = Incm(y,Incm(z,x)).
The semantics of Gammalog is given in term of its translation into logic program-

‘ming with multisets. We define formally the function v which given a Gammalog

program P returns its translation PM in logic programming with multisets following
the schema described above. The translation function v : PT U P= U PLP _, pM ig
defined in Figure 3:

The clauses of the logic program generated by %(P) contain also negated lit-
erals, thus we need to consider general programs, SLDNF resolution and program
completion in order to prove the soundness and completeness of Gammalog [2).

The dependency graph Dp for a program Pis a directed graph with signed edges.
The nodes are the relations occurring in P. There is a positive (resp. negative) edge

132

Case 1. cis a Program {c1,...,cn}, n > 2
¥(e) =v({er}) Uv({ez,s -1 cn})

Case 2. cis P(<< z1,...,2n [1>>, << v1, ..o, ¥m I>>) T
R(z1,...,2n) & A(Z1,.. -1 Tn,¥1, -0 Um)-

P({c}) = {P(m1, m_3)<- StepP(m-1, m-2) & P(m_2, m_3),
P(m-1, m 1)<~ End P(m-1),
Step P(<< 21,y 2n [1>>, << Y1,y .00, Ym I>>)<—
R(z1,...,2n) & A(Z1,- -+, Cn, 01, .-+, Um),
End P(<< 71 >>).

E.r‘nd_P(<< Tyy..., Tpog >>).
End P(<< 71,...,Zn [1>>)<~ ~ R(z1,...,2a)}.
Case 3. cisH=Po Q
¥({c}) = {H(m1, m3) <- P(m.1, m2) & Q(m-2, m_3)}.
Case 4. cisH=P + Q

¥({c}) = {H(m1, m2) <- P + Q'(m_1, m 2),
P+Q'(m-1, m_3) <- StepP(m_1, m2) & 'P+Q’(m-2, m_3),
'P+Q'(m-1, m-3) <- Step-Q(m-1, m2) & 'P+Q’(m-2, m 3),
"P+Q’(m-1, m-1) <- End P(m-1) & End_-Q(m-1)}.

Case 5. c € PLF

P({e}) = {}

Figure 3: The Translation Function.

(r,q) if a clause in P has the relation r in its head and the relation q in a positive
(resp. negative) literal in its body. P depends evenly (resp. oddly) on q if there is
a path from p to g with an even (resp. odd) number of negative edges. Given a
general program P and a general goal @), we recall here three basic definitions from

[2):

Definition 4.1 - Strictness. We say that P is strict w.r.t. Q) if no relation occur-
ring 1 () depends both evenly or oddly on a relation defined in P.

Definition 4.2 - Stratified Program. A program P is called stratified if no cycle
with a negative edge exists in its dependency graph.

Definition 4.3 - Stratification. Given a program P, a stratification of P is a
partition P, U P, U ... U P, such that each P; uses positively only relations defined
in P;j <4, and negatively only relations defined in P;, j < 1.

SLDNF resolution has been proved sound w.r.t, two-valued semantics of program
completion [9], while completeness holds for an allowed program P and an allowed
goal () such that P is strict w.r.t. @ and P is stratified [7].

Allowedness is a condition which guarantees that P and @ do not flounder, i.e.,
there is a safe selection rule for literals which guarantees that only ground negated
literals are selected exploiting SLDNF resolution. This condition holds in Gammalog
since the multiset we give as an argument to negated literals is always ground.

133

Lemma 4.4 - Strictness of Gammalog. A Gammalog program P is strict w.r.t.
a Gammalog query Q if PR is a positive program and P4 is strict w.r.t. actions
quertes.

Proof: We have to show that the negation introduced by %(P) guarantee strictness.
This is true because negation is introduced only for reaction predicates which does
not depend on negative goals. Thus, there are no predicates in a Gammalog query
which depend both evenly and oddly on a relation defined in the program. B

Lemma 4.5 - Stratification of Gammalog. 4 Gammalog program P = PT U
P= U PLP) is stratified if PP is stratified.

Proof: If a stratification of P exists then it can be proved stratified [2]. Thus we
need to show that such a stratification exists for any Gammalog program which
satisfies the hypothesis. Given a Gammalog program P we define a stratification on
the program generated by 1(P) as follows. We proceed analysing the different cases
of ¢ for each case we provide a stratification of the resulting program: in case 2 we
have the following stratification p, = ¢, p, = {P, Step_P, End_P}; in case 3 and 4
we do not introduce negation thus we only define a set p, = {H} which includes all
the clauses generated by the transformation and p; = ¢; in case 5 we put p; = {c}
and p; = ¢ for every ¢ € PLP. Finally, considering case 1 we define the stratification
of the whole program as follows: Py = . cp p1 and Py = U, ¢ p pa- |

In the following we summarize the main results of the paper:

Theorem 4.6 - Soundness of Gammalog. Let P be a Gammalog program and
G = (= A&.. . &AL) be a Gammalog goal. If G has a refutation in (P) with
computed answer 8 = oy ...0, this answer is correct for P U {G}.

Proof: The soundness of Gammalog follows immediately from the soundness of logic
programming with multisets and of SLDNF. This because a Gammalog derivation
always corresponds to a SLDNF' derivation.]

Theorem 4.7 - Completeness of Gammalog. Let P = PY U P= U PRU P4 be
a Gammalog program and G be a Gammalog goal. Then, for each correct answer o
for P U {G} G has a refutation in %(P) if PR is a positive program and P* is a
general program strict (w.r.t. action queries) and stratified.

Proof: The proof follows from lemmas 4.4 and 4.5 and from the well known result

of [7]. E

5 Gammalog: an instance of Gammalog

Gammalog is just an abstract computational model, thus if we want to design a real
programming language several practical choices need to be done about its execution
model. Our choice was to base Gammalog on the language Godel [17] for a number
of reasons: it already supplies a support for sets and multisets as in [12, 13]; it is a
well engineerized and relatively efficient tool; it is freely accessible; it is implemented

134

via translation to SICStus Prolog and the Godel compiler (written in SICStus) is
relatively easy to manage and extend. Finally, as the authors say, “Gddel reduces
the effort involved in providing a parallel implementation of the language and offers
substantial scope for parallelism in such implementations”, we hope to simplify our
efforts of building a parallel logic language based on GAMMA.

The new language we have designed is named Gammaldg; it is an extension
of Godel with the T' operator plus facilities which allow one to define programs
exploiting sequential and parallel composition. For instance, the module in Figure
4 defines the program Fib which, given the multiset << n >>, computes the n-th
Fibonacci number. Fib is built as the combination of simple Gammalg programs.
The confluence and termination of this program derive directly from the proof of
confluence and termination of the same combination of GAMMA programs in [15].

MODULE Fibonacci.
IMPORT Multisets.
BASE Elem.

FUNCTION F : Integer — > Elem.
PREDICATE Zero,Decompose ,Add: Multiset(Elem)*Multiset(Elem);
R_Zero, R Decompose: Integer;
A Decompose, A_Add: Integer * Integer * Integer;
AZero, R_Add: Integer * Integer.
GPREDICATE Fib.
Fib <=> Zero + Decompose o Add.
Zero(<<F(x)|rest>>, <<F(y)rest>>)<=
R_Zero(x) | A-Zero(x, y).
R_Zero(0).
AZero(., 1).
Decompose (< <F(x)|rest>>, <<F(y), F(z)|rest>>)<=
R Decompose(x) | A_Decompose(x, y, z).
RDecompose(x)< — x > 1.
A Decompose(x,x-1,x-2).

Figure 4: A Gammaldg Module.

The connective <=, denotes Gamma clauses and the connective <=> the def-
inition clauses. Zero computes the Fibonacci number associated to 0; Decompose
transforms into 1 all the elements greater than 1 in the multiset applying the Fi-
bonacci low.

Since Gammaldg is strongly typed in the same way of Gédel all the predicates
which appears in a program must be declared in a given module. For instance, the
declarations needed for Zero,Decompose, Add are:

PREDICATE Zero, Decompose, Add: Multiset(Elem) * Multiset(Elem).
where Elen is a base type for multisets.

Simple Gammalég programs are declared as ordinary Gédel predicates. On the
other side the predicate Fib being defined with the definition operator need a partic-
ular declaration using the keyword GPREDICATE (which stands for GAMMA Predi-
cate) this is needed to inform the compiler that the predicate is a GAMMA predicate.

135

During the translation, this particular declaration allows the compiler to add the
appropriate arguments to the GAMMA predicate and to generate an object code
corresponding to the rules described in section 3.

5.1 Implementation

The implementation of Gammaldg has been realized extending the Bristol version of
Godel [4]. In order to have an adequate runtime support for Gammaldg we extended
Godel with first class multisets providing an extended unification algorithm. Then,
we extended the Gddel compiler to deal with Gammaldg operators. A Gammalog
program is first translated into Gddel and then is translated into Prolog by the
Godel compiler.

The extension of G6del with multisets is based on an extended unification al-
gorithm presented in an extended version of this paper [8]. The implementation
is described in [13]. The scanner and the parser have been modified to recognize
the new statements. The composition operators o and + have the same precedence
of “\/” (OR) and “&” (AND) respectively. The Godel’s code generator has been
modified as well in order to provide the translation of the new statements.

To compile clauses containing the definition connective <=> with the operators
o and + in their bodies, a particular treatment has been designed: we compile the
first operator as a conjunction, while the second operator requires the definition of an
auxiliary predicate to handle the intrinsic nondeterminism. A parallel combination
of Gammaldg simple programs has the form: Prog <=> P + Q. and is compiled in
Godel generating a schema similar to the one presented in 1 where the & is replaced
by the bar commit (’|"). The Gédel pruning operator [17] which is placed between
reaction conditions and actions in Step_P clauses. The commit has the declarative
meaning of a conjunction, and the following procedural meaning: only one solution
is found for a formula in its scope (on the left of the commit), all the other branches
arising from the other clauses of the same predicate which contain a commit are
pruned. The order in which the statements are tried is not specified, so that the
meaning of ’|’ is close to meaning of the commit of the concurrent logic programming
languages. :

6 Conclusion
We presented Gammalog: an integration between logic programming and the parallel

language GAMMA. We show that to achieve a full integration between the two
paradigms, proving Gammalog complete and sound, we need to express reaction

- conditions as positive logic programs. The implementation we describe is based on

Godel and in our knowledge is the first executable version of Gamma on a general
purpose hardware. The language can be used as a specification language to explore
the power of multiset rewriting in a logic programming framework.

136

Aknowledgments. We thank Eugenio Omodeo for his remarks on the contents

of this work. Partial support for this work was provided by the Commission of
European Communities under ESPRIT Programme Basic Research Project 9102
(COORDINATION).

References

(1

12

3]

[4

(5]

(6]

[7]

8]

9]

[10]

(11]

(12]

[13]

[14]

[15)

[16]

[17)

[18]

[19]

J. Andreoli and R. Pareschi. Linear Objects: Logical Processes with Built-in Inheritance. New Generation
Computing, 9(3-4):445-473, 1991.

K. Apt and R. Bol. Logic Programming and Negation: A Survey. Journal of Logic Programming, 19/20:9-72,
May /July 1994.

J. Banatre and D. LeMetayer. Programming by Multiset Transformation. Communications of the ACM,
36(1):98-111, January 1993.

A. Bowers and J. Wang. Bristol Gédel User Manual. Department of Computer Science - University of Bristol,
University Walk Bristol BS8 1TR UK, 1994.

A. Brogi and P. Ciancarini. The concurrent language Shared Prolog. ACM Transactions on Programming
Languages and Sysiems, 13(1):99-123, 1991.

N. Carriero and D. Gelernter. Coordination Languages and Their Significance. Communications of the ACM,
35(2):97-107, February 1992.

L. Cavedon and J. Lloyd. A completeness Theorem for SLDNF-resolution. Journal of Logic Programming,
7:177-191, 1989.

P. Ciancarini, D. Fogli, and M. Gaspari. A Language based on Multiset Rewriting. Technical Report UBLCS,
Comp. Science Laboratory, Universita di Bologna, Italy, June 1995,

K. Clark. Negation as failure. In H. Gallaire and J. Minker, editors, Logic and Databases, pages 293-322.
Plenum-Press, New York, 1978.

K. Clark and S. Gregory. Parlog: Parallel programming in logic. 4CM Transactions on Programming Lan-
guages and Systems, 8(1):1-49, 1986.

A. Dovier, E. Omodeo, E. Pontelli, and G. Rossi. {log} : A logic programming language with finite sets. In
K. Furukawa, editor, Proc. 8th Int. Conf. on Logic Programming, pages 111-124, Paris, France, 1991. MIT
Press, Cambridge, MA.

A. Dovier, E. Omodeo, E. Pontelli, and G. Rossi. {log}: A language for programming in logic with finite sets.
Technical Report Rap. 04.93, Universita degli studi di Roma I, Dip. di Informatica e Sistemistica, May 1993,

D. Fogli. Insiemi e Multi-insiemi nel Linguaggio-di Programmazione Logica G&del. Master's thesis, Universita’
di Bologna, Bologna, 1994.

D. Gelernter. Generative Communication in Linda. ACM Transactions on Programming Languages and
Systems, 7(1):80-112, 1985.

C. Hankin, D. LeMetayer, and D. Sands. A Calculus of Gamma Programs. Technical Report TR 1758/92,
IRISA, INRIA-Rennes, 1992.

C. Hankin, D. LeMetayer, and D. Sands. A Parallel Programming Style and Its Algebra of Programs. In
Proc. Conf. on Parallel Architectures and Languages Europe (PARLE 98), volume 694 of Leciure Notes in
Computer Science, pages 367-378. Springer- Verlag, Berlin, 1993.

P. Hill and J. Lloyd. the gédel programming language. Technical report, Dept. of Computer Science, University
of Bristol, 1998.

J. Jacquet and K. DeBosschere. On the Semantics of pLog. Future Generation Computer Systems, 10(1):99-
186, 1994.

E. Shapiro. The Family of Concurrent Logic Languages. ACM Computer Surveys, 21(8):412-510, September
1989.

DEDUCTIVE DATABASES

|
|
y

Side effect analysis for logic-based planning

Kave Eshghi, Miranda Mowbray
Hewlett-Packard Laboratories,
Filton Avenue, Stoke Gifford, Bristol BS12 6QZ, England
Phone: +44 117 9228178 Fax: +44 117 9228920
{ke,mjfm}@hplb.hpl.hp.com

Abstract

In this paper we describe the algorithms for planning and, in particular,
for side effect analysis used in a software tool for system management, called
Dolphin, which is based on declarative programming. In Dolphin the user is
given the option of declaring some side effects to be acceptable or unaccept-
able. This treatment of side effects makes our system different from those
described in the logic-based planning literature.

Keywords: Deductive databases, Artificial Intelligence, Logic-based planning,
Side effect detection and analysis

1 Introduction

In this paper we describe the planning and side effect analysis algorithms used
in a software tool, called Dolphin, which is used for system management. Dolphin
is a tool for helping system administrators manage complex, networked computer
systems by providing them with a high level, intuitive view of the system in the
context of which they can access and manipulate the the system. In Dolphin, a set
of Horn clauses and integrity constraints are used to model the managed system.

These clauses and integrity constraints can be considered as the intensional part
of a deductive database, while the extensional part of the database is the managed
system itself (more about this later). Dolphin models are primarily used for two
purposes: to query the state of the managed system, and to change its state. Seen
in this light, querying the state of the managed system corresponds to querying
the database, and changing the state of the system corresponds to updating the
database. .

In the querying mode, a top level goal is posed to the Dolphin inference engine,
which is reduced to a number of extensional goals using a standard depth-first reso-
lution strategy. The extensional goals are translated into commands which are sent

140

to the underlying system, with the results of these commands translated back into
facts which are then used to solve the extensional goals, thus completing the infer-
ence process. It is in this sense that the extensional part of the deductive database
is the managed system itself.

Changing the state of the managed system is analogous to the intensional up-
date problem for deductive databases (1], where a high level, intensional goal is
posed which is translated into a number of lower level, extensional updates. In fact,
the first part of the algorithm we use for this purpose is similar to the abductive
algorithms developed for intensional updates. There is another dimension to our
problem, however. In deductive databases, the updates are independent, and don’t
have preconditions or side effects. In our case, we don’t have updates. We have
actions which, when performed on the underlying system, will bring about the de-
sired update. But actions have preconditions and side effects associated with them,
which makes it necessary to take into account the interaction between the actions
and their side-effects, and the consequences of the side effects on the rest of the

system. This paper discusses some of these issues, with emphasis on the side-effect
detection and amelioration aspects.

2 Side Effects

Suppose you want to move from the living room to the kitchen next door. The
door is closed. You could open the door and walk through; or you could take a
battering ram and break through the wall. Both sequences of actions will get you
to the kitchen, but one will have more serious side effects than the other. Some
consequences of your actions will be unavoidable if you are to attain your goal -
for example, if you are in the kitchen, you will no longer be in the living room.
Some consequences will be not inevitable, but tolerable - for instance, you might
not mind that the door handle squeaks when you turn it. Some consequences can
be eliminated - for example, you may not like the door being open, but if so, you
can shut it again once you're in the kitchen. Finally, some consequences will be
undesirable and difficult to eliminate - such as the destruction of the wall.

In the classic literature on logic-based planning, (eg. [3], [4]) there are two
attitudes to side effects. The first is that a plan should produce the goal with NO
side effects, in which case there is no plan which will take you from the living room
to the kitchen. The second is that as long as the goal is reached, side effects do not
matter, in which case you will have to extend yor - original simple goal of moving
from one room to another, or else you may end up minus a wall. We argue that for
some applications of computer-assisted planning it is more natural and flexible to
allow some side effects, but not others, and to determine via a dialogue with the user
which of the side effects are tolerable. In this paper we describe a way to achieve

this.

141

3 Theoretical Framework

In this section we present the theoretical framework of the plagn'mv;‘ e 1effe.ct
analysis problem. The logical language used is first order predicate calculus in
Clausal Normal Form, of which Horn Clauses are a subset.

1. There is a theory T, which is a set of H'orr% clauses, and a set of mtdegnti
constraints I, where each integrity constraint is a cla.use. (Although wsd o 1310
have negation as failure in the language, it can be. sunulz?,te.d by anha gctlvi
style transformation. We omit the details here, since this is not the point o
the paper). ~ .

An integrity constraint is allowed to be broken temporarily in thelmlddle of a
plan, but must be satisfied by the state reached at the end of a plan.

9. There is a set B of eztensional predicates; this is just the set' of predica,’cesf
- in the language of the Horn clause theory which do not oceut in th.e }?ead o
any clause in T. The set of positive ground atoms whose predicate is in B is

denoted by B*.

3. There is a set A of possible actions, each actif)r_x a € Ahas a set frc(q)
. of preconditions and a set Post(a) of postconditions. All the conditions in

Post(a) are in B U {=b* : b" € B*}.

4. There is an initial state sg, which is a subs‘et 'of Bt such that sg+T+I is
consistent. The interpretation of so is that it is the state of the system in
which a condition is true iff it is true in the minimal model of T+so.

5. There is a goal G.

A sequence of actions < a1, ay,...,0k >ﬁifnducesh ek

> iff foreach 1 <1 < k,
a sequence of states < 5o, $1,---, Sk L: S
s; = (si_1 U (positive atoms in Post(a;)) \ (positive atoms whose negation 1s 1t
1 11—
Post(a; ' o
A seéuir?le of actions < ay,a,,...,a, > is possible iff it induces < sg,slli‘. oSk >
and f:)r each i, each condition in Pre(a) is true in t}?e I.m‘m,mal 4model of +si_1.>
A sequence of actions < a1, as,...,a; > satisfies G iff it induces < sg, S1,---, Sk >,

- it is possible, and G and I are true in the minimal model of T+s;. In general there

may be more than one plan which satisfies G. (Or there may be none.)

4 Example

This section gives an example of the kind of plainning problem tha.}tl we v:;lll ad;inr:f)i ;IT
this paper. It is a simplified version of a plfLDILlI.lg problem that t e:G aud o‘rs.stration
tered when using the techniques described in t‘hls paper to do remote admini

of a UNIX workgroup. Variables are written in upper case.

142

T - .
The éllze;ze Jx\ﬁo mlzun.dklngzgsEl o; zb]ects considered in this example, users and files
: quely 1aentified by their pathnames, which will b ’ .
. . ’ d '
ganabl;: PN. Users are uniquely identified by their user IDs. U;ers :Jszn}f;;ed oy the
eno‘i;e by the vana,.bl_e N, which can change. A file can be read by o n? o
owned by that user, if it is world-readable, or if the user is su S
Theory T is the theory : pereer
cangead(N,PN) « ownsFile(N,PN)
canRead(N,PN) « isUserName(N), isFil i
, : , e(PN), readabili
canRe;lid(N,PN) « isFile(PN), isSuperUse(r(Ni roadebiiy(PR,worid
ownsFile(N,PN) « userID(N,ID), IDofOwner(PN,ID)
%sU.serName(N) « userID(N,ID) ’
isFile(PN) « IDofOwner(PN,ID)
A file can be owner-readable or
world-readable. It is possible t %
i(:ltj(on Tdﬁle, for safety reasons; a file can change between the states (fWEZr-ra S:l;aglls
o wor —reada})le only if its status is unlocked. For security reasoﬁs ’cheeal'a :
o egrity constraint expressing the condition that at the end of a se uen::e fre tions
eIonly user who can be super-user is the user with user IDO : 7 eetions
dnt.e‘grlty Constraints The set of integrity constraints I ié
r;zg ability(PN,owner) v readability (PN, world) « isFile(PN)
(I 1=ID2) « readability(PN,ID1), readability(PN,ID2)
(ID1=ID2) « userID(N,ID1), userID(N,ID2)
g\glzl\;%) ;— userID(N1,ID), userID(N2,ID)
=ID2) « IDofOwner(PN,ID1 IDt;fO
userID(N,0) « isSuperUser(N)) neerPIDY)
Extensional predicates The set i
e of extensional i i
{readablhty(PN,ID), userID(N,ID), IDowaner(Pnlg II]))r)edlcateS B
isSuperUser(N), statusLocked(PN)}. s
Actions
('I;}L::e. a,tcltions that are available include the following
rictly speaking, the descriptions below are not acti
g, lescrip of actions but 1 ;
they are turned into actions by substituting constants fo‘::r’nesacllll vac:f' a}ilon sehemate
statusLock(PN) eble)
Pre: —statusLocked(PN). Post: statusLocked(PN)
statusUnlock(PN) -
Pre: statusLocked(PN). Post: —statusLocked(PN)
, i Ilua,keWorldReadable(PN ,READ)
re: readability(PN,READ), (READ #world), —st
. y(PN, , , TstatusLock
Post: —readability(PN,READ), readability(PN warlcll)ls peked(ER)-
. makeSuperUser(N) ’
Pre: —isSuperUser(N), isUserName(N). Post: isSuperUser(N)
changeFileOwner(PN,ID1,N ,ID2))
Pre: IDofOwner(PN,ID1), userID(N,ID2), (IDI # ID2).
Post: IDofOwner(PN,ID2), ~IDofOwner(PN,ID1)

143

In the initial state, there is a file with pathname pn; the goal is to make this file
readable by the user with name miranda.
Initial state The initial state so includes the conditions
IDofOwner(pn,15), userID(kave,15), userID(miranda,10),
statusLocked(pn), readability(pn,owner).
Goal The goal G is just the condition canRead(miranda,pn).

Y

5 Generating a Sequence of Actions

Generating a sequence of actions to satisfy the goal is a two step process: first,
through back chaining, the top level goal is reduced to a number of extensional
goals which, if satisfied, would imply the top level goal. Then a planner is used to
find a sequence of actions at the end of which the set of extensional goals will be
satisfied. '
Our action planning system is different from planning systems described in the
literature [2] [3] [4] due to the following requirements, which add complexity to the

planning process:
1) Actions only have extensional postconditions, but the goal and the preconditions

of actions can be in terms of intensional predicates.
2) We allow integrity constraints which are in general expressed in terms of inten-
sional predicates. The sequence of actions generated must be such that at the end
of it, none of the integrity constraints are violated.

In the example, we start from the goal « canRead(miranda,pn)
and we resolve it with the clause canRead(N,PN) « ownsFile(N,PN)
we are left with the goal < ownsFile(miranda,pn)

We then resolve this goal with the clause

ownsFile(N,PN) « userID(X,ID), IDofOwner(PN,ID)

which gives us the goals «— userID(miranda,ID), IDofOwner(pn,ID)

which, when resolved with the assertion userID(miranda,10)
in the initial state, will give the goal «— IDofOwner(pn,10)
as the residue. Then we invoke the planner to generate a sequence of actions to
satisfy this residual goal. The planner would generate the action sequence ‘
<changeFileOwner(pn,15,miranda,10)> to satisfy this goal.

Notice that there are two levels of non-determinism in the planning process as
described above. Firstly, there is non-determinism in the reduction of the top level
goal to extensional goals. For example, if we had chosen the clause
canRead(N,PN) « isUserName(N), isFile(PN), readability(PN, world)
to resolve with the top level goal, we would have ended up with a different set of
extensional goals to be satisfied by the action generator. Secondly, there is the tra-
ditional non-determinism associated with choosing-actions to satisfy the extensional

- goals. Although in this example the possible actions are unique, in general there
can be more than one possible action or sequence of actions to satisfy the given set

144

of extensional goals.

It is not our purpose to give the details of the planning algorithm in this paper,
and the description above is included to provide a context for the side-effect detection
algorithm.

6 Detecting side effects

In our notation we list the postconditions of each action. These postconditions
will be the consequences that we consider. We don't attempt to describe all the
consequences of an action, just ones whose effects are necessary for planning purposes
and /or may be considered undesirable by the user. For example, changing the owner
of a file will involve changing some data base entry, and may increase or decrease
the number of bytes of data in the data base, but this effect is not recorded as a
postcondition of the action changeFileOWner(PN,IDl,N,IDQ).

We consider the reportable side effects of a sequence of actions to be those logical
statements which are in the union of the sets of postconditions of the actions, which
are true in the final state, which were not true in the initial state, and which are not
direct consequences of the goal (ie. they are mot logical consequences of T+G+I)
When we consult the user, it is these statements that we will present.

The choice of this set of statements rather than another to be the side effects
that we report to the user is to some extent a matter of taste. It could be argued,
for instance, that if a statement is originally true, becomes false during the course
of the sequence of actions, and then is made true again, then it should be reported

as a side effect; we do not do this, because we do not report anything which was

true in the original state. Moreover, it is possible that some of the statements we
report will be true in any plan which achieves the goal, although they are not logical
consequences of T+G+I. We choose to report such statements, because they may
be undesirable to the user. It is safer to give the user the chance of rejecting all
plans to move into the kitchen if there really is no way to do it from the given initial
state without knocking down the wall, than to go ahead with the battering ram.

How to calculate the reportable side effects

Given a sequence of actions < ai,...,a; > satisfying G, it is straightforward to
calculate the reportable side effects. This section gives a not particulary efficient,
but simple, algorithm which does this calculation. _

The algorithm takes as input not only the sequence of actions and G, but also a
set Allowed side effects. If there has been no communication yet with the user, this
set 1s empty. Conditions are added to it by the algorithm. After each iteration of
the algorithm the user has the option of designating some of the reported side effects
as OK and not worth reporting, and others as unacceptable. (The remaining side
effects may be generated by future plans, but if they are they will be reported to
the user.) The side effects that the user indicates are OK and not worth reporting

145

are added to the set Allowed side effects. A new goal is derived, which is just the
old goal plus the negations of all the unacceptable side effects. The new goal is
fed into the plan generator, which comes up with a sequence of actions to satisfy
the new goal (if it can find one); this new sequence of actions is used as input for
another iteration of the algorithm to find the reportable side effects, these effects are
reported to the user, and so on until the user is. satisfied or no sequence satisfying
the goal is found. "

1. Initialize the set R to the empty set, and counter to k.

2. Set P = Post(acounter) \ R-

3. For each post € P\Allowed side effects such T+G+I proves post, add post to
Allowed side effects and to R, and remove it from P.

4. Pick post € P. If neither post nor —post are in R, then add post to R.

5. Remove post from P. If P is nonempty, return to step 4. Otherwise go on to
step 6. ‘

6. If counter> 1 then decrease counter by one and return to step 2; else go on to
step 7.

7. For each post in RNAllowed side effects, remove post from R.

8. For each post in R N sq, remove post from R. For each negative post € R such
that —post ¢ so, remove post from R.

9. R is now the set of the reportable side effects. Report it to the user.

It is straightforward to check that at the beginning of step 7 the set R contains
exactly the conditions post which are not direct effects of the goal and are a post-
condition of some action a; where —post is not a postcondition of any of the actions
@11, G542, - -, k. It follows from the definition of s, that the side effects reported
to the user are exactly those conditions that are in a postcondition of one of the
actions, that are true in the state represented by sj and false in the state represented
by s¢, and that are not direct effects of the goal G.

The user has the option of adding conditions to the set Allowed side effects,
or changing the goal. There are occasions when changing the goal may be partic-
ularly useful. For example, suppose that a plan is generated with reported side
effect IDofOwner(pn,1). The user says that this is unacceptable, because he or she
doesn’t want the ownership of the file with pathname pn to move from its original’
owner, who has user ID 15. A new plan is generated with reported side effect ID-
ofOwner(pn,2). The user doesn’t like this either and a new plan is generated with
reported side effect IDofOwner(pn,3). The user now spots a pattern and adds the
condition IDofOwner(pn,15) to the goal. The effect of adding conditions to the set
Allowed side effects is that these will not be reported if they arise as side effects.
This doesn’t change the plans that are generated, but can make life simpler for the
user by ensuring that irrelevant information is suppressed.

An optional way of further simplifying the data reported to the user is to remove
side effects which are redundant because they are implied by other reported side
effects together with the integrity constraints. To do this, pick post in R and check
whether G+R \ {post}4—post violates any of the integrity constraints I. If it does,

146

remove post from R. Pick a new post in R which has not yet been checked, and
repeat, until all members of R have been checked.

This can be computationally complex, and suppresses the reporting of some side
effects which the user may actually want to know about, so we do not make it an
integral part of the side detection algorithm.

Using the planner and side effect analyser together

One advantage of the algorithm given above is that is possible to use it incrementally,
in conjunction with the plan generator. Suppose the plan generator produces a
sequence of actions which satisfies the goal starting from an initial state which is
not so but some other state sj. Steps 1-5 of the algorithm for side effect detection
can be used to find an interim set &' of side effects, equal to the value of R after
these steps. R’ is stored for later reference. The plan generator can then produce two
different sequences of actions which satisfy sq starting at initial state so. Now the
side effects of the two different plans to satisfy G (which have the same ending but
different beginnings) can be calculated, by setting R equal to R’ and applying steps
2-9 of the algorithm to the two sequences of actions to satisfy s;. More complicated
backtracking manoevres during the planning can similarly be followed without too
much recalculation by the side effect detector, by appropriate storage of partial
. results.

7 Discussion of the example

The goal of the example can be made true, for example, by
— transferring ownership of the file from kave to miranda;
— turning off the status lock and then changing the file to world-readable;
— making miranda super-user - but this violates one of the integrity constraints.
Suppose that the user had in mind changing the readability, rather than changing
the file’s owner. Here is an example of the steps that could be gone through by the
user, planner and side effect analyser;
1. Planner generates the simple plan <changeFileOwner(pn,15,miranda,10)>
2. Side effect analyser reports side effects IDofOwner(pn,10), ~IDofOwner(pn,15)
to the user i
3. User says that the effect —~IDofOwner(pn,15) is unwanted. The new goal
canRead(miranda,pn), IDofOwner(pn,15) is sent back to the planner.
4. Planner generates <statusUnlock(pn), makeWorldReadable(pn,owner)>.
5. Side effect analyser reports side effects
—statusLocked(pn), ~readability(pn, owner), readability(pn,world).
(If the optional step removing redundant effects from the set of reported effects were
used, then —readability(pn,owner) would not be reported.)
6. User says that the effect —statusLocked(pn) is unwanted, but that the other two
are OK. The conditions —readability(pn,owner), readability(pn,world) are added to

147

the set Acceptable side effects, and the goal canRead(miranda,pn),
IDofOwner(pn,15), statusLocked(pn)
1s sent back to the planner.

7. Planner generates
<statusUnlock(pn), makeWorldReadable(pn), statusLock(pn)> .
8. Side effect analyser calculates that there are.no reportable side effects. So the
plan is fine. A note of the plan is sént to the user; the plan'ls sch.eduleFL

This procedure for generating a sequence of actions which will _satlsfy the goal
may not in theory terminate. In practice, there is a parameter (?vhlc]'a the user can
change, default is 10) which is used to bound the number of actions in a sequence.
If the procedure fails to find any sequences with length 'less than the pa'rameter
satisfying the goal, the search i1s terminated. Sequences with to.o many actions are
undesirable because uncertaincies about the exact effects of actions are cumulative

when actions are performed in sequence.

References
[1] Bry, F. Intensional updates: abduction via deduction Proc. ICLP 90

[2] Denecker, M., Missiaen, L., Bruynooghe, M., Temporal reasoning with Abduc-
tive Event Calculus Proc. ECAI 92

[3] Chapman, D., Planning for conjunctive goals Artificial Intelligence Vol. 32, 1987

[4] Fikes, R. E. & Nilsson, N. J STRIPS: a new approach to the application of
theorem proving to problem solving, Artificial Intelligence Vol. 2, 1971

[5] Gelfond, M. & Lifschitz, V. Representing actions in extended logic programming
Proc. JICSLP 92

[6] Kowalski, R. A. Database updates in Event Calculus The Journal of Logic Pro-
gramming 12

[7] Phan Minh Dung, Representing actions in logic programming and its application
in database updates Proc. ICLP 93

L
;
g

Downward Refinement of Hierarchical Datalog Theories
F. Esposito, N. Fanizzi, D. Malerba and G. Semeraro
Dipartimento di Informatica, Universita degli Studi di Bari

Via E. Orabona 4, 70126 Bari, ITALY
Phone: +39 (80) 5443264

Fax: +39(80) 5443196
E-mail: {esposito, malerbad, semeraro }(@vm.csata.it

nico@lacam.uniba.it

Abstract. In theory revision, a fundamental operation is the specialization of incorrect theories,
In the paper, we propose a novel downward refinement operator Py, for hierarchical Datalog
theories, which is able to compute a set of most general specializations of an overly general
clause. We prove that the operator meets the fundamental properties of properness, local
finiteness, and completeness in the space of the Datalog program clauses ordered by therelation
of 8-subsumption under object identity. Experimental results show that Py 18 able 1o cope
effectively and efficiently with the task of revising logical theories for document classification.

Keywords. Theory revision, specialization, ©-subsumption, deductive databases, Datalog
theories.

1. Introduction

A theory T'may be incorrect because, given a new observation E, one of the following two
cases occurs: 1) E'is erroneously explained by the theory. Thus, the theory is too general and
needs to be specialized. 2) E is erroneously not explained by the theory. Thus, the theory
is too specific and needs to be generalized. In this paper, we limit to address the first
problem. Moreover, this problem is dealt with in a logical framework, since the theory is
represented as a set of hypotheses and in turn each hypothesis is a set of clauses expressed
in a first-order logic language. The solution to such a problem requires to perform a search
for a specialization (or downward refinement) 7" of the theory T such that £ is not explained
by T". This search aims at finding a minimal downward refinement of a theory [18]. The
same goal is pursued in the field of belief revision (8] and theory contraction [7]. Indeed,
in a logic-constrained belief revision approach, a contraction of a belief set with respect to
a new fact consists of a peculiar belief change, which requires the retraction of the
information causing the violation of consistency, when this property is regarded as an
integrity constraint.

In the following section, we briefly present the logic language used to represent
observations (examples) and theories. In addition to the basic definitions, the model of
generalization of 6-subsumption under object identity, called Oor subsumprtion, is formally

defined and compared to 6-subsumption. A novel downward refinement operator for 6 -

i

149

subsumption is defined in section 3. It satisfies relevant properties for refinement operators,
such as local finiteness, properness, and completeness [16, 2]. An example of application

of such operator to the real-world task of document classification is outlined in section 4.

2. The Representation Language B
Henceforth, we refer to [11] for what concerns the basic definitions of a substitution, positive
and negative literal, clause, deﬁniie and program clause, and normal program. Given a
first-order expression ¢, vars(¢) and consts(¢) denote respectively the set of the variables
and the set of the constants occurring in ¢. By logical theory we mean a set of hypotheses,
by hypothesis we mean a set of program clauses with the same head. In the paper, we are
concerned exclusively with logical theories expressed as hierarchical normal programs, that
is, as normal programs for which itis possible to find a level mapping [11] such that, inevery
program clause P(1,, ,,...,1) <=L, L,..L, the level of every predicate symbol occurring
in the body is less than the level of P. Another constraint on the language is that, whenever
we write about clauses, we mean Daralog (i.e., function-free) linked clauses [10].
Definition 1 (Linked clause) A clause is linked if all of its literals are. A positive literal is
linked if at least one of its arguments is. An argument of a positive literal is linked if either
the literal is in the head of the clause or another argument in the same literal is linked. A
negative literal is linked if at least one of its arguments occurs in a linked positive literal.
An instance of a linked clause is the following: C = P(x) <= O(x, y), O(y, z), = R(x, v)
C is linked since all its literals are linked. Conversely, both the clauses D = C - {Q(x, y)}
and F=C U {—R(v, w))} are not linked. Indeed, the literal J(y, z) is not link@d inD, whereas
—R(v, w) is not linked in . Henceforth, we will indifferently use the set notation and the‘
Prolog notation for clauses and with ICl we will denote the number of literals of a clause C.
Semantically, we adopt negation-as-failure rie [1] to define the meaning of a negated
literal in the body of a program clause.
The differences existing between examples and hypotheses are as follows.
e Each example is represented by one ground clause with a unique literal in the head.
e Each hypothesis is a set of constant-free program clauses with the same head.
An example is positive for a hypothesis if its head has the same predicate letter and sign
as the head of the hypothesis. Anexample is negative for a hypothesisifits head has the same

predicate as the head of the hypothesis, but opposite sign. Thus, more precisely, a negative

150

example is a generally Horn clause [9]. Subsequently, we define a quasi-ordering <, ,onthe
set LP of the Datalog linked program clauses . This ordering is inspired from the notion of
6-subsumption [12] and makes the assumption that terms denoted with different symbols
must be distinct (object identity). For instance, P(x) « Q(x, a), R(a, z) denotes the clause
P(i) —0(x,a),R(a, z), [x=a], [x#z], [a#z], under the object identity assumption.
Definition 2 (6,-subsumption ordering) Let C, D be two elements of LP. We say that D
O-subsumes C under object identiry (D 0,,-subsumes C) if and only if (iff) there exists a
substitution G such that D.6 c Cand 6 is @ one-to-one mapping. In such a case, we say that
D is more general than or equal to C (D is a generalization of Cand Cis g specialization
of D) under object identity and we write C <, D. We write C <g D when C S D and
not(D<, C) and we say that D is more general than C (D is a proper generalization of C)
orCi. 15 more specific than D (C is a proper specialization of D). We write C ~ orDs and we
say that C and D are equivalent clauses, when C < SgPandD <, C.
8,-subsumptionisa strictly weaker order relation than ©-subsumption. A thorough analysis
of 6,-subsumption as a generalization model can be found in [14].
A logical theory is incorrect if it is either inconsistent orincomplete. More formally, we
introduce the following definitions.
Definition 3 (Inconsistency) A theory T is inconsistent iff at least one of its hypotheses is
inconsistent with respect to (wrt) some negative example. A hypothesis is inconsistent wrt
a negative example N iff at least one of its clauses is inconsistent wrt N. A clause C is
inconsistenrwrtNiff there exists a one-to-one substitution 6 such thatthe following conditions
are satisfied: 1) body(C).c ¢ body(N), 2) — head(C).c = head(N)
where body(¢) and head(¢) denote the body and the head of a clause 0, respectively. If at
least one of the two conditions above is not met, we say that C is consistent wrt N.
Definition 4 (Incompleteness) A- theorj‘) T is incomplete iff at least one of its hypotheses
isincomplete wrt some positive example. A hypothesisisincomplete wrta positive example
P iff each of its clauses does not 0,-subsume P.
When a theory turns out to be inconsistent, the inconsistent clauses should be removed
and specializations of removed clauses should be added until the cons1stency property of
the theory is restored. These specializations are computed by adownward refinement operator.

Definition 5 (Basic definitions) Given a quasi-ordered set (T, <) and a clause C in T:

151

1) adownward refinement operator p is a mapping from T to 2%, p : T — 27 such that
forevery Cin T, p(C) is a subset of theset {De T1 D <C }

2) let p be a downward refinement operator, then
pP(C) ={C) - p(C)={DI3Ee p(C)and D € p(E))
p(C)=U_ pH(C)=pC)upi(C)u...u pY(C) ...

3) piscalled locally finite iff VC € T : p(C) is finite and computable
pis called properiff VCe T: p(C)c {De Tl D<C)}
pis called complete iff VC,D e T,if D < Cthen3IEst. Ee p'(C)and E~D
pis called ideal iff it is locally finite, proper and complete.

3. A Downward Refinement Operator

The downward refinement operator proposed in this section relies on the addition of a non-
redundant literal to a clause that turns out to be inconsistent wrt a negative example. The
space in which such a literal should be searched for is potentially infinite, thus an exhaustive
search is infeasible. We can formally define the search space as the partially ordered set (or
poset) (LP/~_, <), where LP/~ is the quotient set of the Datalog linked program clauses

and <_ is the quasi ordering relauon defined in section 2, which can be straightforwardly

cxtcmcined to equivalence classes under ~g [14]. Henceforth, we will always work on the
quotient set LP/~, and, when convenient, we will denote with the name of a clause the
equivalence class it belongs to.

The search strategy used to solve the problem of downward refinement takes advantagc
of the structure of the search space. The search is firstly performed in the space of positive
literals, containing information coming from the positive examples. When the search in this
space fails, it is extended to the space of negative literals, built by taking into account the
negative example wrt which the hypothesis turned out to be inconsistent.

Firstly, given a hypothesis H whichis inconsistent wrtanegative example N, all the clauses
of H that caused the inconsistency are detected. For each inconsistent clause C, let us
suppose that the subset of the positive examples 6 -subsumed by C were {P, P,,..., P }.
The search aims at finding one of the mosr general downward refinements under object
iaenﬁty of C against N given P, P,,..., P, denoted with mgdr,(C,N /P, P,,..., P). ’I"he
set of the most general downward refinements under object identity of C against a negative

example N, denoted with mgdr (C, N), is defined as follows.

152

mgdr,(C,N)={ MIM <,,C, M consistent wrt N, VD D <,,C. D consistent wrt NV :
' not(M <,,D)}
while the set mgdr, (C,N /P, P,,..., P)is defined as the subset of mgdr,(C, N) made up
of all the clauses that 8, -subsume the positive examples P, P,,..., P . Formally:
mgdr,(C,N|P,P,...P)={Me mgdr, (C,N)| PsyM,j=12,.... n}
Throughout this section, we shall denote with C a clause that needs to be specialized,
since it is inconsistent with respect to an example N. More precisely, the body of C needs
to be subjected to a suitable process of downward refinement. Let us consider the problem
(C,N|P,P,..,P)

Since the downward refinements we are looking for must satisfy the property of maximal

of finding one of the clauses in the set mgdr,
generality, it may happen that the specializations of C are overly general, even after some
refinement steps. This suggests the possibility of further exploiting the positive examples
in order to specialize C. Specifically, if there exists a literal that, when added to the body
of C, is able to discriminate from the negative example N that caused the inconsistency of
C, then the downward refinement operator should be able to find it.

The process of refining a clause by means of positive literals can be described as follows.
Foreach P (i=1, 2,..., n), let us suppose that there exist n, distinct substitutions such that C
O -subsumes P,. Then, let us consider all the possible n-tuples of substitutions obtained by
selecting one of such substitutions for every positive example. Each of these substitutions
is used to produce a distinct residual, consisting of all the literals in the positive example
thatare notinvolvedin the € -subsumption test, after having properly turned their constants
into variables. Formally, a residual can be defined as follows.

Definition 6 (Residual) Let C be a clause, E an example, and)2 one-to-one substitution
such that body(C).0; < body(E). A residual of E wrt C under the mapping G,, denoted by
Aj(E, C), is the following set of literals. A).(E, o= bod’y(E).gj.‘1 - body(C)

where c_sj'l is the extended antisubstitution (or inductive substiturion) obtained by inverting
the corresponding substitution G, Indeed, an antisubstitution is a mapping from terms into
variables [15]. When a clause C 6 -subsumes an example E through a substitution G, then
it is possible to define a corresponding antisubstitution, ¢ *, which is exactly the inverse
function of ¢. Indeed, ¢'is a one-to-one function, due to object identity assumption. Then,

¢ ! maps some constants in £ to variables in C, that is: ¢ ": vars(C).c — vars(C).

153

It should be observed that not all constants in E have a corresponding variable according
106 . Therefore, for our purposes, we introduce the extension of 61, denoted with ¢ 7, that
is defined on the whole set of constants occurring into E, consts(E), and takes values in the
set of the variables of the language.

» 67c,) ifcye vars(C).o
g (c,)= .
otherwise

Henceforth, variables denoted by _ will be called new variables and managed as in Prolog.
The residuals obtained from the positive examples P, i = 1, 2,..., n, can be exploited to
build a space of complete positive downward refinements, denoted with P, and formally

defined as follows.

P= 0
=120 k=1,2,..0
jEL2m

Moreover, let us denote with Oj, j=1,2,...,m, all the substitutions which make C

Ajk(Pw C)

inconsistent wrt N. Let us define a new set of literals.
S= Uj=1,2,...,mAj(N’ (@)

Then, the following theorem holds :
Theorem 1. Given a clause C that 6,,-subsumes the positive examples P , P,..,P andis
inconsistent wrt the negative example N, then any linked clause C" = C U { ['}, with
le P-S,isinmgdry(C,N/P,P,...P).
{Cc1Cc=Ccu{l},leP-§} gmgdrOI(C,NIPI,PZ,,..,EH)

Note that [is an element of body(C'), since it is negated.
Proof. See Appendix A.

Theorem 1 states that every downward refinement built by adding a literal in P - S to the

Formally:

inconsistent clause Crestores the properties of consistency and completeness of the original
hypothesis.

Let us suppose now that the operator did not succeed in refining € wrt Nin a complete
and consistent way. In such a case, a change of representation must be performed in order
to search for literals in another space (the operator that performs this process is mainly a
transposition of a similar operator for VL, clauses to clausal logic [3]). Therefore, it is
necessary to define a new target space, called the space of negative downward refinements.

Given a clause C, an example N and the set of all substitutions Gj, j=1,2,...,m, such that

154

C1isinconsi wrt)
onsistent wrt N, the space of negative downward refinements, denoted with § , is the
n!

£ . .
ollowmf_g set of literals. S = neg(S) = ncg(uj=12 AN, C)
where, given a set of literals o={1,1 otes J

" l el }on21, neg(®) denotes the set of literals
1t =y, .., =1} As for the process of downward refinement by positive literals, we

are intert i i
ested into a specific subset of S, because of the properties satisfied by its elements

Such a .)
subset, called space of consistent negative downward refinements, is denoted with

S_ and is defined as foll
ollows. S, = neg(mH'zr_“mAj(N, C)

Indeed, it is possible to prove the following result:
Theorem 2. Given a clause C, an example N and the set of all substitutions 6. J=12,...m
such that C is inconsistent wrt N, then any ' : 1. wih
le S, isin mgdr,(C, N).
Formally: , {Cic=cufn,le S, } C mgdr,(C, N)
Note that /is a negated literal occurring in the body of C".
Proof. See Appendix B.

linked program clause C' = C U {1}, with

Theorem 2 easily extends to any linked literal / which introduces new variables due to

negation-as-failure rule. Generally speakin g, wecansay that, given aclause Cand an example

N such that C is inconsist
ent wrt NV due to som ituti =
e substitutions 9}., J=12,..., k, the search for

acomplete and consistent hypothesis can be viewed as a two-stage process: the former stage
searches into the space P - S, the latter into S.- By means of Theorems 1 and 2, we are now
able to formally define our novel downward refinement operator, denoted w;th P
Definition 7 (The downward refinement operator Por "

P LP -2 VC e LP:p,(C)={C'IC" =Ccu{]},le P-S)us)}
Theorem 3. The downward refinement operator P, is ideal. °
Proof. See Appendix C.

The ideality of the refinement operator p,, is owed to the peculiar structure of the search
space when ordered by the relation <, In the same search space ordered by 6-subsumption
an ideal refinement operator does not exist, as stated by the following result [16, page 3 15]"
"Theorem 10. A locally finite, complete and proper downward refinement operator forl
unrestricted search spaces ordered by 6-subsumption does not exist.”

This property is a consequence of the existence of uncovered infinite strictly ascending
chains of clauses in an unrestricted search space.

155

4. Application to Document Classification

The downward refinement operator has been applied in the area of document classification
[4], which is a crucial step in the task of electronic document processing. Some experiments
have been performed in order to empirically verify that the operator p oiseffective andetficient
to revise inconsistent theories. To this purpose, we implemented p, into INCR/H [5], an
incremental system for theory revision, and compared the theories produced by INCR/H to
those inferred from scratch by INDUBI/H [4], along two dimensions - predictive accuracy
and computational time.

The results obtained show that the operator p,is able to produce theories whose predictive
accuracy is statistically comparable to that of theories inferred from scratch. Nevertheless,
as expected, the overall efficiency of the process of theory inference results largely
increased. These promising results lead us to take into consideration the idea of integrating
the downward refinement operator into PLRS [13], the learning module of IBIsys, a
software environment for office automation distributed by Olivetti.

A thorough description of the application to document classification can be found in [6].

5. Conclusions 7
The problem of clause specialization is central to theory revision. It can be cast as a search

through a space of clauses ordered by a generality relation. We have proposed a downward
refinement operator that takes advantage of the structure of the search space in order to
restore the correctness property of a theory by finding its minimal specialization. An
extensive experimentation in the domain of office document classification has shown that

this operator is able to refine effectively and efficiently logical theories for document

classification.

References

1. Clark, K. L., Negation as failure, in Logic and Databases, H. Gallaire and J. Minker
(Bds.), Plenum Press, New York, 293-321, 1978.

2. De Raedt, L., Interactive Theory Revision, Academic Press, San Diego, CA, 1992.

3. Esposito, F., Malerba, D., and Semeraro, G., Negation as a Specializing Operator, in
Advances in Artificial Intelligence, Lecture Notes in Artificial Intelligence 728, P.
Torasso (Ed.), Springer-Verlag, 166-177, 1993.

4. Esposito, F., Malerba, D., and Semeraro, G., Multistrategy Learning for Document
Recognition, Applied Artificial Intelligence, Vol.8, No.1, 33-84, 1994.

10.

11.

12.

13.

14.

15.

16.

17.

18.

156

Esposito, F., Malerba, D., and Semeraro, G., INCR/H: A System for Revising Logical
Theories, in Proceed. of the MLnet Workshop on Theory Revision and Restructuring
inMachine Learning, ECML-94, Arbeitspapiere der GMD N .842, 8. Wrobel (Ed.), 13-
15, 1994.

Esposito, F., Fanizzi, N ., Malerba, D., and Semeraro, G., Revision of Logical Theories,
in Proceed. of the 4th Congress of the Italian Association for Artificial Intelligence,
Lecture Notes in Artificial Intelligence, G. Soda (Ed.), Springer-V erlag, 1995
(forthcoming).

Fuhrmann, A., Theory Contraction through Base Contraction, Journal of Philosophical
Logic 20, 175-203, 1991,

Gérdenfors, P., and Rott, H., Belief Revision, in Handbook of Logic in Al and Logic
Programming, Vol. IV: Epistemic and Temporal Reasoning, Chapter 4.2, 1992,
Grant, J., & Subrahmanian, V.S ., Reasoning in Inconsistent Knowledge Bases, [EEE
Transacrions on Knowledge and Data Engineering, Vol. 7, N.1, 177-189, 1995.
Helft, N., Inductive Generalization: A Logical Framework, in Progress in Machine
Learning - Proceedings of EWSL 87. I Bratko & N. Lavrac (Eds.), Sigma Press,
Wilmslow, 149-157, 1987.

Lloyd, I.W., Foundations of Logic Programming, Second Edition, Springer-Verlag,
New York, 1987.

Plotkin, G.D., A Note on Inductive Generalization, in Machine Intel ligence 5, B. Meltzer
and D. Michie (Eds.), Edinburgh University Press, 153 - 163, 1970.

Semeraro, G., Esposito, F., and Malerba D., Learning Contextual Rules for Document
Understanding, Proceed. afthe 10thConference onArtificiallntelligence for Applications
(CAIA'94), IEEE Computer Society Press, Los Alamitos, CA, 108-115, 1994.
Semeraro, G., Esposito, F., Malerba, D., Brunk, C., and Pazzani, M., Avoiding Non-
Termination when Learning Logic Programs: A Case Study with FOIL and FOCL, in
Logic Program Synthesis and Transformation - Meta-Programming in Logic, Lecture
Notes in Computer Science 883, L. Fribourg and F. Turini (Eds.), Springer-Verlag,
183-198, 1994.

Siekmann, J. H., An Introduction to Unification Theory, in Formal Techniques in
Artificial Intelligence - A Sourcebook,R. B. Banerji (Ed.), Elsevier Science Publishers
B.V. (North Holland), 1990.

van der Laag, P. R. J., and Nienhuys-Cheng, S.-H., Existence and Nonexistence of
Complete Refinement Operators, in Machine Learning: ECML-94 - Proceed; ngsofthe
European Conference on Machine Learning, Lecture Notes in Artificial Intelligence
784, F. Bergadano and L. De Raedt (Eds.), Springer-Verlag, 307-322, 1994,
VanLehn, K., Efficient Specialization of Relational Concepts, Machine Learning 4, 1,
99-106, 1989.

Wrobel, S., On the proper definition of minimality in specialization and theory revision,
in Machine Learning: ECML-93 - Proceedings of the E uropean Conference on
Machine Learning, Lecture Notes in Artificial Intelligence 667, Pavel B. Brazdil (Ed.),
Springer-Verlag, 65-82, 1993,

157

Appendix A.

Inorder toprove C' <, C, letus observe thatin the space (LP/~y, <5 the setofall co?sta.nt-
free generalizations of a clause C’ corresponds to the set 2, thus each proper generahzauon’
of C' has a number of literals less than the number of literals of C" [17]. Thcref'ore cccC
= (' <, C, ie. C'is a proper downward refinement of C under ©;-subsumption.

Let us show now that C"is consistent wrt N. First of all, observe that

Vj=1,2,..., m: ~head(C).6, = —head(C).6; = head(N).
Moreover,
Vj=1,2, ...,m: body(C').0, = body(C).8, = (body(C) L {1}).8,=
d 8 v {l}1.8 ,
?Zd;(-cgg; le{g Sgﬁ= Yo w0, ©) = Vi=1, 2, m le AN, C).
By definition of P, e P=1¢ C, then Vj=1,2,...,m: [¢ body(N)._Qj‘l =
N) = {1}.8. @ body(N).

'lrijeitl)c()):l):n; bacl{c a}tt_(Jl), we can conclude that: Vj=1, 2,..., m: body(C')ﬁj cz bod}.'(N).
This proves that C'is consistent wrtN. Indeed, any other substitution causin g theinconsistency
of C" would be a superset of 2 0, (=1, 2, ..., m) because of our assumption that they were

ituti | have just proved
the only possible one-to-one substitutions s.t. body(C).Oj cbody(N) and we justp:

ey

that each of them makes C’ consistent wrt N.
Now suppose that 3 F which is consistent wrt N and s.t. ‘
C'< F< C=ICT=ICH1>IFI2ICI = IFI=ICl. But F is a specialization of C, then it
or- —oil '
can be inferred that F ~,, C. Thus F is inconsistent wrt N, just as C.
According to the hypotheses of the theorem: -
the substitutions
Vik=1,2,..,n head(C).ij =head(P,) and body(C)-A(Tjk cbody(P) (ij are the ‘
that appear in the definition of P). 1
= : o=
leP=le mk=1'2'm.nAjk(Pk, C)=Vk=l12,.,nle body®) S,
Yk=1,2,..,n ngk € body(P). /
=1,2, ..., n Then, P, < _C"
Then, body(C').gzjk = body(C).gjk U [l}.c_sjkc; body(P), V k=1, f E
Appendix B.

As to the proof that C"is a proper downward refinement of C under 6, -subsumption, refer

to Appendix A.

158

Givenalinked program clause C’ =C U {1}, withl e S_,in order to prove thatC"is consistent
wrt]V, letus suppose (reductio ad absurdum) there exists a substitution o, s.t. C"isinconsistent
wrt N. Then, from definition 3, it results that; -
1) body(C").0, < body(N) 2) —head(C').6, = head(N)

As a consequence, o, is also one of the k substitutions that make C inconsistent wrt N. We
also have from the hypotheses of the theorem:

body(C').0, =body(C').g, = (body(C) L {I }.g, =body(C).g, L {I}.0,

with /€ S =neg(n_, AN, C)). But: '

{l}.0, 8.0, cneg(A,(N, €)).g, = neg(body(N).g, - body(C)).g,

= neg(body(N).g,".g, - body(C).g,) = neg(body(N) - body(C).g,) < neg(body(N)) and
{I}o, c body(C').g, = body(C").0, < body(N), according to 1).

But this is impossible since body(N) N neg(body(N)) = &.

In order to prove that C’is in mgdr,(C, N), it remains to demonstrate that:

VD, D <,,C,D consistent wrt N: not(C* <, D).

Suppose (ad absurdum) that there exists D s.t. D <,,C.D consistentwrtNand C’ < oD Then:
C'<, D =IDI<ICI=ICI+1 = IDILICI ' -)
But: D < ,C=IDI>ICL 3)
Therefore, from (2) and (3), it results: DI = ICI.

By hypothesis, C is a generalization of D, but the only consfant-free géneralizaﬁon of D
having the same number of literals of D is D itself. T‘hus, C =D and this is a contradiction
because C is inconsistent wrt N, whilst D is consistent wrt N by hypothesis. |
, O
Appendix C.
(properness)

P, is proper as a consequence of the definition of mgdr, (C, N) and of Theorems 1 and 2, :

Indeed, p,,(C) c mgdr,(C, N).

(local finiteness)

The choice of /in p,, is related to the construction of the sets S,PandS. Note that thé
number of one-to-one substitutions such that a clause C GOI—sﬁbsumcs a clause D is finite
and equal to lvars(D)l x (lvarsD)! - 1) X ... X (Ivars(D)! - vars(C)! + 1).

Itis worthwhile tonote that S _is an intersection of a finite number of residuals, by definition.

159

This number depends on the (finite) number of substitutions between the clause C to be
refined and the example N which causes the problem of inconsistency. In turn, each residual
is a finite difference-set of literals between two clauses. Thus, S_is finite and computable.
P is also an intersection of a finite number of difference-sets between two clauses. This
number depends on the number of substitutions between C and the positive examples already
processed. Finally, the set S is the union of a finite number of difference-sets between two
clauses. This number depends on the number of substitutions between C and N. Since these
sets are both finite and computable, p,, is locally finite.
(completeness)
Let C, D be two clauses such that D <, C (C, D € LP). In this case, there exist some
substitutions 0},j=1, 2,..., 88t IAJ.(D, Ol=r.
Fora givenje {1,2,..., s}, let us consider the literals in Aj(D, C). Then, we may write D
as follows: D = C.o;u {1, L., 1 }, where lk.gj‘le A].(D, Chk=1,2,..,r
We can build the following set of clauses:
{Fh}h=0,1w_r, where F, = C.Gj Uil L. L} forh=0,1,...,7.
Note that: F)= C.c;and F = D.
In order to demonstrate the completeness property, it is to be proven that:
Vk=0,1,..,r-1:F, € p,(F)
Fora given k € {0, 1,..., r-1}, let us consider F, = C.o; Ol by L} = F,OALL)
Let us suppose now, without loss of generality, that the database of the available positive
examples is made up of the set {P , P,,..., P } and that N, is the negative example which calls
for the downward refinement operator g,
If 1, ,is a positive literal in the body of F, , then, by looking back at the definition of p,,,
we note that we are able to build the sets P and S such that /€ P - S, and then
F,,=F v{lJe p,F) In fact, the set P depends on the positive examples
{P, P,..., P}, and the set S depends on N,, which can be chosen in such a way that
I, gA4(N,F,)for each substitution ¥, between N, and F causing F, to be inconsistent wrt
N, a
If 1, , is a negative literal in the body of F, ,, then by definition of p,,, we are able to build
the set S_, which in turn depends on N, and F, in such a way that/, € neg(A (N, F,))for

each substitution ¥, above.

O

Integrity Constraints Evolution in
Deductive Databases

Danilo Montesi* Franco Turini
Department of Computing
Imperial College
180 Queen’s Gate
London SW7 2BZ, UK

d.montesi@doc.ic.ac.uk

Dipartimento di Informatica
Universita di Pisa
Corso Italia 40

56125 Pisa, Italy
turini@di.unipi.it

Abstract

Integrity constraints evolution refers to constraints that can change over
time. Integrity constraints form a unit called integrity constraints theory that
is expressed through a Horn logic language. Unfortunately, integrity con-
straints evolution mirrors the problem of updates in logic programming. In
this paper we introduce a new approach to constraints evolution for deduc-
tive databases extending the traditional Datalog language to accommodate
integrity constraints. We consider permanent and temporary constraints. The
-temporary constraints are defined in a query, that is they hold only for that
query, while the permanent constraints are defined in rules database, that is
they hold forever. Thus different queries can have different temporary con-
straints and this allow their evolution. We propose a language for integrity
constraints evolution in deductive databases that is an extension of Datalog
and we provide its operational semantics. Our approach turns to fit in already
developed methods for efficient constraints checking.

“The work of this author has been partially supported by the EU Human Capital and Mobility
Compulog-Group grant N. ERBCHBGCT930365.

161
1 Introduction

Deductive databases use a uniform and declarative language to express several
database concepts such as data, views, queries and integrity constraints [6]. The
traditional approach consider data and views together as the database and the in-
tegrity constraints as a separate component to express the meta data or ‘knowledge’
that a database must satisfy. However, despite the language uniformity, there are
several limitations, among which the difficulty to express in logical term the evo-
lution of data and integrity constraints. The problem of evolution/updates of the
data even if not satisfactory solved (specially for views) have been approached [1].
Many approaches have been proposed to extend logic languages to accommodate
updates [2]. Some of them are based on logics involving time, others just try the
smooth integration of updates and declarative query languages [4, 9].

The problem of integrity constraints evolution, instead, remains largely unex-
plored. The fact that integrity constraints are expressed through Horn logic language
lead to consider Horn clauses evolution/update, that as we have said, has not been
properly solved. Thus the logical nature of integrity constraints does not allow to
consider evolving integrity constraints in a logical framework. Evolving constraints
are not fixed once and forever. Instead they can change over time to reflect different
changes in data semantics expressed through integrity constraints [14]. Such evolv-
ing constraints are useful in the prototyping phase of the development of a database
system or for many applications where the domain knowledge changes very often.
The fact that integrity constraints evolution have been little attention is also related
to the traditional database view where integrity constraints are fixed and the most
important research issue is the efficient detection of constraint violations [5, 13, 15].

In this paper we investigate the problem of handling evolving integrity constraints
[11]. We do not aim at solving the problem of updating constraints. Indeed, we do
not allow the integrity constraints updates, but to define them in a dynamic contest.
Traditionally a deductive database has three components: a query @, a database DB
and an integrity constraints theory JC. The basic idea of our approach is to define
integrity constraints in two different components, splitting the integrity constraints
IC into permanent and temporary ones (IC, and IC, respectively). The former
are accommodated into the rules database giving rise to a new database containing
data and meta data, called DB'%. The latter are combined into the query giving
rise to a new query @Q'%. The possibility of allowing changes to (part of the)
constraints relies on the fact that the query is a dynamic component of the system.
The rules database, instead, is assumed to be a time invariant component. Thus
the constraints defined in the query are temporary, that is they hold only for such
a query. A new query can embody different (temporary) constraints. The resulting
integrity constraint theory (IC.) is built starting from the temporary ones (defined
in the query) and enriching them by means of the involved constraints of the rules
database. The involved constraints are those which are defined in the rules database

162

and which are used for the evaluation of the query. Permanent and/or temporary
constraints may be empty. Putting all the constraints in a query allows one to
change all of them in the next query, while storing them in the rule database does
not allow any change, but new constraints can be added in a new query. Any trade
off between these extreme situations is possible. Flexibility, that is more temporary
constraints and less permanent constraints is paid in terms of computational effort
for constraint checking.

The contribution of this paper is to extend the traditional Datalog language to
allocate temporary and permanent integrity constraints. The resulting Datalog?®
language allows to express constraints evolution extending the Datalog language.
Then we define the operational semantics for Datalog’® and show that our approach
can be used together with already developed methods for efficient constraints check-
ing. Finally we discuss the trade off between flexibility and efficiency of the language
altogether with further extensions considering updates to the data.

In the following we assume some knowledge of Datalog language and database
concepts [16]. The remainder of this paper is organized as follow. Section 2 provides
several examples. Section 3 introduces the Datalog’® language. Section 4 introduces
the semantics and Section 5 discusses several issues related to efficient constraints
checking and the use of knowledge in query optimization. Finally, section 6 contains
some concluding remarks.

2 An overview of our approach

The classic view considers the database as a component storing data (intension-
ally or extensionally) and consider the integrity constraints as another component
(usually separate) storing knowledge. Therefore, even if data, views and integrity
constraints can be expressed by means of the same logic language, they are regarded
as different components as shown in the next example.

Example 2.1 Consider the intensional database (IDB) describing high and medium
sale departments as those that have the sale volume in a fized range. Consider the
permanent constraint (IC,) “no departments can be on the floor f2 and f6 and the
sale of a department must be greater then 0” and the temporary one (IC;) “no de-
partments can be on the floor f8 and f/ and the sale of a department must be greater
then 07. 1

!We denote in the examples in bold the formula that denotes knowledge.

163

IDB = Hsaledept(Depno,Mgrno,Floorno, Item, Vol) «—
Dept(Depno,Mgrno,Floorno),
Sale(Depno, Item, Vol), Vol > 80000,

Msaledept(Depno,Mgrno, Floorno, Item, Vol) «
Dept(Depno,Mgrno,Floorno),
Sale(Depno, Item, Vol),
Vol > 20000,Vol < 50000.

IC, = « Dept(X,Y,12),Dept(X,Y,18).
— Sale(X,Z,V),

IC; = « Dept(X,Y,£3), Dept(X,Y,f4).
~— Sale(X,Z,V),V > 0.

The labels of the constraints reflect the permanent/temporary status that the pro-
grammer has in mind. In order to have a formal model for the evolution of such
knowledge we should be able to have a logical model for the evolution of Horn
clauses used to express the temporary constraints. As we have said this, is an open
problem [17]. We approach this problem associating the permanent constraints with
the intensional database and the temporary constraints with a query. The former
constraints are permanent, since that part of the database is not assumed to change.
The later constraints are temporary since queries can change over time. Thus differ-
ent queries, in general, will have different integrity constraints associated to them.

Example 2.2 Consider the transformed intensional database where the knowledge
is associated to rules bodies inside {...}. o

IDB'% = Hsaledept(Depno,Mgrno,Floorno, Item, Vol) «—
{— Dept(X,Y,f2), Dept(X, ¥, £6),
— Sale(X, %, V),V > 0}
Dept(Depno,Mgrno,Floorno),
Sale(Depno, Item,Vol), Vol > 80000.

Msaledept(Depno, Mgrno,Floorno, Item, Vol) «
{+~ Dept(X,Y,f2), Dept(X, Y, f6),
— Sale(X,Z,V),V > 0}
Dept(Depno, Mgrno, Floorno),
Sale(Depno, Item,Vol),
Vol > 20000,Vol < 50000.

164
The informal reading of a rule of the form H « {ICy,.. L ICL} B, ..., By, is
that H is true if By,..., By, is true and the database satisfies I1Cy,...,IC,. We
recall that a database DB satisfies a set of integrity constraints IC if DB = IC;
for each IC; in IC, otherwise DB violates IC.

Example 2.3 Temporary constraints can be defined in a query as follows

Q% =17 {« Dept(X,Y,3), Dept(X,Y,f4), — Sale(X,Z, V),V > 0}
Hsaledept(Depno,Mgrno,Floorno, shoe, 90000).

The evaluation of Q7 in IDB!% in addition to the binding for the query part
produces the resulting integrity constraint theory IC, = I Cp U IC;. Obviously, if
one or more constraints are defined both in the query and in the database there is
no way to ‘retract’ its effect.

Example 2.4 Consider the transformed intensional database I DBIC» of the Ezam-
ple 2.2 and _the query Q°, that is the query of the Ezample 2.8 with empty temporary
constraints. This lead to the resulting integrity constraints theory IC, = IC, that is
different from the previous one due to the empty temporary constraints.

Let us now consider the evaluation process of a query. It has two phases. The
first phase is the query-answering where the bindings (for the variable of the query
part) are computed and integrity constraints are collected and their consistency is
checked. The second phase is the constraints-checking.

Example 2.5 Consider the query

Q% = 7 {~ Dept(X,Y,f3), Dept(X,Y,f4)}
Hsaledept(Depno, Mgrno,Floorno, shoe, 90000),

the database IDBCr of Example 2.2 and the state EDB = Dept(9, 2,£2),Dept(6, 1,£4),

Sale(9, shoe,90000), Sale(8, book, 120000). The query-answering phase computes

the bindings Depno/9,Mgrno/2,Floornr/£2 and the resulting integrity constraints
theory, that is

IC, = + Dept(X,Y,f2), Dept(X, Y, f6).
«— Sale(X,Z,V),V > 0.
« Dept(X,Y,f3), Dept(X,Y,f4).

The constraints-checking phase verifies if IC, satisfies EDB.

In the above example IC, is not violated in EDB, but is violated in EDB’ =
EDBUDept(6, 1,£3). Instead the query Q° computes as resulting constraint theory
IC, which is not violated in EDB'.

At this point we should clarify some points about integrity constraints. First the
permanent constraints inherit all the classic results such as the efficient constraints

165

checking [5]. This due to the fact that the required hypothesis hold: permanent con-
straints are assumed to be consistent and they are satisfied in the current database
state. The second hypothesis allows to check integrity constraints only on the dif-
ference between the current state and the next state. The second point is related
to the role of integrity constraints that are seen as global invariant property of the
database. Our approach instead, gives to permanent constraints the status of lo-
cal property, that is local to the rule where they are defined. Thus the database
programmer should take the responsibility to locate the integrity constraints in the
rules. all rules... This can be seen as a step back with respect to the current sit-
uation, but it is not. Indeed, this process to ‘attach’ integrity constraints to rules
can be done automatically and it is not visible to the programmer once that the
temporary/permanent status of constraints are specified leaving to already devel-
oped techniques the work to decide where to locate integrity constraints [3, 8]. This
process often called semantic query optimization allow to exploit the permanent
constraints for efficient query evaluation. We do not discuss this process since it
is beyond the scope of this work and is an ongoing research. The important point
is that for efficient constraints checking we can take advantage of already available
methods while achieving knowledge evolution. This is due to the fact that our ap-
proach grows on top of those methods. even if they do not allow to accommodate
temporary constraints. Thus our approach can take advantage of those techniques
for efficient computation in a more dynamic framework that allow us to model
knowledge evolution.

Finally, our approach leads to another possible optimization. Since, we already
know that the permanenf constraints does not violate the current database we have
only to check the temporary part of IC,. It might also happen that the temporary
constraints are (partially) included in the permanent one.

3 Datalog’®

We introduce a rule-based language corresponding to the language informally
introduced by means of examples in Section 2. The extensional database (EDB) is,
a set of extensional ground atoms, while the intensional one is a set of rules of the
form

H « {IC],.‘.,ICn}Bl,...,Bm

where By, ..., B, (as in Datalog) is the query part which cannot be empty, H is an
intensional atom and ICj,...,IC, is the integrity constraint part. The two parts
do not share variables. We consider only constraints that are denials where all the
variables are universally quantified and they are built from extensional literals. A
query is a rule with no head of the form ? {IC,,...,1C,}B,..., Bn. A Datalog’®
database DB consists of the extensional database and of the intensional database.
Note that the above language is an instance of constraint logic programming [7]

166
4 Semantics

The operational semantics of Datalog’® is given below in Natural Deduction
style. For any database DB and a query @), we denote by DB t4 @ the fact that
there is a top-down derivation of @ in’ DB with answer §. We reserve the symbol ¢
to denote the empty (identity) answer. The top-down derivation relation is defined
by rules of the form

W[Conditions]
Conclusion
asserting the Conclusion whenever the Assumptions and Conditions hold. A relation
DB kg Q holds if it is the first of a finite sequence of similar relations such that
each is a consequence of some of the relations following it in the sequence according
to the rules discriminated below

DB O

DB,k {IC1}B, DBV, {IC3)}B,
DB Fo, {1Cy,1C5) By, B,

DB, F, {IC1}B,
DB g, {1Cy,1C5) B,

The first rule states that an empty goal is derivable in every database with empty
answer. The second rule states that to derive a non-empty conjunct you have to
derive each conjunct in turn. The third states that to derive a query you have to
reduce it to the body of a rule.

The above three rules can be used to implement an interpret of the proposed
language to evaluate a query. In the third rule the constraints violation is checked
through any of the already developed systems verifying if the condition EDB E
IC4,1C, holds. This may lead to inefficiency and therefore an incremental con-
straints checking is required as discussed in the next section.

5 Discussion

As we have said, efficient constraints checking can be realized for the permanent
constraints due to assumption that the integrity constraints are satisfied in the
current database state [5]. Unfortunately, none these methods can be applied to
the temporary constraints for which we have to check that they are satisfied in
the current database state and that they are consistent among them and with the

[H « {IC3}B; € DB,o = mgu(By, H) and EDB |= ICy,ICy]

167

permanent constraints. This expected (negative) result underlines the trade off
between temporary and permanent constraints. Temporary constraints checking is
expensive and hard to optimize due to their dynamic nature.

However, it is possible to improve the efficiency of the resulting integrity con-
straints checking (incrementally) only the temporary one with respect to the current
database state. It might also happen that the temporary constraints are (partially)
included in the permanent one leading to some further optimization.

There is another interesting point about integrity constraints (and updates).
Traditionally, integrity constraints are checked to verify if the update leads to a state
which satisfies them. If this is not the case the updates are rejected. Such updates
are very often seen as external agents which change the database state. It would be
interesting instead to express in addition to integrity constraints also updates in rule
bodies. LDL for instance allow updates in rule body [12]. In this case we can link
together the integrity constraints and the potential source of constraints violation,
namely the updates. This should allow to be updates driven in the checking process
and thus more efficient while keeping the temporary constraints. This is the case of
integrity constraints in active databases [10].

6 Conclusion

We have seen a new approach to dynamic constraints definition. The main
advantage of this approach is to allow permanent and temporary constraints in a
logical and clean framework that allow to apply already known constraints checking
methods.

References

[1] S. Abiteboul. Updates, a New Frontier. In M. Gyssens, J.Paredaens, and
D. Van Gucht, editors, Proc. Second Int’l Conf. on Database Theory, volume
326 of Lecture Notes in Computer Science, pages 1-18. Springer-Verlag, 1988.

[2] A. J. Bonner and M. Kifbiber. An overview of transaction logic. Theoretical
Computer Science, To appear, 1994.

[3] U.S. Chakravathy, J. Grant, and J. Minker. Logic-Based Approach to Semantic
Query Optimization. ACM Transaction on Database Systems, 15(2):162-207,
June 1990.

[4] W. Chen. Declarative Specification and Evaluation of Database Updates. In
C. Delobel et al., editor, Proc. Third Int’l Conf. on Deductive and Object-
Oriented Databases, pages 147-166, 1991.

(5]

(6]

(7l

(8]

(11]

[16]

[17]

168
H. Decker. Integrity Enforcement in Deductive Databases. In Proc. Int’l Conf.
on Erpert Database Systems, pages 271-285, 1986.

H. Gallaire, J. Minker, and J. M. Nicolas. Logic and database: A deductive
approach. ACM Computing Surveys, 16(2):153-185, June 1984.

J. Jaffar and M. J. Maher. Constraint Logic Programming: a Survey. Journal
of Logic Programming, 19:503-581, 1994.

A.Y. Levy and Y. Sagiv. Semantic Query Optimization in Datalog Programs.
In Proc. of the ACM Symposium on Principles of Database Systems. ACM, New
York, USA, 1995. To appear.

S. Manchanda and D. S. Warren. A Logic-based Language for Database Up-
dates. In J. Minker, editor, Foundation of Deductive Databases and Logic Pro-
gramming, pages 363-394. Morgan-Kaufmann, 1987.

D. Montesi and R. Torlone. A Rewriting Technique for the analysis and the
Optimization of Active Databases. In G. Gottlob and M. Y. Vardi, editors,
Proc. Fifth Int’l Conf. on Database Theory, volume 893 of Lecture Notes in
Computer Science, pages 238-251. Springer-Verlag, 1995.

D. Montesi and F. Turini. Knowledge Evolution in Deductive Databases. In

Int. Symposium on Knowledge Retrieval, Use and Storage for Efficiency, 1995.
To appear.

S. Naqvi and S. Tsur. 4 Logic Language for Data and Knowledge Bases. Com-
puter Science Press, 1989.

J-M. Nicolas. Logic for Improving Checking in Relational Data Bases. Acta
Informatica, 18(3):227-253, 1982. Springer-Verlag.

X. Qian and G. Wiederhold. Knowledge-based Integrity Constraint Validation.
InY. Kamabayashi, editor, Proc. Twelfth Int’l Conf. on Very Large Data Bases,
pages 3-22, 1986.

F. Sadri and R. Kowalski. Integrity Checking in Deductive Databases. In
P. Hammersley, editor, Proc. Thirteenth Int’l Conf. on Very Large Data Bases,
pages 61-69, 1987.

J. D. Ullman. Database and Knowledge-Base Systems. Computer Science Press,

1989.

D. S. Warren. Database Updates in pure Prolog. In Proc. Int’l Conf. on Fifth
Generation Computer Systems, pages 244-253. Institute for New Generation
Computer Technology, 1984.

Declarative reconstruction of updates
in logic databases: a compilative approach

*

M. Carboni?, V. Foddai?, F. Giannotti!, and D. Pedreschi?

! CNUCE Institute of CNR
Via S. Maria 36, 56125 Pisa, Italy
e-mail: F.GiannottiQcnuce.cnr.it

? Dipartimento di Informatica, Univ. Pisa
Corso Italia 40, 56125 Pisa, Italy
e-mail: pedre@di.unipi.it

Abstract

Deductive database languages exhibit an evident dichotomy in the way they sup-
port queries and transactions. Query answering is based on declarative semantics
and fixpoint based (bottom-up) evaluation. Transactions are based on procedural
semantics and top-down evaluation, as for instance in the logic database language
LDL [NT88]. This paper presents a technique to compile updates on standard logic
programs to be evaluated with the usual bottom up evaluation mechanism. The
compilation is based on the concept of XY-stratification [AOZ93] which is a syntac-
tic property of non-monotonic recursive programs. XY-stratified programs use stage
arguments to integrate control on state transition within the deduction process.

Keywords. Deductive Databases, Logic Databases Languages, Logic Database Up-
dates, XY-stratification.

1 Introduction

Logic database languages use a declarative style both to represent knowledge and op-
erations on database relations. To coherently model the application domain, a deductive
database should also express its dynamically changing aspects. As a matter of fact, up-
dates are a primary concern of any database language.

. On the one hand, deductive databases naturally support powerful and declarative
query languages, and queries can be efficiently executed using a bottom-up, fixpoint-based
procedure. Also, sophisticated optimizations such as magic sets are available to capture the
advantages of top-down execution, when needed. On the other hand, deductive databases
traditionally suffer from limitations in describing the dynamic and transactional aspects
of database systems.

*This work has been carried out within the EC-US Cooperative Activity Project ECUS-033 - Deus Ex
MAcHINA.

