
116

ili the client receives the result and then associates it to its Remoteval.
To do it, we must enable a listening process that waits for a response
packet from any server and then unpacks the value, associating it to
the corresponding Remoteval.

~'~ we do not worry about packets that arrive to the client until the val
function is applied. At this moment, the client process must wait for
the packet corresponding to the Remoteval on which val has been
applied. While this packet does not arrive,

the client process unpacks other packets which were previously received
and associates them to their own Remotevals instead of remaining in­
active. This approach needs a process to store the packets corning from
the servers until they are processed by val.

The latter approach is more suitable than the former to our problem
because the subsystem used for the interprocess communication (PVM) offers
some facilities to store messages in its internai buffers, until the target process
wants to read them. Thus, we can use the PVM daemon to store packed
values until they can be processed by the val function.

In both cases, we must know which Remoteval corresponds to a given
response and how to access this Remoteval, since it is not necessary passed
as an argument to the val function. The former problem can be easil:y.
solved: it is enough to associate each request with an unique identifier which
is put both in the Remoteval and in the packet sent to the server, which will
send back the response packet with this identifier. In this way, a possible
implementation of the ADT may be:

type 'a Remoteval =Val of bool * int * 'a;;
(* flag * id * result-value *)

where bool is a :flag that points out if the result has already arrived, int is
the identifier of the request and 'a is the response value, if i t has already
arrived. This datatype, implemented a t low level, can modify itself (a mutable

·datatype) and holds an inconsistent value in 'a during the period of time
that the :flag has a false value. The access to the field 'a is restricted only
to the function val, guaranteeing the transparency of these changes in the
structure.

117

9
request~

9

~o
val

6
Figure 1: Success Figure 2: Fault

The latter problem can be solved by using a list which has all the Remotevals
whose results have not arrived yet to the client. We should include this list
into the data involved in the Caml Light garbage collector mechanism, so
that we can assure that this list will always have valid references to the
Remotevals in evaluatiòn all the time.

It will be enough to insert the Remoteval into the list when the client
makes the request in which it is createci. On receiving the response, the
Remoteval wìth the same identifier as the response packet must be searched
and then removed from the list. A t this moment, the response value, received
iim. the packet, is associateci to the field 'a in the ADT, ~n d the loc~ :flag. is
set t o true, enabling the access to the data field (a lockmg mechamsm hke
the one proposed in [10]).

Now we must think about the different moments in which the result of
the rem~te evaluation can be available in relation to the point in which its
value is required. We can identify three different temporal sit-uations:

., Case 1: Success. The server sends the result before the client demands
i t back. (figure 1). In this case, there is no problem because. when
val function is executed, in order to access the data encoded m the
Remoteval, the desired value, which has been received previously, is
obtained, although it may be stili packed. If the lock :flag is set to
true then the result is already stored in the data field of the ADT.
Otherwise, val needs to unpack and decode the result, build the value
'a and store it in the 'a Remoteval.

o Case 2: Fault. The server has not sent back the result yet when the
client requires it. (figure 2). In this case, val must stop the evaluation

118

9
request ----..9

..--o

Figure 3: Useless in scope Figure 4: Useless out of scope

until the packet containing the result arrives. The client process wait for any packet coming from any server, perforrning the unpacking 0~ the results of other ADTs received before the expected one arrives.

• Cases 3 and 4: Usele.ss. It is also possible that the result will never be used (an effect denved from the strict evalua.tion). In this case we never apply val on the obtained Remoteval. Moreover two cas ' be distinguished: ' es can

a) the case in w~ich the value is received in the scope in which its Remoteval exrsts (Useless in scope, figure 3)
b) an d the c~se in which the Remoteval is out of its scope when the result arnves (Useless aut of scope, figure 4).

In fact, this last case is not a problem if the result arrives before its ~em~te~al gets out of scope, since the client receives it, unpacks it associates Jt wrth rts Remote~al and then, when its ADT gets out of scope, the garba e collector removes rt from the heap. However, if the result arrives after t~e Remoteval has been removed from the Caml Light h · a · b . eap, a senous problem nses ecause we must rmplement a mechanism that should be able to det t the out-of-scope condition of a value and, later, stop the evaluation of :~e deferred value to avoid the access to a non-existing obJ'ect Thr's fa t · l' d'fi t' · " c rmp resa mo I ca wn m the syst~m of creation/destruction of values, and even in this cas:, a response may arnve from the server just before the arri val of the signal
;~eh ~top~ the serve: ev~uation process, perhaps due to the propagation . e bays ~n. t e comm~catwn across the network. The implemented solution rs ase m transforrrung the case 4 into the case 3, keeping the Remoteval

119

in scope until the arrivai of its result. This can be done using the list of Remotevals whose results have not arrived yet, as the presence in the list forces the garbage collector mechanism to a voi d the removal of the Remoteval from the memory (as there is one reference to the object at least). That is why the Remotevallist solves two problems simultaneously.

3 Distributed execution of processes
Our approach makes sense, that is, improves the computational time, only ìf the server or servers used resi de in several machines, the optimal situation being that in which each server resides on a different machine, with the client
in another computer.

In order to develop the approach, the PVM software package (Pamllel Virtual Machine) has been used. The package allows to simulate a multipro­cessor virtual machine with distributed memory on a set of machines which can have different architectures and that are connected by nets which can also be of several kinds, the only restriction being the need that all the com­puters involved run under the Unix operative system. PVM uses the message
passing paradigm, as most of the software of this kind [ll]. The client must use the function client_init to create the servers. This function takes as its argument an integer representing the number of servers the client wishes to use, an d returns a uni t value. In a similar way, the client must use the function client_exit, with type unit -> unit, when the servers are to be eliminateci, and so the distributed ev9oluation mode
exited. · The servers must also use a function called server_init to link to the
PVM system and communicate with the client.

The main loop of each server receives the requests an d orders the pertinent executions using the function get...next_req, which waits for the reception of a request and returns the identifier of the service required, which is used to ìndex the vector of servi ce functions. All these functions are of type uni t
-> uni t and have the following form:

let remote_func () =
let (xi, x2, ... , xn) get_args ()
in response (local_func xi x2 ... xn);;

120

where the function get_args unpacks the arguments of the service. These
arguments are used by the function that accomplishes the most important
work, called local_ <fune> in our example, whose result is packed and sent
to the client by the function response.

Since our system has a distributed memory, in the packets that the pro­
cesses interchange we must not send the pointers to the data to transmit,
but the data themselves. That is why we need to know the structure that
the Caml Light objects adopt internally, in order to be able to decode them
in the messages the client interchanges with the servers, and, later, rebuild
accurately those objects in the destination process. The functions that de­
velop these tasks are called, respectively, encode an d decade, and are located
both in the client and in the servers, since they all need to encode objects
for their sending, and unpack them for their processing (these functions are
identica! to those used in [8], but using the PVM packing primitives for the
basic types).

4 Transformation of a sequential code
In order to show our approach, we will show the modifications needed to
transform a program initially executed in a totally sequential fashion in an
equivalent code which can be executed in a distributed fashion. The program
selected, as simple as useless, is the following:

let sqr x= x* x;;
let addsqrs x y = (sqr :x:) + (sqr y);;

The obtention of a distributedly executable program from a sequential
one has two steps:

" Creation of the program corresponding to the servers or slaves from the
functions we want to execute in remote nodes (function level granular­
ity).

e Creation of the client or master program, that uses the services present
in the slave processes through the interface provided by the ADT
Remoteval, which guarantees the referential transparency and the de­
terminism in the program execution.

121

In the first step we create the functions to evaluate remotely, which will
consti tute the servi ce functions, using the tempia te presented in the preceding
section. In our example, in order to execute remotely sqr, we would use a
service function of the form:

(* services area *)
let sqr x= x* :x:;;

(* services interfaces area *)
let remote_sqr () =

let (x1) = get_args ()
in response (sqr xi);;

In order that the server can identify the service function required by each
request, these functions are included in a list or vector, which is possible due
to the fact that they all ha ve type uni t - > uni t, encapsulating the functions
that do the real work:

(* services table *)
let services_table =[l ... ; remote_sqr; ... IJ ;;

The main body of the server initiates the process (including i t in the PVM
virtual machine) an d manages the reception-evaluation-answering cycle of the
requests.

server _in i t O ; ;
let process services

while (true) do
services.(get_ne:x:t_req()) ()

dane;;
process services_table;;

In the second step we are to generate the interfaces for the remote func­
tions in the client, in such a way that if in the originai program we have a
function with type ' ai - > ' a2 - > . . . an - > 'b, the corresponding ne w
function will be oftype 'a1 -> 'a2 -> . . . an -> 'b Remoteval. In gen­
erai, the template to use will be of the form:

122

let <fune> (x1:<'a1>) (x2:<'a2>) ... (xn:<'an>) =
((request <remote_func_id> (xi,x2, ... ,xn)): <'b> Remoteval);;

In our example, the template form is:

(* remote interface area *)
let sqr (xi:int) = ((request <remote_sqr_id> (x1)): int Remoteval);;

The originai function is transformed, requesting the anticipateci evalua-
tion of all the remote functions at the beginning of the scope in which they
will be used and replacing the references to those values with the access
through val to the requests previously encapsulated in the Remotevals. In
our example:

let addsqrs x y let x_s = sqr x
and y_s "' sqr y

in val x_s + val y _s; ;

After this, it only remains to define the number of slave processes that
will parti cip ate in the computations with clienLini t before requesting any
remote evaluation. Vilben we desire to finish the calculations, we terminate
the slave processes with clienLexit.

client_init 2;;
addsqrs 2 4; ;
client_exit ();;

As an example to show the improvements that can be achieved using the
proposed approach, we have constructed a server which provides, among
others, an evaluation service of the well-known function of Fibonacci and a
client that requests the application of this function on the list of the i~tegers
from l to n, where n adopts the values 12, 16, 20, 24, 28 and 32. In each
proof the real elapsed times of computation required for a given value of n
using a normal Caml Light program have been compared vvith those obtained
using our approach. For the latter case l, 2, 4, 8 and 16 servers were used,
residing each one on a different machine. All the computers used were SU1\T
SPARCstations ELC. See table L

123

List Sequential Distributed execution l
SlZe execution l serv. 2 servs. 4 servs. 8 servs. 16 servs.

12 0.035 0.120 0.180 0.093 ! 0.137 0.817

16 0.240 0.351 0.248 0.189 0.206 0.191

20 1.641 1.804 1.137 r---o.-841 - 0.843 l 0.824
li.433 i -7.088

-··-1"'24 11.251 5.138 4.616 l 4.504
')O 7UOO 77.423 47.894 34.640 30.36l 29.807 l ""o

32 528.492 529.580 327.921 236.903 206.7'7? 202.495

Table l: Times for the sequential and distributed executions of the Fibonacci
function in seconcls

[1] Leroy, X. The Caml Lìght system, release 0.6 Documentation and 11ser's
manual, Project Formel, INRIA Rocquencourt., 1993.

[2] Mauny, M. Functional programming using Caml L-ight, Project Formel,
INRIA Rocquencou.rt, Sep. 1993.

(3] Leroy, X., P. Le Langage Caml, InterEditions, Pans, 1993.

[4] Cosineau, G., G. The CAML primer,

[5] Geist, Beguelin, Dongarra, Manchel, Sun ..
deram, V.S. PVM 3 User's Guide and
port Oak Ridge N ational Laboratory,

Technical Re ..
1993.

[6] Gulias, V.l\IL Grafica para nna implementaci6n del
constr·uida sobre entornos hete-rogéneos, l\IIaster thesis, Departamento
de Compu.taci6n, Universìdad de La Coru.iia, JuL 1994.

[7] Freire, J.L., Gulias, Iv1olinelli, J.M. Utilizaci6n de la progra.maci6n
funcional para la constr·ucci6n de servidores en entornos heterogéneos,
In Joint Conference On Declarative Programming
vol. 2, pp. 351-365, Sep. 1994.

[8] Gulias, Valderruten, lL Une interface distribué pour
le lambda-calcul par des Serveurs Fonctìonnels, In JFLA'95,
Il''miA Jan. 1995.

124

[9] Hudak, P. Para-Functional Programming in Haskell, In Paralell Func­

tional Languages and Compilers, ACM Press, pp. 159-196, 1991.

[10] Notes On Parallel Computation, In Structure an d Interpretation of Com­

puter Programs, Department of Electrical Engineering and Computer
Science, MIT, Dee 1990.

[11] Dongarra, J.J., Geist, G.A., Manchek, R., Sunderam, V.S. Integrated

PVM Framework Supports Heterogeneus Network Computing, Jan. 1993.

A Logic Language based on
GAMMA-like Multiset Rewriting

Paolo Ciancarini, Daniela Fogli*and Mauro Gaspari

Dipartimento di Scienze dell'Informazione
Università di Bologna - Italy

Piazza Porta S. Donato 5 - 40127 Bologna, Italy
E-mail: { cianca,gaspari}@cs.unibo.it

Abstract

This p a per describes Gammalog, a logic language based on multiset rewrit­
ing. The language combines the a.bility of describing parallel programs made

of multiset transformation rules as in GAMMA with the execution mode! of
logic programming in a strongly typed framework as in Godel. W e describe the

design choices, the synta.x an d the semantics of the la.ngua.ge, an d a prototype

implementation.

Keywords: Pa.rallel Logic Programming, Gamma, Multiset Rewriting.

l Introduction

Languages like FCP [19) and Pa.rlog [10) dea] with parallelisrh by adding ex­

plicit mechanisms for synchronization and communication to the logic programming

paradigm. These languages are basecl mostly on a mode] of parallel programming

called the stream-based process model: processes execute logic rules that can spawn

new processes communicating via strea.ms; special constraints on streams rule th~

synchronization among producer ancl consumer processes. An open issue for this

class of languages is to clefine a sa.tisfa.ctory moclel-theoretic semantics to provide a

declarative characterization of concurrency.

Recently, a paradigm of coordination based on the concepts of generative commu­

nication in a shared dataspace is becon:ting popular [14). Generative communication

means that processes use no channel to communicate: they simply output tuples in

a shared dataspace; processes which need input access the tuples associatively. Tu­

ples have a persistence, that is messages survive to processes which originated them.

"Daniela Fogli's current address is Dipartimento di Elettronica per l'Automazione, Università

di Brescia, Via Branze 38- 25123 Brescia, Italy, E-mail: fogli@idea.ing.unibs.ìt

126

Some languages have been proposecl which follow such a. paracligm, for instance:
Linda. [6], and GAMMA [3]. The sha.recl cla.ta.space mode] has also been investi"ated
in Jogic programming: Shared Prolog [5], !Liog [18] and LO [l] are examples o/'logic
languages based on shared dataspaces. Like the stream-based ones, these logic lan­
guages ha ve no standard model-theoretic semantics, even though some of them offer
a non standard declarative semantics. For instance the model-theoretic semantics of
J,Llog [18] is based on a notion of truth with respect to traces (e.g. truth depends on
the sequence of communication events whìch may occur during the computation).

In th1s paper we present Gammalog, a parallel logic language which provides
~ standard mode! theoretic semantìcs expressecl in terms of multiset rewritings as
m GAMMA. \Ve clescribe the semantìcs of the language and an implementation
based on Gode] [17]. The abstractions provìded by GAMMA are made available in
a logic programming framework, thus they benefit of all the classica] advantages of
this paradigm, in particular the ability to have executable specifications which are
proved to be correct by the underlying logic formalism. Moreover, the strongly typed
framework and the modularity which are inherited from Gode! provide the basis for
a rigorous approach to the design ancl the development of parallel programs.

Another advantage of Gammalog is to provi de an executable version of GAMMA:
Gammalog programs are compiled by the Gode! compiler. Thus, we provide also
a tool for practical experimentation with multiset rewriting as a programming
paradigm.

GAMMA programs are describecl in i.erms of multiset transformations without in­
troducing unnecessary sequentiality [3]. The basic data structure used in GAMMA
is the multiset. A multiset is just a bag containing items which are stored without
any constraint or relationship among one- another. The contro! structure associated
with multisets is the r operator; its forma] clefinition can be stated as follows

f((R, A))(Aì) =
ifìfx1, ... ,xn E J\1,~ R(xJ, ... ,.Tn)
then M
else let x1, ... , Xn E Jì;f, be such that R(x1 , ... , xn) in

f((R, A))(M- {xl, ... , Xn}) + A(x1, ... , :rn)).
where (R, A) is a pair of functions specifying the rewriting rule which can be applied
on the multiset. Risa reaction condition, namely a boolean function which specìf-ies
if the rule is applicable. A is an action, na.mely a multiset rewriting, executed when
the reaction succeeds. Opera.tiona.lly the r operator searches for a subset of M,
{ x1, ... , x n}, su eh that R(x1, ... , holds. \Vhen the reaction succeeds the elements
satisfying it are removed from the multiset and the action A(x 1 , ... , generates
new elements to be insertecl in the multiset. Otherwise, if no elements of _M satisfy
the reaction condition) ... , X n E Jì1, ~ R(Xj, ... , X n)) t be r operator terminates

127

and the result is M.
What follows is a GAMMA program which calculates the maximum element of

a set.
max_element(s) = f((R,A))(s) where

R(x, y) =x:::; y
A(x,y) = {y}.

GAMMA provides two operators which enable one to combine simple programs
and have been introduced in [16]. They are the sequential composition P o q a,nd
parallel composition P + q operators. In the rest of this paper we assume that the
sequential composition operator is interpreted left to right, ì.e. the program Q is
executed with the multiset returnecl by P as an input only when the program P is
terminated1 .

The sequential and the parallel operators enable one to build complex pro-
grams starting from simple GAMMA programs. For instance, the program Pos­
itive_Integers which computes the number of positive integers in a multiset can be
expressed as the composition of three simple programs, as follows:

Positive_fntegers{m)=(Ones + lVon_neg) o Add
where Add, is a program which returns the sum of elements of a multiset; it can be
written as follows:

Add = f(((R, A))(s) where
R(x,y) = true
A(x,y)={x+y}

Ones is the programs which transforms to l ali the positive integers in a multiset:
Ones = f(((R, A))(s) where

R(x) =x> l
A(x) ={l}

finally, Non_neg is a program whìcb selects al] the positive numbers of a multiset of
integers. It can be defined in GAMMA as follows:

Non_neg = f(((R,A))(s) where
R(x) =x< O
A(x)={}

This means that to cornpute the number of positive values in a multiset we can
execute the :fìrst two GAMMA programs in parallel on a shared multiset and when
the two programs terminate we compute the number of ones in the multiset (using
"A dd").

3 E:rnbedding
A GAMMA program consists of a multiset transformation rule; its semantics can be
modeled as a relationship on multisets, thus we can represent GAMMA programs as

1lnstead, in [16] the result of P o obt.ained by ex.ecut.ing Lhe prog:rams frorn right to Ieft,

128

predicates on multisets provided that we extend logic programming with this new
data structure. A GAMMA program then can be translated into a predicate taking
two arguments: the fust one represents the initial multiset and the second the final
o ne.

In order to add multisets in logic programming we will redefine the approach
presented in [11] to add sets. We will use double angle brackets << and >>
to denote multisets; we also represent partially known multisets in this way:
<< x 1 ,.,.,xn J rest >> is a multiset containing some known elements x 1 , ••. ,xn
whereas resi represents the rest of the multiset. The unification algorithm, which has
to take into account the new equality defined on multisets becomes non-deterministi c
since in generai a uni:fìcation between two multisets has more than one solution. For
instance, << x,y >>=<< 1,2 >> returns two substitutions: {x= l,y = 2} and
{x = 2, y = l} which are both correct. Formai aspects related t o this issue are
described in an extended version of this paper [8]. In this section we suppose we
have defi.ned an extension of logic programming supporting first class multisets. A
real implementation of this extension is described in [13].

3.1 Gamma predicates

Given the multiset extension, the translation of the r operator in logic program­
ming with multisets is immediate (in the following we denote predicates names with
identi:fìers beginning with upper case letters, while a variable begins with a lower
case letter; this is also the choice of Godei):

Program(m_i, m_3)<­
Step_Frogram(m_1, m_2) &
Program(m.2, m_3).

Program (m_i, m_i) <­
End_Frogram(m_1).

where Step_Frogram is a predicate which expresses one step of multiset transforma­
tion. The second clause represents the termination condition for the program.

The predicate Step_Frogram is associateci to the pair (R, A) representing the
multiset transformation rule in the source GAMMA program.

Step_Frogram(<<xl, ... ,Xn Jrest>>, << Yl,···,Ym Jrest>>)<-
R(xl, ... , Xn) &

A(x1, ... , Xn, Yb ... , Ym) · .
The reaction condition R is translated into a logica] predicate which takes

x1, ... , Xn as arguments; the action A needs al so the additional arguments Yl, ... , Ym
representing the elements that must be added to the multiset replacing x1, ... , Xn.

The terminai condition is expressed by the predicate End_Program which tests if
the reaction condition does not hold (t'he symbol ~ stands for negation as failure).

End_Frogram(<< Xl>>).
EndYrogram(<< x1,x2 >>).

129

EndYrogram(<< x1, ... ,Xn-1 >>).
EndYrogram(<< X1, ... ,Xn Jrest>>)<- ~ R(x1, ... ,xn).

For instance, the translation of the maximum element program presented m
Section 2 is as follows:

Max_element (m_i, m_3) <­
StepJMax_element(m_i, m_2) &
Max_element (m_2, m_3).

Max_element(m_i, m_1)<- EndJMax_element(m_i).
StepJMax_element(<<x, yJrest>>, <<zJrest>>)<­

R(x, y) &
A(x, y, z).

EndJMax_el ement (<<x>>) .
EndJMax_element(<<x,yJrest>>)<- ~R(x,y).

R(x, y) <-x=< y.
A(x, y, y).

We remark that the predicate Max_element never fails and according to
the definition of the r operator, we assume that if R(x1, ... ,xn) succeeds also
A(x1, ... , Xn, Y1, ... , Ym) succeeds.

3.2 Translating GAMMA operators
The sequential composition operator o states that the two GAMMA programs are
executed one after the other; it can be translated with a conjunction where the

· multiset resulting from the execution of the fust program is taken as an input of the
second program.

To translate the parallel composition operator + we built a new predicate which
has three clauses: the first two clauses express the transformation rules of the com­
posing programs, an d the last clause is the joint termination condition expressed by
the conjunction of the termination conditions of the two programs.

For instance, the program Positive....Integers described in Section 2 which
computes the number of positive values in a multiset can be translated in logic
programming as presented in Figure l. The different clauses of "Dnes+Non_neg" can
be executed in OR parallel on the same multiset.

3.3 Gammalog

Gammalog is a logic programming language extended with multisets plus the two
connectives: r and :=. The former connective allows one to define programs (gamma
clauses) following the GAMMA style by specifying the multiset transformation re­
actions an d actions; the latter provides a way to define new programs (definition
cl~uses) exploiting the composition operators o an d +.

130

Positive..Integers(m...i, rn-3) <-
'Ones+5oiU\eg' (m..l, m..2) t Add(IIL2, m..3).

'Ones+llon..neg'(m..i, RL.3) <-
Step_Qnes(rLl, m...2) .t 'Ones+Jlon...neg' (m..2, m...3).

'Ones+llon.JJ.eg' (ro..i, OL3) <-
Step..Bon_neg(m...1, m..2) 1: (Qnes+JloiUteg' (DL2, m_3).

'Ones+Ion_neg'(RL1, m...i) <-
End_[Jnes(m..l) t EndJ/on..neg(m..l).

Step_[)nes (< <xlrest> >, < <ylrest> >l<-
R..Ones(x) t A_Ones(x, y).

EncLOnes (< <xlrest> >) <- ~R..Ones (x) .

R_Ones (x) <- x > 1.
A_Ones(x, 1).

StepJion..neg(< <xlrest> >, rest) <-
RJ/on..neg(x) Il: AJ/on..neg.

EndJ/on..neg(<<xlrest>>l <- ~RJion..neg(x).
RJ/on..neg(x) <- x < O.
A...Bon._neg.

Add(m..l, m..3) <- Step..Add(m..l, m..2) Il: Add(m-2, m..3).
Add(m..l, m..1) <- End..Add(m..l).

Step..Add(<<x, yirest>>,<<zlrest>>l <-
R..Add(x, y) t A..Add(x, y, z).

End..Add(<<x>>l.
End..Add(<<x,ylrest>>l<- ~R..Add(x, y).
R..Add(x, y). ·
A..Add(x, y, x+y).

Figure 1: Translating Gamma Operators.

The r connective has the following syntax:
Max_element(<<x, ylrest>>, <<zlrest>>)f

R(x, y) &
A(x, y, z).

R(x, y) <-x=< y.
A(x, y, y).

where the first clause is a Gamma clause and botb R(x, y) and A(x, y, z) are
predicates.

Tbe connective ::= allows one to define new predicates, starting from predica.tes
defined with the r connective. As an example, a definition clause bas the form:

Positive-Integers = Ones + Pos o Add
where + has the higber precedence and parentheses are not allowed. This restriction
is necessary to guarantee a correct translation: in fact, Gamma programs like (P o
Q)+ H cannot be translated correctly in t o clauses exploiting the proposed technique.

Definition 3.1 - Gammalog Program. A Gammalog program P is composed by
a set of Gamma clauses pr, a set of definition clauses p= and a set of standard
clauses pLP defining the reaction pR and actions pA predicates.

Definition 3.2 _- Gammalog Query. A Gammalog query Q_ is a conjunction of
positive literals involving predicates defined in pr or in p=.

131

4 Semantics

We present the soundness and completeness results for Gammalog, in particular:
the soundness of Gammalog and the completeness of classes of Gammalog programs
with respect to the extended SLD resolution. The extension of logic programming
with multisets is described in in an extended version of this paper [8]. The related
equality axioms are presented in Figure 2.

(Z) In(O, z, < <> >) the empty mul tiset contains no elements i

(I) ln{n+J, x, Inc_m(y, z)) +-+ (x i- y A In(n, x, z) V (x= y A In(n, x, z).
this rule specit'ies ho v the function l ne_~ operates;

(W) In(n, y, x)---> 3z(ln(O, y, z) A x= Inc..m(y, lnc..m(y, ... ,lnc_m(y, z), ...)
(that is y is inserted n times in z); i t is the ''vithout', axiom vhich guarantees the
existence oi the multiset z vithout any Yi

(L) ln(n+t, y, x)---> 3z(In(n, y, z) A x= Inc..m{y, z))
' 'less'' axiom t o guarantee ·the existence o'f the multiset :c \ < < y > >;

(E) Inc-m(x, v) = lnc..m(y, w) +-+
(x= y A v =w) V 3 z(v = lnc_m(y, z) A w= Inc_m(:c, z))
c 'equality'' axiorn to establish vhen tvo multisets are equal;

(R) 3z'tly(In{n, y, x) ---> {In(m, z, x) A ln(D, y, z))
t 'regularity', axiorn; i t guarantees the rnembership does not generate loops.

(U) f{:r:l, ... ,:r:n) i-<<>> A In(D, x, f(:r:l, ... ,xn))
vhere f/n i- <<>>/D !Uld f/n i- Inc__mjt.

· Figure 2: Multiset Axioms.

The axiom (I) corresponds to the axioms (Wl) and (W2) in [12], while the
axioms (W) and (L) correspond to the axiom (L), in the same paper.

Note that, as with sets, a special equality is required on multisets because the
order of elements in a multiset is irrelevant; thus, the permuta"'tivity property holds.
The axiom (E) guarantees this property: it is easy to prove applying it and (I) that
the following equality holds:

Inc.Jll(z, Inc.Jll(y ,x)) = Inc.Jll(y, Inc.Jll(z,x)).
The semantics of Gammalog is given in term of its translation into logic program-

-ming with multisets. We define formally the function 'ifJ which given a Gammalog
program P returns its translation pM in logic programming with multisets following
the schema described above. The translation function 'ifJ : pr U p= U pLP -t pM is
defined in Figure 3:

The clauses of the logic program generateci by 'if;(P) contain also negated lit­
erals, thus we need to consider generai programs, SLDNF resolution and program
completion in order to prove the soundness and completeness of Gammalog [2].

The dependency graph D p for a program P is a directed grapb with signed edges.
The nodes are tbe relations occurring in P. Tbere is a positive (resp. negative) edge

-------------- -- -- --

132

Case 1. cis a Program {cl,· .. , cn} 1 n 2:2

,P(c)= ,P({c1}) U,P({c2, .. -, cn})

Case 2. cis P(<< x1, .. - ,xn lr>>, << Yl, .. · ,ym lr>>) T'
R(x,, ... ,xn) & A(x,, ... ,xn,Yl,··-·Ym)-

<f({c}) = {P(m.l, nL3)<- Step_F(m-1, m_2) & P(IIL2, rrL3),
P(IILl, m_l)<- EncLP(m.l),
Step_F(<< x1, ... , X n lr>>, << YJ, .. ,Ym lr>>)<­

R(x,, ... ,xn) & A(x,, .. ,Xn,YJ, .. ,ym),
EncLP(<< x,>>).

End...P(<< X1 1 ••• 1 Xn-1 >>).
EncLP(<<x,, ... , X n ir>>)<-~R.(x,, .. ,xn)}.

Case 3. c is H =: P o Q

,P({c}) = {H(m.l, rrt-3) <- P(m_l, IIL2) & Q(IIL2, nl-3)}.

Case 4. c is H = P + Q

<f({c}) = {H(m.l, IIL2) <-'P+ Q'(nLl, IIL2),
'P+Q'(IILl, rrL3) <- Step_F(IILl, m__2) & 'P+Q'(m-2, m_3),
'P+Q'(IILl, IIL3) <- Step_Q(nLl, IIL2) & 'P+Q'(m__2, m.3),
'P+Q'(m_l, m__!)<- EncLP(m-1) & EncLQ(IILl)}.

Case 5. c E pLP

V>({ c})= {c}

Figure 3: The Translation Function.

(r ,q) if a clause in P has the relation r in its head and the relation q in a positive
(resp. negative) literal in its body. P depends evenly (resp. oddly) on q if there is
a path from p to q with an even (resp. odd) number of negative edges. Given a
genera! program P and a genera! goal Q, we recall here three basic definitions from
[2]:

Defin.ition 4.1 - St:rictness. We say that P is strict W. 'T'. t. Q if no relation occur­
ring i~ Q depends both evenly or oddly on a relation defined in P.

De:finition 4.2 - Strati:fied Program. A program P is called stratified if no cycle
with a negative edge exists in its dependency graph.

Defi.nition 4.3 - Stratifi.cation.. Given a program P, a stratification of P is a
partition P1 U P2 U ... U Pn such that each Pi uses positively only relations defined
in Pj j _:::; i, an d negatively only relations defined in Pj, j < i.

SLDNF resolution has been proved sound w.r.t, two-valued semantics of program
completion [9], while completeness holds for an allowed program P and an allowed
goal Q such that P is strict w.r.t. Q and P is stratified [7].

Allowedness is a condition which guarantees that P and Q do not fiounder, i.e.,
there is a safe selection rule for literals which guarantees that only ground negated
literals are selected exploiting SLDNF resolution. This condition holds in Gammalog
since the multiset we give as an argument to literals is ground.

133

Lemma 4.4 - Strictn.ess of Gammalog. A Gammalog program P is strict w. r. t.
a Gammalog query Q if pR is a positive program and p A is strict w. r. t. actions
querzes.
Proof: We have to show that the negation introduced by 'lj;(P) guarantee strictness.
This is true because negation is introduced only for reaction predicates which does
not depend on negative goals. Thus, there are no predicates in a Gammalog query
which depend both evenly and ocldly on a relation definecl in the program. iìl

Lemma 4.5 - Stratification of Gammalog. A Gammalog progmm P = pr U
p= U pLP) is stratified if pLP is stmtified.
Proof: If a stratification of P exists then it can be proved stratified [2]. Thus we
need to show that such a stratification exists for any Gammalog program which
satisfies the hypothesi~. Given a Gammalog program P we define a stratification on
the program generateci by 'lj;(P) as follows. \Ve proceed analysing the different cases
of 'ljJ for each case we provide a stratification of the resulting program: in case 2 we
h ave the following stratification p2 = ~' p2 = {P, Step_P, End_P}; in case 3 an d 4
w e do no t introduce negation thus w e only define a set p2 = {H} which includes al!
the clauses generateci by the transformation an d p1 = ~; in case 5 we put P1 = {c}
an d p2 = ~ for every c E p LP. Finally, considering case l we define the stratification
of the whole program as follows: P1 = Uc c p Pl and Pz = Uc c p P2- lìll

In the following we summarize the main results of the paper:

Theorem 4.6 - Soun.dJDless of Gammalog. Let P be a Gammalog progmm and
G = (+- A1 & ... &Ak) be a Gammalog goal. If G has a refutation in 1/;(P) with
computed answer B = o-1 ... o-n this answer is correct far P U { G}.
Pro of: The soundness of Gammalog follows immediately fr-om the soundness of log1:c
programming with multisets and of SLDNF. This because a Gammalog der-ivation
always corr-esponds to a SLDNF derivation. ll1l

Theorem 4. 7 - CompleteJDless of Gammalog. Let P = pr U p= U pR U pA be
a Gammalog pr-ogmm and G. be a Gammalog goal. Then, far each cor-r-ect answer o­
far P U { G} G has a refutahon in 'lj;(P) if pR is a positive pr-ogmm and pA is a
generai progmm strict (w.r.t. action queries) and stratified.
P:roof: The proof follows from lemmas 4-4 and 4-5 and from the well known result
~m ~

5 Gamma!og: an instance of Garnmalog

Gammalog is just an abstract computational model, thus if we want to design a rea!
programming language severa! practical choices need to be dane about its execution
model. Our choice was to base Gammalog on the language Gode! [l 7] for a number
of reasons: i t already supplies a support ror sets an d multisets as in [12, 13]; i t is a
well engineerized and relatively efficient tool; it is freely accessible; it is implemented

134

via translation to SICStus Prolog and the Godei compiler (written in SICStus) is
relatively easy to manage and extend. Finally, as the authors say, "Godei reduces
the effort involved in providing a parallel implementation of the language and offers
substantial scope for parallelism in such implementations", we hope to simplify our
efforts of building a parallellogic language based on GAMMA.

The new language we have designed is named Gammalog; it is an extension
of Godei with the r operator plus facilities which allow one to define programs
exploiting sequential and parallel composition. For instance, the module in Figure
4 defines the program Fib which, given the multiset <<n >>, computes the n-th
Fibonacci number. Fib is built as the combination of simple Gammalog programs.
The con:fluence and termination of this program derive directly from the proof of
con:fluence and termination of the same combination of GAMMA programs in [15].

MODULE Fibonacci.
IMPORT Hul tisets.
BASE Elem.
FUliCTIOIJ F : Integer - > Elem.
PREDICATE Zero,Decompose,JI.dd: Hultiset(Elem)*Multiset(Elem);

RJ.ero, R-.Decompose: Integer i
A....Decompose, .A....Add; Integer * Integer * Integer;
A-Zero, RJ.dd: Integer * Integer.

GPREDICATE Fib.

Fib <=> Zero + Decompose o Add.

Zero(<<F(x) lrest>>, <<F(y) lrest>>) <=
R_Zero(x) l A_Zero(x, y).

R...Zero(O).
A_2ero L, 1) .

Decompose(<<F(x)lrest>>, <<F(y), F(z)lrest>>)<=
R._Decompose(x) l AJ)ecornpose(x, y, z).

R..Decompose (x)< - x > 1.
A_Decompose(x,x-l,x-2).

Figure 4: A Gammalog Module.

The connective <=, denotes Gamma clauses and the connective <=> the def­
inition clauses. Zero computes the Fibonacci number associateci to O; Decompose
transforms into l all the elements greater than l in the multiset applying the Fi­
bonacci low.

Since Gammalog is strongly typed in the same way of Godei ali the predicates
which appears in a program must be declared in a given module. For instance, the
declarations needed for Zero ,Decompose,Add are:

PREDICATE Zero, Decompose, Add: Multiset(Elem) * Multiset(Elem).
where Elem is a base type for multisets.

Simple Gammaliig programs are declared as ordinary Godei predicates. On the
other side the predicate Fib being defined with the definition operator need a partic­
ular declaration using the keyword GPREDICATE (which stands for GAMMA Predi­
cate) this is needed to inform the compiler t ha t the predicate is a GAMMA predicate.

135

During the translation, this particular declaration allows the compiler to add the
appropriate arguments to the GAMMA predicate and to generate an object code
corresponding to the rules described in section 3.

5.1 Implementation

The implementation of Gammaliig has been realized extending the Bristol version of
Giidel [4]. In order to bave an adequate runtime support for Gammaliig we extended
Godei with first class multisets providing an extended unification algorithm. Then,
we extended the Godei compiler to deal with Gammalog operators. A Gammalog
program is first translated into Godei and then is translated into Prolog by the
Godei compiler.

The extension of Godei with multisets is based on an extended unification al­
gorithm presented in an extended version of this paper [8]. The implementation
is described in [13]. The scanner and the parser have been modifìed to recognize
the new statements. The composition operators o and + have the same precedence
of "\/" (OR) and "&" (AND) respectively. The Godel's code generator has beèn
modified as well in order to provide the translation of the new statements.

To compile clauses containing the definition connective <=> with the operators
o and + in their bodies, a particular treatment has been designed: we compile the
fìrst operator as a conjunction, while the second operator requires the definition of an
auxiliary predicate to handle the intrinsic nondeterminism. A parallel combination
of Gammalog simple programs has the form: Prog <=> P + Q. and is compiled in
Godei generating a schema similar to the one presented in l where the & is replaced
by the bar commit ('!'). The Godei pruning operator [17] which is placed between
reaction conditions and actions in Step_F clauses. The commit has the declarative
meaning of a conjunction, and the following procedura! meaning: only one solution
is found for a formula in its scope (on the left of the commi t), all the other branches
arising from the other clauses of the same predicate which contain a commit are
pruned. The order in which the statements are tried is not specified, so that the
meaning of 'l' is dose to meaning of the commi t of the concurrent logic programming
languages.

6 Conclusion

We presented Gammalog: an integration between logic programming and the parallel
language GAMMA. We show that to achieve a full integration between the two
paradigms, proving Gammalog complete and sound, we need to express reaction
conditions as positive logic programs. The implementation we describe is based on
Godel and in our knowledge is the first executable version of Gamma on a genera!
purpose hardware. The language can be used as a specifìcation language to explore
the power of multiset rewriting in a logic programming framework.

136

Aknowledgments. \Ve thank Eugenio Omodeo for his remarks on the contents
of this work. Partial support for this work was provided by the Commission of
European Communities under ESPRIT Programme Basic Research Project 9102
(COORDINATION).

References
(l] J. Andreoli and R. Pareschi. Linear Objects: Logica! Processes with Bu.ilt~in Inheritance. New Generation

Computing, 9(3-4):445-473, 1991.

[2] K. Apt and R. Bo!. Logic Programmingand Negation: A Survey. Journal of Logic Programming, 19/20:9-72,
May / July 1994.

[3] J. Banatre and D. LeMetayer. Programming by Multiset Transformation. Communications of the ACM,
36(1):98-111, January 1993.

[4] A. Bowers and J. Wang. Bristol Godei User Manual. Departme;,t of Computer Science- University of Bristol,
University Wa!k Bristol BS8 1TR UK, 1994.

[5] A. Brogi and P. Ciancarin..i. The concurrent language Shared Prolog. AG.A1 Transa.ctions on Programming
Languages and Systems, 13(1):99-123, 1991.

[6] N. Carriera and D. Gelernter. Coordination Languages and Their Sjgpjficance. Communications of the ACM,
35(2):97-107, February 1992.

[7] L. Cavedon a.Iid J. Lloyd. A completeness Theorem for SLDNF-resolution. Journal oj Logic Programming,
7:177-191, 1989.

(8] P. Ciancarhù, D. Fogli, and M. Gaspari. A Language based on Multiset Rewriting. Tecluùcal Report UBLCS,
Comp. Science Laboratory, Urùversità di Bologna, ltaly, June 1995.

(9] K. Clark. Negation as failure. In H. Gallaire and J. Minker, editors, Logic and Databases, pages 293-322.
Plenum-Press, New York, 1978.

[lO] K. Ciarle. and S. Gregory. Parlog: Parallel programrning in logic. ACA1 Tra.nsa.ction~ on Programming La.n­
guages and Systems, 8{1):1-49, 1986.

[11] A. Dovier, E. Omodeo, E. Pontelli, and G. Rossi. {log}: A logic programminglanguage with fuùte sets. In
K. Furukawa, editor, Proc. 8th lnt. Conf. on Logic Programming, pages 111-124, Paris, France, 1991. MIT
Press, Cambridge, MA.

[12] A. Dovier, E. Omodeo, E. Pontelli, and G. Rossi. {log}: A language for programming in logic with fuùte sets.
Tecluùcal Report Rap. 04.93, Università degli studi di Roma I, Dip. di Informatica e Sistemistica., May 1993.

[13] D. Fogli. Insiemi e Multi-insiemi nel Linguaggio·d.i Programmazione Logica GOdei. Master's thesis, Universita'
di Bologna, Bologna, 1994.

[14] D. Gelemter. Generative Comrnunication in Linda. A CA{ Tra.nsa.ctions on Progra.mming Lang1Lages and
Systems, 7{1):80-112, 1985.

[15] C. Hankin, D. LeMetayer, and D. Sands. A Calculus of Gamma Programs. Tecluùcal Report TR 1758/92,
IRISA, INRIA-Rennes, 1992.

[16] C. Hankin, D. LeMetayer, and D. Sands. A Parallel Programming Style and Its Algebra of Programs. In
Proc. Conj. on Para/le/ Architectures and Lang•.ages Europe (PARLE 93), volume 694 of Lecture Notes in
Computer Science, pages 367-378. Springer-Verlag, Berlin, 1993.

[17] P. Hill and J. Lloyd. the gOde[programmino langua.ge. Technical report, D ept. of Comp1Lter Science, University
of Bristol, 1993.

[18} J. Jacquet and K. DeBosschere. On the Sema.ntics of p,Log. Future Generation Computer Systems, 1 0(1}:93-
136, 1994.

[19} E. Shapiro. The Family of Concurrent Logic Lang•.ages. ACM ComputerSurveys, 1!1(3}:412-510, September
1989.

DEDUCTIVE DATABASES

Si de effect. analysis for logic-based planning

Kave Eshghi, Miranda Mowbray
Hewlett-Packard Laboratories,

Filton Avenue, Stoke Gifford, Bristol BS12 6QZ, England
Phone: +44 117 9228178 Fax: +44 117 9228920

{ke,mjfm }@hplb.hpl.hp.com

Abstract

In this paper we describe the algorithms for planning an d, in particular,
for side effect analysis used in a software tool for system management, called
Dolphin, which is based on declarative programming. In Dolphin the user is
given the option of declaring some side effects to be acceptable or unaccept­
able. This treatment of side effects makes our system different from those
described in the logic-based planning literature.

Keywords: · Deductive databases, Artificiallntelligence, Logic-based planning,

Side effect detection and analysis

l Introduction

In this paper we describe the planning and side effect analysis algorithms used

in a software tool, called Dolphin, which is used for system management. Dolphin

is a tool for helping system adrninistrators manage complex, networked computer

systems by providing them with a high level, intuitive view of the system in the

context of which they can access and manipulate the the system. In Dolphin, a set

of Horn clauses and integrity constraints are used to model the managed system.

These clauses and integrity constraints can be considered as the intensional part

of a deductive database, while the extensional part of the database is the managed

system itself (more about this later). Dolphin models are primarily used for two

purposes: to query the state of the managed system, and to change its state. Seen

m this light, querying the state of the managed system corresponds to querying

the database, and changing the state of the system corresponds to updating the

database.
In the querying mode, a top level goal is posed to the Dolphin inference engine,

which is reduced to a number of extensional goals using a standard depth-first reso­

lution strategy. The extensional goals are translated into commands which are sent

140

to the underlying system, with the results of these commands translated back into
facts which are then used to solve the extensional goals, thus completing the infer­
ence process. It is in this sense that the extensional part of the deductive database
is the managed system itself.

Changing the state of the managed system is analogous to the intensional up­
date problem for deductive databases [l], wher~ a high leve!, intensional goal is
posed which is translated into a nùmber of lower leve], e:A--tensional updates. In fact,
the fust part of the algorithm we use for this purpose is similar to the abductive
algorithms developed for intensional updates. There is another dimension to our
problem, however. In deductive databases, the updates are independent, and don't
have preconditions or side effects. In our case, we don't have updates. We have
actions which, when performed on the underlying system, will bring about the de­
sired update. But actions have preconditìons and side effects associateci with them,
which makes it necessary to take into account the interaction between the actions
and their side-effects, and the consequences of the side effects on the rest of the
system. This paper discusses some of these issues, with emphasis on the side-effect
detection and amelioration aspects.

2 Side Effects

Suppose you want to move from the living room to the kitchen next door. The
door is closed. You could open the door and walk through; or you could take a
battering ram and break through the wall. Both sequences of actions will get you
to the kitchen, but one will have more serious side effects than the other. Some
consequences of your actions will be unavoidable if you are to attain your goal -
for example, if you are in the kitchen, you will no longer be in the living room.
Some consequences will be not inevitable, but tolerable - for instance, you might
not mind that the door handle squeaks when you turn it. Some consequences can
be eliminateci - for example, you may not like the door being open, but if so, you
can shut it again once you're in the kitchen. Finally, some consequences will be
undesirable and difficult to eliminate - such as the destruction of the wall.

In the classi c literature on logic-based planning, (eg. [3], [4]) there are two
attitudes to side effects. The :fìrs:t is that a plan should produce the goal with NO
side effects, in which case there is no plan which will take you from the living room
to the kitchen. The second is that as long as the goal is reached, side effects do not
matter, in which case you will have to extend yo"~ origina] sìmple goal of moving
from one room to another, or else you may end up minus a wall. We argue that for
some applications of computer-assisted planning it is more natura! and flexible to
allow some side effects, but not others, and to determine via a dialogue with the user
which of th~ side effects are tolerable. In thìs paper we describe a way to achieve
this.

141

3 Theoretical Framework
f k of the plannin,; effect In this section we present the theoretìcal ram_ ewor "

d fì t der predicate calculus in analysis problem. The logical language use lS rs or
Clausal Norma! Form, of which Horn Clauses are a subset.

· h T h' h · set of Horn clauses, and a set of integrity l. There Js a t eory ' w JC Js a - (Al h h d t , 'nts I where each int~grity constraint is a clause. t oug we o ~o ~:~:t:::gatio~ a"s failure in the language, it can b~ simul~te.d by an abduchve
l f t . We omit the details here, smce th1s JS not the pomt of sty e trans orma wn. .

the paper). .
An integrity constraint is allowed to be broken temporarily in the rmddle of a
l . l t must be satis:fìed by the state reached at the end of a plan. p an, JU _

There is a set B of extensional predicates; t~is is just the set_ of predicates
2. in the language of the Horn clause theory whJCh do not occur _m th~ ~ead ~f

l · · T 1'he set of positive ground atoms whose pred1cate JS m B rs any c ause m . -
denoted by B+.

There is a set A of possible actions, each action a E A has a set_ "!re(~) 3· f d't' ~nd a set Post(a) of postconditions. All the cond.i.cwns m o precon 1 1ons "'
Post(a) are in B+ U {...,b+: b+ E B+}.

There is an initial state so, which is a subset of B+ such that so+T+I .is 4' · t t The 1·nterpretation of 80 is that it is the state of the system m cons1s en . . . d l f T which a condition is true iff it is true in the rmmmal mo e o +so.

5. There is a goal G.

f · a > induces A sequence o actwns < a1, a2, · · ·' k . k
f t t . s > iff for each l < z < , a sequence o s a es < so, s1, · · · ' k - - h t' · .. · p t(·)) \ (positive atoms- w ose nega 10n 1s m s; = (Si-I u (posJtJve atorns m os a,

Post(ai))) r t' < a ak > is possible iff it induces < sa,sll. · · ,sk > A seauence 01 ac wns ab 2, · · ·' . . . d 1 f T+ . and for each i, each condition in Pre(a) is true m t~e ~~1mal mo e 0 8 •-·1· · > satisfies G 1ff 1t mduces < so, SlJ ·. ·, Sk >, A sequence of actwns < al' a2, ... 'ak . T I l there · · 'bl d G d I are true in the minima! mode! of +sk· n genera 1t 1s poss1 e, an an b) may be more than one plan which sa.tis:fìes G. (Or there may e none.

4 Example
· · · 1 of the kind of planning problem that we will address in Th1s sectwn g1ves an examp e h this paper. It is a simplìfìed version of a planning problem that the au~ o~s .e:c~~n-

tered when using the techniques describ~d in t.his paper to do remote a rmms ra lOTI
of a UNIX workgroup. Variables are wntten m upper case.

142

There are two main kinds of objects considered in th'
T be files are uniquely identified b th . t h :s example, users an d fil es.

variable PN. Users are uniquely id~nti~:~ ~: t~:i~::' w:;;ch Wlll be denoted by the

denoted by the variable N wh· h h er s. Users also bave names,
' JC can c ange A file can be d b 'f .

owned by that user, if it Ì8 world-read bl ·.f th . rea y a 1f8er l lt Ì8
Theory T Ì8 the theory a e, or l e U8er 18 super-user.

canRead(N,PN) f- own8File(N,PN~
canRead(N PN) f- j8 Us N 1N) . F'l (
canRead(N 'PN) f- Ì8F'ler(P~m) e_\ S ' 18 Ul e PN), readability(PN, world)

. ' 1 e , 18 uper ser(N)
?Wn8FJ1e(N,PN) f- userlD(N,ID), IDofOwner(PN ID)
IsUserName(N) f- useriD(N ID) '
isFile(PN) f- IDofOwner(PN,ID)

A file can be owner-readable or world-readable l . .
lock on a file, for safety reasons· a fil h . t lS po8sible to put a status

and world-readable only if its ~tat e :an cl ankgde between th: 8tate8 owner-readable
. . U8 ls un oc e For secunt th .
mtegrity constraint expre8sÌng the condition th . y reasons, ere Js an

the only user w ho can be super-user is th at ~:hthe end of a sequence of actions
Inte rit C . e user Wl user ID O .

. ~ y . onstramts The set of integrity constraints I is

readabihty(PN,owner) V readability(PN,world) f- isFile(PN)

(IDl=ID2) f- readability(PN,IDl), readability(PN,ID2)

(IDl=ID2) f- useriD(N,IDl), useriD(N,ID2)

(Nl=N2) f- useriD(Nl,ID), useriD(N2,ID)

(ID1=ID2) f- I?ofOwner(PN,IDI), IDof0wner(PN,ID2)
useriD(N,O~ f- IsSuperUser(N)

Ext~~swnal predicates The set of extensional predicates B is
_{readability(PN,ID), useriD(N,ID), IDofOwner(PN ID)
IsSuperUser(N), statusLocked(PN)}. ' '

Actions

The actions that are available include th .r Il .
(s . . . e 10 owmg.

tnctly speakmg, the descriptions below are not of ac . .
they are turned into actiow by s b n t" .. tJOns but of actiOn 8Chemata;

statusLock(PN) . u s l u mg con8tants for each vari ab le.)

Pre: •statusLocked(PN). Post: statusLocked(PN)
status Unlock(PN) ·

Pre: statusLocked(PN). Post: •statusLocked(PN)

-~ake WorldReadable(PN,READ)
Pre: readab1hty(PN READ) (READ -'- ld)
Post: •readability(PN READ') d b':li~tor(PN' •statusLocked(PN).

, , rea a 1 y world)
. makeSuperUser(N) '

Pre: •lsSuperUser(~), isUserName(N). Post: isSuperUser(N)

changeF1leOwner(PN ,ID 1 ,N ,IDZ)

Pre: IDofOwner(PN,IDI), useriD(N,ID2), (ID1/= ID2).

Po8t: IDofOwner(PN,ID2), •IDofOwner(PN,IDI)

143

In the initial state, there is a file with pathname pn; the goal is to make this file

readable by the user with name miranda.

Initial state The initial state s0 includes the conditions

IDofOwner(pn,l5), useriD(kave,15), useriD(miranda, lO),

statusLocked(pn), readability(pn, owner).

Goal The goal G is just the condition canRead(miranda,pn).

5 Generating a Sequence of Actions

Generating a sequence of action8 to satisfy the goal is a two step proce8s: first,

through back chaining, the top level goal is reduced to a number of extensional

goals which, if satisfied, would imply the top level goal. Then a planner is used to

find a sequence of actio:Us at the end of which the set of extensional goals will be

satisfied.
Our action planning system is different from planning systems described in the

literature [2] [3] [4] due to the following requirements, which add complexity to the

planning process:
l) Actions only ha ve extensional postconditions, but the goal and the preconditions

of actions can be in terms of intensional predicates.

2) We allow integrity constraints which are in general expressed in terms of inten­

sional predicates. The sequence of actions generateci must be such that at the end

of it, none of the integrity constraints are violated.

In the example, we start from the goal+-- canRead(miranda,pn)

and we resolve it with the clause canRead(N,PN) f- ownsFile(N,PN)

we are left with the goal ,:.... ownsFile(miranda,pn)

We then resolve this goal with the clause

ownsFile(N ,PN) f- useriD (X,ID), IDofOwner(PN ,ID)

which gives us the goals f- useriD(miranda,ID), IDofOwner(pn,ID)

which, when resolved with the assertion useriD(miranda, lO)

in the initial state, will give the goal f- IDofOwner(pn,IO)

as the residue. Then we invoke the planner to generate a sequence of actions to

satisfy this residual goal. The planner would generate the action sequence

<changeFileOwner(pn,l5,miranda,10)> to satisfy this goal.

Notice that there are two levels of non-determinism in the planning process as

described above. Firstly, there is non-determinism in the reducti~n of the top level

goal to extensional goals. For example, if we had chosen the clause

canRead(N,PN) f- isUserName(N), isFile(PN), readability(PN,world)

to resolve with the top level goal, we would have ended up with a different set of

extensional goals to be satisfied by the action generator. Secondly, there is the tra­

ditional non-determinism associateci with choosing actions to satisfy the extensional

goals. Although in this example the possible actions are unique, in generai there

can be more than one possible action or sequence of action8 to satisfy the given set

144

of extensional goals.
It is not our purpose to give the details of the planning algorithm in this paper,

and the description above is included to provide a context for the side-effect detection
algorithm.

6 Detecting side effects

In our notation we list the postconditions of each action. These postconditions
will be the consequences that we consider. We don't attempt to describe ali the
consequences of an action, just ones whose effects are necessary for planning purposes
and/or may be considered undesirable by the us~r. For example, changing the owner
of a file will involve changing some data base entry, and may increase or decrease
the number of bytes of data in the data base, but this effect is not recorded as a
postcondition of the action changeFileOwner(PN,IDl,N,ID2).

We consider the r-eportable side effects of a sequence of actions to be those logica]
statements which are in the union of the sets of postconditions of the actions, which
are true in the fina] state, which were not true in the initial state, an d which are not
direct consequences of the goal (ie. they are not logica] consequences of T +G+I).
When we consult the user, it is these statements that we will present.

The choice of this set of statements rather than another to be the side effects
that we report to the user is to some o.'ient a matter of taste. It could be argued,
for instance, that if a staternent is originally true, becomes false during the course
of the sequence of actions, and then is made true again, then it should be reported
as a side effect; we do not do this, because we do not report anything which was
true in the originai state. Moreover, it is possible that some of the statements we
report will be true in any plan whi.ch achieves the goal, although they are not logical
consequences of T+G+L Vv'e choose to repmt such staternents, because they may
be undesirable to the user. It is saJer to give the user the chance of rejecting all
plans to move into the kitchen if there really is no way to do it from the given initial
state without knocking dm11rn the wall, than to go ahead with the battering ram.

How to cakulate the :reportable side effects
Given a sequence of actions < a1 , ... , ak > satisfying G, i t is straightforward to
calculate the reportable side effects. This section gives a not particulary efficient,
but simple, algorithm which does this calculation.

The algorithrn takes as input not only the sequence of actions and G, but also a
set Allowed side effects. If there has been no communication yet with the user, this
set is empty. Conditions are added to it by the algorithm. After each iteration of
the algorithm the user has the option of designating some of the reported side effects
as OK and not worth reporting, and others as unacceptable. (The remaining side
effects may be generateci by future plans, but if they are they will be reported to
the user.) The side effects that the user indicates are OK and not worth reporting

145

are added to the set Allowed side effects. A new goal is derìved, whìch is just the
old goal plus the negations of all the unacceptable side effects. The new goal is
fed into the pian generator, which comes up with a sequence of actìons to satisfy
the new goal (if i t can find one); this new sequence of actions is used as input for
another iteration of the algorithm to find the reporta,ble side effects, these effects are
reported to the user, and so on unti] the user is satisfied or no sequence satisfying
the goal is found.

l Initialize the set R to the empty set, and counter to k.
Set P = Posi(acaunter l \R.
For each posi E P\Allowed side effects such T+G+I proves post, add post to

Allowed side effects and to R, and remove it from P.
4. Pick posi E P. If neither posi nor •post are in R, then ad d post to R.
5. Remove post from P. If P is nonempty, return to step 4. Otherwise go on to
step 6.
6. If counter> l then decrease counier- by one and return to step 2; else go on to
step 7.
7. For each posi in RnAllowed side effects, remove posi from R.
8. For each posi in R n s0 , remove post from R. For each negative posi E R such
that •post tf. s0 , remove posi from R.
9. R is now the set of the reportable side effects. Report it to the user.

It is straightforward to check that at the beginning of step 7 the set R contains
exactly the conditions post which are not direct effects of the goal and are a post­
condition of some action aj where •posi is not a postcondition of any of the actions
aj+l, ai+2 , .•• , a1,. It follows from the definition of sk that the side effects reported
to the user are exactly those conditions that are in a postcondition of one of the
actions, that are true in the state represented by sk and false in the state represented

s0 , and that are not direct effects of the goal G.
The user has the option of adding conditions to the set Allowed side effects,

or changing the goal. There are occasions when changing the goal may be partic­
ularly useful. For example, suppose that a plan is generateci with reported side
effect IDofOwner(pn,l l. The user says that this is unacceptable, because h e or she
doesn't want the ownership of the file with pathname pn to move from its origina!
owner, who has user ID 15. A new plan is generateci with reported side effect ID­
of0wner(pn,2l. The user doesn't like this either an d a new pian is generateci with
reported side effect IDofOwner(pn,3). The user now spots a pattern and adds the
condition IDofOwner(pn,15) to the goal. The effect of adding conditions to the set
Allowed side effects is that these will not be reported if they arise as side effects.
This doesn't change the plans that are generateci, but can make !ife sirnpler for the
user by ensuring that irrelevant information is suppressed.

An optional way of further simplifying the data reported to the user is t o rernove
side effects which are redundant because they are implied by other reported side
effects together with the integrity constraints. To do this, pick posi in R and check
whether G+R \ {post}+•post violates any of the integrity constraints I. If it does,

146

remove posi from R. Pick a new posi in R which has not yet been checked and
repeat, unti! ali members of R bave been checked. '

This can be computationally complex, and suppresses the reporting of some side
:ffects which the user may actually want to know about, so we do not make it an
mtegral part of the side detection algorithm.

U sing the planner an d sia e effect analyser together

One advantage ofthe algorithrn given above is that is possible to use it incrementally
in conjunction with the plan generator. Suppose the plan generator produces ~
sequence of actions which satisfies the goal starting from an initial state which is
not so but some other state s~. Steps 1-5 of the algorithm for side effect detection
can be used to find an interim set R' of side effects, equa! to the value of R after
t~ese steps. R' is stored for later reference. The plan generator can then produce two
~Ifferent sequences of actions which satisfy s~ starting at initial state s0 . Now the
SI.de effects o_f t~e two different plans to satisfy G (which bave the same ending but
d1fferent begm~mgs) can be calculated, by setting R equa! to R' an d applying steps
2-9 of the _algonthm to the t~o sequences of actions to satisfy s~. More complicateci
backtrackmg manoevres dunng the planning can sirnilarly be followed without too
much recalculation by the side effect detector, by appropriate storage of partial
results.

7 Discussion of the example

The goal of the example can be made true, for example, by
- transferring ownership of the file from kave to miranda· . ,
- turnmg off the status lock and then changing the file to world-readable·
- making miranda super-user - but this violates one of the integrity constraints.

Suppose that the user had in rnind changing the readability, rather than changing
the file's owner. Here is an example of the steps that could be gone through by the
user, planner an d si de effect analyser;

1: Planner generates the simple plan <changeFileOwner(pn,l5,mimnda,l0)>
2. S1de effect analyser reports side effects IDofOwner(pn,lO), -.IDofOwner(pn,l5)
to the user

3. User say~ that the effect -.IDofOwner(pn,l5) is unwanted. The new goal
canRead(m~randa,pn), IDofOwner(pn,l5) is sent back to the planner.
4. P_lanner generates <statusUnlock(pn), makeWorldReadable(pn,owner)>.
5. S1de effect analyser reports side effects
-.statusLocked(pn), -.readability(pn, owner), readability(pn, world).
(If the optional step removing redundant effects from the set of reported effects were
used, then -.readability(pn,owner) would not be reported.)
6. User says that the effect •statusLocked(pn) is unwanted, but that the other two
are OK. The conditions -.readability(pn,owner), readabilìty(pn,world) are added to

147

the set Acceptable si de effects, an d the goal canRead(miranda,pn),
IDofOwner(pn,l5), statusLocked(pn)
is sent back to the planner.
7. Planner generates
<status Unlock(pn), rnake WorldReadable(pn), statusLock(pn) >
8. Si de effect analyser calculates that there are .no reportable si de effects. So the
plan is fine. A note of the pian is sènt to the user; the plan is scheduled.

This procedure for generating a sequence of actions which will satisfy the goal
may not in theory terminate. In practice, there is a parameter (which the user can
change, default is 10) which is used to bound the number of actions in a sequence.
If the procedure fails to find any sequences with length less than the parameter
satisfying the goal, the search is terrninated. Sequences with too many actions are
undesirable because uncertaincies about the exact effects of actions are cumulative
when actions are performed in sequence.

References

[l] Bry, F. Intensional updates: abduction via deduction Proc. ICLP 90

[2] Denecker, M., Missiaen, L., Bruynooghe, M., Temporal reasoning with Abduc­
tive Event Calculus Proc. ECAI 92

[3] Chapman, D., Planning far conjunctive goals Artificial Intelligence Vol. 32, 1987

[4] Fikes, R. E. & Nilsson, N. J STRIPS: a new approach to the application of
theorem proving to problem solving, Artifìcial Intelligence Vol. 2, 1971

[5] Gelfond, M. & Lifschitz, V. Represeniing actions in extended logic prçgramming
Proc. JICSLP 92

[6] Kowalskì, R. A. Database updates in Event Calculus The Journal of Logic Pro­
grarnrning 12

[7] Phan Minh Dung, Representing actions in logic programming and its application
in database updates Proc. ICLP 93

Downward Refinement of Hier.archical Data!og Theories

F. EsposHo, N. Fanizzi, D. Ma!erba and G. Semeraro

Dipartimento di Informatica, Università degli Studi di Bari

Via E. Orabona 4, 70126 Bari, ITAL y
Phone: +39 (80) 5443264

Fax: +39(80)5443196
nico@lacarn.uniba.it E-mail: { esposito, malerbad, semeraro }@vm.csata.it

1.

Abstrlllct. In theory re visi o n, a fundamental operati o n is the specialization of incorrect theories.
In the paper •. w e propose a nove! downward refinement operator p01 for hierarchical Datalog
theones, which JS able to compute a set of most genera! specializations of an overly genera!
clause. W e prove that the operator meets the fundamental properties of propemess, !oca!
fllllteness, an d cornpletenessin the space oftheDatalog progtam clauses ordered by therelation
of 8-subsurnpt:IOn under obJect Idenuty. Experirnental resttlts show that p is able to cope
effectlvely an d effiCiently w1th the task ofrevising logica! theories for docum~~~ classification.

Keywon:ls. Theory revision, specialization, 8-subsumption, deductive databases Datalog
theones. '

A theory T may be incorrect because, given a new observation E, one of the following two

cases occurs: l) E is erroneously explained by the theory. Thus, the theory is too generai and

needs to be specialized. 2) E is erroneously not explained by the theory. Thus, the theo~

is too specific and needs to be generalized. In this paper, we limit to address the first

problem. Moreover, this problem is dealt with in a logical frarnework, since the theory is

represented as a set of hypotheses an d in turn each hypothesis is a se t of clauses expressed

in a first-order logic language. The solution to such a problem requires to perform a search

fora specialization (or downward refinement) T' of the theory T sue h thatE is no t explained

by T'. This search aims at finding a minima! downward refinement of a theory [18]. The

sarne goal is pursued in the field of belief revision [8] an d theory contraction [7]. Indeed,

in a logic-constrained belief revision approach, a contraction of a belief set with respect to

a new fact consists of a peculiar belief change, which requires the retraction of the

inforrnation causing the violation of consistency, when this property is regarded as an

integrity constraint.

In the following section, we briefJy present the logic language used to represent

observations (examples) and theories. In addition to the basic definitions, the model of

generalization Of 8-SUbSUrnption UDder Object identity, Cali ed e OI-SUbSUmption, ÌS fortnally

defined and compared to 8-subsurnption. A novel downward refinement operator for e _
O!

149

subsumption is definedin section 3. I t satisfies relevantproperties far refinement operators,

such as localfiniteness,properness, and completeness [16, 2]. An example ofapplication

of such operator to the real-world task of document classificarion is outlined in section 4.

2. The Rep:resentatim1 Langlllage

Henceforth, wereferto [l l] forwhatconcems t.fle basic definitions of asubstitution,positive

and negative literal, clause, definite and program clause, ar1d norma! program. Given a

first -order expression (jl, vars(!jl) an d consts($) de note respectivel y the se t of the variables

and the set of the constants occuning in qL By logica! themy we meana set of hypotheses,

by hypothesis we mear1 a set of program clauses ·with the same head. In the paper, we are

concernedexclusively with logical theories expressed as hierarchical norma l programs, that

is, as normal prograrns for which i t is possible to fin d a leve l mapping [l l] su c h that, in every

program clause P(t1, t2, .. f-- L l' Lr .. ~Lm, the level of every predicate symbol occurring

in the body is less than the level of P. Another constraint on the language is whenever

we write about clauses, we mean Datalog (i.e., function-free) linked clauses [10].

linked if at least one of its arguments is. An argument of a positive literal is linked if either

the lìteral is in the head of the clause or another argument in the sarne literal is linked. A

negative literal is linked if at least one of its arguments occurs in a linked positive literal.

An instance of a linked clause is the following: C= P(x) ~ Q(x, y), z), -., v)

C is linked since ili its literals are lùùced. both the clauses D = C - { Q(x, y) l

andF =C u { --J?(v, w)} are not linked. Indeed, the literal Q(y, z) is no~ linlced in D, whereas

-, R(v, w) is not linked in F. Henceforth, we will indifferently use the set notation and the

Prolog notation for clauses and with ICI we will denote the number of literals of a clause C:
Sernantically, we adopt negatic11-as-jailure rule [l] to define the rneaning of a negated

literal in the body of a progra,-n clause.

The differences exìsting between exarnples and hypotheses are as follows.

., Each exarnple is represented one ground clause with a unique literal in the head.

® Each hypothesis is a set of constant-free program clauses with the sarne head.

An example is positive fora hypothesis if its head has the sarne predicate letter and sign

as the headofthe hypothesis. Anexarnple is negativefor a hypothesis if ìts headhas the same

predicate as the head of the hypothesis, but opposi te sign. Thus, more precisely, a negative

150

example is a generally Horn clause [9]. Subsequently, we defme aquasi-ordering s010n the
se t LP of the Datalog linked program clauses . This ordering is inspired from the notion of
e-subsumption [12] and makes the assumption that terms denoted with different symbols
must be distinct (object identity). Por instance, P(x) ~ Q(x, a), R(a, z) denotes the clause
P(x) ~Q(x, a), R(a, z), [:#a], [x:t=z], [a:t=z], under the object identity assumption.
Definition 2 (801-subsumption ordering) Let C,D be two elements ofLP. W e say thatD
8-subsumes C under object identity (D 801-subsumes C) ìf and only ìf (iff) there exists a
substitution cr such thatD .cr çC and cr is a one-to-one mapping. In such a case, we say that
D is more generai than or equal to C (D is a generalization of C and Cis a specialization
of D) under object identity and we write C s D. We write C< D whe c< D d 01 01 n _01 an
no t(D S01 C) and we say that D is more generai than C (D is a pro per generalization of C)
or Cis more specific than D (Cis a proper specialization of D). W e write C-01 D, and we
say that C andD are equivalent clauses when C s D andD < c ' 01 -oi ·

801-subsumption is a strictly weak:er orderrelation than 8-subsumption. A thorough analysis
of eor-subsumption as a generalization model can be found in [14].

A logical theory is incorrect ìf i t is either inconsistent or incomplete. More formally, we
introduce the following defmitions.
Definiti o n 3 (lnconsistency) A theory T is inconsistent ìff at least one of its hypotheses is
inconsistent with respect to (wrt) some negative example. A hypothesis is inconsistent wrt
a negative example N iff at least one of its clauses is inconsistent wrt N. A clause cis
inconsistentwrtN iff there exists a one-to-one substitution cr such thatthe following conditions
are satisfied: l) body(C).cr ç;;; body(N), 2), head(C).cr = head(N)
where body(<p) and head(<p) denote the body and the head of a clause cp, respectively. If at
least one of the two conditions above is not met, we say that C is consistent wrt N.
Definition 4 (Incompleteness) A theory T is incomplete iff at least one ofits hypotheses
is incomplete wrt some positive example. A hypothesis is incomplete wrt a positive example
P iff each of its clauses does not 801-subsume P.

When a theory tums out to be inconsistent, the inconsistent clauses should be removed
and specializations of removed clausès should be added until the consistency property of
the theoryis restored. These specializations are computed by a downwardrefinement operato r.
Definition 5 (Basic defmitions) Given a quasi-ordered set (T, s) and a clause c in T:

151
a downward refinement operator pisa mapping from T to 2T, p: T -t 2T such that
for every C in T, p(C) is a subset ofthe set {D E T l D S C}
let p be a downward refmement operator, then
rf(C) ={C} p"(C) = {D 13 E E p""1(C) andD E p(E)}
p*(C) = U~ p"(C)= çf(C) u {i(C) u ... u p"(C) u ...
p is called Iocally finite iff V C E T : p(C) is fmite and computable
p is called proper ìff ve E T : p(C) ç { D E T l D < c }
p is called complete ìff ve, D E T, ìf D <c then 3 E s.t. E E p*(C) andE- D
p is called ideai iff it is locally finite, proper and complete.

3. A Downward Refinement Operator
The downward refinement operator proposed in this section relies on the addition of a non-
redundant literal to a clause that tums out to be inconsistent wrt a negative example. The
space in which such a literal should be searched foris potentially infinite, thus an exhaustive
search is infeasible. W e can formally define the search space as the partially ordered set (or
pose t) (LP/-or S01), where LP/-01 is the quotient set of the Datalog link:ed program clauses
and S

01
is the quasi ordering relation defmed in section 2, which can be straightforwardly

extended to equivalence classes under --01 [14]. Henceforth, we will always work on the
quotient set LP/-01 and, when convenient, we will denote with the name of a clause the
equivalence class it belongs to.

The search strategy used to sol ve the problem of downward refmement takes advantage
of the structure of the search space. The search is frrstly performed ill the space of positive
literals, containing information comingfrom the positive examples. When the search in this,
space fails, it is extended to the space of negative literals, built by taking into account the
negative example wrt which the hypothesis tumed out to be inconsistent.

Firstly, given ahypothesis H whichis inconsistentwrtanegative exampleN, all theclauses
of H that caused the inconsistency are detected. Por each inconsiStent clause C, let us
suppose that the subset ofthe positive examples 801-subsumed by C were {P1, P2, ••• , P n}.
The search aims at finding one of the most generai downward refinements under object
identity ofC againstN givenP1,P2, ... , P n' denoted with mgdr0 jC, N l P1, P2, ... , PJ The
set of the most generai downward refinements under object identity of C against a negative
example N, denoted with mgdr 0/C, N), is defined as follows.

152

mgdr0 jC, N)= {M l M <01 C, M consistent wrtN, 'v'D D 5,01 C, D consistent wrtN:

not(M <01 D) }

while the setmgdr0/C,N l P1, P2, ... , P)is defined as the subset ofmgdr0 jC, N)made up

of ali the clauses that 801-subsume the positive examples P1, •. , P n· Fonnally:

mgdr 0 jC, N l Pl' P2, . .. , P)= {M E mgdr0 jC, N) l P1S,01M,j=l,2, ... , n)

Throughout this section, we shall denote with C a clause that needs to be specialized,

since it is inconsistent with respect to an example N. More precisely, the body of C needs

to be subjected to a suitable process of downward refinement. Le t us consider the problem

of finding o ne of the clauses in the se t mgdr al C, N l P 1, P 2, ... , P J
Since the downwardrefinements we are looking formust satisfy the propeny of maximal

generality, it may happen that the specializations of C are overly generai, even after some

refinement steps. This suggests the possibility of further exploiting the positive examples

in order to specialize C. Specifically, if there exists a literal t,l:tat, when added to the body

of C, is ab le to discriminate from the negative example N that caused the inconsistency of

C, then the downward refmement operator should be able to find it.

The process of refining a clause by means of positive literals ca11 be described as follows.

For each P i (i= l, 2, ... , n), !et us suppose that there exist n. distinct substitutions such that C
'

eo(subsumes Pr Then, let us considerali the possible n-tuples of substitutions obtained by

selecting one of such snbstitutions for every positive example. Each of these substitutions

is used to produce a distinct residua!, consisting of ali the literals in the positive example

thatarenotinvolvedin the00(subsumption test, al:terhavingproperlyturned thei.rconstants

into variables. Formally, a resiclual can be defined as follows.

Definiti nn 6 Let C be a clause, E an ex.ample, and G·. a one-to-one substitution
J

such that body(C).~ ç body(E). A residua[of E wrt C under the mapping a., denoted by
J

!J.lE, C), is the following set of literals. C)= body(E) . .Qj·1 - body(C)

where Qj'1 is the extended antisubstitution (or inductive substitution) obtained by inverting

the corresponding substitution ar Indeed, an a_ntisubstirntion ìs a mapping from terms into

variables [15]. When a clause C 80 tsubsumes an example E t.hrough a substitution cr, then

it is possible to defme a conesponding antisubstitution, a ·1, which is exactly the inverse

function of a. Indeed, a is a one-to-one function, due to object identity assumption. Then,

a ·l maps some constants in E to variables in C, that is: a ·1: vars(C).a -7 vars(C).

153

It should be observed that not ali constants in E ha ve a corresponding variable according

to a ·1. Therefore, far our purposes, we introduce the extension of a ·l, denoted with Q. ·l, that

js defined on the whole se t of constants occurring into E, consts(E), and takes values in the

se t of the variables of the language.

if cn E vars(C).cr

otherwise

Henceforth, variables denoted by_ will be called new variables an d managed as Ln Pro lo g.

The residuals obtained from the positive examples P i, i= l, 2, ... , n, can be exploited to

build a space of complete positive downward refinements, denoted with P, and formally

defmed as follows.
P = U (ì t.j.(Pk, C)

i=l,2, ... n k=l,2, ... n

Moreover, let us denote with 8., j = l, 2, ... , m, ali the substitutions which make C
J

inconsistent wrt N. Let us define a new set of literals.

S = Ui=l,2, ,mt.i(N, C)

Then, the following theorem holds.:

Theorem l. Given a clause C that 80/subsumes the positive examples P1, P2, ... , P.and is

inconsistent wrt the negative example N, then any linked clause C' = C u { l), with

l E P- S, is in mgdr0 lC, N l P1, P2, . .. , P)

Formally: { C'l C' =C u { l), l E P- S l <;;;; mgdr 0/C, N l P l' P2, ... , P.)

Note that l is an element of body(C'), since it is negated.

Proof. See Appendix A.

Theorem l states that every downward refinement built by adding a literal in P-Sto the

inconsistent clause C restores the properties of consistency and completeness ofthe originhl

hypothesis.

Let us suppose now that the operator did not succeed in refining C wrt N in a complete

an d consistent way. In su c h a case, a change of representation must be performed in arder

to search for literals in another space (the operator that perfonns this process is mainly a

transposition of a similar operator for VL21 clauses to clausallogic [3]). Therefore, it is

necessary to define a new target space, called the space of negative downward refinements.

Given a clause C, an example N and the se t of all substitutions e i' j = l, 2, .. . ,m, such that

154

Cis inconsistent wrtN, the space of negative downward refinements, denoted with s., is the
·following set of literais. s.= neg(S) = neg(ui=l.2, m Ili (N'C))
where, given a set of literals <p= { 11, 12, ... , z. }, n~ l, neg(<p) denotes the set of literais
{---, 11,, 12, ••• , , z. } . As for the process of downward refinement by positive literais, we
are interested into a specific subset of S •' because of the properties satisfied by its elements.
Such a subset, caned space of consistent negative downward refinements, is denoted with
se and is defmed as follows.

Indeed, it is possible to prove the following result:
Tbeorem2. Givena clause C, an exampleN and the setofall substitutions e1 j=l ,2, ... ,m,
such that Cis inconsistent wrt N, then any linked program clause C' = C LJ {l), with
l E S., is in mgdr 0/C, N).
Formally: {C'l C' =Cu{ l}, lE Se} r;;;,mgdr0 jC,N)

Note that lisa negated literai occurring in the body of C'.
Proof. See Appendix B.

Theorem 2 easily extends to any link:ed literallwhich introduces new variables, due to
negation-as-failure rule. Generaily speaking, w e can say that, given aclause C and an example
N such that Cis inconsistent wrtN due to some substitutions e.,j = 1,2, ... , k, the search for J
a complete andconsistent hypothesis can be viewed as a two-stage process: the former stage
searches into the space P - S, the latter into S c By means of Theorems l and 2, we are now
able to formany define our novel downward refinement operator, denoted with Por
Deflnition 7 (Tbe downward reflnement operator p01)

Por' LP -t 2LP, 'r/C E LP: p0/C) = {C'l C' =C U { /},l E (P- S) U Se }
Tbeorem 3. The downward refinement operator p01 is ideai.
Proof. See Appendix C.

The ideality of the refmement operator p 01 is owed to the peculiar structure of the search
space when ordered by the relation ~or In the same search space ordered by 9-subsumption,
an ideai refinement operator does not exist, as stated by the following result [16, page 315]:
"Theorem 10. A locally finite, complete and proper downward refinement operator for
unrestricted search spaces ordered by e-subsumption does not e:xist."

This property is a consequence of the existence of uncovered infinite strictly ascending
chains of clauses in an unrestricted search space.

155

Application to Document Classiflcation . .
downwardrefinement operator has been applied in the area of document classifi.catzon

[4], which is a crociai step in the task of electronic documentprocessing. Some expenm~nts
been performed in orderto empirically verify thatthe operator p ofs effecti ve andefficient

· · · 1 mented p into INCR!H [5], an to revise inconsistent theories. T o this purpose, we 1IDP e or
incrementai system for theory revision, and compared the theories produced by IN CR!H to
'; . h b INDUBIIH [4] along two dimensions- predictive accuracy those mferredfrom serate Y '
and computational time.

. . The results obtained show thatthe operator p o?.s ab le to produce theories whose predicnve
. . . bl to that of theories inferred.from serate h. Nevertheless, accuracy 1s stansncany compara e

. an ffi . of the process of theory inference results largely à.s expected, the over e clency sults lead us to take into consideranon the Idea of mtegratmg increased. These proiDlsmg re
. PLRS [13] the learning module of IBisys, a the downward refmement operator mto . ' ,

software environment for office automation distributed by Olivetti. .
A thorough description of the application to document classification c an be found m [6].

S. Conclusions
The problem of clause speciaiìzation is centrai to theory revision. It can be cast as a search
through a space of clauses ordered by a generality relation. W e have proposed a ~ownward
refinement operator that tà.kes advantage of the structure of the search spa.ce. m ~rder to

th b finding its minima} spec1alizanon. An restare the correctness property of a eory Y th domain of office document classification has shown that extensiVe expenmentanon m e
this operator is able to refine effectively and efficiently logica! theories for docume~t
classification.

References . . an · d J. Minker Clark, K. L., Negation as failure, m Logzc and Databases, H. G arre an
(Eds.) Plenum Press, New York, 293-321, 1978. . . 1992 De R;edt, L lnteractive Theory Revision, Academlc Press, San _D~e~o, COpA,, D and Semeraro, G., Negation as a Speclallzmg erator, m Espos1to, F., Maierba, ·• . N . Artificial Intelligence 728, P. Advances in Artiftcial lntellzgence, Lecture otes m
Torasso (Ed.), Springer-Verlag, 166-177, ~93Multistrategy Learning for Document 4. Esposito, F., Malerba, D., and Semeraro, ., 84 1994 Recognition, AppliedArtijiciallntelligence, Vol.8, No.1, 33- , .

156

5. Esposito, F., Malerba, D., and Semeraro, G., INCR/H: A System for Revising Logical
Theories, in Proceed. of the MLnet Workshop o n Theory Revision and Restructuring
inMachineLearning, ECJV[L-94, Arbeitspapiere derGMD N.842, S. Wrobel (Ed.), 13-
15, 1994.

6. Esposito, F., Fanizzi, N., Malerba, D., and Semeraro, G., Revision ofLogical Theories,
in Proceed. of the 4th Congress of the Italian Association far ArtificialI ntelligence,
Lecture Notes in Artificial Intelligence, G. Soda (Ed.), Springer-Verlag, 1995
(forthcoming).

7. Fuhnnann, A., Theory Contraction through Ba se Contraction, J ournal ofP hilosophical
Logic 20, 175-203, 1991.

8. Giirdenfors, P., and Rott, H, BeliefRevision, in Handbook of Logic in AI and Logic
Programming, Vol. IV: Epistemic and Temporal Reasoning, Chapter 4.2, 1992.

9. Gran t, J., & Subrahmanian, V. S., Reasoning in Inconsistent FJJowledge Bases, IEEE
Transactions o n Knowledge and Data Engineering, Vol. 7, N.1, 177-189, 1995.

10. Helft, N., Inductive Generalization: A Logical Framework, in Progre:ss in Machine
Learning - Proceedings of EWSL 87, I. Bratko & N. Lavrac (Eds.), Sigrna Press,
Wilmslow, 149-157, 1987.

11. Lloyd, J.W., Foundations of Logic Programming, Second Edition, Springer-Verlag,
New York, 1987.

12. Plotkin, G. D., ANoteon Inductive Generalization, inMachinelntelligence 5, B. Meltzer
and D. Michie (Eds.), Edinburgh University Press, 153- 163, 1970.

13. Semeraro, G., Esposito, F., andMalerbaD., Learning Contextual Rules for Document
Understanding, Proceed. ofthe l Oth Conference o n Artificiali ntelligencefor Applications
(CAlA '94), IEEE Computer Society Press, Los Alamitos, CA, 108-115, 1994.

14. Semeraro, G., Esposito, F., Malerba, D., Brunk, C., andPazzani, M., Avoiding Non­
Terrnination when Learning Logic Programs: A Case Study with FOIL and FOCL, in
Logic Program Synthesis andTransformation- Meta-Programming in Logic, Lecture
Notes in Computer Science 883, L. Fribourg and F. Turini (Eds.), Springer-Verlag,
183-198, 1994.

15. Siekmann, J. H., An Introduction to Unification Theory, in Forma! Techniques in
Artificial Intelligence- A Sourcebook, R. B. Banerji (Ed.), Elsevier Science Publishers
B. V. (North Holland), 1990.

16. van der Laag, P. R. J., and Nienhuys-Cheng, S.-H., Existence and Nonexistence of
Complete Refinement Operators, in M achine Learning: ECML-94- Proceedings of the
European Conference on Machine Learning, Lecture Notes in Artificial Intelligence
784, F. Bergadano and L De Raedt (Eds.), Springer-Verlag, 307-322,1994.

17. V anLehn, K., Efficient Specialization of Relational Concepts, M a chine Learning 4, l,
99-106, 1989.

18. Wrobel, S., On theproper definition of minimality in specialization and theoryrevision,
in Machine Learning: ECML-93 - Proceedings of the European Conference on
Machine Learning, Lecture Notes in Artificial Intelligence 667, Pavel B. Brazdil (Ed.),
Springer-Verlag, 65-82, 1993.

157

Appendbr A.

. th (LP/- <) the se t of aH constant-I d t Provec '< C letusobservethatm espace m'-m nor er o 01 ' • •

free generalizations of a dause C' corresponds to the set 2c·, thus each proper generahzatlo~

of C' has a number of literals less than the number ofliterals of C' [17]. There~ore C c C

C' " C i e C' is a proper downward refinement of C un der em-subsumptton. => 'OI ' ' ,

Let us show now that C' is consistent wrt N. First of all, observe that

\-/._1 2 m· -.head(C').8. = -.head(C).8. == head(N). v}- ' , ... , . J J

Moreover,

Vj=l, 2, ... , m: body(C').Eli = body(C').~ = (body(C) u {!)).~ =

body(C).~ u {l}.~

_ p_ S =>l e S == u. ~(N, C) :::::> Vj=1, 2, ... , m : l e ~i(N,
E Fl,2, .. .,m J l

fi . . fP l e p=> l e C then Vj=l, 2, ... , m: li<' body(N).~· => By de 1muon o , '

(l)

!8 i2: body(N) :::::> {1}.8. cr. body(N).
'-i ' · · b d (C') e cr. body(N). Th l king back at (l), we can conclude that: Vj=l, 2, ... , m. o y . i en, oo . .

This proves thatC'is consistentwrtN.lndeed, any other substitution causingthe inconsistency

. l 2) b a !Se of mrr assumption that were of C' would be a superset of a Eli (i= , ' ... , m ec l .

. . b d (C) e cbody(N)andwehavejustproved theonlypossibleone-to-onesubst1tuttonss.t. o y . j-

that each of them makes C' consistent wrt N.

Now suppose that 3 F which is consistent wrt N and s.t.

C, "< C => l C'l = ICI+ l > IFI ~ ICI => IFI = ICI. But F is a speClahzat:J.on of C, then 1t <OJ• -o/ .

can be inferred that F ~ai C. Thus F is inconsistent wrt N, JUSt as C.

According to the hypotheses of the theorem: . .

d b d (C) body(P) (cr are the subst1tut1ons v k=l, 2, ... , n: head(C).c\ = head(Pk) an o Y .a.h, ç k ik

that appear in the definition of P).

l E p:::::> l E nk=l,2,.A<(Pk, C)=> V k =l, 2, ... ,n: l E body(PJJ~k-t :::::>

V k =l, 2, ... , n: l.g_i e body(Pk). C'"

Then, body(C').~k ~ body(C).~k u {l} -~k ç body(Pk), V k =l, 2, ... , n. Then, p":;,~ .

AppendixB.

As to the proof that C' is a proper downward refinement of C under eofsubsumption, refer

to Appendix A.

158

Given a linked program clause C' =C u {l}, with l E S c'in order to prove that C' is consistent

wrtN, letus suppose (reductio ad absurdum) there exists a substitution cr1 s. t. C' is inconsistent

wrt N. Then, from definition 3, it results that: .

l) body(C').cr1 ~ body(N) 2)-, head(C').cr1 = head(N)

As a consequence, cr 1 is also one of the k substitutions that mak:e C inconsistent wrt N. W e

also bave from the hypotheses of the theorem:

body(C').cr1 = body(C').Q:1 =(body(C) u {l}).Q1 = body(C).Q1 u {l} .g1

with l E Se =neg(~=t.z ... ,mlliN, C)). But:

{l}.Q1 ~ Sc.Q1 ~ neg(ll1(N, C)).Q1 = neg(body(N).g1•1- body(C)).Q1

= neg(body(N).g1•1-~- body(C).Q1) = neg(body(N)- body(C).,g1) ~ neg(body(N)) and

{l} -!!1 ~ body(C').Q1 = body(C').cr1 ~ body(N), according to 1). .

But this is impossible since body(N)n neg(body(N)) = 0.

In order to prove that C' is in mgdr 0 jC, N), i t remains to demonstrate that:

't D, D '5.01 C, D consiste n t wrt N: no t(C' <01D).

Suppose (adabsurdum) thatthereexistsD s. t. D '5.01C,DconsistentwrtN andC' <oP· Then:

C' <0P => IDI < ICÌI=ICI+ l => IDI -5.ICI . (2)

But: D '5.01C => IDI~ ICI. (3)

Therefore, from (2) and (3), it results: IDI = ICI.

By hypothesis, Cis a generalization·of D, but the only constant-free generalization of D

having the same number of literals of D is D itself. Thus, C =D and this is a contradiction

because Cis inconsistent wrt N, whilst D is consistent wrt N by h}'pothesis.

D
AppendixC.

(properness)

P01 is proper as aconsequence ofthe definition ofmgdr0 jC, N) andofTheorems 1 and2.

Indeed, p0 jC) ~ mgdr0JC, N).

(local finiteness)

The choice of l in P01 is related to the construction of the sets Se, p and S. Note that

number of one-to-one substitutions such that a clause C e01-subsumes a clause D is

and equal to lvars(D)I x (lvars(D)I - l) x ... x (lvars(D)I - lvars(C)I + 1).

Itis worthwhile to note that S cis an intersection of a finite numberof residuals, by definitiion.

159

This number depends on the (finite) number of substitutions between the clause C to be

refined and the example N which causes the problem of inconsistency. In turn, each residual

is a fmite difference-set of literals between two clauses. Thus, S cis finite and computable.

P is also,_an intersection of a finite number of difference-sets between two clauses. This

number depends on the numberof substitutions between C and the positive examples already

processed. Finally, the set S is the union of a finite number of difference-sets between two

This number depends on the number of substitutions between C andN. Since these

are both finite and computable, p01 is locally fmite.

s)

C, D be two clauses such that D <01 C (C, D E LP). In this case, there exist some

,sut•sti1nti•ons Oj.J=l, 2, ... , s s.t. llli(D, C) l= r.

a givenj E {l, 2, ... , s}, let us consider the literals in l!.(D, C). Then, we may write D
J

follows: D = C.Oj U {!1, 12, .. • , l), where z •. !J,/E l!fD, C), k =l, 2, ... , r.

can build the following set of clauses:

h=o 1 , where Fh= C.cr. u {11, 12, ... , ZJ, for h= O, l, ... , r.
1 ,.,.,T J

that: F0= C.cr. andF =D.
J r

to demonstrate the completeness property, it is to be proven that:

a given k E {0, 1, ... , r-1}, let us consider Fk+l= C.Oj u {Il, 12, ... , z.+J = Fk u {lk+l}.

us suppose now, without loss of generality, that the database ofthe availablé positive

is made up of the set {P 1, P2, . •• , P.) and thatN kis the negative example which calls

is a positive literal in the body of Fk+l' then, by looking back at the definition of Por>

note that we are able to build the sets P and S such that lk+l E P - S, and then

= Fk u {lk+l} E p0JF/ In fact, the set P depends on the positive examples

P2, .. • , P.), and the set S depends on Nk, which can be chosen in such a way that

l!m(N"' F J for each substitution Ym between N • and F k causing F k to be inconsistent wrt

is a negative literal in the body of Fk+l' then by definition of Por we are able to build

Se, whichin turn depends onNkandFk, in such a way thati.+1E neg(l!m(N"' F J) for

Integrity Constraints Evolution
Deductive Databases

.
111

Danilo Montesi*

Department of Computing
Imperial College

180 Queen's Gate
London SW7 2BZ, UK

d.montesi@doc.ic.ac.uk

Abstract

Franco Turini

Dipartimento di Informatica
Università di Pisa

Corso Italia 40
56125 Pisa, Italy

turini@di.unipi.it

Integrity constraints evolution refers to constraints that can change over
time. Integrity constraints form a uni t called integrity const:raints theory that
is expressed through a Horn logic language. Unfortunately, integrity con­
straints evolution mirrors the problem of updates in logic programming. In
this paper we introduce a new approach to constraints evolution for deduc­
tive databases extending the traditional Datalog language to accommodate
integrity constraints. V/e consider permanent and temporary constraints. The
temporary constraints are defined in a query, that is they hold only for that
query, while the permanent constraints are defined in rules database, that is
they hold forever. Thus different queries can have different temporary con­
straints and this allow their evolution. We propose a language for integrity
constraints evolution in deductive databases that is an extension of Datalog
and we provide its operational semantics. Our approach turns to fìt in already
developed methods for efficient constraints checking.

"The work of thìs aut h or has been partìally supported by the EU Human Capita/ and M obility
Compulog-Group grant N. ERBCHBGCT930365.

161
Introduction

Deductive databases use a uniform and declarative language to express several
database concepts such as data, views, queries and integrìty constraints [6]. The

approach consider data and views together as the database and the in­
tegrity constraints as a separate component to express the meta data or 'knowledge'
that a database must satisfy. However, despite the language uniformity, there are
severa! limitations, among which the difficulty to express in logica] term the evo­
lution of data and integrity constraints. The problem of evolution/updates of the

even if no t satisfactory solved (specially for views) h ave been approached [l J.
approaches have been proposed to extend logic languages to accommodate

[2]. Some of them are based on logics involving time, others just try the
integration of updates and declarative query languages [4, 9].

The problem of integrity constraints evolution, instead, remains largely unex­
The fact that integrity constraints are expressed through Horn logic language

to consider Horn clauses evolution/update, that as we have said, has not been
solved. Thus the logical nature of integrity constraints does not allow to

.,v,'c"~"' evolving integrity constraints in a logica! framework. Evolving constraints
no t fixed once an d forever. Instead they can change over time to refiect different

.'-ll"'il'~"c in data semantics expressed through integrity constraints [14]. Such evolv­
constraints are useful in the prototyping phase of the development of a database

or for many applications where the domain knowledge changes very often.
fact that integrity constraints evolution have been little attention is also related

the traditional database view where integrity constraints are fixed and the most
research issue is the efficient detection of constraint violations [5, 13, 15].

In this p a per w e investigate the problem of handling evolving integrity constraints
We do not aim at solving the problem of updating constraints. Indeed, we do

allow the integrity constraints updates, but to define them in a dynamic conte.xt.
a deductive database has three components: a qaery Q, a database DB

an integrity constraints theory IC. The basic idea of our approach is to define
constraints in two different components, splitting the integrity constraints

into pe.rmanent and temporary ones (ICp and ICt respectively). The former '
accommodated in t o the rules database giving rise t o a new database containing

and meta data, called DB10P. The latter are combined into the query giving
to a new query QICP. The possibility of allowing changes to (part of the)

relies on the fact that the query is a dynamic component of the system.
rules database, instead, is assumed to be a time invariant component. Thus

constraints defined in the query are temporary, that is they hold only for such
a query. A new query can embody different (temporary) constraints. The resulting
integrity constraint theory (I Gr) is built starting from the temporary ones (defined

the query) and enriching them by means of the involved constraints of the rules
The involved constraints are those which are defined in the rules database

162

and which are used for the evaluation of che query. Permanent and/or temporary
constraints may be empty. Putting all the constraints in a query allows one to
change all of them in the next query, while storing them in the rule database does
not allow any change, but new constraints can be added in a new query. Any trade
off between these extreme situations is possible. Flexibility, that is more temporary
constraints and less permanent constraints is paid in terms of computational effort
for constraint checking.

The contribution of this paper is to extend the traditional Datalog language to
allocate temporary and permanent integrity constraìnts. The resulting Datalogw
language allows to express constraints evolution extending the Datalog language.
Then we define the operational semantics for DatalogiC and show that our approach
can be used together with already developed methods for efficient constraints check­
ing. Finally we discuss the trade off between flexibility and efficiency of the language
altogether with further extensions considering updates to the data.

In the followìng we assume some knowledge of Datalog language and database
concepts [16]. The remainder of this paper is organized as follow. Section 2 provides
severa! examples. Section 3 introduces the Datalog1c language. Section 4 introduces
the semantics and Section 5 discusses several issues related to efficient constraints
checking an d the use of knowledge in query optimization. Finally, section 6 contains
some concluding rernarks.

overv1ew of our approach

The classic view consìders the database as a component storing data (intension­
ally or extensionally) an d consider the integrity constraints as another component
(usually separate) storing knowledge. Therefore, even if data, views an d integrity
constraints can be expressed by means of the sarne logic language, they are regarded
a,s different cornponents as shown in the next example.

2.1 Consider the intensional database (I DB) describing high and medium
sale depaTtments as those that have the sale volume in a fixed range. Consider the
permanent constraint (I C p) "no departments ca n be o n the fio or f2 an d f6 an d ihe
sale of a department must be greater then O" and the temporary one {ICt) "no de­
pariments can be on the floor f3 and 14 and the sale of a department must be greater
then O". 1

1 Vile denote in the examples in bo! d the formula that denotes knowledge.

163

IDB = Hsaledept(Depno,l"lgrno,Floorno, It·am, Vol) ,_
Dept(Depno, !"igrno, Floorno),
Sale(Depno, Item, Val), Vol > 80000.

Msaledept(Depno,Mgrno,Floorno,ltem,Vol) r­

Dept(Depno, Mgrno, Floorno),
Sale(Depno, Item, Vol),
Val> 20000, Vol < 50000.

JCP = ,_ Dept(X, Y, f2), Dept(X, Y, f6).
r- Sale(X, Z, V), V > O.

ICt = ,_ Dept(X, Y, f3), Dept(X, Y, f4).
,_ Sale(X, Z, V), V> O.

The labels of the constraints reflect the permanent/tempora.ry status that the pro­
grammer has in mind. In order to have a formai model for the evolution of cuch
knowledge we should be able to have a logica! model for the evolution of Horn
clauses used to express the temporary constraints. As we have said thìs, is an open
problem [17]. We approach this problem associating the permanent constraints with
the intensional database and the temporary constraints with a query. The former
constraints are permanent, since that part of the database is not assumed to e-.ua.u,c;c..

The later constraints are temporary since queries can change over time. Thus differ­
ent queries, in genera!, will bave different integrity constraints associateci to thenl.,

Example 2.2 Cons1:der the transformed intensional database where the
is associai ed t o rules bo dies inside { ... } .

I DBICP = Hsaledept(Depno, Mgrno, Floorno, Item, Vol) ,_

{ ,_ Dept(X, Y, f2), Dept(X,
,_ Sale(X, Z, V), V> O}
Dept(Depno, !Vlgrno, Floorno),
Sale(Depno, Item, Vol), Vol > 80000.

Msaledept(Depno, l"lgrno, Floorno, Item, Vol) ,_

{ ,_ Dept(X, Y, f2), Dept(X, Y,
,_ Sale(X, V >
Dept(Depno, !Vlgrno, Floorno),
Sale(Depno, Item, Vol),
Vol > 20000, Vol < 50000,

164
The informai reading of a rule of the form H +-- {I C1 , ... , I C n} B 1 , ... , Bm is

that H is true if E 1 , ... , E m is true an d the database satisfìes I C1 , ... , I C n. W e
recall that a database DE satisfìes a set of integrity constraints IC if DE l= ICi
for each ICi in IC, otherwise DE violates IC.

Example 2.3 Temporary constraints can be defined in a query as follows

QIG, =? { +-- Dept(X, Y, f3), Dept(X, Y, f4), +-- Sale(X, Z, V), V> O}
Hsaledept(Depno, Mgrno, Floorno, shoe,90000).

The evaluation of Q10' in I D EIGP in addition to the binding for the query p art
produces the resulting integrity constraint theory ICr = ICP U ICt. Obviously, if
one or more constraints are defìned both in the query and in the database there is
no way to 'retract' its effect.

Example 2.4 Consider the transformed intensional database I DE10P of the Exam­
ple 2.2 an d the query Q0, that is the query of the Example 2. 3 with empty temporary
constraints. This lead t o the resulting integrity constraints theory I C, = I C p that is
different from the previous one due to the empty temporary constraints.

Let us now consider the evaluation process of a query. It has two phases. The
first phase is the query-answering where the bindings (for the variable of the query
part) are computed an d integrity constraints are collected an d their consistency is
checked. The second phase is the constraints-checking.

Example 2.5 Consider the query

Qw: = ? { +-- Dept(X, Y, f3), Dept(X, Y, f4)}
Hsaledept(Depno, Mgrno, Floorno, shoe, 90000),

the database IDEIGP of Example 2.2 and the state EDE = Dept(9, 2, f2), Dept(6, 1, f4
Sale(9, shoe, 90000), Sale(8, book, 120000). The query-answering phase computes
the bindings Depno /9, Mgrno/2, Floornr /f2 an d the resulting integrity constraints
theory, that is

ICr = +-- Dept(X, Y, f2), Dept(X, Y, f6).
+-- Sale(X, Z, V), V > O.
+-- Dept(X, Y, f3), Dept(X, Y, f4).

The constraints-checking phase verifies if IC, satisfies EDE.

In the above example IC, is not violated in EDE, but is violated in EDE' =
EDEUDept(6, 1, f3). Instead the query Q0 computes as resulting constraint theory
ICP which is not violated in EDB'.

A t this point we should clarify some points about integrity constraints. First the
permanent constraints inherit all the classic results such as the efficient constraints

165
checking [5). This due to the fact that the required hypothesis hold: permanent con­
straints are assumed to be consistent and they are satisfied in the current database
state. The second hypothesis allows to check integrity constraints only on the dif­
ference between the current state and the next state. The second point is related
to the role of integrity constraints that are seen as global invariant property of the
database. Our approach instead, gives to permanent constraints the status of lo­
ca! property, that is local to the rule where they are defined. Thus the database
programmer should take the responsibility to locate the integrity constraints in the
rules. all rules ... This can be seen as a step back wìth respect to the current sit­
uation, but i t ìs no t. Indeed, this process t o 'attach' integrity constraints to rules
can be clone automatically and it is not visible to the programmer once that the
temporary /permanent status of constraints are specified leaving t o already devel­
oped techniques the work to decide where to locate integrity constraints [3, 8). This
process often called semantic query optimization allow to exploit the permanent
constraints for efficient query evaluation. We do not discuss this process since it
is beyond the scope of this work and is an ongoing research. The important point
is that for efficient constraints checking we can take advantage of already available
methods while achieving knowledge evolution. This is due to the fact that our ap­
proach grows on top of those methods. even if they do not allow to accommodate
temporary constraints. Thus our approach can take advantage of those techniques
for efficient computation in a more dynamic framework that allow us to model
knowledge evolution.

Finally, our approach leads to another possible optimization. Since, we already
know that the permanent' constraints does not violate the current database we have
only to check the temponi.ry part of ICr· It might also happen that the temporary
constraints are (partially) included in the permanent one.

DatalogiC

We introduce a rule-based language corresponding to the language informally
ìntroduced by means of examples in Section 2. The extensional database (EDB) ìs,
a set of extensional ground atoms, while the intensional one is a set of rules of the
form

H+-- {IC1, ... ,ICn}Bl, ... ,Em

where E 1 , ... , Bm (as in Datalog) is the query p art which cannot be empty, H is an
intensional atom and IC1 , ... , ICn is the integrity constraint part. The two parts
do not share variables. We consider only constraints that are denials where all the
va:riables are universally quantifìed and they are built from extensionalliterals. A
query is a rule with no head of the form? {IC1 , ... , 1Cn}E1 , ... , Bm. A Datalog10

... ,.,,a.u'"~" DB consists of the extensional database and of the intensional database.
Note that the above language is an instance of constraint logic programming [7]

166
4, Seinantics

The operational semantics of DatalogiC is given below in N atural Deduction
style. For any database DE and a query Q, we denote by DE f-e Q the fact that
there is a top-down derivation of Q in DE with answer B. We reserve the symbol é

to denote the empty (identity) answer. The top-down derivation relation is defined
by rules of the form

Assumpiions [C' . .]
C l . onddzons onc uszon

asserting the Conclusion wbenever tbe Assumptions and Conditions hold. A relation
D E 1-e Q bolds if i t is t be first of a finite sequence of similar relations such that
eacb is a consequence of some of tbe rela.tions following it in tbe sequence according
to the rules discriminateci below

DE f-, o

DE, 1-e {JCI}E1 DE/-" {JCz}E2
DE 1-e" {JC1, IC2}E1, E2

The first rule states tbat an ernpty goal is derivable in every database with ernpty
answer. The second rule states that to derive a non-empty conjunct you have to
derive each conjunct in turn. The third states that to derive a query you have to
reduce it to the body of a rule.

The above tbree rules can be used to implement an interpret of the proposed
language to evaluate a query. In the tbird rule the constraints violation is cbecked
through any of tbe already developed systems verifying if the condition EDB l=
IC1,IC2 holds" This may lead to inefficiency a.nd therefore an incrementa! con­
straints checking is required as discussed in the next section.

Discussion

As we bave said, efficient constraints cbecking can be realized for tbe permanent
constraints due to assumption tbat the integrity constraints are satisfied in the
current database state [5]. U nfortuna.tely, none tbese methods can be applied to
the temporary constraints for wbich we bave to check tbat they are satisfied in
the current database state and tbat tbey are consistent arnong them and with the

-----------·--·--------~

167
permanent constraints. This expected (negative) result underlines the trade off
between temporary and permanent constraints. Temporary constraints checking is
expensive and hard to optimize due to their dynamic nature.

However, it is possible to improve the efficiency of the resulting integrity con­
straints checking (incrementally) only the temporary one with respect to the current
database state. I t mìght also happen that the temporary constraints are (partially)
included in the permanent one leading to some further optimization.

There is another interesting poi n t about integrity constraints (an d updates).
Traditionally, integrity constraints are checked to verify if the update leads to a state
which satisfies them. If this is not the case the updates are rejected. Such updates
are very often seen as external agents which cbange the database state. It would be
interesting instead to express in addition to integrity constraints also updates in rule
bo dies . . CD .C for instance allow updates in rule body [12]. In t bis case w e can link
togetber the integrity constraints and tbe potential source of constraints violation,
namely the updates. Tbis sbould allow to be updates driven in the checking process
and thus more efficient w bile keeping the temporary constraints. This is the case of
integrity constraints in active databases [10].

We bave seen a new approa.ch to dynamic constraints definition. The main
advantage of this approacb is to allow perrnanent and ternporary constraints in a
logica! and clean framework that allow to apply already known constraints checking
methods.

S. Abiteboul. Updates, a New Frontier. In M. Gyssens, J.Paredaens, and
D. Van Gucht, editors, Proc. Second Int'l Conf. on Database Theory, volume
326 of Lecture Notes in Computer Science, pages 1-18. Springer-Verlag, 1988.

A. J. Bonner and M. Kifbiber. An overview of transaction logic. Theoretical
Compu.ieT Science, To appear, 1994.

U. S. Chakravathy, J. Grant, and J. Minker. Logic-Ba.sed Approach to Semantic
Query Optimiza.tion. ACM Transaciion on Database Systems, 15(2):162-207,
June 1990.

W. Chen. Declarative Specification and Evaluation of Database Updates. In
C. Delobel et al., editor, Proc. Third Int'l Conf. on Deductive and Object­
Oriented Databases, pa.ges 147-166, 1991.

168
[5] H. Decker. Integrity Enforcement in Deductive Databases. In Pmc. Int'l Conf.

on Expert Database Systems, pages 271-285, 1986.

[6] H. Gallaire, J. Minker, and J. M. Nicolas. Logic and database: A deductive
approach. ACM Computing Surveys, 16(2):153-185, June 1984.

[7] J. Jaffar and M. J. Maher. Constraint Logic Programming: a Survey. Journal
of Logic Programming, 19:503-581, 1994.

[8] A. Y. Levy and Y. Sagiv. Semantic Query Optimization in Datalog Programs.
In Proc. ofthe ACM Symposium on Principles of Database Systems. ACM, New
York, USA, 1995. To appear.

[9] S. Manchanda and D. S. Warren. A Logic-based Language for Database Up­
dates. In J. Minker, editor, Foundation of Deductive Databases and Logic Pro­
gramming, pages 363-394. Morgan-Kaufmann, 1987.

[10] D. Montesi and R. Torlone. A Rewriting Technique for the analysis and the
Optimization of Active Databases. In G. Gottlob and M. Y. Vardi, editors,
Pmc. Fifth Int'l Conf. on Database Theory, volume 893 of Lecture Notes in
Computer Science, pages 238-251. Springer-Verlag, 1995.

[11] D. Montesi and F. Turini. Knowledge Evolution in Deductive Databases. In
Int. Symposium on Knowledge Retrieval, Use and Storage for Efficiency, 1995.
To appear.

[12] S. Naqvi and S. Tsur. A Logic Language for Data and Knowledge Bases. Com­
puter Science Press, 1989.

[13] J-M. Nicolas. Logic for Improving Checking in Relational Data Bases. Acta
Informatica, 18(3):227-253, 1982. Springer-Verlag.

[14] X. Qian and G. Wiederhold. Knowledge-based Integrity Constraint Validation.
In Y. Kamabayashi, editor, Proc. Twelfth Int 'l Con f. o n Very Large Data Bases,
pages 3-22, 1986.

[15] F. Sadri and R. Kowalski. Integrity Checking in Deductive Databases. In
P. Hammersley, editor, Proc. Thirteenth Int 'l Con f. o n Very Large Data Bases,
pages 61-69, 1987.

[16] J. D. Ullman. Database and Knowledge-Base Systems. Computer Science Press,
1989.

[17] D. S. Warren. Database Updates in pure Prolog. In Proc. Int 'l Con f. o n Fifth

Generation Computer Systems, pages 244-253. Institute for New Generation
Computer Technology, 1984.

- ----------

Dedarative reconstruction of updates
in logic databases: a compilative approach *

M. Carboni\ V. FoddaF, F. GiannottF, and D. PedreschF

1 CNUCE Institute of CNR

Via S. Maria 36, 56125 Pisa, Italy
e-mail: F. Giannotti@cnuce. cnr. i t

2 Dipartimento di Informatica, Univ. Pisa

Corso Italia 40, 56125 Pisa, Italy

e-mail: pedre@di. uni p i. i t

Abstract

Deductive database languages exhibit an evident dichotomy in the way they sup­
port queries and transactions. Query answering is based on declarative semantics
an d :fixpoint based (bottom-up) evaluation. Transactions are based on procedura!
semantics and top-down evaluation, as for instance in the logic database language
.C1J.C [NT88]. This paper presents a technique to compile updates on standard logic
programs to be evaluated with the usual bottom up evaluation mechanism. The
compilation is based on the concept of XY-stratification [AOZ93] which is a syntac­
tic property of non-monotonic recursive programs. XY-stratified programs use stage
arguments to integrate contro! on state transition within the deduction process.

Keywords. Deductive Databases, Logic Databases Languages, Logic Databasé Up­
dates, XY-stratification.

Introduction

Logic database languages use a declarative style both to represent knowledge and op­
erations on database relations. To coherently model the application domain, a deductlve
database should also express its dynamically changing aspects. As a matter of fact, np­
dates are a primary concern of any database language.

On the one hand, deductive databases naturally support powerful and declarative
._ .. · .. query languages, and queries can be efficiently executed using a bottom-up, fixpoint-based
·~r .. _procedure. Also, sophlsticated optimizations such as magie sets are available to capture the
·~· advantages of top-down execution, when needed. On the other han d, deductive databa.ses

traditionally su:ffer from limitations in describing the dynamic and transactional aspects
of database systems.

"This work has been carried out wìthin the EC-US Cooperative Acti,~ty Project ECUS-033- DEUS EY

