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Most proposals in the literature augment deductive databases with a procedural se­
mantics to implement the contro! mechanisms needed to support updates (see [Mon93] as a 
source ofreferences.) Often the semantics ofthis procedural component is accommodated 
in some logic capable to deal with dynamics. This is the case of transaction logic [BK94], 
dynamic logic [MW88] or various modal logics. Far instance, in ~D~ transactions are 
special rules with updates, which are evaluated top-down and their semantics is given by 
dynamic logic. This combination of declarative and procedural semantics has as a major 
disadvantage the fact that the architecture of the abstract machine supporting deductive 
databases is deeply altered. As a consequence, the available optimization techniques are 
no longer directly applicable. 

We propose, in a more conservative way, to leave the simple declarative framework 
unaltered. This is achieved by means of a transformation of updates an d transactions in t o 
sets of clauses which 

@ re:fiect the intuitive meaning of state changes in a declarative way, and 

® can be e:fficiently. executed using the ordinary bottom-up, :fixpoint-based evaluation 
of deductive databases. 

We apply this transformation technique to a generalization of ~V~ transactions, i.e .. , 
clauses containing update predicates in their body. The subgoal preceding the updates 
is the precondition, and the subgoal following the updates ìs the postcondition of the 
transaction. Pre/postconditions are used to preserve database integrity: in particuìar, 
the updates are actualiy performed only if the postcondition is ful:filled, otherwise the 
transaction aborts. 

The noti an of CD~ transaction provi d es a form of integration of query an d updates, in 
the sense that there is a uniform notation. However, di:fferent evaluation methods are used 
far query and transaction clauses. The proposed compilation aliows to execute transaction 
clauses in a bottom-up way, similarly to queries. The transformation is based an the 
notion of XY-stratification [AOZ93], Le., a syntactic property of programs which properly 
extends ordinary strati:fication. A remarkable characteristic of XY-stratified programs is 
that they can be executed by an iterated fixpoint procedure, even if they are Tecursive, 
non monotonic programs. XY-strati:fication is defined in terms of stage arg-uments, i.e., 
predicate arguments which record the stage of the computation, an d allow to control state 
changes. The language Statelog+-, proposed in [LL93] is directly related to our work: 
here, a di:fferent formalization of state change leads to similar results, e.g, the capability 
te' compute the perfect model of programs with updates. The main di:fferences with our 
approach are that we do not admit states as first class values in the language, and that 
our focus is on compilation of updates aimed at providing e:fficient executions. 

Section 2 gives a formal account of XY-stratifìcati0J'. Then sections 3 t o 5 gradually 
introduce compilation of updates into XY-stratified programs: simple updates, compo­
sition of updates, simple and nested transactions. In ali cases two different semantics 
are explored: paraliel semantics and sequential semantics. Section 5 also presents as an 
example the compilation of a simple transaction. Section 6 contains a few :final remarks. 
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progrants 

The ba"sic concept of our a.pproach is the notion of XY-stratification., i.e. a syntactic prop­
erty of non-monotonic recursive Datalorlls programs 1 . The class of programs identi:fìed 
by such property, na.med XY-programs, captures the expressive power of the in:flationary 
lìxpoint semantics. 

The basic idea is that recnrsive predicates have a special argument named siage which 
is an integer. There are two different ways to use the stage: in Iules which do not increment 
the sta"ge (X-rules), and rules that increment the stage by one (Y-ruJes). An XY-strati:fied 
program allows recursion only when there is an increment of the stage. I:f there exists 
a reordering oi" the rules of the predicates whlch induces a XY-stratification, then it ìz, 
possible to apply an iterated fixpoint procedure which distinguishes the application of X­
~ules by the applica:tion of Y-rules. Such procedure computes the perfect model associateci 
to the set of recursive predicates. 

The following subsections introduce synta:x and semantics of XY-strati:fied programs 
following the presentation of 

Syntax 

Definition 2 .l Given a program P, a se t of rules of P delìning a maximal se t of mutualiy 
recursive predicates will be calied a recursive clique of P. 

Definiiion 2.2 Given a recursive clique the :first arguments of the recursive predica.tes 
of a rule r in (;;) will be calied the stage argument of r. 

The usage of stage arguments is far counting <J,s in the recursive definition of integers: Tiit 

stands for zero a,nd s(I) stands for 1+1. 

Definition 2.3 Let Q be a recursive clique and r be a recmsive rule of Q. Then r is caJled 
an 

e X-rule if ali stage arguments of r are equa] to a simple 
110t appear anywhere else in r; 

say J, 'IV hl eh do es 

" Y-rule if (i) some positive of r has as stage argument a simple variable J, 
the head of r has stage argument s(J), (iii) ali the remaining stage arguments are 
either J or s(J) and (iv) J does not appear anywhere else in r. 

Definition 2.4 A recursive clique Q will be said to be an XY-cliqu.e when aJl its recursive 
rules are either X-rules or Y-rules. 

ali atom is calied the version of an atom p( t). 
Given an XY-clique its version primed is constructed by priming certain occunenc.es 
of recursive predicates in recursive rules as follow: 

X-rules: ali occurrences of recursive predicates are primed; 

1 Datalog15 ls a sìmple extension of Datalog whlch adJnits a single unary fu11ction symbol B(.). 
\a.nguage bas been used far temporal reasonmg in [CH093]. 
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0 Y-rules: the head predicate is primed, and so is every goal w1'th 
equal to that of the head. 

Definition 2.5 An XY-clique Q will be said to be XY-stratified when 

e the primed version of Q is non recursive 

@ ali exit rules have as stage argument the same constant. 

stage argument 

where a rule is an exit-rule if ali predicates in its body are not defined in the clique. 

Definition 2.6 A · XY "fi d f . . . program IS -strati e i every recursive rule that contains a negated 
recurs1ve goal m 1ts body belongs to an XY-stratified clique. 

The dependence gr~ph far a primed clique provides a very simple syntactic test to check 
whe~her a program IS XY-st~atified: it contains no cycles, thus there exists a topological 
sortmg ofthe nodes of Q' which obeys stratification, and such that the unprimed predicate 
names precede the primed ones. 

Se~antics 

We can parti~ion the ~toms i~ the Herbrand Base BQ of the original program Q into 
classes according to the1r predicate name and their stage arguments as follow: 

~ ~h ere is. a distinct class, say a o, containing ali instances of non recursive predicates 
m Q, w1thout a stage argument; 

" ali atoms ":'ìth the same recursive predicate name an d the same number of function 
symb~ls s m the stage argume~t belong to the same equivalence class a n,p, with n 
denotmg the number of s functwn symbols in the stage argument of p. 

The partition I: of BQ constructed in this way can be totaliy ordered by letting be 
the bottom stratum in I: , and then letting a -< a if ' ao 

n,p m,q 

<h n< m, or 

<> if n == m but p' precedes q' in the primed sorting of the clique. 

The totally ordered I: so constructed will be called stage layering of BQ. 

The~:rem 2.1 Each XY-stratifie~ clique Q can be locally stratìfied according to a stage 
layenng _of BQ.' Then /or every mstance r of each rule in Q, the head of r belongs to a 
layer stnctly hzgher than the layers for the goals in r (strict stratification). 

Since th~ stratificatfon is strict, in computìng the iterated fixpoint, the saturation far each 
stratu:n lS reac~ed m an: step. Therefore, the compiler can reorder the rules according to 
t~e pnmed sortmg of theu head names; then having derived ali atoms with stage value J a 
smgle p~ss through the rules of Q ordered according to the primed sorting computes ali the 
atoms Wlth st~ge value s( J). To formalize the iterated fixpoint procedure far XY-stratified 
programs, we mtroduce the following notions. 

~ Let p' be the k-th predicate name in the primed sorting. 
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o Let Tk be the i=ediate consequence operator for the recursive rules in Q defining 
p. 

,. The composite consequence operator rQ will be defined as follows: 

fQ(J) == Tn(Tn-1 ... (T1(I)) ... ) 

w h ere I ìs an interpretation aver Q's Herbrand Base BQ, an d n 2: l. 

@ Let To be the immediate consequence operator far the exit-rules. By the second 
condition of XY-stratification, ali atoms in To(0) share the same stage argumento 
However, additional atoms with the same stage value might be obtained by firing 
the X-ruleso Therefore, if Pk is the k-th predicate name in the primed sorting, we 
define Tf the immediate consequence operator far the X-rules wlth head name 
Pk, if any such rules exists, and the identity transformation otherwise. We can 
define the composite consequence operator for the X-rules, r~ as follow: r~ == 
T!-(Tt_1 o o o (T{C(I)) .. } Thus, the ground atoms with the same stage argument as 

the exit-rules are r~(To(EDB))o 

Theorem 2.2 Let Q be a XY-stratified clique, with composite consequence operator fQ 
and composite consequence opemtor for the X-rules r~, then 

" Q is locally stratified, 

@ the perfect model of Q is MQ == f(:l(Mnil), where Mnil 

immediate consequence operator for the exit-rules of Q. 
r~(To(0)) e To zs the 

Thus the perfect model of an XY-stratified clique can be constructed as in the case of 
positive programs. Computation of XY-stratified programs proceeds similarly to that of 
stratified programs: ali thè non recursive predicates in the recursive XY-clique must be 
saturated before the recursive rules in the clique are computed. 

3 Simple updates 

In this paper we consider only updates in the body of the rules, as we are interested in 
extending [D [ transactions. 

Updates are often classified according to two different semantics: weak updates and 
strong updates. Strong updates are those which aliow to delete atoms only if they are in 
the current database state and aliow to insert atoms only if they are not. In the case of 
weak updates no precondition is checked. Consider, for exa.mple, the database instance { 
p( a), p(b), q( a)}. Under the weak semantics the insertion of p(b) or the deletion of q(b) 
does not change the database, although they are allowed. Under the strong semantics a 
failure is reached. 

We consider here simple updates ofthe form +p( a), -p( a), corresponding respectively 
to insertion and deletion of an EDB predicate. As a consequence, view updates are not 
considered in this paper. Also, we refer here to the weak semantics, although we brie:fly 
sketch later how strong semantics might be dealt with. 
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The idea is to associate with everv n-ary EDB di -t ~ 
rymbo] . d " l pre Ca. e p two new (n+ di 
o, .. s. Pstage an Pdel where the extra ar . . pre cate 
position. The stage argument in P· -,_ ·ili " cdunlment rs . t.he stage argument in the first 

d. swge v,. mo e the vanous ctat t ' . 
pre ucate p Derformed th<> d·, . · o, e sa.ns1twns of the EDB 

, , " ~ up .a .. es · P del w ili Play the role of d ] t li 
o" tne tuples to be removed from n · · - a e e e st, keeping tracks 

An update predicate ±p( a) i~ . then com il ed i . r ' . 
defines the predicates p . and 'T'h p nto an X\-sLratrfied program which 

stage P del- ~ e d,ofi T- ' ·h 
updates are compiled to For gon,;ralit f . . . ~ ru .wn SD.ows c e code whlch 
w h ere the tuple a may ~o~tai~~-"'. , ly o ~hxposJtiO~, w e deal h ere with upd.ates ±p( a) 

"'naD es. .1. e comp1htwn is th "' 
respect to a querv o su eh th· "" va ( ') C ( ) ."" ·- erewre parametri c wìth 

.. " - ··' rs a vars q whl h 'd 
inserted in or removed from p. , ~ ' c provJ e.s the actuaJ tuples to be 

D<2:>.1nHkn 3,1 Let v be "n EDR di t 
" Q,_ -'- ure 1cae aatuple'ndqa . h h 

The code reali"ing tha d~ l"'" ' , ), . a query sue t a.t t>ars( a) C 
'"- ,, e c>twn -pr a Wl t h re-_p" t " t l ' -

is the following: ·' · ., ·teC ' 0 .le q1.wry q, denoted 

a)<- q,Pstage(nil,_), 
x),:_ { deletion-ntle} 

De:ànition 3.2 Let p be an EDB d' t · prenca e, a a tuple an d q a h h 
The code realizing the msertion with respectq~~~r;:c t a t vars( a) ç 

is the following: query q, denoted 

r1: Pstage(nil,x) >-- p(x). 
.lr exit-rul·.o} 

r2: Pstage(s(nil), a)+- q p,· (nil ) '· 
r3 : ) ' .tage ,_ · {'insertion--rule} 

:u <- Pstage(nìl,x),•Pdet(s(nil) x) { l} ' · copy-ru e 
In •, th d :fìnj · "" uo e twns., rl is an exit rule whlch initializes . . . - -

deJecwn r2 recmds in P d tlatex t ha t tupl h t. b d P.•tag~· r2 Js a y -rule. ln case of 
t e ,, ea as u e elet<>d·mcas f" t' 
o Psicile the nev_' tu p le a in the D.<èS't staa·" v; .. _ 11 •. b ~ ' . e 0 mser wn r2 adds 

· · ' o e. "'~n"-'.uy, m oth defimtwns th y ù · 
vvluch aliOWE to CO'JJV to tbP no·• .. rt• . .· . , ' e -rt 2 l'3 lS · · · .. ~ "'"'-····'.geoJn:cedirntep -"lt l . 

not b8en canceled. Notìce , ... , . ,. n ·•n , .- ,, ~- . ·' ' _ sto.ge d.l. up es whlch 
\ • l'-' auv,j c,,,J -~h·:: j'ìG.m.e axzom v.rhi h t " 
true m some •;•ag·o ··n·' ~-< l." . ·t - ' JC s ateo. whenever 

• " •· ~ · •.I · '' " no d l t d 'l · · 
the next stage. In the inFe"t "nd ;1_,1é" .• · . e e e ' G ten Jt Will also be true in 
a.ctuaJ tuples to " 1 ' u -· • L···'"'0f. ; ';ne que~y q plays the role of providing the 

,. I a ,_s a 'uple oJ: constants tl · · 
1G t, , h , . tb , · · · ' 1en q 1s not needed 

.c ... ~ UV\ O..iJ ptr)grams are -\::_'IT t t'fi d- I . . 
meaningJul to consideT their pedccl, 11 , ì~l ., .. _, . . •. " ~_-s ra 1 e · t is therefore 

l'T . •:- . , .. . ~ . l·'' ._, tOilc]JUved. >·.·Jtb the Jterated fi . t d 
.o t ree th2,t the new extension ··.-'' ,0 . ft,, 'r. - xpom proce. ure. 

of tuples v.rìth the maximmr sta:"~~ l" 3 . .'~..r .. l" .. e denoted by p'' is given the set 
d l '- .. ·• o·~ .-,..lDlDUli:'t t.he the 

eete) ofpstage: " or 

To: p'(x) +- Pstage(s(nil), 

lu in the case of single updates, the maximum sta . ..- . 
1s reached after two lterations r. · l . ge 18 ~=ply s( m l), as the l'ìxpoìnt 

· -"- more com p ex s1tuat' ili · 
composition o:f updates. · wn w anse when con.sidering 

Consider now the perfect mod'"l M of th .r · -~ e proiTram 10rmed b u] d 
By our construction the extension of p' in M o· h y r e ro an T[ q] (±p( a)). 

. ~ r•epresents t e effect of the updat.e on the 
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extension of p. In this sense, the above simple translation of updates into rules is a 
declarative reconstruction of an operational semantics based on state transit.J 

It is worth noting that the fragments in defìnitions 3.2 and 3.1 realize · ,. updates. 
The code far strong updates differs only for the insert and delete rules, which have to 
check for absence (resp., presence) of the tuple to be inserted (resp., removed). 

Pdel(s(nil), a)+-- q,Pstage(nil, a). 
Pstage(s(nil), a)+-- q, 'Pstage(nil, a). 

4 Composi"tion of updates 

{ delete-rule} 
{ inseri-rule} 

In this section, we consider compositions of updates denoted u1, ... , 11"' (n> 1) with 
reference to two different semantics: parallel and seqnential evaluation of Ac­
cording to the parallel semantics, also refe:rred to as non-immediate semantics, upda·\es are 
computed in two phases. During the fìrst phase updates are collected and, in the second, 
they are executed all together without affecting each other. 

According to the sequentialsemantics, also referred to as immediate semantics, 
are. executed as soon as they are encountered. The presence of updates in a rule with 
immediate semantics leads to evaluate a qnery in a sequence of database states. Insertions 
and removals are immediately triggered when a body rule is satis:fied, thus a single query 

can be evaluated on different states. 

ParaUel Semantics 

According te thls semantics, the updates u1, .. , ·un are evaluated concurrently without 
affecting each other. Therefore the code realizing parallel composition is obtained by the 
sìmple union of the programs of the single updates. 

Definition 4.1 Let u1, ... , Un be a composition of and q a query such that 
vars( u 1 , ... , ç vars(q). Then the code realizing the parallel semantics of th'2 compo-

sition ìs the following: 

= T[ q]( uJ.) LI ... LI T(q](li,.). 

Observe that as a consequence of the unìon operator, the exit rules an d the l"'Jles 
in the programs of the single updates occur only once in the :final progra.m. 

As an example, let us consider the update of an attribute of a. tuple; it can be modelled 
with the paraliel composition of the deletion of the old tuple a.nd the insertkm of i:h·e 
modified tuple. Let p be an EDB predicate and a and b tuples. The co,J.e che 
update of tuple. a into tuple b is th2 following: 

r1: Pstage(nil, x)<-- p( x). 
~'2: Pstage(s(nil),b) +- q,Pstage(nil,_). 
1'3: Pdet(s(nil), a)<-- q,p8 tage(nil,_), 
T4: Pstage(s(nil),x) +- Pstage(nil,x),•Pdel(s(nil),x). 

Obse:rve that the parallel compositlon oi' complementary updates 
the speci:fied semantics, results in perforrning the insertion +p( a). 
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Sequential Semantics 

According to this semantics, the updates u1, ... , Un are evaluated sequentially so that the 
updates on the same predicate affect each other. Therefore, the code realizing the single 
update in the sequential composition is now dependent on the set of updates on the same 
predicate which have already been performed. 

Observe that the sequential composition differs from the parallel one only for updates 
of the same predicate. Given a composition of updates u1 , . •. , un, we can rearrange i t as a 
parallel composition of sequential composition of updates on the same predicate, without 
affecting the effect of the overall composition. As a consequence, it suffices to restrict 
ourselves to consider only sequences of updates on the same predicate. 

Definition 4.2 Let p be an EDB predicate, a a tuple and q a query such that vars(a) ç 
vars( q). Let uo, ... , Un be a compositìon of updates over the same EDB predicate p. 

., The code realizing the insertion u; = +P( a) (i E [0, n]) with respect to the query q, 
denoted T;[ q]( +p( a)) is the following: 

r1: Pstage(s2i(nil),x) <- Pstage(s 2i- 1(nil),x). 
r2: Psta9e(s2i+1(nil),a) <- q,Pstage(s2i(nil),-). 
r3: Pstage(s2i+1(nil),x) +- Pstage(s2i(nil),x), 

'P dei( s2i+1 ( n il), x). 

{ exit-rule} 
{ insert-rule} 

{ copy-rule} 

@ The code realizing the deletion u; =-p( a) (i E [0, n]) with respect to the query q, 
denoted T;[q)(-p(a)), differs only for nùe r2: 

r2: Pdei(s 2i+l(nil),a) +- q,Pstage(s2i(nil),-). 

Notice that, fori= O, the clause r 1 is 

Pstage(s0 (nil),x) <-- Pstage(s-1(nil),x). 

We stipulate that Pstage(s-1 (nil),x) stands for p(x). Since s0 (nil) 
becomes the ordinary exit-rule of definition 3.2 and 3.1: 

Pstage(nil,x) 4 - p(x). 

{ delete-rule} 

n il, the clause r 1 

Notice that there are two differences with the simple updates of de:finitìons 3.1 and 
3.2: a different exit rule r1 has been added; and the code is parametric with respect to 
the number of occurrences of updates m1 the same predicate. Rule r3 records the result 
of the last update on the same predicate. After i updates on predicate p, s2i-l (n il) is the 
maximum stage argument of Pstage· 

The compositìon of updates according to the sequential semantics is given by the 
following de:finition. 

Definition 4.3 Let u1, ... , Un be a composition of updates over the same EDB predicate 
p, an d q a query such that vars( ul> ... , un) ç vars( q). Then the code realizing the parallel 
semantics of the composition is the following: 
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As an example, let us consider again the update of an attribute of a tuple; it can be 
modelled with the deletion of the old tuple and the insertion of the new tuple. 

Let p be an EDB predicate and a and b tuples. The code realizing the update of tuple 
ca into tuple b according to sequential semantics is the following: 

Pstage(nil,x) <-- p(x) .. 
Pdei(s(nil), a)<-- q,Pstage(nil,-). 
Pstage( s( nil), x) <-- Pstage( n il, x), 'P del( s( n il), x). 
Pstage(s(s(nil)),x) <- Pstage(s(nil),x). 
Pstage(s(s(s(nil))), b)<-- q,Pstage(s(s(nil)),-). 
Pstage(s(s(s(nil))),x) <- Pstage(s(s(nil)),x), 

'P del( s( s( s( n il))), x). 

5 Transactions 

{ exit-rule} 
{ deletion-rule} 

{ copy-rule} 
{ exit-rule} 

{ insert1:on-rule} 

{ copy-rule} 

In this section we tackle the problem of integrating updates an d queries. W e propose how 
to integrate the two modalitìes of interacting with the deductive database in a unique 
framework which can be executed by a :fixpoint evaluation. Such framework de:fines the 
mncept of a transaction, which will be introduced gradually: simple transactions and 
11ested transactions. 

5.1 Simple Transactions 

A simple transaction is a single rule of the form: 

h<- pre, Ur, ... , Um,post. 

where ur, ... , Um is a composition of updates, pre and post are queries, and the predicate 
symbol in the head h, called a transaction predicate, is a fresh predicate symbol, which does 
not occur anywhere else in the program. pre is called the precondition of the transaction, 
and posi the postcondition. It is worth noting that preconditions and postconditio~s pl~y 
the role of integrity constraints, and the interesting case is when_ the same predicate JS 

involved both in pre/postconditions and in updates. 
As in the case ofmultiple updates, the parallel and sequential semantics oftransactions 

behave differently, and therefore they are considered separately. 

Parallel Semantics 

fu this case, each single update is constrained by the success of the precondition, so that 
iit has to be evaluated before the execution of every update. Moreover, pre is needed to 
provi de the actual tuples to be inserted/removed. Therefore, we use ~h e code 1;,ar[pre]( u) 
of de:finition 4.1 mstantiated on the precondition pre of the transactwn. 

Next we have to take into consideration the postcondition. In fact, the success of the 
transacti,on, as weii as the possibility of inferring facts of the transaction predicate h, is 
subject to the satisfaction of the query post. However, the evaluation of post must take 
into account the effect of the updates on the extensional predicates. To this purpose, we 
\llse the following derivation-rule ra for h: 
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rd: h<--- pre,post1 • { derivation-rule} 

where post' denotes the query post evaluated with respect to the program modified by 

replacing every occurrence of an extensional predicate p in a rule with the predicate p1 , 

denotin~ the final extension of p after the updates. In the case of parallel semantics, p' 
can be s1mply defined as follows: 

p'( x)<--- Pstage(s(nil), x). 

Finally, the code for a transaction h <--- pre, u1 , • .. , um, posi un der a parallel semantics is 

obtained as follows, by cumulating the compilation of the p aralie] composition of updates 
with the derivation-rule rd: 

As a simple example, consider the following !:DJ: transaction on an EDB relation 

emp( name, dept) 

which transfers ali employees of the toy department to the shoe departrnent: 

tr : transf( x) <--- emp( x, toy ), -emp(x, toy ), +emp(x, shoe ). 

According to the proposed compilation scheme, we obtain the following code for 7;,ar(tr): 

TI: emp8tage(nil, x, d)<--- emp(x, d). 
r2 : empdei( s( nil), x, toy) <--- emp( x, toy ), empstage( n il,_,_). 
T3: empstage(s(nil), x, d)<--- empstage(nil, x, -.empdei(s(nil), x, d). 
r4: empstage(s(nil),x,shoe) <- emp(x,toy),emp8 tage(nil,_,_). 
rs: transf(x) <--- emp(x, toy). 

Observe that, in absence of postconditions (which is precisely the case in !:DJ: ), there is 

no need to exploit the updated EBD predicates to compute the derivation rule r 5• VVe next 

ad d a postcondition to the transaction, by requiring that no more than 20 employees can be 

associa t ed with the shoe department: tr' : transf(x) <--- emp(x, -emp(x, toy ), 
+emp(x, ,count(emp(_, ::; 20. According to the proposed compilation 

scheme, we obtain for T;,ar(tr') the same code as above, except fmm the derivation rule 
rs, which now becomes: 

rs: transf(x) .,_ emp(x,toy),count(emp1(_,shoe))::; 20. 

where emp1 is the updated version of emp, namely: 

emp'(x, d)<--- empstage(s(nil), x, d). 

Semantics 

In this case, the precondition must be re-evaluated before each update in the transactions, 

in order to take into consideration the effect of the preceding updates. To this end, we 

adapt the compilation of transactions with parallel updates simply modifying how 
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preconditions are compiled, in a way similar to postconditions in the parallel semantìcs. 

Given a precondition pre, we denote by pre'. the query pre incrementally modified after k 

updates as follows. Every occurrence in pre of an extensional predicate p is replaced with 

the predicate pi, denoting the current extension of p after i updates on p ìtself. In the case 

of sequential semantics, the current stage of a relation after i updates can be retrieved 

using the formula s2i-1 (nil) as stage argument. So after i updates on p, p1 ìs defined as 

follows: 

p'(x) .,_ Pstage(s 2i-l(nil),x). 

Notice that, in pre~ only those extensional predicates of pre for wbkh one or more 

updates bave been performed by the sequence u1 ,.,., uk bave been replaced. So the 

above definition of p' simply accumulates the updates on the same relation, while 

accumulates the updates on all extensional predicates in pre executed by u1 , ... , Uk. 

V·le can now redefine the compilation of definition 4.3 as follows: 

Tseq [pre]( u1, ... , un) == Ii[pre]( u1) U J2[pre~]( u2) U ... U T,[pre~_ 1 ]( un)· 

Un der the a.bove deih1ition of the updated predicates p1, t be same derivation-rule T d 

for h adopted in the case of parallel semantics can be used: 

Td: h.;- pn:.,post1• { derivation-rule} 

Finally, the code fora transaction h+-- pre, u1 , ... , um, post under a sequential seman­

tics is obt.ained as follows, by cumulating the translation of the sequential composition of 

updates wìth the derivation-rule rd: 

5.2 Nested transactions 

In general, transactions aTe nested in the sense that transaction predicates may occur 

in tbe pre· or recnrsive calls to tr.ansa.ction predicates are not 

allowed. This is the case ìn .CD.C , where moreover postconditions are not allowed.. VVe 

do not explain bere in detail how nested transaction a.re compiled for limitation of space 

However, the idea of the compilation is the following. A set of nested, non recursive 

tra,nsaction predica.tes can be repeatedly unfolded., until a single rule is obtained. At tbis 

stage, a transformation scheme which closely follows that for sequential composition can 

be directly applied. 

We proposed in this papera compilation ofupdates and transactions based on their declar­

ative reconstruction in terms of XY-stratified programs. Despite its simplicity, the pro­

posed compilation produces code that can be efficiently executed by a machine supporting 

bottom-up execution of XY-stratified programs, such as that of J:DL . In particular: 

© the stage a.rguments can be actually implemented as a single counting variable, global 

t o the thus avoiding the overhead of the copy rules; 
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o the compilation technique directly support virtual updates, which can be actually 
executed after the transaction commits. 

Various more general forms of transactions can be supported on the basis of the pro­
posed technique, and are currently under investigation. These include recursive trans­
actions (an d active rules), an d updates an d transactions in object-oriented deductive 
databases. In this latter case, we refer to the object-oriented extension of deductive 
databases of [Zan89], which is based on a logical definition of object-identity by means of 
the non deterministic choice construct [NT88, GPSZ91, CF94]. Preliminary investiga.tions 
show that the proposed compilation smoothly scales to the extended framework. 
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Abstract 

The aim of this pa.per is to present the proof-theoretic ana.lysis of logic programming 

developed in [10, 11}, a.nd to show an applicatìon to negation-as-failure (NF). VVe define 

AAR-systems, i.e. inference systems based o n Axiom Application Rnles of a very generai 

kind and we introduce the concept of regular sea1'ch space. Vie show that regular AAR­

systems enjoy t be analogous of the very features that. make Prolog a feasible an d successful 

implement.a.tion of logic. Fina.!ly, we discuss our a.pplicatìon t.o negation-as-failure. VI/e 

contend t.hat the notìon of regularìty provìdes a bett.er understanding of the traditiona.l 

theory of NF. However, NF is not. our main concern: our aim is to show through that 

the adaptability and versatilìty of our approach. 

Keywords. Founda.tions of logic programming, proof-theory, negation-as-failure, search 

spaces. 

In this p a per w e present the maìn fea.tures of the proof- theoretic ana.!ysis of logic programming 

developed in [lO, lljl. Firstly w e explain the concept of (L'C'lOm application tu, le (AAR), which 

can be seen as a,n ahstraction of an ìnference step of a logic programming and 

of most generai proof tree (mgpt), which is the analog oJ a SLD-derivation. Mgpt's are in 

fact based on the notion of AAR, which ea.sily to various defìnitions of clauses 

and goals. Finally, in the ba.ckground, a.ll is connected by the notion of regvla.r search space, 

which pla,ys the role of a Prolog-like search spa,ce, -

Secondly we a, trea.tment in our proof-theoretic terms of the issue of nega.tion-a.s-

failure (NF) [4] and we analyze the inca.pability NF to providing logicai!y answers 

to open queries. 

VI/e wiii contend tha.t the noti nn of regula,rity provide us with a. better understanding of 

the traditiona.l theory of NF. In [ll] it is also shown that our approa.ch provide,s a. firm and 

natura.! ba,sis fora form of constructivc ncgation, in the sense of [:3, n. 2] 

V!e want to stress at this point that our interest lies here mainly in showing the versa,tility 

and the adapta.bility of our a.pproa.ch - once digested a. few but simple ìnitia.l òefmitions -

rather than keeping up with the front-line of research on nega.tion in logic progra.mming: in 

particular we shall dea! only ma.rginally with new developrnents in the fì.eld (see for example 

the recent survey by Apt & Bo! [l]), 

The paper is organized as follows: in Section 2 a,nd :3 we review the theory of Regular 

AAR-Systems fonnulated in [lO, 11], Section 4 deals with the proof-theory of NF a.nd, finally, 

1This paper is, to a great extent, a subset of those. 
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Section 4.3 studies the problem of evaluating open negative queries. Proofs of results stated 
here can be found in [10, 11]. 

2 Systems Based on Axiom-Application Rules 

Our view of a.n abstract logic progra.mming system is tha.t of a.n ideaJized interpreter endowed 
with ru.les - the inference mecha.nism - tha.t a.pply a:rìoms - the program - sta.rting from 
a goaJ and sea.rching for a proof. \~Te formulate thìs a.pproa.ch in a.ll its generality a.nd we 
exemplify i t with a system tha.t is related to S LD-resolution. 

2.1 AAR-Systems 

An AAR-system is a. triple (f,A, R) where: 

l. [ is a set of a.dmissible goal-expressions. In this paper goa.J-expressions will be a.toms or 
litera.ls, but more genera] forn1S could be used (see [10]). Goal-expressions should not 
be confused with goals of the form ~ L 1 , ... , L n a.s in tended in logic progra.mming. 

2. A is a. se t of admissible axioms. For exa.mple, an a.dmissible axioms could be ( the uni­
versai closure of) definite or norma] cla.uses, the completed definitions of the predica.tes 
of a. program, or more genera.] kinds of a.xioms (see [10]). 

3. R is a set of axiom applica.tion rules. A rule R E R. is any reiation from goa.l-expressions 
and a.xioms to sequences of goaJ-expressions, including the empty sequence A, i.e. R ç 
(E x A) x[*. 

Goa.l-expressions will be indicated by E. E1 , .... W e shall sa.y that E1 ; ... ; En E R( E, A x) 
for those sequences of goal-expressions su eh tha.t ((E, E1 ; ... ; E n) E R (na.mely R(E, A x) 
is a. set of sequences of goals). \Ve will draw i t a.s 

When A E R(E.,Ax), we write 

In the fra.mework of a.n AAR-system, one ma.y have pr,ograms, where a progra.m Pisa set 
of a.xioms from A a.nd its computa.tions sea.rch for proof.s with rules from R a.nd a.xioms from 
P. Before considering proof-sea.rch, w e complete our ba.sic definìtions an d give an example of 
an AAR-system. 

The se t of proof trees T( [,A, R) of a.n AAR-system (E, A, R) i.s inductively defined belo w, 
where n :: E is OU]' linea.r nota.tion for a. pt n with root E: 

Defini.tion 2.1 Every E E [ is a. pt. If II1 :: E1, ... ,IIn En a.re pt's and E 1; ... ;En E 
R(E, A), then the following is also a. proof tree: 

II1 IIn 
E1; ... En; A.1: (R) 

E 
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Vve say tha.t a. goa.l-expression is a.n a8su.mption of a proof tree if i t is a. minor premise in 
some ]ea.f. The axioms of a proof tree are the ones a.ppea.ring as major premises. The root of 
a. proof tree is called its consequence. 

If the a.xioms of a pt belong to a. progra.m P ç A, we sa.y that it is a proof tree with 
axioms from P. 

Definition 2,2 A proof t ree is a. proof of E iff E is its consequence a.nd i t has no a.ssumption. 
If it ha.s a.t ]ea.st one a.ssumption, we sa.y that it is a pa.rtial proof. 

Substitutions, or more properly insta.ntia.tions, will turn out to be centra.! in our treatment. 
Hence we restrict to goaJs a.nd pt's for which a. notion of substitution is sensible. Applications 
of a substitution e to goal-expressions and proof-trees will be indica.ted by BE, BIT, .... We 
assume, a.s well, that in BIT axioms a.nd rules are no t affected by e. 

2.2 P-Systen1 and SLD-Resolution 

In the P-system goa.l-expressions a.re litera1s (indicated by L, L1, ... ) a.nd admissible a.xioms 
are of the form 'i('iy(L 1 1\ .. ·l\ Ln) __,. L), where the y2 ma.y a.ppea.r m the Li but not m L. 
If n= O, then the a.xiom is 'i(L ). 

T h ere is a. single rule p, defìned a.s follows. For ever~' substitution () renaming y with 
eigenvariables: 

BL1; ... ; BLn E P(BL, 'i(Vy(L1 A·· ·l\ Ln) ~L)) 

RecaJl tha.t eigenva.riables (often ca.lled pammeters) are variables whose only possible substi­
tutions are ca.pture-freeing rena.ming. 

An a.pplica.tion of P with positive conclusion is for exa.mple: 

, 81t.m(v,v,X); V:r(V:z-,s1tm(::,::,.c) ~ odd(.c))(P) 
odd(X) 

where a.n eigenva.riable v ha.s been introduced for the ::'s. 
The p rule is admissible in minimaJ logic: its insta.nces a.re deriva.ble in natura.! deduction, 

a.s follows where the vertical dots allude to a. closing branch for the a.ssumption -,,su m( v, v, X), 
in a. wa.y 'simila.r to Miller's [9], the eigenva.riable v has uniformly substituted·:: and X is a 
logica.! varia.ble: 

-,sum(v,v,X)\1-I V.c(V:z-,smn(::.::,x) ~ odd(:r))\1-E 
V::.-,s·nm(::, z,X) \fz-,smn(z, ::,X)~ odd(X) E 

ocld(.X) 

Now we Jink the a.dmissible axioms of the P-syst.em t.o logic programs. Atoms will be denoted 
bv A. B, A1 , .... To a clause c of the form B : - A1, ... , An w e a.ssocia.te A .c( c) of t.he form v(A1 .(1 .. . l\ .4n ~B), a.nd t.o a. program P the set A.c(P) of the a.xioms which correspond to 
its cla.uses. 

Thus S LD-resolution corresponds t o t. h e P-system, with the following restrictions: no 
universaJ quantifìer occurs in the body of a. cla.use and no negative litera1 is involved in the 
a.xioms. 

2'V( ... ) indica1.es universal closure and Vy a (possibly empty) list of quantHìed vari.abJes. 
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An S LD-derivation for a. goal ~ A. can be seen as a. stepwise construction of a p t II ::BA, 
as shown below for the deriva.tion - su m( ssO, sO, X o),<-- su m( ssO, O, .X1 ), D. Noti ce that the 
formulae in the current goal correspond to the assumptions of the relative pt. Vie denote 
with ::S the relation of continuation among p t 's, defined in 3.3. 

su.m(ssO, sO, sX0 ) 
sum(ssO,O,X1 ) ;Ax1 

s·um( ssO, sO, sX 1 ) 
p 

Axo 
----''--P 
sum(ssO, O, ssO) ; Ax 1 

su m( ssO, sO, sssO) 
p 

In thls way every SLD-derivation ca.n be tra.nsla.ted into a. pt a.nd this yields the proof­
theoretica.l equiva.lence between the two systems (see [10, 11]). 

3 Regular AAR-Systems 

The sea.rch-spa.ce of an A.AR-system caJJ be orga.nized as a. searcl1-tree, where nodes are 
(partial) proof-trees a.nd sea.rch steps are continua.tions. Leaves are pts without continuations. 
A lea.f that contains a proof is a. success node, a.nd a. lea.f tha.t conta.ins a partial proof is a 
failure node. In genera], search in the complete tree is untractable, and one tries to restrict 
it to a. subspace. This relates to the idea of regular sea.rch spa.ce, a.s follows. 

A subspace is obta.ined through a. suitable equiva.lence relation a.mong proof-trees, i.e. 
i t is built by a. quotienta.tion of the (enti re) sea.rch spa.ce. Regula.rity is a. property of the 
equivalence classes. It ensures tha.t a. regula.r subspa.ce is success-complete, that is the following 
property holds: for every successful pa.th from a goal-expression E to a proof II in the search 
space, the subspace conta.ins at least one pa.th from the equivalence cla.ss of E to the one of II. 
Thus regula.rity enta.ils that a search strategy working on representatives of the equivalence 
classes willnot miss success nodes. O ne of the problems is computing the right substitutions. 
It can be dealt with through a. quotientation by a. suitable similarity relation, that mimics 
top-down proof-search and agrees with the subsumption ordering on proof-trees. 

3.1 Search Spaces for AAR-Systems 

Under the the more generai version tha.t we a.re developing, a pt II may be in T(E,A, R), 
while BII is not. To ensure thìs, we introduce the following: 

Definition 3.1 ìr-.1e say that an AAR-system (E,A, R) is closed under su.bstitution ifE E [ 
enta.ils BE E[. and, far ali RE R, A E A andE E[, R(BE, A)= BR( E, A). 

One easily sees that, if (ì,A, R) is closed under substitution, so is T(ì,A, R), i.e. II E 
T(E,A, R) enta.ils BII E T(E,A, R). 

This allows us to introduce the following pre-ordering (intuitively to be read a.s II 1 is Jess 
general or more insta.ntia.ted than II2) and equivalence rela.tion a.mong proof-trees. 

Definition 3.2 

• III ~ II2 iff t h ere is a. e su eh that III = BII2; 

• II l = IIz iff III ~ II2 a.nd II2 ~ II l; 

R.emark that the induced equivalence relation on proof-trees corresponds to identity of 
proof-trees modulo rena.ming of varia.bles. 

Now, !et us consider how we could a.pproa.ch the following search problem in a Prolog-like 
wa.y, where (finite) sets of axioms are programs an d the desired outcome of the computation 
are answer substitutions. 
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Let p be a program andE E [ a goa.l-expression: sea.rch for a proof II ::(!E with 
axioms frorn P, for some substitution e. 

Ifa proof (i.e. a proof-tree without. assumptions) II :: BE exists, we sa.y tha.t: e is a.n answer 
substitution for E w.r.t. P. If, ou the other ha.nd. every proof-tre€· II:: BE w1th axwms from 
p has open assumptions, w e say that E fails w .r. t. P. 

\r..re cha.racterize our complete search space, which conta.ins ali the proof-trees, through 
the following notion of one-step contirmal.ion. 

Definition 3.3 Given E E[, Ax E P a.nd RE R. we sa.y that A.x can be appliedto E by R 
usinu () jff there is at ]east one E 1; ... : En E R(BE, Ax). Given a proof II with an assumptwn 
H s~ch that BE = BH, the a.bove application gives rise to a one-step continuation with 
selected assumption H, a.s follows: 

E1; · · · :En; A __::_:_ ___ (R.) 
BH 
e II 

The continuation relation is the reflexive a.nd tra.nsitive closure of one-step continuations 
and can be chara.cterized as follows. Call II' a.n initial s11.btreE of II iff II' is a. subtree of II 
and they have the same root: 

Proposition 3.1 II2 is a. contimwt.ion of II l, denoted III ::S n2. iff there is an initial subtree 
II3 of II2, s.t. II3 ~ II1. 

One ìmmediately sees that E ha.s a11 answer substitution e w.r.t. a. program P iff there is 
a continuation II:: BE of the trivial (0-depth) proof-tree E without a.ssumption. Then our 
search problem ca.n be resta.ted as follows: 

Let T(E,A, R) be the set of proof-trees of a AAR-system, T(P) <;;; T(E,A, R) be the 
(sub)set ofthe pt's with axioms from P and T(P,E) <;;; T(P) be the (sub)set of,the contm­
uations of E. -< is ea.sily seen a.s a pre-ordering on ea.ch of those sets. To obtam a. part1al 
ordering we ha~e to take the quotient T(P)/ = (i.e. consider proof-trees modulo variable 
renamìng). Finally, take the graph (that through standard duplica.tions cau be trea.ted as a 
tree with root E): 

(T(P,E)f=.::S) 

The lea.ves are (equivalences cla.sses) of pt's which ha.ve no continua.tion; in particular, a 
success node ìs a. leaf contajning a proof. 

(T(P, E)/ =, ::S) is the toto.l sea.rch space, which is the s~a.rting point of our analysis 
of regularity. I t contajns a.ll the proof- trees (modulo rena.mmg) a.nd our sea.rch problem 
corresponds to the sea.rch of success nodes in such a tree. . . 

Far every node [II], where squa.re brackets denote the equiva1ence cla.ss WJtnessed by II,_Jts 
children can be cha.raderizecl a.s follows. [II'] ìs a. children of [II] iff there are an a.ssumpt10n 
E of [II], an axiom Al' from the program P. a. rule R from R an d~· substitution e s.t. A.x can 
be a.pplied to E by R using e, yielding [II']. Vie will say tlta.t [II']1s an (E, Ax, R, B)-chJ!dren 
of [II]. . 

Sequences ((Eo, Ax0 , Ro, Bo), ... , (E n, A.tn, Rm Bn)) correspond t o pa.ths m the tree. Thus, 
in general, w e ma.y bave to backtrack on four dùnensions ( choices of (Ek. Axk, Rk, Bk) ). More­
aver due to the presence of substitutions, even using a. finite set of axioms an d rules, a node 
may' have infinitely ma.ny children. Consequently i t ìs desirable t o eliminate at least (an d 
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especially) the need to ba.cktrack on substitutions. This is what is achieved by :fìrst-order 

resolution, thanks to the existence of most generai uni:fìers. Moreover, S LD-resolution elim­

inates the choice of the selected goal E [8]. In our mode] this is reflected by proposition 
3.5. 

3.2 Regular Search Spaces 

In our mode] the possibility of using a resolution-like method corresponds to the computation 

of most geneml continu.ations, among the (possibly infinite) similar continuations. 

To informally motivate the notion of similarity, l et us con si der a pa.th in the tree (T(P, Eo)/ = 
, -::5.). Let us cali simila.r two paths determined by the same sequence of selected assumptions, 

axioms and rules, but possibly by different sequences of substitutions. Two proof-trees are 

simila.r if their paths fra m the root a.re similar. The idea. is tha.t an idealized interpreter, t o 

a voi d backtracking on su bstitutions, will follow one among simila.r paths by selecting a p t 

in a class of similar p t 's. Similarity can be defined in a. more abstract way, as a stmctu.ml 

property of proof-trees: 

Defìnition 3.4 An a.xiom/mle-occu.rrence in a. pt II is a triple (p, A, R) such that p is a path 

in II from the root to a node containing an a.xiom A applied by a. rule R. We say that two 

proof-trees III, II2 are sirnila.r, written III ~ II2, if they ha.ve the same (non-empty) set of 
axiom / rule-occurren ces. 

One easily sees that ~ is an equivalence relation; the corresponding equiva.lence classes, 

indicate by [II]~, will be calle d similm·ity classes. 

W e use sirnilarity t o curtail the subspace (T(P, E)/ ~, -::5.}, w h ere the continuation relation 

-::5. has been lifted to similarity classes as follows: 

(l) 

An interpreter tha.t does not perform backtracking on substitutions chooses suitable rep­

resentatives of the equiva.lence classes, and different choices correspond to different search 

strategies. Since (1) does not require that every representa.tive II of [III]~ has a continuation 

in [II2]~, a complete search strategy ha.s to choose a 'good representative' of [III]~, i.e. a 

II E [III]~ that has a 'good representative' of [II2]~, as a. continua.tion. Representatives could 
be most genera] proof-trees: 

Defì.nition 3.5 Let [II]~ be a similarity cla.ss. A pt n· is a most. geneml proof-tree in [II]~ 
iff, for every pt II' E [II]~, II'::; II. 

Ifa mgpt II* e..xists, then it is unique up to renaming and all the pt's of the node [II*] of 

the search tree (T(P, E)/ =:, -::5.} are mgpt in the class [II]~. Moreover, II* is representative of 

[II]~, because i t subsumes every other p t of the class. Finally, if every similarity class contains 

a rngpt, then mgpt's are good representatives/, as sta.ted by the following proposition. 

Proposition 3.2 Let IIi, II2 be mgpt's. Then [IIi]~ -::5. [II2]~ iff IIi -::5. II:j. 

Unfortunately, in genera.l, a simila.rity class may not contajn a. mgpt. Regularity is the 

basis for the existence of most generai proof-trees among similar trees: 

Definition 3.6 A set S of proof-trees is a regula.r search space iff, for every similar III, II2 E 
S, there ìs a TI ES such tha.t Il1::; n and Ib::; n. 
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Proposition 3.3 If S is regular, then every similarity class [II]~ contains a most genera.l 

proof-tree;i.e. a proof-tree II* such that, far every II' E [TI], TI'::; TI*. 

Let S be a. regular search space and T(S, E) the set of the proof-trees TI :: _Bf! E S; 

de:fìne Gen(S) and Gen(S,E) to be the corresponding sets of mgpt's. By propos1twn _3."2' 

the subspace (T(S, E)/~, -::5.} is isomorphic to (Gen(S, E)/=:, -::5.}. T~ a.na.lyze the pro~ert1es 

of this subspa.ce, and to understand the underlying geometry, we mtroduce the notwn of 

canonica/ continuation of a pt. 

D fì. "t· 3 7 A continuation TI* of a. p t TI is a m osi generai continuation ( mgc) if, far 
e n1 1on · · l "ff "t · t p 

every other sirriilar continuation ~- ~ ::; TI*. A continua.tion is ca.nonzca 1 1 1s a one-s e 

mgc. 

Proposition 3.4 If n is a rngpt, then its mgc's are mgpt's. In pa.rticular, its canonica] 

continuations a.re mgpt's. 

By the above proposition (Gen(S, E)/=:,~) c~.n be built using only ca1~oni~al continua­

tions, thus a.voiding evento ta.ke note of subst1tutwns. lVIoreover, we ca.n pwve. 

Proposition 3.5 Let II be a mgpt of S an d H be a.n a.ssumption of TI .. If there is a. proof ~ 

that is a rngc of n, then there is a canonica] continua.tion II' of TI selectmg H such that ~ IS 

a rngc of II'. 

Proposition 3.5 shows that, by using canonica! (i.e. most generai) co~1t~n~ations, the 

selection of the assurnption Ek during search may be completely non determnus:1c. Thus we 

can further reduce the sea.rch spa.ce by using selection functions F which a.ssoc1ate to every 

p t one of its a.ssumptions. An F -search t. ree is a. subtree of (Gen( ~,E)/=:, -::5.) sud: that, far 

every node [TI], its children a.re the ca.nonica.l continua_twns select1~1g t_he a.ssump:wn. F(ll). 

This is a second rea.son, beyond elimina.ting ba.cktra.ckmg an subst1tutJons, for stressmg the 

relevance of regula.rity in logic programming. . 

Now we say that an AAR-system is regular iff the set of its p:·oof-_trees 1s a regul_ar search 

space. As one can ea.sily see, the regularity_ of the AAR.-system nnp:1es _the regulanty of the 

subspaces T(P) an d T(P, E). W e can avmd ba.cktrackmg o n subst1tut10ns a.nd search only 

for rnòst genera.l proof-trees, and we can use F-search trees. . 

The problern is then how to compute canonica! continua.tiom;. We ~a.y tha.t there 1s a 

resolution rnethod when ca.nonica.l continuations ca.n be cornputed dependmg an the selecte~ 

assurnptim1 a.nd not on the whole pt. 

Defì.nition 3.8 An operator Res is a. resolution method iff, for every goa.l-expres_sion E, 

axiom Ax, rule R, Res(E,Ax,R) is defined iff Ax can be applied to E by R a.nd y1elds an 

equiva.lence class (w.r.t. renaming) ofthe form [(B,Er; ... ;En}] a.nd 

Res(E,Ax,R) = [(B,El; ... ;En}] 

"ff E · ·E E R(BE Ax) and the corresponding continuation is ca.nonica.l. 
l 1, · · ., n ' 

If the search space is regular, then for every R, Ax and every pt with selected ~ssu~p­

tion E, eìther there is canonica! contìnuation (Res(E, Ax, R) ìs de:fìned) or no contmuatwn 

exists (Res(E, A x, R) is not de:fìned). :tvioreover, far the sa.me R, A x and selected E, any 

two canonica.l continua.tions aJ·e equiva.lent; therefore Res(E. A x. R) ha.s been defined ~s an 

0 erator computing equivalence classes. This opera.tor imports al] the sea.rch propert1es of 

p~r~ Prolog, in particulaJ· the independence of the selection function. 
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Example l The P-system is regular (see [lO]) a.ncl its resolution methocl is clefined as follows 
Le t _.42; be V('v'y( L1 A ... A L n) - H ) an d L be a literaL If IJ is an idempotent mgu of H an d L then Re.s(L,Ax,P) = [(II,IJL 1 : ... :liLn)]. If H a.nd L do not unify, then Res is undefined. 
Note the complete analogy with SLD-resolution. Ob.serve tha.t no substitution is a.ttempted 
on the variables y. This is sound for such a simple form of a.xioms that involve litcrals only. 
With more genera! rules and axioms, thcre are cases where eigenvariables must be renamed 
by new names. if they occur in the current proof-tree. Analogously, to obta.in most general 
continuations, the variables of the current proof-tree that occur free in 'v'y(L 1 A ... A Ln), but 
not in H, must be renamed. O 

4 (PF)-Systems and SLDNF-Resolution 
In generaL fa.ilure (finite or not) simply means unprovability. However, aJter Clark [4], finite 
failure w. r. t. of logic progra.ms is interpreted a.lso a.s provability of nega.ted formulas from 
the completion. To study this approa.cl1, we first introduce the F a,nd P F-systems. Then we 
use them to provi de a proof-theoretic interpretation of S LDN F-resolution. 

4.1 The non-Regular F and PF-Systems 

In Clark's equa1ity theory we ca.n derive the following failun rule F to apply failv.re aa:ioms of 
the fonn: 'v'x(p(x)- 'ly.(x = t 1 A L 1 ) V· ·V (x= t, A Ln)), related to the weak completion 
that we will introduce later: 

where: neg(A) =-.A and neg(•A) =A: a,tJ, ... ,tn are terms:, for l :S h :S k, !;h and a uniiy 
with idempotent rngu CJi", while the others do not. l'vforeover, if L;m conta.ins Iaea! variables, 
i.e. varia.bles tha.t do not a,ppea.r in t;m, those varia.bles are substituted in a;m L; m by ne w 
(w.Lt. p( a)) eigenvaria.bles. 

The P F-system conta.ins the rules P an d F. 

The F aml P F-systems are non-regu]a,r systems. Con si der for example the following 
proof-trees Ih, n2 , n3 , where the failure a.xiom is 1;/:r(odd(.Y)- 'ly(.r = s(O) A irv.e V :r = 
.s(s(y)) A odd(y))): 

Fa.?: 
--(F) 
-.odd( O) 

-.odd(W) Fa.?: 
-.odd(s(s(W))) (F) 

-.trve -.od d( v) 

-.odcl(W) 

..i!;" a T 
(F) 

they are similar, but there is 110 proof-tree n su eh that n, :S n fori = l 2, 3. 
As fa,r a.s the la.st proof-tree is concerned, note tha.t, among these exa.mples, it is the only 

one not closed under substitution. Second its deriva.tion goes like this: 

l. -.true is generated smce Hi an d s( O) unify; 

2. -.odd(v) is genera.ted, smce H' unifies with s(s(y)) which is nm substituted by the mgu 
VV = s(s(y)) and v is the eigenvcuiable renarning the existentia.lly quantified y. 

In the absence of reguJanty, the notions of mgpt a.nd of ca.nonical continua.tion do not 
beha.ve as expected. This rnea11s tha.t we cannot fin d a success-complete resolution method 

on snb:?,tltutlons. In .. ltes has to cornpute n1any 
sequences. Thus stratef!,Jf:s Like S'LD P cannot be success· 

complete, a.s we dìscuss below. 
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N o ti ce tha.t the F can be formula.ted in a way su eh t ha.\. the P( F)-system is closed un der 

b · t. t'l] 't · 110 t reo·ular i e reo·ularity and closure uncler substrtutwn a.re mdepen-su strtu wns' s l l JS b , . . b . 
. l .· ' dent. This is also the case for higher-order Horn cla.uses [9], where closure but not regu a.]]t) 

ìs guara.nteed. 

<1.2 SLDNF-Refutations and PF-Proofs 
We associate to a, program its failure a.xioms. which will be applied by the F-rule. The starting 
point is the only-if pa.rt of the completion of a predicate p(··.): 

n h, 

'v'x(p(x)- V 3y;(:r = 1, A (\L,;)) 
i=l k=l 

For every 1~ 1 , ... , kn such tha.t l :e; k; :S h; wc infer 
11 

Faxk,, ... ,k,(P): 'v':r(p(x)- v ( 1 = t, (l )) 
i=l 

t . tl fo;j 111-8 oxiom of a unit clause introdnces the constant true, hence By conven wn, 1e = . ~- · . . . h > l · al , f ]fil! d Observe that these axioms conta.in ex_actly a. smgleton hteral m . 1s , w a,\ s u e . f e~e-;y di-sjunct ~f the consequent. For a definite program P, Fax( P) will indicate the set o 
its failure a:xjoms in the latter sense. 

Example 2 The only-if part of 1 (for times), the us11al program for computing the product. 
is: 

'v'(t(a,b,c) ~ 'lx( a = x A b = O A c = O) V 
'lx, y,;;, w( a = x A b == s( y) A t = z i\ ti x, y. w) A .su m( w, .T, z))) 

From it \Ve derive the fa.ilure axioms: 

1;/(l(o .. b,c)-+ 3x.y,z,w 

'v'(t(a,b,c)~ 'lx,y,z,tu 

( (a = x A b = O Il c = O A l nce) 
V(a =x Ab= s(y) /1 c== A t(x,y,w))) 
( (a = :c: A b = O ;\ c = O A t r ne) 
V(a =.T Ab= s(y) A c=:: A swn(w, .T, z))) 

goal - A. t.here is a 

o 

failed Theorem l Given n definite program P and o 
tree for P u { "-" A} iff there is a proof fl :: ,_..l 

Fax( P). 

<n the F -system vsing only axioms from 

To a norma! progra.m p we a.ssociate the set lVComp(P) = Ax(P) U Fax(P) of weak 
axioms, where Ax(P), the s-uccess axioms, a.nd Fcu:(P), the fazlu.re axwms, are 

extended to norma! programs in the obvious way. . . 
T] · t· 011 of t]1e Faxk . '· (Jl) is notablv weaker ancl does not nnply, m general., le COllJU!lC ,J · 1 ..... nn . . ·· . . . the only-if p art of Comp(p ). Therefore 11/Cornp( P) 7L C ampi P). Nevertheless tlus IS enougl1 

to ensure the soundness of standard JV F, as indica.ted in the next theorem. 

TiVComp(P). 
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4.3 On (Un)Soundness and (In)Completeness of NF 

S LD N F-resolution has a non-logica] behavior if open negative goals are selected. In our 
rnodel, we can distinguìsh tluee different causes for that: 

a) lncom.plet.eness of the PF-system: there a,re litera.ls I!L such tha.t Comp(P) 1= BL, in 
classicallogic but no P F-proof 11 ::l! L ex:ists. 

b) Soundness problems: during the computatimi (logically unsound) substitutions o n 
eigenvariables may occur. 

c) Success-compleieness problems: gìven a.n open goal +- L, SLDN F-resolution fa.ils to 
return an a.nswer, even ìf t h ere is a. P F-proof II :: li L: the culprit ca.n be found in the 
lack of regularity, which lie.s a.t the basis of the success-incompleteness of N F. 

There are severa] reasons for (a.). For exa.mple, failure axioms are wea.ker than the com­
pletion, even if they are sufficìent to prove the soundnes.s of SLDNF-resolution (see Theorem 
2). Note tha.t poìnt (a.) and (c) a.re independent: would the PF-system be complete w.r.t. 
classical logic, yet not regular. the success-incompleteness ìssue would not be solved. The 
discussion on point (a) is fully addressed in [11 J. 

Soundness problems (b) are due to the fa.ct tha.t a non-legal substitution on the eigen­
varìables may be introduced in some continuation step, a.s shown by the foliowing ex:ample, 
taken from [8]. 

A:d: 

.4:;;2: 

P: -•q(X) 

q( a) 

In standa.rd Prolog, using an unsound selection functìon, the goa.l +- •P succeeds (since +-p 
fa.ils ), although i t is no t a logica.! consequence of the completion of the program. In our 
model, safeness (i. e. soundness) is enforced not by an ex:ternal condition on the selection 
function, but by the usua.l proof-theoretic proviso on eigenva.ria.bles, i.e. that they cannot be 
instantiated by substitutions, as the following proof-tree shows. Once we ha.ve obtained the 
goal q(u), with eigenvariable u, we ca.nnot continue our proof-tree in a. sound way; so we do 
not obtain any proof of •P 

q(u) p~ :Ja:•q(:r) 
..:..:_:.__:c __ ___:_:__:_ ( F ) 

•P 
This shows that we h ave a. natura] way to distingnish pro o fs of nega.ted goals (w h ere such 

a. proof has no a.ssumptions) from parti a.! pro o fs with assumptions tha.t ca.nnot be continued. 
The la.tter corresponds to unprova.bility. 

W e discuss (c) more ex:tensively. \Ne show tha.t t h ere are P F-proofs which are ignare d by 
standard S LD N F-resolution an d tha.t the rea.son is the non-regv.lardy of the P F-system. 

Let us consider for exa.mple the followìng (non-stra.tifìed) program EV EN: 

Aa:l: even(O). 

A.T2: even(s(_\')):- •evcn(X) 

TV comp(EV EN) contains the obvious success axioms a.nd one failure axiom: 

Fax: V.T(even(a:)- :lu(.T =O A true V .T= s(u) A •even(u))) 

lf we o tar-t fr-orn •even(X), S L Div F-resoìution yieids a finltely failed (not sa.fe) tree an d 
no solution is found, even if the P F-system contains infinitely ma.ny proofs with ax:ioms from 
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Ax1 , Ax2 , Fax an d consequence •even( .. . ). Success-incompleteness of S LDN F is due t o 
non-regula.rity, as the following picture shows. 

Ovals contain similarity classes. Since -,even(Xo) is a mgpt., we can use it to generate ali 
the one step continuations of the root cla.ss. Ali the continu ations are similar ( only Fax can be 
applied), and we get one children-class sc2 . The la.tter is non regular: it contains two maximal 
p t 's, 1r1 an d 1r2 . Sin ce the identica! su bstitution is more genera.! t han X o/ s( X1), S LD N F 
selects 1r1 , wich conta.ins the unprova.ble assumption •in1.e, an d fa.ils. On the other hand, 
1Tz has two children, and this shows tha.t 8 LDN F-strategy is seo.rch-incomplete. Concerning 
sc3 , sc4 , the inscribed pt's are mgpt's. sc3 is a success node, whilst sc4 can be continued. 
Since the unique a.ssumption tha.t ca.n be selected for continua.tion is •even(X2), sc4 beha.ves 
as the root, i.e. it has one non-regular children-class. 

•even(Xo) sc1 

-,trv.e; even(v); Fa:t 
1r1: ----'-c-::-::--,--'--'-'---- F 

-,even(Xo) 

Ax1 p 
even(O); Fax F 

•even(s(O)) 

e ve n( X 1 ) ; Fa.T 
1r2: F 

-,evcn(s(XJ)) 

•even(Xz); Axz 
,. . . p T:' 

even(s(./q)); ra.x 
. . - . F 
•even(s(s( .\' 2))) 

When a similarity class contaìns a finite se t of ma.x:imal p t 's, ba.cktracking o n them pro­
vi d es success-completeness. An alternative solution is to split the (non-regula.r) faìlure a.x.ioms 
into suitable regula.r instances. Regula.r splitting is studied in [11], and it is connected to the 
method of constructive nega.tion of [3, 13, 2]. 

5 Conclusions 

Historically, the grea.t ma.jority of the pa.pers on logic programming, in particular on its ' 
extension, has been ca.rried out in a semantic way. Unfortuna.tely these sema.ntics, being 
ma.inly limited to term models, tend to hide proof-theoretic contents. V/e feel that ma.ny 
features that are rather cluttered in this framework ìnstead become natura.! consequences of 
a proof- theoretic rea.ding. 

Ba.sica.lly two proof-theoretic approaches ha.ve been pursued in the litera.ture, as outlined 
in [5]: 

l. Cla.uses as axioms a.nd some Gentzen calculus to infer goals [9, 12]. 

2. Cla.uses a.s rules [5]: progra.ms should be seen as sets of inference rules (inductive 
definitions) for the derivation of (not necessa.rily ground) atoms. 

We think of our a.pproa.ch a.s a development an d enha.ncement of the latter: in full devel­
opment, AAR-systems ca.n be seen a.s a. wea.k logica! framework in the spirit of LF [7], PID 
[5] or heredita.ry Ha.rrop formulae [9]. 
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We ha ve shown here that from this perspective much of the mystery of N F disappears or 
a t least i t is brought back to sta.ndard issues in basic proof- theory. This is more evidence of the 
fruitfulness an d explicative power of the notion of regularity a.s a.n a.bstra.ct cha.racteriza.tion of 
SLD-resolution. Far exa.mple, constructive nega.tion ca.n be seen a.s a. si de effect of regula.rizing 
norma.! progra.ms. 

We pla.n to continue this investiga.tion, far insta.nce concentra.ting on the completeness of 
P F-system w.r.t. the three-valued sema.ntics of the (wea.k) completi an. 

In conclusion: while it is clea.r tha.t the fìrst steps far a. new framework are the formaliza.tion 
of more or less well-lmown problems in the f1eld, we are going to show that the theory 
of regular sea.rch spa.ces ca.n be fruitfully used in more front-line subject such a.s progra.m 
transforma.tion, a.bduction et. al. 
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Abstract 

In this paper we introduce framed normal programs as a tool far comput­
ing negation by program transformation in CLP aver the Herbra.nd universe 
FT with infinite function symbols. In a framed norma.! program there are 
two kinds of predicates: those with negation a.lready computed by some dua.l 
predicates (the frame), and those with negation stili to be computed by con­
structive negation. 

Framed norma.! programs are used as an intermediate step of a process 
far transforming norma.! programs into positive programs. In pa.rticular the 
aim is to compute a positive program ca.lled a t-completion which has the full 
sema.ntics (positive a.nd negative) of the origina.! norma.! program. 

Keywords: Constraints; Constructive Nega.tion; Finite_ Trees; Program 
Tra.nsformation. 

Introduction 

Negation as failure rule is the most classica! way to handle negative subgoals, 
but it only works when they are ground. Constructive negation is an extension 
of the negation as failure rule to handle non-ground negative subgoals. Both, in 
essen ce in valve taking a. negative goal, running the positive versi an, an d negating 
the answers. In Chan's [3] approach of constructive negation this ìs dane "at the 
end" when all the answers far the positive version have been computed, and in 
Stuckey's [10] approach this is dane "meanwhile" the answers are being computed. 
This difference makes Stuckey's approach being "more complete" than Chan's. 

In [2] a transformational approach to negation is given, assuming the domain 
closure axiom. This assumption allows one to compute the complement of a term 

--~~~--~-- ~--
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as a finite disjunctions of terms. (The complement of a term t is the set of all 
ground terms which are not instances of t.) When trying to satisfy a negative goal 
candidates for negation to succeed are computed, then by negation as failure they 
are checked and rejected if it is the case. The main reason for that work was to 
allow a symmetric treatment of positive and negative knowledge, because negation 
as failure (the paper was written in 1988) was too restrictive. 

Efficiency is another reason for studying a transformational approach to nega­
tion. In both techniques, negation as failure and constructive negation, computing 
negation is clone "indirectly" and one could ask whether would it be possible to 

'handle negation in genera] by only positive means, that is to sol ve negative subgoals 
"directly". A program with negation been already computed is presumable to be 
more efficient than another ( equivalent) but with negation still to be computed. 

As said above, the restriction imposed in (2] of assurning the domain closure 
axiom is a consequence of the need to compute term complements. We believe that 
this restriction is not needed if we are allowed to write disequations in our clauses, 
i.e. if working in the framework of CLP(FT), where constraints are equations and 
disequations over the set of finite terms. In particular, l et X be a set of variables an d 
t[X] be a term upon these variables. Then, the complement of the term t[X] may 
be described by the disequation VX(T =f. t[X]) where T is a free variable. Because 
computing negation is ultimately related to computing the complement of a term 
and because disequations describe it, then positive programs enlarged with these 
constraints have a enough expressive power. In some sense we want to show how 
su:fficient they are to express negation. 

In our approach we introduce framed normal programs as an intermediate step 
of a process for transforrning norma] programs into positive programs. In a framed 
norma] program there are two kinds of predicates: those with negation already 
computed by some dual predicates (the frame), and those with negation still to be 
computed by constructive negation. Then given a framed norma] program P we 
compute by transformation techniques (8] a new framed norma] program P' such 
that SEM(P) = SEM(P') for some suitable semantic function SEM and such that 
the frame of P' includes that of P. Our aim is to compute, after some finite number 
of transformations, a program P having all its predicates in the frame. Then P will 
be a positive program (with disequations), which we will calla t-completion of P, 
satisfying that its semantics is equivalent to the full norma] semantics of P. 

The main problem comes from the existence of (local) variables in the body of a 
program clause which do not occur in the head. For this reason terrnination can not 
be currently guaranteed, although in many cases it may be overcamed. Abstract 
interpretation (4] could be a proper tool to analyze what could be clone for reducing 
that kind of incompleteness. 

In section 2 we introduce framed norma/ programs. First, in subsection 2.1 we 
define norma] and positive programs in CLP(FT). Next, in subsection 2.2 we define 
a frame as a one-to-one correspondence between two disjoint sets of predicates listing 
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those predicates whose negation ha ve already been computed. Finally, in subsection 
2.3 we define the semantic function SEM that has to be preserved under program 
transformation and define what we mean by a t-completion of a norma] program. 

In section 3 we describe a transformation procedure. Subsections 3.1 and 3.2 give 
the rules that are applied in the transformation distinguishing deniable predicates 
( those which do no t ha ve any l oca] variable in the bo dies of its definition) from non­
deniable ones. Subsection 3.3 deals with termination and gives a rule to "complete" 
the program in a particular case of non- termination of the transformation procedure. 

In section 4 we give three examples. 
Finally, in section 5 we draw some conclusions. 

2 Framed Normal Programs 

2.1 Normal Programs 

Let L be a.]anguage containing infinite function symbols and infinite predicate 
symbols. We assume that all our programs are written using symbols taken from 
L. Hence, the Herbrand Universe and the Herbrand Base are constructed from L, 
independently of specific programs. From now on, all predicates and all functions 
are those from L. 

An eq·uation is a formula· of the form s =t, also s1 = t1 1\ ... Il sn = tn. Let E be 
an equation. We denote with VAR(E) the set of all variables of E. 

A disequation is a formula of the form VX(.s =f. t), also VX(s 1 =f. t1 V ... V 
sn =f. tn), where X is the set of quantified variables of the disequation. We assume 
t ha t quantified variables of a disequation do no t appear elsewhere. Let V X D be a 
disequation. We denote with VAR(VXD) = VAR(D)\X the set of free variables of 
the disequation. 

A constraintwill be either an equation or a disequation. A. system ( of c0 nstraints) 
is any conjunction of equations an d disequations. A solution of a system C1 11 .. :Il Gr 
is a substitution O' with domain DOM(O') ç; VAR(C1 ) U ... U VAR(Cr) such that for 
every equation C;= s =t isSO'= iO' and for every disequation Cj = VX(s =f. t) and 
for every subotitution T with X ç; DOM( T) holds STO' =f. t T O'. 

An aio mis a formula of the form p( t) w h ere p is a predicate an d i is a term or a 
tuple of terms accordingly to the arity of p. A literal is an atom p( t) or its negation 
...,p(t). The first one is called positive and the second one is called negative. 

A normal goal is a formula. of the form <- E1 , ... , E n w here each E; is either a. 
literal or a constra.int. A norm~l goal is positive if all its literals are positive. 

A norma/ clause is a formula of the formA <- E 1 , ... , En where (the head) A 
is an atom an d each E; (in the body) is either a litera.l or a. constraint. A norma] 
clause is positive if all the literals in its body are positive. 

A norma/ program is a set of norma] clauses. A norma] program is positive if all 
its clauses are positive. 



l 

198 

The semantics for norma! programs (see e.g. [6]) we consider bere are three­
valued Clark's completion of a program as tbe declarative semantics, and construc­
tive negation [l O] as tbe opera.tional semantics. In particula.r we consider tbe success 
set SS(P) and tbe finite failure set FF(P) fora. norma! program P. Tbe success 
set of P collects tbe a.nswer constraints p(T) <--- c to simple goa.ls p(T). Tbe finite 
failure set collects tbe set of simple goals p(T) <-- c whicb are finitely fa.iled. Also, 
GSS(P) and GFF(P) will be the ground success set and the ground finite failure 
set, respectively. The first one is tbe set of a.ll ground a.toms p(t) for vvhicb tbere 
ìs some a.nswer p(T) <--- c in SS(P) a.nd T= t 1\ cis satisfiable. The second one is 
the set of all ground atoms p(t) for wbicb tbere is some finitely fa.iled simple goal 
p(T) <-- c in F F(P) and T =t 1\ cis satisfia.ble. 

L et r a.nd f be two disjoint finite sets of predica.tes. A (f, f)- frame is a. one-to-one 
correspondence between f a.nd f. Let <P be a. (f, f)-frame a.nd let (p, p) E <:P. Then 
we say tha.t p is tbe du.al of p (in ci>). 

Let P be a. norma] program a.nd <P be a. (f, f)-frame. W e sa.y tha.t P a.nd <P are 
compatible iff for every negative litera.l ....,q( t) occurring in tbe body of a.ny clause in 
P tben q is not in r nor in f. Let G be a. norma.! goal and !et <P be a (f, f)-frame. 
vVe sa.y that G and ci> are compatible iff for every negative literal ....,q( t) occurring in 
G then q is not in r nor in r. 

Le t P be a. norma! program a.nd 'Ìl be a. frame, compatible witb P. W e say that 
<P is a corr·ect frame for P iff for every predicate p su cb tbat (p, p) E <P an d every t 
it bolds P!= :J(....,p(t)) iff P!= :J(p(t)) and P!= :J(....,p(t)) iff P!= 3(p(t)). (Or if t is 
a ground term tben it bolds p(t) E GFF(P) iff p( t) E GSS(P) and p( t) E GFF(P) 
iff p( t) E GSS(P).) 

A fmmed norma/ progra.m is a pa.ir ( <!J, P) w bere <P is a frame, P is a normal 
progra.m, an d <P is correct for P. 

Example. The frame {(p,p)} is correct for the program {(p(X) <--- ....,q(X)), 
(p(X) <--- q(X)), (q(X) <---X i= a)} but it is not for tbe program {(p(X) <-- ....,q(X)), 
(p( X) <--- q( X), ....,q( X)), (q( X) <--- X i= a)}. Also the goal (<---p(!( X)), ....,q( X)) is 
compatible with tbe frame a.bove. 

Let P be a normal progra.m a.nd let <P be a correct (f, f)-frame for P. Then we 
say tbat all predicates in r u rare fully defined (syntactically) and tbose not in r 
nor in fare only semidefined (in tbis frame). We call explicit all those predicates 
defined by P whicb are not in f a.nd we call implicit all predicates in f. Let us 
observe that 0 is a correct frame for every norma! program and that all predicates 
a.re then semidefined a.nd explicit. 
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2.3 The SEM function 

Let P be a norma.l program and <P a correct frame for P. Let. II be a subset of the 
explicit predicates. Then we define 

SEMrr(<:P,P) = {p(t)jp(t) E GSS(P)jn} U {....,p(t)jp(t) E GFF(P) 1rr} 

w bere X1rr means the restriction of X to the a.toms constructed only with predicates 
from II. 

Le t p be a predicate from II. If p is fully defined tben ""'P( t) E SE M n (ci>, P) holds 
iff p(t) E GFF(P) and this holds iff p(t) E GSS(P). (But this is not true wben p 
is only semidefined.) Tben, if all predicates in II are fully defined w e bave 

SEMrr(<:P,P) = {p(t)jp(t) E GSS(P)jn} U {....,p(t)/p(t) E GSS(P) 1rr} 

wbere TI= {p/p E II}. If, in addition, all explicit predicates in P are fully defined, 
tben program P is positive a.nd the wbole set SEMn(<:P,P) may be computed only 
iteratively. . 

L et P be a. normal program a.nd l et <!J be a correct frame for P. L et II be 
t be se t of all~expli,.::it yredicates of P. A t-completion of program ( <!J, P) is a fra.med 
normalyn;gram (ci>, P) defining a t least all predicates in II, such t ha t SEMn( <P, P) = 
SEMn(<:P, P), and with a.ll its predica.tes fully defined. 

3 A Transformation Procedure 

The tra.nsformation"technique proposed bere is a. non-deterministic stepwise pro­
cedure·to compute a. t-completion for a given framed norma] program (in pa.rticular 
usual norma! programs, those framed by 0). It is based upon fold/unfold rules (see, 
e.g. [8]). Specifically we use tbe following rules: cla.use replacement, reversible goa.l 
replacement, definition introduction, reversible folding, and reversible unfolding. 

Tbe definition of a predicate p in a program is the set of all clauses wbose'head 
is a.n atom constructed with p and will be denoted by DEF(pj. 

A local variable of a clause is any va.ria.ble no t occurring in the head of the clause 
but just occurring in its body as a. varia.ble in a literal, or in an equa.tion or amon§ 
tbe non-qua.ntified va.riables of a disequation. A deniable clause is a clause without 
a.ny !oca! va.riable. An explicit semidefined predicate is deniable if its definition ba.s 
only denìa.ble clauses. Otberwise is non-deniable. 

L et P be a. program a.nd ci> a correct frame for P. Le t II be tbe set of al! explicit 
predica t es of P. A transformation step a.pplied t o P will give a program P' an d a 
frame iP' correct for P' sucb tha.t II is a subset of (II') the explicit predicates of P' 
and sucb tbat SEMn(<:P,P) = SEMn(iP',P'). In some cases a. step tra.nsformation 
willleave unchanged bot h the set II of explicit predicates a.nd the frame <P. But in 
other cases one of them ma.y be enlarged. Schematically there will be three cases: 

l. <P' = ci> U {(p,p)} wbere p is an explicit semidefined deniable predicate of P, 
and II'= II, 
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2. II'= II and <P'= <P, 

3. IT' = II U { r} w h ere r is a new predicate no t explicit n or implicit in P, an d 
<P'= ci>. 

The first case corresponds to the computation of the definition of p. It is o btained 
by the product of the negation of each clause in the definition of p. Then the pair 
(p, p) is ad d ed to the frame an d al! occurrences in the program of a negative !iter al 
on p are replaced by the corresponding positive literal on p. 

The second and third cases correspond to the application of fold/unfold rules to 
non-deniable clauses in order to deniabilìze them without changing the frame. In the 
second case the definition of an already explicit semidefined predicate is modified. 
In the third case a. definition for a new explicit predicate is added to the program. 

Finally, Jet us observe that in some of tbe transformation rules given in section 
3.2 a definition of solved form for disequations is required; but the correctness of tbe 
transformation procedure do not rely on it (see e.g. [5,9] for sucb a definition). 

3"1 Deniable Predicates 

Let <P be a correct frame for a program P and Jet p be an explicit semidefined 
deniable predicate of P. Let C be a clause in t be definition of p of tbe form 

p(t[X]) <--- B1[X], ... , Bn[X] 

wbere t[X] denotes a tuple of terms accordingly to tbe arity of p, X tbe set of 
variables w bi cb occurs in t[X], and B;[X] are lìterals or constraints ( equations or 
disequations). Tben we define a set of clauses N C( C) as t be following: 

p( T) <--- \i X (T :;i t[X]) 
p( T) <--- T = t[X], neg B1 [X] 

p(T) <---T= t[X], neg Bn[X] 

where T is a new varia.ble -or an unrestricted n-tuple of variables if p has a.rity n­
and negations neg B;[X] bave to be interpreted in the following way: 

l. neg(s[X] = s'[X]) = s[X] :;i s'[X], 

2. neg(\iY(s[X, Y] :;i s'[X, Y])) =:= s[X, Y] =s'[ X, Y], 

3. neg(q(t)) = -,q(t), and neg(-,q(t)) = q(t), 
when q is an explìcit semidefined predicate, 

4. neg(q(t)) = q(t), and neg(q(t)) = q(t), 
when (q, q) E <P. 
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Example. The application of NC to the clause 

p( X, X) <--- \iY(X # f(Y)), q( X), r(X), 

within tbe frame <P= {(rJ)} gives the set of clauses 

p(T1 , T2 ) <--- \i X ( (T1, T2) # (X, X)) 
p(T1, T2) <--- (T1, T2) =(X, X), X= f(Y) 
p(T1,T2) <--- (T1,T2) = (X,X),-,q(X) 
p(T1,T2) <--- (T1,T2) = (X,X),r(X). 

Let us now introduce a product operator of clause sets with variant heads. Let 
51 and 52 be clause sets such that hea.ds of al! clauses of 51 and 52 are variants of 
an atom q(T) where T is a variable or an unrestricted tuple of variables. Then we 
define the produci of sl a.nd 52 by 

S1 x 52= {(q(T) <--- B1[T],Bz[T]) / (q(T1) <--- B1[T1]) E S1, 
( q(T2) <--- B2 [T2]) E Sz} 

wbicb is compmtative a.nd associative. 

Let P be a norma] program and <P a correct frame for P. Let p be an explicit 
semidefined deniable predicate an d DEF(p) = { C1 , ... , C n} (se t of clauses) be its 
definition. Now we define DEF(p) = NC(C1) x ... x NC(Cn) when n > O and 
DEF(p) = {(p(X))} when n= O. Then we can apply the following transformation 
rule which preserves s~mantics. 

Negatiòn rule. The framed norma! program (ilì,P) may be transformed onto the 
framed norma! program (<P',P') where <P'= ili U {(p,p)} and P'= (P U DEF(p))~p/iJ 

w bere X~pfiJ means t ha t every negative litera.l in X of the form -,p( t) has to be 
replaced by the positive literal p(t). 

Actually the nega.tion rule is a combination of the definition 1ntroduction rule and 
the goal replacement rule in all progra.m clauses. From Cla.rk's completion of a 
program and from the fact tha.t in a framed program every pair of predicates (s, s)' 
in the frame are both the nega.tion of ea.ch other it holds the following theorem which 
sta.tes the correctness of tbe above negation rule. 

'THEOREM. <P' is a. correct frame for P' a.nd if II is the set of explicit predicates 

defined by P then SEMn(<P, P).= SEMn(ilì', P'). 

3.2 Deniabilization 

By deniabilization we mean a. transformation procedure with the purpose of ob­
taining denia.ble definitions. Moreover, the following rules ma.y be combined 'Nith 
the nega.tion rule above so if we bave in the program a. denia.ble predicate p and also 
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a non-deniable predicate q we do not have to wait for ha:ving a deniable definition of 
q; but we may compute the definition of p. In some cases i t will be necessary when 
definition of q involves •p. 

Let P be a norma] program, Jet <ll be a correct frame for P, Jet p be a predicate. 
and Jet C be a clause in DEF(p). We can transform C then yielding a new program 
P' by any of the follmving wa.ys. 

l. By solving equations. Let us suppose that in the body of clause C there is 
an equation constraint. Then we solve it and get a solved form for unifica­
tion. Then we apply the resulting most genera] unifier to al] the clause a.fter 
eliminating the constraint. If the constraint is unsatisfiable then C is deleted. 

2. By 'solving' d1:sequations. Let us suppose that in the body of clause C there 
is a disequation constraint which is not in solved form. If the disequation is 
valid it is eliminateci from the clause, if it is unsatisfiable then C is deleted, 
otherwise the disequation is replaced by its solved form. 

3. By removing redundant disequations. If in the body of cla.use C t h ere is a 
disequation in solved form having a.t lea.st one varia.ble which does not occur 
in the head of C nor in a.ny literal of the body neitlier in any equa.tion of the 
body, then the disequa.tion is redundant and may be removed from the clause. 

4. By dcletion of subsumed clauses. A clause H +---- D, B (where D are disequa­
tions) subsumes another clause H' +---- D', B', S (w h ere D' are disequa.tions) if 
there exists a. substitution e such that H' = He a.nd B' = Be, and al! dise­
qua.tions in De are enta.iled by some in Dl If there are clauses C and C' such 
that C subsumes C' then C' may be deleted. 

5. By unfolding. Let us suppose p be an explicit semidefined and non-deniable 
predicate, and Cis of the form H +---- A, B. w h ere A is a.n a.tom not constructed 
with p, and Bis a. (possibly empty) set of litera.ls or constra.ints. Then we can 
unfold C with respect to A using progra.m P a.s follows. If A is an atom of 
the form q(T), then for each clause in the definition of q in the program of the 
form q(T') +----Q, we get a. new clause H+---- T= T', Q, B. Then we repla.ce C 
by the set of a.ll cla.uses obtained by this way. 

The rPstriction for A to be an atom not constructed witb p is to prevent the 
unfolding to be not self-unfolding. 

6. By definition & folding far independent subgoa.ls. Let us suppose p be an 
explicit semidefi.ned and non-deniable predicate, a.nd C is of the form H +­

A, B w h ere A a.nd B are (possibly empty) sets of litera.ls or constra.ints. The 
linking varia.bles of subgoal A in C are the va.riables in VAR(A) n VAR(H, B). 
If the set of linking varia.bles of A in Cis included in VAR(H), that is, al! the 
va.riables in A which are not in the hea.d of the clause do not a.ppear elsevvhere, 
tben we say A is an independent subgoalin C. Let A be an independent subgoal 
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in C a.nd Jet X = VAR(H) n VAR(A) be the set of variables of H which also 
occur in this independent subgoal. Then w e ad d ( definition introduction) a 
new predicate, let us call it a, whose defi.nition is the only clause a(X) +---- A 
Then we replace (folding) C by the new clause H+---- a(X), B. 

Reversible unfolding, reversible folding, defi.nìtion introduction, reversible goal 
replacemenL and clause replacement preserve norma] semantics. All the above rules 
fall into these categories. In particular, solving equations, solving disequations. 
removing redundant disequations, and deletion of subsumed clauses are instances of 
clause replacement rule or of reversible goal replacement rule. Unfolding as used bere 
is actually reversible unfolding, and definition & folding for independent subgoals is 
a combination of defi.nition introduction and reversible folding. Then we have the 
following 

THEOREM. L et P be a normal program an d l et <ll be a corre et frame for P. Le t l1 
be the set of al! explicit predicates defined by P. Le t P' be a new normal progra.m 
obtained from P by using one of the above rules. Then the same frame w is a.lso 
correct for P'· a.nd SEMrr(<ll,P) = SEMrr(oì>,P'). 

3.3 Terinination 

Let Po be a normal program, <ll 0 a correct frame for P0 , and II the set of ex­
plicit predica.tes in P0 . Let us apply to P0 the procedure given by the rules in 
previous subsections. Then we will get a sequence (oì>o, Po), (<!\, P1 ), ... , (<lln, Pn) of 
fra.med norma.] progra.ms. If all predicates in ( <lln, P n) are fully defi.ned then this is 
a t-completion of program ( 'Ì' 0 , P0 ), thus the transformation process finishes. But 
termination ma.y not always succeed. 

Example. Le t P be the two clause progra.m {(p( X) +---- p( X)), ( r +-- p( X))}. Predi­
cate p is denia.ble but r is not. If we apply the unfolding rule to r the progra.m will 
remain the same. So in that case we would go into an infinite process and never 
obtain a t-completion. On the other hand, if we apply the definition & folding far 
independent subgoals rule we deniabilize r but then we introduce a new non-deniable 
predicate a.nd thus the problem rema.ins: {(p(X) +---- p(X)), (r +---- s), (s +---- p(X))f 
If we would notice of the non-terminating process and the undefinedness of pred­
icate r v.re would bave to stop the computation of the t-completion. But a.nother 
strategy could be to "define" r a.s undefi.ned, and so r. For tba.t purpose we re­
pla.ce clause T +---- p(X) by r +---- T. Then program P transforms into the program 
{(p(X) +---- p(X)), (r +---- r), (p(X) +---- p(X)), (f +----f)} which is a t-completion of P. 

A predicate p is entirely undefined ( semantically) with respect t o a. progra.m P 
iff both SS(P) and F F(P) do not contain any literal constructed with p. Now we 
introduce a. new rule for overcoming some ca.ses of non-termina.tion. 

U rule. Let P be a norma! program and <ll a. correct frame for P, such that for all 
explicit semidefined predicate p all the following conditions hold simulta.neously. 
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l. DEF(p) has only one clause and it is of the form p(X1 , ... , X n) +- E where 
Xr, ... , X n are n different variables an d all of them occur in E. 

2. There is at least one local variable in E which does not occur among (Xi) 
those in the head. 

3. The only rules that apply are definition & folding rule (this always may be 
applied) and perhaps unfolding. Other rules do not apply: solving equations, 
solving disequations, removing redundant disequations, and deletion of sub­
sumed clauses. 

4. If unfolding rule applies to DEF(p) then i t always leaves DEF(p) unchanged 
after its application. 

5. Definition & folding rule may be applied to p(X1 , ... , Xn) +-E only if we fold 
it with respect the whole body E, thus introducing a new n-ary predicate q 
with the definition q(X1 , ... , X n) +- E an d replacing the only clause in DEF(p) 
by the new clause p(Xr, ... ,Xn) +- q(X1 , •.. ,Xn)· 

Then for every explicit semidefined n-ary predicate p we replace the only clause in 
DEF(p) by the new clause p( X 1 , ... , X n) +- p( X 1 , ... , X n) which is deniable, with 
negation p(Xr, ... , Xn) +- p(Xr, ... , Xn)· 

If all the conditions required by the U rule hold then for every predicate p still 
semidefined there is no answer of the form p( T) +- c in the success set nor finitely 
failed goal of the form p( T) +- c in the finite failure set. So it holds the following 

THEOREM. If the U rule applies t o the framed program (<T>, P) giving (<T>', P') then 
SEMrr(<T>, P)= SEMrr(<T>, P'). 

This new rule is not applicable in every case, so the question of how to know, in 
genera!, when a predicate p is entirely undefined is still open. 

4 Examples 

Example l. Let P1 be the following program framed by 0: 

q(a) +-

q(f(X)) +-X#- Y, q(Y). 

Then, the following is a t-completion of Pr with frame {(q, q), (T, r), (s, s)}: 

q( a) +-

q(f(X)) +- T(X) 
T(X) +-X i a 
T(X) +- s(X) 
s(X) +-. 

q(T) +-T i a, VX(T i f(X)) 
q(f(X)) +- r(X) 
r(a) +- s(a) 

Example 2. Let P2 be the program 

p(f(X,X)) +-X i a 
p( X) +- -.p(j(X, Y)). 
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After some step transformations we can get from Pz the new program 

p(f(X,X)) +-X i a 
p(X) +- q(X) 
q( a)+- q(f(a, a)) 
q(X) +- T(X) 
T( X) +-X i Y, -.T(j(X, Y)) 

p(T) +- VX(T i f(X,X)),q(T) 
p(f(a. a))+- q(f(a, a)) 
q(X).+- X i a, -.T(X) 
q( a)+- -.T( a), q(!( a, a)) 

with frame {(p, p), (q, q)}. The only semidefined predicate is T an d all U-rule condi­
tions hold. Then, we replace the only clause T( X) +-X #- Y, -.T(j(X, Y)) defining 
T by the the new one T( X) +- T( X) and its negation r(X) +- r(X) in order to get a 
t-completion of P2 with frame {(p, p), (q, q), ( r, r)}. 

Example 3. It can be proved that the given transformation procedure is unable to 
compute, in a finite number of steps, a t-completion of the following program 

p(X) +- p(f(X, Y)) 
p(X) +- -.p(j(X, Y)). 

5 Conclusion 

\!Ile have introduced frames to qualify norma! programs and define a function 
SEM based on them to be preserved under program transformation. Framed norma] 
programs allows us to combine a parti al computation of negation by a transformation 
technique in compilation-time with constructive negation in execution-time. We 
have developed a sound procedure for that purpose. 

W e believe that, given a norma] program P, the method produces in most ca.ses 
a positive program P, called a t-completion of P, w ho se success set in some sense 
includes both success set and finite failure set of P. Also, further research in order' 
to improve the transformation procedure and to know when a predicate is entirely 
undefined is needed. Nevertheless, ifa t-completion of a program can not be com­
puted, still the procedure is useful because of being able to compute it partially in 
compilation- t ime. 

A user-guided transformation system based on the operations given in this paper 
h ave been implemented by the .author. 
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Abstract 

Ordered Logic (OL) is a nonrnonotonic logic prograrnrning language for 

defeasible and default reasoning. 
The airn of this paper is to provi de a better understanding of ordered logic 

by rneans of a comparison with other logic programming languages. The re­

lationships beetween OL and traditionallogic programming are investigated. 

It is formally proven that the stable model sernantics for traditionallogic pro­

grarnrning can be simulated by a simple OL program. OL is then compared 

to other extensions of logic programming with classica! negation proposed by 

Gelfond and Lifschitz and by Kowalsky an d Sadri. A number of exarnples show 

to which extent OL provides support to model some form of nonmonotonic 

reasoning, compared with the above mentioned logic prograrnming formalism. 

Keywords: Knowledge Representation, Nonmonotonic Reasoning, Negation, 

Semantics, Stable Models. 

l Introduction 
Considerable research has been conducted in the last few years in the area of non-' 

monotonic reasoning [2], with the objective of providing a precise mathematìcal the­

ory of human commonsense reasoning ( which is usually not monotoni c). As a result, 

varìous different nonmonotonic logics have been developed [4, 16, 17, 18, 19, 20, 21]. 

The peculiarity of a nonmonotonic logic is that additional information may invali­

date old conclusions, unlike clas~icallogic which is inherently monotonic. 

A recent proposal in this area is represented by Ordered Logic ( O.C) [3, 10, 

11, 12, 13], where nonmonotonicity is obtained by allowing true negation (i.e., the 

possibility of explicitly stating the falsity of atoms) in the context of an inheritance 

hierarchy ( which assigns different levels of reliability to rules). 

Informally, an ordered logic program (''O .C program") is a set of components 

organized into an inheritance hierarchy. Each component consists of a set of rules 
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taxPayer <E--

...., taxPayer ~ poor 

poor ~ good_president ~ pacifist 

(a) (b) 

Figure l: (a) the OL program Ptain; (b) the O[_ program Pnixon 

which may have negative heads. As an example, consider the Of._ program shown 
in Figure l.(a). Here, we have three components, each consisting of an identifier 
and a set of rules. The identi:fiers are person, unem.ployed and tom.. Components 
are organized into a hierarchical structure, where tom. is "lower" than unem.ployed 
which, in turn, is "lower" than person. Unlike traditionallogic programming, rules 
may have negated heads. Thus, negation is considered as true negation, as a negative 
fact is true only if explìcitly derived from a rule of the O L program (in other terms, a 
negative information is considered as valuable as a positive one). Like in the object­
onented approach, properties de:fined for the "higher" components in the hierarchy 
fiow down to the "lower" ones. Hence, the contradicting conclusion tom both pays 
and does not pay taxes should hold in our case (as both rules -.taxPayer +- poor 
and taxPayer +- hold for tom.). However, this is not the case. Indeed, the "lower" 
rule -.taxPayer +- poor is considered as a sort of refìnement to the fust generai 
rule, and thus the meaning of the OL program is rather clear: tom does not pay 
taxes, as he is both poor and unemployed. That is, -.ta.xPayer +- poor is preferred 
to the default rule taxPayer +- as the hierarchy explicitly states the speci:ficity of 
the former ( with respect to the ob ject tom). Intuitively, there is no doubt that 
1\1[ = { -.taxPayer, poor} is the only reasonable conclusion. 

A property of the above O L program is that i t provides sufficient information 
to choose exactly one from arnong ali possible confl.icting conclusions (indeed, one 
of them is more speci:fic and, hence, can be considered preferable to any other). 
However, there are OL programs for which the way of solving conflicts is not unique 
(it may even not exist at all). As an example, consider the OL program Pnix 
reported in Figure l. (b) which is a reformulation of the well-known "Nixon Dia­
mond" [22]. Here, neither pacifist nor -.pacifist can be trusted more, as they 
are confl.icts arising from rules none of which is preferable to the other. Thus, 
there are two (perfectly symmetric) ways of solving this confl.ict, either in favor of 
pacifist or of its contrary -.pacifist. That is, any of the two possible conclusions 
M1 = {pacifist, goodpresident} and M2 = { -.pacifist} can (nondeterministically) 
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be accepted as a possible meaning to be assigned to the OL program. 
This paper focuses on the Stable Model Semantics for OL programs (SMS0 c , 

for short) [3]. The stable model semantics assigns each Of._ program with a number 
of models (possibly zero), one for each way conflicts can be solved. Clearly, M1 an d 
M 2 are the two stable models of Pnix, while Mis the (unique) stable model of Ptom· 

The aim of the paper is to provi de a better understanding of ordered logic ( under 
O L stable mode] semantics) by means of a comparison with other logic programming 
languages. In particular, Of._ is compared to traditionallogic programming (under 
stable model semantics) [5] and to extended logic programming [6, 9], which enrichs 
logic programming with classica] negation. 

The main result of the paper is the theorem proving that O L su bsumes tradi­
tional logic programrning 1 under stable model semantics. Informally, to see this 
point we note that, although O L interprets negation as true negation, the Closed 
World Assumption [2, 14, 21] can be easily mimicked: it is sufficient to make it 
explicit by introducing a component, say CvV A, which consists of the negation of 
all possible facts, and such that any other component is "lower" (in the inheritance 
hierarchy) than CW A. Intuitively, CW A states that a fact is false unless it is ex­
plicìtly contradìcted. In thìs way, the user is free to choose the predicates where the 
closed world assumption is to be applied (by selecting the literals to be included in 
the CW A component). Thus, the O f._ approach to negation is more fiexible com­
pared to that of logic programming (where the closed world assumption is applied to 
al l predicates) and closely mirrors some recent interesting proposals to closed world 
reasoning [7, 8], where the effects of closing the world can be restricted by specifying 
the predicates which may be affected by the CW A. This schema based on CW A, 
suggests a simple way for the representation of a logic program D by an O f._ program. 
In fact, D can be represented as a two-level OL program (called the Of._ version of 
D) where the upper component is CW A (consisting of all negative ground literals) 
and the lower one coincides with D. For an instance, consider the logic program D 
whose rules are o f f +- -.on an d on +- -.o f f. This program can be represented by 
an O f._ program consisting of the two components CW A and program., such that 
program. is "lower" than CW A. The component program. consists of the rules of 
D, while CW A consists of the (negative) lit.erals -.on and -.of f. Intuitively, CW A 
expresses the closed world assumption on the world { on, o f f}. This O L program 
has two stable models, namely, { on, -.of f} and { -.on, of f}, which coincide with the 
stable models of D. In this paper we show that, in genera], given a logic program 
D an d its O L version, say P v, the stable models for D coincide with the O L stable 
models of Pv. Hence, SA1 so c c.a.n be seen as a generalization of logic programming 
stable model semantics. 

The second formalism compared to O L in the paper is Extended logic progmm­
ming [6, 9] - an extension of logic programming where two negation symbols may 
occur: not for negation as failure and -, for classica] negation. Since classica] nega­
tion is already featured by OL, and negatìon as failure can be mimìcked as outlined 

1 In this p a per we consider function-free logic programs 
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above, it will be asily shown that extended logic prograrns have a direct counterpart 
within the O L forrnalisrn. Then, we shall discuss the clifferences between the two 
languages w.r.t. the suitability of representing cornrnonsense knowledge: a nurn­
ber of examples will show that OL can better mode! some form of nonrnonotonic 
reasoning. 

2 Ordered Logic Programming 
In this section we briefiy present the syntax and the stable mode! semantics of 
Ordered Logic. W e refer the reader t o [3] for a thourough description of O L 

A teTm is either a constant or a variable. An atom is a(t1 , ... , tn), where a is a 
predicate of arity n and t 1 , ... , tn are terms. A liteml is either a positive liteml p 
or a negative liteTal • p, where p is an atorn. VVe use an upper-case letter, say L, 
to denote either a positive or a negative literal. Two Iiterals are complementaTy if 
they are of the forrn p and •p, for some atorn p. Given a literal L, -..L denotes its 
complementary Iiteral. Accordingly, given a set A of literals, -..A denotes the set 
{ •.L l L E A}. A rule r is a statement of the forrn H +--- B, where H is a literal 
(head of the rule) and Bis a set of literals (body of the rule) (note that the head of 
a rule may be a negative literal). Given a rule T, we shall denote by H(T) and B(T) 
the head and the body of r, respectively. If B (T) is ernpty, then r is called a fact. 
A term, an atom, a literal or a rule is gmund if no variable appears in it. 

Let (C, :S) be a finite partially ordered set of syrnbols, called identifieTs. 
A component is a pair (c, D( c)), where c E C and D( c), the definition of c, -is 

a finite set of rules. A knowledge base on C is a set of cornponents, one for each 
elernent of C. In the following we shall denote by < the refiexive-reduction of :::; 
(i.e., a< biffa :Sbanda =l b). 

Definition l Given a knowledge base lC and an identifier c E C, the ordered logic 
pmgram far c (O L program, for short) is the set of components P = { (c', D( c')) E 
K.jc:Sc'}. ~ 

Let P be an O L program. The Universe Up of P is the set of all constants 
appearing in the rules in the components of P. The Base Bp of P is the set of all 
possible ground literals constructible from the predicates appearing in the rules of 
P and the constants occurring in Up (clearly, both Up and Bp are finite). Notice 
that, unlike traditional logic prograrnming, the Base of an ordered logic program 
contains also negative literals (this is because both negative and positive literals are 
treated in a uniforrn way in ordered logic). 

Given a rule r occurring in a component of P, a ground instance of r is a rule 
obtained from r by replacing every variable X in T by cr(X), where cr is a mapping 
from the variables occurring in T to the constants in Up. We denote by gTound(P) 
the (finite) rnultiset of all possible ground instances of the rules from the compo­
nents of P. The reason why ground(P) is a multiset is that a rule may appear in 
severa! different components of P, and we require the respective ground instances be 
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di.stinct. Hence. we can define a function campO f from ground(P) onto the set C 
llf the identifier~, associating with a ground instance 'F of r the (unique) component. 
nf r. 

Given I ç Bp, a ground literal L is t'ru.e (resp., false) w.r.t. l if L E I (resp., 
[.,E -..1); if L is neither true nor false w.r.t. I, then it is undefined 1v.r.t. l. By I, 
..1 and 1 we denote the sets oftrue, false and undefined literals w.r.t. l, respectJvely 

that 1 = Bp- (I U •.I)). 
A set X of ground literals is true (resp., false) w.r.t. I if, \:IL E X, L is true 

v.r.t. I (resp., 3L E X such that L is false w.r.t. I). A rule r E ground(P) 1s 
mtisfied in I if either the head of r is true w.r.t. I or the body of r not true w.r.t. 
I. Note that the given definition of rule satisfaction coincides with the classica! one 
oo tot.al interpretations (as, if L is not true, then it is false). 

Given an OL program P, an interpretation for P is l ç Bp such that I n 
~.I = 0 (i.e., it is a consistent set of literals, in the sense that no two comple­
,EJ.entarv literals belong to 1). An interpretation I is total if I U -..1 = Bp (ie. each 
ill.teral is either true of false w.r.t. I); otherwise I is partial. Note that, given a 
.iÌfound literal Q a.nd I ç Bp, then Q can be at the same tirne true and false w.r.t. 
.Tf; but, if I is an interpretation, then Q cannot be at the same t1me true and false 
w.r.t. I. 

Next we introduce the concept of model for an ordered logic prograrn. Unlike 
1:raditional logic prograrnming, the notion of satisfiability of a rule is not suffi.cient 
;.:t this airn, as it does not take into account the presence of explicit contradictions. 
Hence, we first present some preliminary definitions. 

lDefinition 2 Let an O.C progra.rn P and a set I ç Bp be given. A rule T E 
,;;round(P) is overruled in I if there exists a rule T1 E gTOund(P) such that 

1
all the 

c!Dllowing conditions hold: l) compOf(T') < compOf(r); 2) H(T) = •.H(T ), i.e., 
itb.e heads of T and T1 are cornplementary literals; 3) B(T') ç I. Ili 

.:Definition 3 Let an O L program P an d a set l ç Bp be given. W e say that a rule 
E ground(P) is defeated in I if there exists a rule r' in ground(P) such that all the 

ii':Jllowing conditìons hold: l) neither compOf(r) < compOf(r') nor compOf(r') < 
crompOf(r), 2) H(r') = -..H(r), i.e, the heads ofr and T1 are complementary Iiterals, 
il') B(r') ç I and H(r') E I. fil 

JOefinition 4 Let I be an interpretation for an OL program P. A rule r E 

!JTOund(P) is e.ffective w.r.t. I if it is neither overruled nor defeated in I and, 
fm-ther, B(r) ç I. !Il 

Definition 5 Let I be an interpretation for the OL prograrn P. We say that I is a 
!iùodel for P if every rule in gTound(P) which is e:ffective w.r.t. I is satisfied in I. il 

Observe that a rnodel is not necessarily a total interpretation, thus, in general, 
rnodel leaves undefined a number of literals. 
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Now we describe the Stable Mode] Semantics for OL programs (SMS0 t:, for 
short) which is a natura] generalizatìon of the (2-valued) stable mode] semantics 
given for traditìonallogic programs [5]. 

Before giving new concepts and definitions, we introduce the immediate conse­
quence operator T p for an O .C program P defined as follows: 

Tp : 2Bp --+ 2Bp 

Tp(I) = {L E 2BP l :Jr E ground(P) such that H(r) = LAB(r) ç I}. 

It is easy to see that Tp is a monotonic transformation in the complete lattice 
(2BP, ç) and,-therefore, it admits a least fixpoint. Consider now the sequence {Tn}, 
where yn is inductively defined as follows: T 0 = 0, Tn = Tv(Tn- 1 ). Clearly, {Tn} 
is monotonically increasing. Since the Base of P is finite, {Tn} is finitely bound, so 
t ha t t h ere exists a natura] i such that, for each j ~ i, Tj = Ti. Clear ly, Ti coincides 
with the least fixpoint of Tp, which we denote by T:p. It is worth noting that Tp(I) 
contains a (possibly negative) literal L if an d only if i t is the head of a rule such that 
every literal in its body, even if negative, is in I. That is, negation is considered as 
true negation. 

Definition 6 Let the O L program P and the interpretation I be given. The re­
duction ofP w.r.t. I is P 1 ={rE ground(P) l r is effective w.r.t. I} 11 

Example l For the O .C program Pnixon and the setI= {pacifist, goodpresident}, 
P;ixon is the set consisting of the following rules: pacifist +- and goodpresident +­
pacifist. fil 

In analogy with traditional logic programming, we give the following definition of 
stable model. 

Definition 7 Let M be a mode] for an OL program P. Mis an (O .C) stable model 
for P if M= T';M(0). 11 

3 Relation to Logic Programming 
In this section we show that classicallogic programming (without function symbols) 
under total-stable semantics [5] (simply t-stable, hereafter) can be considered as a 
fragment of ordered logic programming. 

To prove the claim, we represent a logic program D (without function symbols) 
as a two leve] ordered logic program Pv, called the ordered version of D. p'D 

consists of two objects, namely program and CW A, related by the relationship 
program < CW A. The definition of program is made of the rules in D, while 
the definitìon of CW A contaìns a rule of the form --,q(X1, ... , Xn) for each predicate 
q appearing in D, where n is the arity of q and X1, ... , Xn are distinct variables 
(the above rule is called the closed world assumption for q). The intuition behind 
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such a representation is the following: the higher object CvV A corresponds to an 
explicit closed world declaration establishing that a fact is false unless exphc1tly 
contradicted. 

vVe next show that the notion of stable mode] semantics for ordered logic pro­
grams is a generalization of the stable model semantics of logic programs. To this 
end we first. recall some basic notions. 

Let D be a logic program and E'D its Herbrand base_[15]. The immediate 
consequence operator T 'DM : 2B., --+ 2B., is defined as: T 'DM (I) = {.P 1. :Jr E 
ground(D) s.t. H(r) =p A E+(r) ç I}, where E+(r) is the set of pos1tlve hterals 
occurring in the body of the rule r (Iikewise, we shall denote by E- (r) the se~. of 
negative Iiterals inB(r)). Now, given a total interpretation M ç E'D U -,,E'D, (Le., 
an interpretation such that for each Iiteral L E E'D either one of L and -,.L belong 
to M), the reduction ofD w. r. t Mis the (ground) logic program DM obtained from 
D as follows: for each L E M, if there is a ground rule r E groundS!;) such t~ 
-,,L E E(r), then discard r from ground(D). Consider the sequence {T }, where T 

=0 = - (=- 1 ) M · bl d l is ìnductively defined as foliows: T = 0, T = T'DM T . 1s a t-sta e mo e 
forD if T';M(0) = M+, where M+ is the subset of M consisti~g of a.ll posi~ive 
Iiterals of M (likewise, we denote by M- the set of ali negat1ve hterals m M, Le., 
M-= -,.(E'D- M+)). Note that each rule r in DM is such that E(r) ç M.. . 

Consider now the ordered version P'D of D. Clearly, the base Bp., comc1des 
E'D u -,,E'D, so that M is an interpretation also for P'D (as M is a consistent subset 
of E ) By definition 6 the reduction Pjf of P'D w.r.t. M is obtained from 

'Pv · ' . . pM 
ground(PD) by selecting all rules that are effect1ve w.r.t. M. In part1c~lar, D 

consists of (1) the set X of all ground rules of the form --,p(t1, ... , tn), commg from 
the component CW A of P'D, that are not overruled in M, and (2) the set Y of 
ali ground instantiations, with a true body in M, of the rules in the component 
program of P'D· It is immediate to realize that Y coincides with DM. Further, we 
point out that no confl.icting rules, i.e., rules with complementary head, are in Pjf. 
Indeed, if a rule with positive head, say p, is in Pjf, its body is true ( w.r.t. M) an d, 
hence, -,p +-- is not in Pjf, as i t is overruled. 

Lemma l Let M be either a t-stable mode l for D or a stable mode l far P 'D. Then, 
M- coincides with the set X= { -,p l -,p +-E Plf}. 

Proof. lf M is a stable mode] for P'D, the statement is clearly true. If M is a 
t-stable model forD, -,p E M- iff there not exists a rule r E DM (with true body) 
iff r fj:. Pff iff -,p +- belongs to Flf iff -,p E X. W 

Proposition l Let D be a logic program and P 'D be the ordered logic version of V. 
Then M is a t-stable mode l far V if an d only if M is a stable model far the O L 
program P 'D. 

Proof. Let M be either a t-stable forD or a stable for P'D· We define the sequences 
{T} and {Tn} inductively as follows: T= T'DM(0), r = T'DM(T-1) and T 0 = 



214 

TpM(0) yn -T fTn-1) t' l \" D . ' - · Pff' . , respec 1ve y. 'Ve note that the negative part of Ti f each, > O . r l' M} , or 1 - ' lS ,-.p ~-.p +-E PD , which coincides with J\1[- bv fact. 1 Cl . ,-~c -k-'-l 
J . . mml. Let T =T'· , for some natura! k, Then T c- 'fk u J\1- f 2

. 
' -= , or each natura] 

Proof · W e pro cee d by induction on the number i of applications of the operator Tpff · Ba3z3 (z=O) Let X be the set of the positive literals in To i e X - J [3 pM3.t.H(r\ = 'B' ) - 0} g· . . . . , .. , - LP rE D J P 1 ' ('T' - · mce the rules w1th poSitiVe head are the sam · pM d'D XC-k 
em D an !!Id _ T bolds. The set of negative literals in T 0 coincides with M- Th T° C T U M- f ll · · · us, ::~ - pM 0 ows. Ind'Uctwn (z > 0). Let p be a positive literal in Ti+l Then _,rE D ~~eh that H(r) =P and B(r) ç Ti. Hence, by the inductive hypothesis. B(r) ç (T U M-) only if B+(r) C Tk. FU.rther since r E pM · 1· .,-, . Tk _ -k . - ' · D nnp Ies r E v M, P E follows(as T IS a ~point). To conclude the proof, we just need to observe that the negat1ve part of T'•1 coincides with M-. 

Claim 2. TJ C rp U M- implies TJ is not a fixpoint of TpM. 
Proof. Let i be the largest natura! sucb that T u NI- D c TJ ( t th h t l tb . . - ,no e at sue a .na ura ere ex1sts, as M- C T' for each i > O) Cl 1 T · · fix · T ( =T· m:i -n ~ ' . :::... =i, ear y, IS not a pomt of DM as C l and {T } 1s monotomc). If T U M- = TJ holds th 1 1 TJ · · fi . . · , en c ear y Js not a xpomt of TpM. Otherwise i e T u j1/[- c TJ tb · t ,.,.., . D ' · ., - , ere ex1s s r E uM 
s~ch t~~1B(r) ç T and H(r) is not in TJ (if sucb a rule would not exjst then T = T U M- would hold, contradicting the assumption that i is thP largest natura! such that T u M- ç TJ). But B(r) c r i l' B( ) .~ t' . , - .mp 1es r C TJ (as the 
fix
nega.Ive part of TJ is M-) and rE 'DM implies-r E RedPD. Thu; TJ is nota pomt of T pM. 

' D 

B: claims l and 2 ab~~e we have tbat~f TK is a fL'I:point (in particular, the least fixpo~:) ofTpff, and T IS afixpoint ofTDM' then Tk = TkuM- holds. Let 'f';M(0) 
and ~kM(02_~e the least ~xpoints of TpM and TDM' respectìvely. Clearly, :Jk ~uch ~:~~sT = TDM(0) and Tk = T_;;'M(0). Tbus, we have that 'f';J-.,11 (0) = 'f';M(0) uM-

~! are finall~ rea~~ to conclude the proof. Let M be a t-stable for D; then M = T DM (0) U M = T Pff (0) an d, hence, M is a stable mode! for p D· Conversely l et M be .a stable m o del for "PD; tben M = Tx'M (0) = 'f00 10)' u J'1- f ' M +_ -co 
0 . PD DM\ '' , rom whìch - T DM ( ). Hence, M 1s a t-stable for D. 

4 Relation to Extended Logic Programs 
In 16], Gelfond and Lifs~bitz propose to include classica! negation in logic programs in or erto deal also w1th mcomplete information. They define extended lo ic ro m :s lo~c programs where ~wo negation symbols may occur: not for negatfon ~s /ail:::: nd for classica! negat1~n. The semantics of an extended program is defined b , number of answer sets, "1Vh1ch generalize the notion of stable mode] to this framew;r:. 
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It can be easily recognized that extended logic programs bave a direct counter­part within the CJ L formalism. lndeed, classica! negation is directly featured by CJ L, an d negation as failure can be mimicked as shown in the preceding section. This correspondence can be formally proven: In [6], it is proven that every extended logic program can be equivalently represented by a. normal logic program under stable mode! semantics; it turns out that, by virtue of theorem l, every extended logic program can be represented in CJL. Thus, we do not need to exhibit a direct translation from extended logic programs into CJL programs. Rather, we like to dis­cuss the differences between the two languages w.r.t. the suitability of representing 
commonsense knowledge. 

Extended logic programming is an useful extension of traditionallogic program-ming, since severa! facts of commonsense rea.soning can be represented by logic prograrns more easily when classica! negation is available (cf. [6, 1]). However, a limit of this extension is that it ducks the issue of resolving con:flicts - these often occur when negated beads are allowed in logic programs. Indeed, in commonsense reasoning i t is often the case that support for a can be eliminateci by (more reliable) 
support for -.a, thus resolving the con:flict. Ordered logic overcomes this drawback, as the ordering between the components allows one to specify the more reliable rules in favour of which possible confiicts are 
to be resolved. 

We next show a couple of examples where the explicit resolution of con:flicts do allow CJ L to represent re al world situations more naturally than extended logic 
programming. 

Consider the following (p art of the) classification of animals: birds and marnmals are animals, penguins and albatross are birds, bats and elephants are mammals. The commonsense knowledge about the "can fiy" property on the above classes is: (a) most classes of animals do not fiy, (b) birds usually fiy, (c) mammals do no t fiy in generai, (d) even if penguin is a bird, penguin can not fiy, (e) even if ba t is a 
mammal, bat can fiy. 

The above knowledge can be easily modelled in OL by tbe CJL knowledge base iCanimal illustrateci in figure 2. Intuitively, the knowledge base is built as follows. To each class of animals is associateci a component in Following the classica! scheme of default reasoning, we bave specified the "c an property o n the higher classes of tbe hier.archy; then, this property has been re-stated only on the subclasses wbich do not agree with the general rule. 
It is easy to see that !Ca.nimal correctly models the above described commonense knowledge. Indeed, the CJL program of each component (i.e. animal) in the hierar­. chy has a unique stable mode! where the "c an fiy" property is defined to be eitber true or false, according to the real situation. For instance, the program Ppenguin for penguin contains the following rules: s1 : -oflies +-- (inherited from the component Animal), s2 : flie3 +--- (inherited from Birds), 33 : •flies <- (defìned in its own component penguin). Ppenguin has a unique stable model Mpenguin = { •flie3} (note that the more specifìc rule 33 overrules 32). Similarly, program Pbat = { •flies +---
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~flies~ 
flies<:-

Figure 2: The OL Knowledge Base Kanìmal 

animal(X) +-- bird(X) 
animal(X) +-- mammal(X) 
bird(X) +-- penguin(X) 
bird(X) +-- albatross(X) 
mammal(X) +-- elephant(X) 
mammal(X) +-- bat(X). 

(a): !SA- hierarchy 

r1 : --,jlies(X) +-- animal(X), not abh, X) 
T2 : flies(X) +-- bird(X), not abh, X) 

flies(X) +-- bat(X) 
abh, X) +-- bird(X) 
abh, X) +-- bat(X) 
ab(r2, X) +-- penguin(X) 

(b) : the "ca n fly" rules 

Figure 3: the extended logic program for the animai classification 

, flies +--} has a unique stable model Mbat = {flies }, as the rule flies +-- defined on 

bat overrules the default rule --,jlies +-- inherited from Animal. The unique stable 

models for elephant an d albatross are Malbatcoss = {flies} an d Melephant = { --,jlies }, 

respectlVely. Thus, Kanimal correctly models the "can fiy" property of the animai 
hierarchy in a simple and natural fashion. 

To represent this situation by extended logic programs we have to model the IS-A 

hierarchy first. To this end, we specify the rules showed in Figure 3.(a). Second, we 

ha.ve now to define the anima.ls able to fiy. To this end, we can not simply "reason 

by default" as in O.C, since we can not specify the different levels of reliability of 

the rules ( which would allow to salve confiicts). Thus, we ha ve to include some 

additional predicates, nota.bly ab, which a.llow to avoid the derivation of confiicting 
hterals. We obtain the rules in Figure 3.(b). 

It is easily seen that the extended logic program in Figure 3 correctly models 

the rea.l situation. Nevertheless, from the above example it should be evident that, 

thanks to the possibility t o assign different reliability levels to the rules. O[.. is able 

represent the same situation in a more compact and natural way (the semantics of 

goodpresident +-- pacifist 
pacifist +-- hawk 
--.pacif'ist +-- republican 
hawk +-- nixon 
republican +-- nixon 
nixon +--

(a) 
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goodpresident +-- pacifist 
pacifist +-- hawk, not --.pacifist 
--,pacifist +-- republican, not pacifist 

hawk +-- nixon 
republican +-- nixon 
nixon +--

(b) 

Figure 4: the extended logic program far "nixon diamo n d" 

the Kanimal knowledge base is immediately understood). 
In the above case, there is a clear evidence of how confiicts must be resolved, 

and a unique reasonable conclusion can be entailed. However, several real world 

situations are intrinsically ambiguous, in these cases both ways of resolving the 

confiict (i.e., preferring either an atom or its negation) can be rea.sonably assumed 

as possible conclusions. Such situations are easily dealt with in O[.. by assigning 

uncomparable reliability levels to confiicting rules. Thus the mechanism of defeating 

resolves the confiict in favour of either one of the confl.icting rules, yielding two stable 

models which can be chosen as alternative meaning to be assigned to the program. 

An example of this is the "nixon diamond" described in Figure l. (b). 

The natural encoding of the "nixon diamond" in extended logic programming 

would be that specified in Figure 4.(a), where the former rules define the "paci­

fist" and "goodpresident" properties, and the latter ones specify the IS-A hierarchy. 

However, the extended program in Figure 4.(a) does not capture the meaning of the 

"nixon diamond", as it has a unique contradicting answer set. To correctly model 

the "nixon diamond", we have to introduce some additional predicates in the bodies 

of the former rules, which block the derivation of pacifist and --.pacifist if their 

complement is assumed. (see Figure 4. (b)) The semantics of the program in Figure 

4 coincides with the semantics of the OL program Pnix (the program has two an­

swer sets: {pacifist, goodpresident} and { --,pacifist}) and correctly represents the, 

"nixon diamond". However, also in this case the meaning of the encoding of the 

knowledge offered by O L is more easily understood. 

Before concluding, we briefiy discuss an alternative semantìcs proposed far ex­

tended logic programs by Kowalsky and Sadri in [9]. According with this semantics, 

confiicts are always solved in favour of negative literals which are considered excep­

tions. This approach allows so~e form of default reasoning and overcomes some 

drawbacks of extended logic programming highlìghted above. Comparing this work 

with ordered logic, we note that 01:.. permits to easily represent multi-leve! excep­

tions (i.e., exceptions to exceptions, etc.) while [9] can explìcitly deal only with 

one level of exceptions ( the representation of further levels of exceptìons requires to 

introduce additional predicates as far [6]). 
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Abstract 

Local CLP is a. syntactic variation of pure CLP chara.cterized by the e~-
li ·t t'fication of the ]oca! variables of the clauses. It allows the defim-p c1 . quan l . f tl the tion of the SLD resolution steps as simple local rewritmgs o le atoms m 
oals. We outline a formai framework for the defimtwn an d the ~nalys1s of the g 1 · f . 1 ] CLP A subsidiary SLDNF tree T Js represented SLDNF reso utwn m oca · - . d · within the "Oals bv the expression -,T. Some natura! operatwns o.n enva~ 

tions trees (~.g. and-compositions) are naturally defined. As an appli~atwn o 
k 'd the bottom-up fix-pomt const.ructwn of a correct the framewor we prov1 e · 

and fully abstract denotations of the parallel trees. . . . Keyw~rds: SLDNF-resolution, forma.l semantics, a.nd-composJtwnahty 

l Introduction 
A 'pure' or 'most genera!' atom has the form p(x), where p is a predicate sy·n~bol 

f ' ·t. d x is a n-tuple of distinct va.riables. Pure CLP JS an eqmva ent 0 some an v n, an · d · ms f f t ·d d CLP w h ere onlv pure atoms are allowe to appear m pro gr a orm o s an ar · " f CLP It · h cterized and oals. 'Local' CLP is a synta.ctic variation o pure · · · JS c ara · .. "· . 
hg. z· 't t':fi atJ'on of the local variables of the cla.uses, ;md t. herefore of bv t e exp zc1. quan 1 c . · · · ·t t' 1 the variables introduced by the derivation st.eps m the goal. ExpbCJt exJs en Ja ·fi · . ·t t model the SLD resolution as a local step, concernmg the quanti catwn perm1 s o l d · t' f l t d t lv and independent from the rest of the goal. T 1e escnp 1011 o se ec .e a om on ", l d ii ·r f epts and the resolution as a simple ]oca! re\vriting may help t Je e llll JOll o eone . . 

· · ' d 1 r' fashion and bv induction on the syntax. However, proof of properties m a mo u a ' - CLP · local CLP can be seen as a formai tool to talk of pure (or even standard) ... smce 
the onlv difference is that existential quantifiers are used to keep an expbCit note, 
within the goal of the local variables. , .. · ' . 1 1 CLP to outline a new framework for the dehmtwn In tlns paper, we use oca . . . . ll' l d l l · f th SLDNF resolution. The a1m 1s to prov1de a forma } c ean an t 1e an a ys1s o e · 
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and convenient base for the study of semantics issues and of run-time properties of SLDNF. 

Due to its involved recursive nature, the definition of SLDNF-resolution is not plain [7, 8, 1]. The resolution of a negated atom within a goal must be defined in terms of a (subsidiary) derivation tree which, in genera], is constructed through the resolutions of other negative literals. In [l] the selected negative literal points (through a function 'subs ') at a subsidiary SLDNF tree. The main goal is then blocked unti] failure or success is reached by the pointed tree. In [8] the relevant p art of the subsidiary t ree (its frontier) is kept within the mai n goal. Differently from [l], the selection rule can suspend the 'exploration' of the subsidiary tree and continue with other parts of the goal. This makes possible the modeling of deterministi c fair rules. 
The approach we follow is to define the SLDNF-resolution by extending, as in [8], the syntax of the goals so as t o include a representation of the subsidiary tree. However w e fin d that a more immediate representation of a subsidiary tree is the tree itself. Therefore the expression of a negative subgoal pointing to a subsidiary tree T is simply ..,T. Both the explicit exhibition of the recursive dependency between goals and SLDNF trees, and the use of local CLP, contribute to the clearness of the construction. Building over the definitions, some natura] operations on deriva­tions trees ( e.g. and-compositions) can be neatly defined, an d their properties easily exploited. As an example of application of the definitions and of the operations, we sketch the bottom-up fix-point construction of a correct and fully abstract de­notation of the parallel trees, a class of derivation trees in which ali the computed answers and finite failures of SLDNF are represented. 

The paper is organized as follows. The syntax of local CLP goals is presented in subsection 2.1. Subsection 2.2 completes the mutua] recursive definitions of goals and derivation trees. The parallel and sequential trees are defined in subsection 2.3 and the equivalence between pure and local CLP is discussed in subsection 2.4. The operation on trees are defined in section 3 and subsection 3.1 rephrases, for local CLP, the usual notions of success, failure and floundering. A correct and fully abstract denotation of the parallel trees is defined in section 4. After the introduction of some peculiari ti es of parallel trees in subsection 4.1, the denotation is presented in subsection 4.2. Its bottom-up, fix-point construction is sketched in subsection 4.3. Due to the lack of space all the proofs are omitted; they can be found in [3]. 

1.1 Notations 
We use overlining to denote (possibly empty) tuples of homogeneous objects. x denotes a tuple of distinct variables. The free variables of formula S are denoted by FV(S). The variables in a formula which are not free are said to be 'local'. Formulae are identified modulo consistent renamings of local variables. W e say that two formulae 51 and S2 are 'variant', S1 ~ S2 , if S2 can be obtained from 51 by a 
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. · f 'ts (free and local) variables. cons1stent renammg 0 1 W that C contains the equa-. C denotest the set ~f al~t~::d c:;st~:i~~:~k's ~~~~~; Theory [4], an d. t h~ logica! tiOns among erms, axwm l t d f Moreover C is closed by conjunctJOn and t ts for the truth va ues an · b d ·d bl cons an c d h t' fi b'l't of the constraints must e ecl a e. . · l t' fi t' n an t e sa IS a 1 I Y ex1stentm quan 1 ca 10 ' . . t' fi bl We say that the variables fj are ( ) d t th t the constramt c 18 sa rs a e. . sat c eno es a . h d terms g iff every solution of the constramt grounded by the constramt c to ~ e groutn t' f) -g A formula is grounded by c ( to . d th . bles fj to ( the mterpre a Ion o . c bm s e vana - def- - (f(-) ~ f t(x)) denotes a fixed always g) if so are its free variables. t(x) = x = x x - , l t ( ga) is an atom of (fal ) constraint in the variables x. A most genera a om m . ' t~uef se (x) having a. tuple of distinct variables as arguments. MG.A de~ote the set t e orm p ' l t The comma in a formula means con]unctwn. of al! the most genera a oms. 

2 SLDNF for Local CLP 
. ' ' 'tree' and 'extension of a tree' are defined by mutual recurs~on. The notJOns of l-goal ' . f l- oals An l-goal is an expression possl bly A t ree is a ( well-formed) fimte tree o b g . . A well-formed t ree is either a . . well-formed tree as a su expresswn. ' l rontammg a l l th extension of a well-formed tree. r Je single-node. tree, label~d. by so~~ -~aa~:rcon~traints an d most generai atoms. T be base cases m the defimtion of l go . th l ment of an atom with the bodies . h ' t . n' of a tree IS e rep ace baBe step m t e ex ensJO . m The other notions are defìnf'd of the cla~ses that defin~ that atom ~l::~u~~;r:se~ted separately, tbe defmitions by recurswn over these _ase cases. thr t f a single unit. The defìned f l al tree and extenswn of a tree are ee par s o . . , o -go ' h l f th all base cases w.r.t. the mducbve ones. objects are therefore t e c osure o e 

2.1 L-goals and L-Programs 
h l b , conjunction and existential Tlw cla.'!S of the 1-goals i.s defined, as t d e c os:re, 2T of certain trees of 1-goals. qua.:ntifìcation, of constramts, mga s an .nega wns Tb~ trt"t'!s of l·goals are defined in subsect!On 2.2. 

l-goal is a formula tbat can be generated by tbe folJovring I)LF!N!TiON 2.1 An 
gr tu n m 111 

G ::==c 1 p(x) l G,G l 3yG l ..,T 
. . (.,.-) is any mga and T is any tree rooted at some mg;~. wlwrr· c 1,, tWY con!'irrunt, P x 

· . l l . t· t o T' Most generai atoms nn d Au l·gval -·T Ì3 said to be a 'ncgatzve -goa poznAznlg l.· 'd t be 'defmite' if it : al· 11. d d-atomic 1-goals. n -goa rs sai o . nt••all\'<' l·go s are ca e an . l l T. 'd to be 'tot' ln'<'l 
" . b l A negative -goa ..., 18 sal rloc-$ not contRin any ncgatlve su goa. a) An 1- oal is said to be 'top-leve!' if i! T is l! single-node tree (!abeled by some mg . g 

----·-------- --~------



so are its negative subgoak Tbc fme variahl;•s of 1, ncgatiw· l-goaJ --.T iJ..r1' dditwd 

as tbe fn•e \'ana~)les of Ul(' roo\ of T. and ils local variabit'fi an· tbc lontl variilhles of 

ilw 1-~oals _labdmg T. Ttw se!. of the 1-goals is dcnoU·cl by Goal!l. The (exist.cntia.l) 

quant.JficatJOn of a ~d {G,);El of 1-goals is dd1ned bv 31J{G}· ~f (-, G·}· 1'1 
d - • • •El ::JY '• •El· 1e 

cross-pro uct of t. w o Selli of 1-goals { G;} i E/ 1m d { G1 Lo is an associali ve operat.ion 

dcfined by {G·} · ""' {G} · ~~ {(G· G' )} . ' 
_ • •El "'-" Y; ;EJ - '" 'j . (i •. i)Ef>.J. An 1-clause' has the form 

P(.x) ,__ G w bere thc head, p(x), is an mga, and the body, G, is a top-leve/ l-goal 
WJth tbc same free variables as the beaci (FV( G) = x). An 1-program is a finite set 
o[ 1-clauses, .not co.ntaining varianls. The SLD derivalion step for local CLP can be 
defined, by mductJ~n o n t be synt.ax, a.~ follows. F'ixcd an 1-program p, Jet p(y) be 
an ~ga an d le t {p(y) ;- G,} i E/ be a se t of \'ariants of clauses of P containing one 
v~nant for ea.ch clause for t h c predicate p in P, rcnamed so that their head coincides 
w1th p(y). If this set is not empty Hwn wc defìne 

p(Y) """' { G; },E] (l) 

If ther~ are no cla~ses for p in the program, t ben p(y) >-+ { f(y)}. The local-to-context 
extenswn of relatJon >-+ is s!.raightforward: 

DEFINITION 2.2 Extension o[ rdation ,_. from and-atomic 1-goals to 1-goals: 

This subsection defines a class of finite tre-es of nodes labeled with ]-goals. The single­
node tree root~d at the l-goal G is reprcsented by tbc exprcssion (G, 0). In genera!, 

a tree expresswn ~as thc form ((:, {T,};E1), whcre G is an l-goal, and {Ti};EI is a 
set of tree expressw~s. The tn-es, i.e. the wcll-formed trec expressions, are defined 
by augmentmg the smgle-node tr=s via the extension relation '-+' 

DEFINITION 2.3 

l. 

2. 

3. 

4. 
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Trees, extensions of trees and relation t-+ for negative subgoals: 

G E Goals 
(G, 0) E Trees 

T E Trees T -+ T' 
T'E Trees 

::li E I T; -+ T! 

The set of all the trees, Trees, is defined by the rules at point l. Rule 2 states 
that the extension of a tree T= (G, {Ti};EJ), with I i- 0, consists in the extension 
of ai least one of its subtrees T;. One verse of the dependency between relations 

t-+ an d -+ is shown in rule 3, w h ere a 'leaf' t ree ( G, 0) is expanded with a set of 
1-goals {Gi}iEI such that G t-+ {G;}iEI· The other one is exhibited by inference rule 
4, which describes how the evolution of a negative subgoal reflects that of the tree 
it points to. 

The set of the 1-goals, the set of the trees and the relations '-+' and 't-+' are 
simultaneously defì.ned by equation (l) and by definìtions 2.1, 2.2 and 2.3, as the 
closure1 of their base cases w.r.t. all the inductive ones. 

Roughly speaking, relation -> describes the 'top-down' growth of a tree by the 
extension of some of its 'leaves'. To every leaf G we can attach any set of 1-goals 
which is consequent (w.r.t. t-+) to G. However, a tree can also be constructed 
'bottom-up' by 'joining-up' an opportune set of trees with some antecedent (w.r.t. 
~) of their roots: 

DEFINITION 2.4 For every set of tl'ees {TjLEJ we deiìne 

It is easy to prove that the U operator is a mapping between sets of trees. Moreover, 
by the analysis of the definitions of t-+ and -+, it follows that U is computable. A 
restrìction of this basic operator to trees rooted at most general atoms is applied in 
subsection 4.3 to the bottom-up construction of the 'parallel' trees. 

1 It can be shown that ali these definitions (say, collectively, ':F') are monotoni c an d finitary. 
Therefore, being :F continuous, the defined objects, that is t.he closure :F i vJ, coincide with the 
l.f.p. :F T co of :F, that is with the smaller sets satisfying the definitions. 
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2.3 Sequential and Parallel Trees 
Some interesting subclasses of 1-goals and trees may be identified by modifying, in a restrictive sense, definitions 2.2 and 2.3. Let ~ denote the restriction of relation >---> obtaìned by removing inference (par) from def. 2.2, an d l et _:., denote the resulting restriction of -t. The 1-goals and trees that can be defined according to this restric­tion are called 'sequential'. By forbidding the parallel rule, sequential trees mode! computation rules that, as it is most common, select just one and-atomic subgoal of the l-goal to be expanded. 

W e say that an l-goal G (a tree T) is 'expandable' if G >---> { G; }i EI for some l-goals { G;}iEI (if T ___, T' for some tree T'). To be expandable is a decidable property. Indeed, G is expandable if it contains some mga, or if some negative subgoal points to an expandable tree, and a tree is expandable if so is some of its leaves. Consider the restriction of relation >---> (an d therefore of ___,) obtained by adding the condition "and G' is not expandable" to the premises of inferences (l) and (r) of def. 2.2. This restriction corresponds to the computation rule that always selects every expandable and-atomic subgoal of the l-goal. Consider the further restriction of relation -t obtained by adding the condition "and T; -t T[ for every i E I such that T; is expandable" to the premises of inference 2. Under this restriction, T ___, T' if ever-y expandable leaf of T is extended by getting T'. The 1-goals and trees that can be defined by imposing both the two last conditions are called 'parallel', an d the resulting relations are denoted by ~ and ..!:.,, Some nice properties of parallel trees are discussed in subsection 4.1. 

2.4 Local CLP is Equivalent to Pure CLP 
A (bidirectional) formai translation from 1-programs and 1-goals to pure-CLP norma] programs and goals is defined in [3]. Besides mapping negation of trees to negative literals, the translation arranges for explicit vs. implicit existential quantifications over the local variables (possibly applying renamings). Moreover, as i t is usual in CLP notation, the constraints are gathered to the left of the goals. In one direction the translation defines the 'pure-CLP forms' of an l-goal. In the other one it states what the 'l-form' of a (pure-CLP) norma] goal is. Sequentiall-goals and trees are then compared to SLDNF-resolution for pure-CLP as defined by Kunen's inductive definition [6] rewritten to conform with the syntax of pure-CLP. It is proved that sequential trees of top-leve] 1-goals compute the same answers as their pure-CLP forms (modulo the translation). Moreover, a top-levell-goal has a failed sequential tree iff its pure-CLP forms finitely fail. (The notions of computed answer and finite failure for local CLP are defined in subsection 3.1). This proves that sequential 1-trees have the soundness and completeness of Kunen's definition of SLDNF for pure-CLP. Again in [3] it is shown that both the sequential and the parallel trees subclasses are fully representative w.r.t. successes and failures. Ali the successes and failures of SLDNF can then be observed by looking at parallel trees of top-
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llevell-goals only. In section 4 we show ho w' for any 1-program, this class of tree is .completely coded by the parallel trees of most general atoms only. 

3 Some Operations on Trees 
. . we introduce some genera] operations on trees and discuss some of '!n ~hls sectw_n . we be in with the trivial ones. The root of a. th __ --- eu propertJes. To fix some dnobtatw(nT,) . th! l-goal G. The set of the subtrees of a T _ (G {T}· 1) denote Y r '!S (G 11.) 1tree - ' ' .'E ' {T } . W l t 'T( Q) t.o be a shorthand for , VJ · 

" (G {T·}. ) 18 the set of tree ;, ,EJ· e e 1 
. •ITee ' ' ,Ef . b t ble by the funct!On d : Trees ___, '"' fhe depth of a tree IS a natural num er compu a d r . d 0 ll . '(T(G)) d~ O· d((G,{Ti}iEI)) ~ l+ max{d(Ti)}ìEI If I 7 • defined as fo ows. a ' . . . ~ . .C(T:) if I =f. 0, .Th 1 "(T) of a tree T are defined by: .C( ( G, {T, },EI)) - U,Ef · . e eaves ~ . ) f · E I then l((G,0))~{G}. SinceGf->{Gi}iEiimpbesFV(G!=FV(Gi orevery~ ' all the 1-goals labeling a tree bave the same free vanabl~s. - li d ' nd-. d 't eral operatwn on trees, ca e a Next definition mtro uce~ a Tqm ~ ;enwe obtain a set of trees having different >Com osition'. By and-composmg l an 2 . . (T ) (To) p H th t of these trees is always the conJunctJon r l 'r " ' .òtructures. owever' e roo T ) while the leaves are always the cross-product .C( T l) 0 .C( 2 . 

3 l Tb t f tbe and-compositions of two trees T1 = (G1, {T;};EI) DEFINITION · e se 0 
. d T - (G {T}. J) is a set of tree defìned as tbe unwn m1 z- z, 1.1E 

Tl 0 Tz ~ (T1 o1 T2 ) U (T1 Or Tz) U (T1 Opar Tz) wbere, recursively 

2. Tl or Tz d~ { ((GI, Gz), {T}}iEJ) l Tj E Tl o Ti Vj E J =f. 0} 

3. TloparTz ~ { ((GJ,Gz),{Tii}(i,i)EixJ) l Tii E TioTi 
if I =f. 0 or J =f. 0 

4. T1 Opar T2 ~ { ((Gl,Gz),0) }, if I= J = 0· 

Vi E I =f. 0, Vj E J =f. 0 }, 

EXAMPLE. Let T1 ~(a, {T(b), T( c)}) and Tz ~(d, {T( e)}). TlolTz={ (ad,{(bd,{T(be)}), (cd,{T(ce)})})} 
TlorTz={ (ad,{ (ae,{T(be),T(ce)}) }) } 

Then 

Tl Opar Tz = { (ad, {T(be), T( ce)}) } 

. d . d . al cases of and-compositions. For . Other 1usefuii::r;:!:n~f ::nd-~~m;::~io:sc:~e~~ obtained ~y restricting (as much examp e, a . , 11 1 b t' g1ven by o as possible) the and-compositions to thelr para e su se par. 

-------- -----
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DEFINITION 3.2 The cross-product '0' of two trees is defìned by 

• (G1, {T;};EI) 0 (G2, {Tj}jEJ) ~ ((G1, G2), {T; 0 Tj}(i,i)EixJ) 
if I ::/= 0 and J ::/= 0 

• (G1,0) 0 (G2,{Tj}iEJ) ~ ((G1,G2),{(G1,0) 0Ti}jEJ) 

• (G1,{T;};Er) 0 (G2,0) ~ ((G1,G2),{T; 0 (G2,0)};Er) 

Since T1®T2 E T1 oT2, then 0 is a binary operation on trees. The (left) instantiation 
G *T of a tree T with an l-goal G is defined by G *T~ T(G) 0 T. The definition 
of T* G is analogous. The existential quanti:fication of a t ree is naturaliy defined by 
3y(G, {T;};EJ) ~r (3yG, {3yT;};EJ). 

3.1 Success, Failure and Floundering 

In this subsection we redefine for 1-goals and trees the usual notions of success, 
failure, fioundering and computed answer. 

To determine if an l-goal is successful or failed we must look at the constraints 
i t contains. The 'constraint part' c( G) of an l-goal G is the constraint obtained by 
replacing in G every and-atomic subgoal in some free variables y, with t(y). Not~ 
that FV(G) = FV(c(G)). Let G be an l-goal, let {M;}iEI denote the set of its 
subgoals which are mga an d l et {--.Ti} iEJ denote the set of its negative subgoals. 
Let T be a tree and let { G;}iEI be a set 1-goals. Then 

l. G is successful if c( G) is satis:fiable, I= 0 and, for every j E J, Ti is grounded 
by c( G) an d c( G) * Tj is failed 

2. G is failed if c( G) is unsatisfiable or, for some j E J, Tj is grounded by c( G) 
an d c( G) * Ti is successful 

3. G is fioundered if c( G) is satis:fiable, I = 0 an d there exists a partition of the 
(indexes of) the negative subgoals J = Succ U N9 U F1 such that: j E Succ iff 
Ti is grounded by c( G) an d c( G) * Tj is failed, j E N9 iff Ti is no t grounded 
by c( G), j E F1 iff Ti is grounded by c( G) but c( G)* Ti is fioundered, and 
N9 U F1 ::/= 0 (some negative subgoal is not grounded or fioundered) 

4. G is open if it is not failed and, if I= 0, then there exists j E J such that Ti 
is grounded by c( G) an d c( G) * Ti is open 

5. T is successful, failed, fioundered or open if so is L( T) 

6. {G;};EI is successful if it contains some successfull-goal, failed if G; is failed 
for every i E J, fioundered if it contains at least one fioundered l-goal and 
every G; which is not fioundered is failed, open if it contains some open l-goal 
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Note that every l-goal has one and only one type. \A/hile failure or fioundering 
exclude other possibili ti es, a tree or a set of 1-goals can be both successful and open. 

The constraint part of a successfull-goal G is called the answer computed by 
G. The answers computed by a tree are de:fined as the answers computed by its 
successfulleaves. 

An interesting distinction can be pointed out about the type of fioundering. A 
goal G may be fioundered because some of its negative subgoals is not grounded by 
c( G) (N9 ::/= 0). We cali this situation 'recoverable' fioundering, since the groundness 
could be provided by some instantiation of the goal (resulting for example by an 
and-composition of a tree containing G). The type of the l-goal could then change 
from fioundered to open (or successful, or failed). A completely different situation 
is when G is fioundered because it contains some fioundered negative subgoal -.T. 
Then T is grounded by c(G) but c(G) *T is fioundered (F1 ::/= 0). In this case, 
the free variables of T (and of L(T)) are already grounded by c(G). We cali this 
'nested' or 'unrecoverable' fioundering, sin ce any further instantiation of c( G) may 
only turn G into a failed goal. 

4 A Denotation of the Parallel Trees 
We know, by subsection 2.4, that ali the successes and failures of SLDNF can be 
observed by looking at parallel trees of top-levell-goals only. In this section we show 
how, for any 1-program, the parallel trees of top-levell-goals are completely coded by 
the paraliel trees of most generai atoms only. Moreover, this compact representation 
is shown to admit a. continuous bottom-up construction. Parallel trees of mga's are 
therefore a correct and fully abstract denotation [2, 5] of the parallel trees of top-level 
1-goals. 

4.1 Parallel Trees 

Parallel trees have some interesting properties. For example, if T is a parallel tree 
then, modulo the implicit renamings of the local variables, there exists at most one 
parallel tree T' such that T ~ T'. Therefore, relations 4 and ~ reduce to partiat 
functions for parallell-goals and trees. Then, for every parallel tree T let S(T) ~T' 
iff T ~ T'. By iterating S we de:fine, for every paralleli-goal G and every n E W; 

T 0 (G) ~T( G) yn+l(G) ~ { S(Tn(G)) if defined 
- Tn(G) otherwise 

It can be shown that if T is a p~ra1lel tree then T = Td( G), where d = d( T) and 
G = r(T). Therefore the set lp ~ {Tn( G) l G is a paralleli-goal, n E w}, is the set 
of all the parallel trees. 

A notable property of parallel trees, called 'and-compositionality' is stated by 
next proposition. According to i t, a paraliel tree of a conjunctive l-goal G1 , G2 
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having depth n can be completely reconstructed by looking just at two parallel trees of G1 and G2 • These trees are the deepest among the parallel trees of, respectively, G1 and G2, having depth $ n. 

PROPOSITION 4.1 For every paralleli-goal G1 and G2, and every n E w 

Two parallel trees T1 and T2 are said to be 'compatible w.r.t. parallel-product' if there exists some n E w such that T1 = Tn(r(T1)) and T2 = Tn(r(T2)). By definition of yn this is equivalent to say that T1 and T2 have the same depth, or the one with smaller depth is not expandable. Compatibility w.r.t. parallel-product is therefore decidable. A set of parallel trees is compatible w.r.t. parallel-product if so are every two trees in it. cpp({T;}iEI) denotes that {T;}iEI is a set of trees compatible w.r.t. parallel-product. 
The 'parallel-product' of trees is defined as the restriction of the cross-product to trees which are compatible w.r.t. parallel-product. The parallel-product is denoted by ®,. The cross-product of two parallel trees T1 ® T2 is not guaranteed to be a parallel tree. For example, in generai G1 * Tn(G2 ) = T 0 (GI) ® Tn(G2 ) is di:fferent from Tn(GI)®Tn(G2) = Tn( (G1, G2) ). However, if TI and T2 are compatible w.r.t. ®,,by and-compositionality it is TI® T2 = T1 ®, T2 = Tn( (r(TI), r(T2))) for some n E w, and therefore their product is a parallel tree. 

4.2 Parallel Trees of Most Generai Atoms 
Let Tn(G) be a parallel tree of some paralleli-goal G. From the definition of..!:. we may observe that, for every m$ n, Tm(G) can be obtained by cutting at depth m ali the branches of Tn(G) longer than m. That is, by looking just at the parallel tree of depth n, we may reconstruct ali the parallel trees of G having smaller depth. Rule 4 of def. 2.3 implies that a tree rooted at a negative l-goal has only one branch, labeled with negative 1-goals. Let T' denote the parallel tree of some top­leve! negative l-goal •(p(x), 0), Jet n be its depth and let To, ... , Tn be the trees pointed by the successive negative 1-goals in the unique branch of T. By the same rule it follows T;..!:. T;+l forO $i <n, that is, being To = (p(x), 0), Tn = Tn(p(x)). By the above observation, every T;, and thus T', can be completely reconstructed by looking at Tn only. When T is a parallel tree rooted at some mga p(x) let N(T) denote the parallel tree, rooted at •(p(x), 0), having the same depth than T. Then N is a function of its argument only (i. e. i t does not depend on the program). When I is a set of parallel trees rooted at mga's Jet N(I) ~ {N(T) l T E I}. It is easy to see that if GI and G2 are parallell-goals, G1 ~ G2 implies Tn(GI) ~ Tn(G2 ) for every n E w. Therefore, many unessential details can be hidden by switching to equivalence classes w.r.t. variance. 

For every ri E w let PTn ~ {Tn(p(x)) lp(x) E MGA};~· Since ali the mga's on the same predicate symbol are variants, by the previous observatiou it follows that 
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PT contains J·ust one (parallel) tree for every predicate symbol. Since every parallel n 
d~ . tree can be 'generateci' by Tn, with n E w, then PTw = UnEw PTn IS the set of ali the parallel trees of most generai atoms, modulo variance. . . For every set of trees I we define pp(J) as the closure of I w.r.t. vanance, exis-

tential quantifications and parallel-products ®,: 

Let TC ~ {T( c) 1 c E C} denote the set of the (parallel) trees rooted at s~~e c~n­straint and Jet Prods(J) ~ pp(IUN(I)UTC). By applying the and-compositwnahty of parallel trees (proposition 4.1 ), by induction on the syntax of 1-goals an d by def-
inition of Prods it follows 

PROPOSITION 4.2 For every n E w, 
Prods(PTn) = {Tn(G) l G is a top-level paralleli-goal} 

As a corollary we obtain that Prods(PTw) is the set of ali the parallel trees of top-level 
1-goals. 

d · · The set PTw of all the parallel trees of most generai atoms mo ulo v~nance, IS a function of the intended 1-program (through equation l, the base of relabons 1-t and -+ ). Let the PTw-set of a generic 1-program P be denoted by PT(P). Clearly, most generai atoms (modulo variance) are particular cases of top-leve! 1-goals. More­aver by the corollary of prop. 4.2, the parallel trees in P of top-level 1-goals are Pro~s(PT(P)), a function of PT(P). Therefore PT(P) is a correct and fully abstract [2, 5] denotation of the parallel trees in P of top-levell-goals. 

4.3 Bottom-Up Construction of PTw 
• The bottom-up operator of def. 2.4 can be restricted to parallel trees of mga's 

(modulo variance) as follows: 

DEFINITION 4.3 Let U,t be the following mapping Upt: 'P(PTw)-+ 'P(PTw) 
U,t(I) ~ PTo U { (p(x), {Tj}jEJ) l p(x) E MGA, 

p(x) 1-t {r(Tj)}jEJ, {T;}jEJ ç Prods(I), cpp({Tj};EJ)};,., 

U,t(I) contains (modulo variance) PTo and e;~ry parallel. tree of mga such that .its subtrees belongs to I. The inclusion, by defimtwn, of PTo m every U,t(I) agrees w1th the view of the single-node trees as being the join-up of an empty set of subtrees 
(which is contained in every I). 

U,t(PTn) can be finitely constructed, for every n E w, as follows. For .every predicate symbol p, if { G;}jEJ are the (renamed) bodies of the 1-clauses for p m the 
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1-progr~m, it must be verifìed if there are parallel trees in J, compatible w.r.t. @p, 

for (vanants of) _all the mga's occur_ri~g in { Gi}iEI (both as and-atomi c su bgoals or 
as roots of ~e-gatJve subgoals). If th1s JS true, these trees can be combined according 
~ the defìmtwn of ~rods to obtain t~e-es {Tj };El rooted at the G; 's an d compatible 

.r._t. &!p- Then (p( x), {TjJiEJ), the JOm-up of these trees, is a parallel tree, and its 
eqmv~lence class w.r.t. variance belongs to Upt(PTn)-
. B~mg ~onotonic and fìnitary, Upt is continuous. Moreover, by the a.bove discus­

swn, rt eas1ly follows that PTn+J ç Upt(PTn) holds for every n E w. Hence, 

COROLLARY 4.4 PTw = Upt i w = lfp(Upt) 

References 

[l] K.R. Apt and K. Doets. A new de:fi.nition of SLDNF-resolution. Journal of Logic 
Progmmmmg, 18:177-190, 1994. 

[2] A. Bossi,_ M._ Ga.brielli, G. Levi and M. Martelli. The s-semantics approach: theory 
and applicatrons. Journal of Logic Progmmming, 19,20:149-197, 1994. · 

[3] A. Botto~. Analysis of SLDNF for Local CLP. Technical report, Dipartimento di 
Ma.temat1ca Pura ed Applicata, Università di Padova, 1995. 

[4] K. L. Clark. Negation as Failure. In H. Gallaire and J. Minker, editors .. Logic and 
Data Bases, pages 293-322. Plenum Press, New York, 1978. . 

[5] M: Comini and. G. Levi. An Algebraic Theory of Observables. In M. Bruynooghe, 
edrtor, Pmceedmgs of the 1994 Int'l ~ymposium on Logic Programming JSLP'94, 
pages 172-186. The MIT Press, Cambndge, Mass., 1994. 

[6] K._ Kunen. Signed Data Dependencies in Logic Programs. Journal of Logic Program­
mmg, 7(3):231-245, 1989. 

[7] J. W. Lloyd. Foundations of Logic Programming. Springer-Verlag, Berlin, 1987. 

[8] M. Martelli and C. Tricorni A new SLDNF-tree. Information Processing Letters, 
43(2):57-62, 1992. 

l 

A semantics for the Kakas-MancareUa 
procedure for abductive logic . 

programmxng 

Francesca Toni 
Department of Computing 

Imperial College 
180 Queen's Gate, London SW7 2BZ, UK 

ft@doc.ic.ac.uk Tel: +44 171 594 8228 Fax: +44 171 589 1552 

Abstract 
The paper presents a soundness result far the Ka.kas-Ma.ncarella proof 

procedure for abductive logic programrning with respect to an argumentation­
theoretic semantics. Furthermore, it discusses the relationship of the Kakas­
Mancarella procedure a.nd its sema.ntics with other proof procedures and se­
mantics for abductive logic programm.ing. 
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Introduction 

Abductive logic programming (ALP) is the extension of normallogic programming 
(NLP) to incorporate abducibles a.nd integrity constraints. Abducibles are atoms 
that can be added to programs, provided their addition does not violate the integrity 
constraints. 

Various forms of ALP have been presented in the literature (see [6] fora survey). 
Among those, the form of ALP presented by Kakas and Mancarella [8, 7] has played 
an ìmportant role in the developrnent of the field. Kakas and Mancarella propose 
both a semantics for ALP [8], by generalising the stable rnodel semantics for NLP, 
and a proof procedure [7], by generalising the abductive proof procedure for NLP 
by Eshghi and Kowalski [5]. However, the Kakas-Mancarella (KM) procedure is not 
sound with respect to the generalised stable model semantics, in the sarne way as 
the Eshghi-Kowalski (EK) procedure is not sound with respect to the stable model 
semantics. Kakas and Mancarella, though, prove soundness for a special class of 
abductive logic program~ narnely far abductive logic programs that admit at least 
a generalised stable rnodel 1 and whose normallogic prograrn is "well-behaved" [7]. 

1Thìf> condition is not always explicitly stated in the works of Kakas and Mancarella. 



2..12 

This paper presents an alternative semantics for ALP and shows that the KM procedure is sound (but not complete) with respect to thi5 semantics, for any abduc­tive logic program. This semantics is based upon argumentation-theoretic notions presented in (9], that are variations of those presented in (6, 4, 2, 10, 1]. The suggested semantics for ALP can be seen as an extension of the argumentation­theoretic formulation of the NLP semantics proposed by Dung (3] for the EK proce­dure. Therefore, the soundness result presented in this paper for the KM procedure can be seen as an extension of the soundness result given by Dung (3] for the EK procedure. · 
Toni and Kowalski (10] propose a transformation to reduce abductive logic pro­grams into normallogic programs. Then, proof procedures for ALP can be obtained by applying existing procedures for NLP to the result of the transformation. In this paper, we compare the behaviour of the KM procedure applied to the originai abductive logic programs with the behaviour of the EK procedure applied to the transformed normal logic programs, and we argue that the behaviour obtained in the second case is preferable. 
The paper is organised as follows. In section 2 we revise the KM procedure and the generalised stable mode! semantics. In section 3 we present the argumentation­theoretic semantics that is the basi5 for providing the ALP semantics and the sound­ness result for the KM procedure, given in section 4 and proved in the appendix. Section 5 compares the behaviour of the KM procedure with the behaviour of the EK procedure applied to the result of reducing abductive logic programs to normal logic programs as in (10]. 

2 Kakas and Mancarella ALP 
An abductive logic program (8, 7] is a triple (P, AB KM, IKM), where 

• P is a normal logic program, 

• AB KM is a set of predicate symbols, called abducible predicates, 

• IKM is a set of clo5ed fir5t-order formulas, called integrity constraints. 
Without loss of generality, abducible predicates in ABKM are assumed to be unde­fined in 'P, namely, for every clause H +- L1, ... , L n in P, H =l= a( t) w h ere a EAB KM an d t is a tuple of terms. In the sequel, with an abuse of notation, we will use AB KM to indicate also the set of all the variable-free instances of predicates in ABKM· The semantics of an abductive logic program ('P,ABKM,IKM) is given by its generalised stable models [8]. A set M of atoms in the Herbrand base of 'P 2 is a generalised stable model of (P, AB KM, IKM) iff M is a stable mode] of PULl, for 

2We assume that the Herbrand base of P includes all pred.icates, function an d constant symbols occurring in ABKM and IKM· 
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A c AD (abducibles in t. are interpreted as unitary clauses), and M F c/J, some ll _ .RLJKM 
for every integrity constraint cfi E IKM · . f In [7], Kakas and Mancarella define a proof procedure for the computatwn o the eneralised stable mode] semantics. While defining the proced':re they make the further assumptions that the integrity constraints are ~xpressed_ m the forrr: of 
d ·al f lit al and that allliterals in integrity constramts are e1ther abduc1ble em s o er s, . · 5 1 atoms or the negation of abducible atoms. In this paper, untll sectwn. 'we re_ax the second condition by assuming that every ( denial) i~tegrity constramt contams at least an abducible atom or the negation of an abduc1ble ~t~m. . Following (5), the procedure treats negative literals as a~dit1~nal abducibles, and, 
f Q generates a set t. of abducibles and negative bterals as answer. We or any query ' . li al tions will refer to literals that are either abducibles or negative ter s as assu~p . · W e will assume a safe selection rule ~' namely on:._that selects an assum:~wn ~ly(;f) it is variable-free. Moreover, for any literal L2..let L be defined as follows. 1f L- P 
then L= not p(t), and if L= not p(t) then L= p(t). . is a An abductive derivation from (Gr, Ll1) to ~ Gn, Lln) Wlth respGec~ to ~ l f (G A ) (G t,. ) such that for all t = l, ... , n- l, i 15 a goa 0 sequence 11 lll , · · ·' n, n 1 t · f f the form +- L, Q, where ~ selects L in G; and Q is a possib y emp y con~unc ~~n o literals- for all i = l, ... 'n, Ll; is a set of as5umptions; an d ( G;+l' Lli+I) IS obtamed 
according to one of the following rules: 

(Al) if L is not an assumption, then G;+l =? and ~i+l = .6.;,. where C is the resolvent of some clause m 'P With G; on L, 
(A2) if L is an assumption and L E .él.;, then Gi+I =<--' Q and .él.i+l = .él.;; 

(A3) if L is an assumption, L '/. .él.;, L'/. .él.;, . . .él.' an d there exists a successful consistency derzvatJon (L, .él.; U {L}),···, (0, ) 
then Gi+t =<--Q and .él.i+l = .é!.'. 

A successful abductive derivation is an abductive derivation of the kind ( G1, Llt), 
... , (D, .él.n), with n ~ l. · (L t,_ ) A consistency derivation from (L, Llt) to. (Sn, Lln~ IS a sequen~ ~ 1 f (S1, t,.1), •.. , (Sn, Lln) such that L is an assumptwn; ~l 15 th~ set ?f go ~ o 1 the form +- cp obtained by re8olving the ~5umpti.on L w1th the mte~r~y constr~ts in IKM u {-,[Q 1\ not Q]i Q is an atom m 'P}, w1th D t/. _S1; for all' -l,: .. , n l, S; is a set of goals of the form { +- L, Q} U S'; ~or all t = l, ... ' n, Ll;_ lS a set. of t . d (S· t.· ) is obtained according to one of the followmg rules. assump wns; an •+l• •+l 
(Cl) if L is not an assumption, then Si+t =C' U S' and .él.i+l = .él.;, , where C' is the set of aJl r?olvents of rules in P with <-- L, Q on L an d D '/. C i 
(C2) if L is an assumption, L E .él.; and Q =l= D, then S;+l = {+-Q} U S' and .él.i+t = .él.;; 
(C3) if L is an assumption and L E .él.;, then Si+l =S' and .él.;+l = .él.;; 
(C4) if L is an assumption, L rf. .él.; and L_'/. A;, .the~ _ 1 (i) if there exists a successful abductwe derwatton (+-L, Ai),···, (D, .él.) 
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then S;+l = S' and .6.;+1 = .6.' 
(ii) otherwise, if Q=/= D, then S;+: = { <-- Q} u S' and .6.;+1 = Ll;. 

A successful consistency derivation 1' 8 a c · t d 
( ons1s ency erivation of the kind 
L, L'li), ... , (0, Lln), for n ;:::: l. 

~nl generai,, this procedW:e is not sound with respect to the generalised stable 
mo e semantlcs, namely, g1ven an abductive logic program (P AB I ) 
qu.ery Q and a s~ccessful abductive derivation from ( +- Q,0) to (~ L'l)K~~ KM., ha 
exist no generahsed stable model M of (P AB I ) h h, , re mig t 
MnAB -L'ln.AB . . , KM, KM sue t at lvi f= Q and 

KM- KM· We Illustrate th1s unsoundness problem by means of t 
examples. The. first example is adapted from the one given in [5] to show that t~: 
EK procedure IS not sound with respect to the stable model semantics for NLP. 

Exarnple 2.1 Consider the abductive logic program (P,0, 0,) with P 

r <-- notr 
r <- q 
P <-- not q 
q <-- not p 

There is a succ:ssful abductive derivation from ( +- p, 0) to (D, { not }). 
the only generabsed stable model of (P 0 0 ) is { } d { } LL q , , , q,r ,an q,r v-P· 

However, 

Exarnple 2.2 Consider the abductive program ({p +- b} { b} { · Th · f · . , a, , -,a -,not a}). 
. ere JS a success Ul abductJve denvation from ( +- p, 0) to (D {b}) H ' h 
Js no generalised stable model of the given abductive progr~. . owever, t ere 

The _soundness result has been proved to hold for abductive lo 'c ro 
admJ~ at least a generalised stable mode! and whose normallogi~ p _grams that 
nent IB "well-behaved" [7]. (Th l . . program compo­
"well-behaved" .) To oh , e ogJc program m the first example above is not 

tam a mo.re generai soundness result one mi ht modif the 
~~ac:~ure or a~~pt ~~w ~e.mantJcs. In this paper we follow the seco~d altern~tìve 

" . twds~rntahn Ics, e ne. m argumentation-theoretic terms, is based upon notion~ 
prese_.1 e m e next sectwn. -

3 Argumentation semantics 

The semantics underlying th KM d · . t e proce ure IS expressed in the context of th 
ms ance for ALP of an abstract assurnption-based framework [9] wh' h . . e 
of those d · [4 ] IC 1s a vanant 

propose m , 2, l as a semantics for non-monotonic reasonin i 
An assumption-based framework is a tuple (T, f-, AB,IC) where g n generai. 

<~~ T is a theory in some forrnallanguage, 

® f- is a notion of monotonic dlerivability for the uiv l 
<Y en anguage, 
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l!l AB is a set of assumptions, which are sentences of the language, and 

<~~ IC is a set of integrity constraints, which are denials of sentences of the 

language. 

In such an (abstract) framework a sentence is a non-monotonic consequence if it 
follows monotonically from the theory extended by means of an "acceptable" set of 
assumptions. Various notions of "acceptability" can be de:fined, based upon a single 
notion of "attack" between sets of assumptions. Intuitively, one set of assumptions 
"attacks" another if the two sets together with the theory violate an integrity con­
straint (i.e. the two sets together with the theory derive, via f-, all sentences in 
the denial integrity constraint ), an d the second set is deemed responsible for the 
violation. We assume that some of the sentences in the integrity constraints in IC 
are explicitly indicated as retractib!es, with the intended meaning that if a viola­
tion takes place, then integrity satisfaction shoUld be restored by "retracting" the 
sentences explicitly indicated as retractible. Then, the derivation of some of the 
retractibles sanctions the responsibility in the integrity violation. 

Definition 3.1 Given an argumentation framework (T,I-,AB,IC), where IC is a 
set of denial integrity constraints, each one with at least one retractible: 

® a set of assumptions A ç AB attacks another set L'l ç .-4B iff for some 
integrity constraint -,[L1 1\ ... 1\ L; 1\ ... 1\ Ln] E IC with L; retractible, 

TU A f- L1, ... , Li-l, L;+l, ... , Ln, and 

TU!lf-L;. 

Various notions of "acceptability" can be defined in terms of the same notion of 
attack. Here we mention only some of the notions presented in [4, 2, l, A 
set of assumptions which does not attack itself is called iff it attacks a11 
assumptions it does not contain (A ç Al3 attacks 15 E CJv3 iff A attacks 
admissible, iff it attacks all sets of assumptions that attack it; preferred, iff it is 
maximally (with respect to set inclusion) adrnissible" 

ALP can be given a semantics by appropriately instantiating any of these ab­
stract semantics. Given an abductive log;ic program (P, AB KM, IKM), the corre,_ 
sponding assumption-based framework is (T, f-, AB,IC) where 

e T is the set of ali variable-free instances of clauses in P; 

e 1- is modus ponens for the clause implication symbol {-; 

., AB is AB KM together with the set of ali variable-free negative literals; 

IC is the set consisting of (A is a variable-free atom) 
(l) all denials of the form ..., [A 1\ not A] with not A retractible, 
(2) all denials of the form -,[A 1\ not A] with A abducible and retractible, 
(3) all variable-free instances of the integrity constra.ints in IKM, 
assumptions (i. e, abducibles or negative literals) retractible. 
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Note that, in the domain specific integrit constrain li sumptions are not considered as retract'bl YTh' h . ts,. terals that are not as-. t d 1 e. Is c mce 1s mad t .c m en ed meaning of retractibles . . t 't . e o con1orm to the m m egri y constramt t r.etracted to restore integrity satisfaction. In fact it . ~' as sen ence~ that can be li~erals that are not assumptions, if these literal' nng t no: be possible to retract without the addition of any as t' I s can be denved from the prograrn · sump wn. n generai ho 't · h ment to allow the user to choose directl t . , . wever: I m~g t be conve-when defining the domain-specific abd [. re ta~bbles m the mtegnty constraints case, the user should take care of eh ~c I Ve OgiC. prograrn (e. g. see [lO]). In this to their intended meaning. oosmg retractibles so that the choice conforms 
Note also that, in the instance of th . negative literals are treated as synt t' be. astsumpbon-based framework for ALP, · ac IC o Jec whose d · t' l their assumption. Therefore a th PU" .c, enva wn so ely depends on ' eory u 10r som t f · assumption-based framework for (P AB 'z e se o assumptwns .6. in the This feature is made explicit in [5] 'd[{~' b KM), ~a:n be seen ~sa Horn program. as positive atoms. an ' Y explicitly renarnmg negative literals 
The instance for ALP of the notion of attack between sets of assu t' . mp JOns JS: 

~» a set of assumptions A attacks another set D. i:ff 

(i) there exists an atom Q such that p U A 1- Q d . . . an not Q E D., or 
(u) there eXJsts an abducible atom Q such that not Q E A d Q ("') h · an E D., or m t ere eXJsts a variable-free instance of an . t 't . [L 1\ L m egn y constramt 

· · • n .KM Wl i retractible such that 
...., 1 • · · 1\ i 1\ 1\ L ] E I 'th L 
P U A 1- L L· L 1, ... , 1-1, i+J, ... ,Ln and L; E D. 3 . 

In this concrete assumption-based frarnework stable . to generalised stable models (see [9]) N t , th s.ets of assumptwns correspond ALP, the semantics of NLP is a s .al· . ote at, smce NLP is a special case of · peCI ms ance of the t. f A . the assumption-based frarnework b I h seman ICS o LP given by NLP, stable sets of assumptions c:rr:ve. dntt e asblsumption-based frarnework for . spon o sta e models d f d assumptwns correspond to partial t bl d l / an pre erre sets of s a e mo es preferred extensions [4, 2, l]. 

4 Soundness result 
Theorem 4.1 Given an abductive logic pro ram . tionofliteralsQ,ifthereisanabd t' d~ . (P,ABKM,IKM)andaconjunc-. h uc 1ve envatwn from (+--- Q 0) t ( ) m t e assumption-based frarnework for (P AB I ) , o 0,.6. ' then, ' KM, KM 1 

l. PU.6. 1- Q, and 

3This conditi an re p laces the conditi an P U ~ f- L. . . . al! retractibles in IKM are a.ssumpt' d '.which lB eqmvalent to it due to the fact that wns an a.ssumptwns are not defined in p. 
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2. for each set of assumptions .A, 
ifA attacks D. (by cases (i) or (ii) or (iii)), 
then .6. attacks A- .6. by case (i) or by case (ii). 

The proof of this theorem ca.n be found in the appendix. The procedure is not complete with respect to the sema.ntics expressed in theo-rem 4.1, due to the possible non-termination of the procedure for some queries. Directly from the soundness result, the KM procedure allows domain-specific integrity constraints to be used to attack .6. but not to counter attack the attacks against .6.. The following exarnple illustrates the disadvantages of this asymmetric 
use of domain-specific integrity constraints. 

Example 4.1 Consider the propositional abductive logic prograrn 

= {q<- b, p,_. a} 
= {a, b} 
= {-.[p/\b), -.a, --.nota} 

There is no successful abductive derivation from ( +--- q,0). In fact, in the corre­sponding assumption-based fra.mework, the set {b} (needed to prove q) is attacked by the set {a}, but {b} does not counter attack the attack {a} via case (i) or (ii). Moreover, the set { b, not a}, which counter attacks the attack {a} via case (i) or (ii), is attacked by 0, which can not be counter attacked via case (i) or (ii). However, q should intuitively hold, since p can not possibly hold. By allowing a symmetric use of domain-specific integrity constraints to counter attack, {b} ca.n be shown to be "acceptable", since 0, and therefore {b}, counter attacks the attack {a} against it 
via case (iii), and thus q can be shown to hold. 

One way to obtain the behaviour suggested in the exarnple is to modify the KM procedure to allow a symmetric use of domain-specific integrity constraints. The following section illustrates a.n alternative way of obtaining the sa.me behaviour, by transforming the given a.bductive logic program into a normal logic program first [10] and then applying a.n existing proof procedure for NLP, the EK procedure. 

5 Comparison with the EK procedure 
N ew proof procedures for ALP can be obtained by applying existing proof procedures for NLP to the normallogic programs P' = pNAF U pixM U pABxM obtained by a.pplying the transformation of [10] to abductive logic prograrns (P,.AJ3KM,IKM), where, if for every abducible predicate a in AEKM, a1 stands for the "complement" 
of a: 

® pNAF is P with all abducible a.toms a( t) replaced by a negative lìteral not a'(t); 
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o for every •[L1 A ... /\ Li /1 ... ;\ Ln] E IKM aml every retractible Li in i t, phM contains a clause 

where for each J = l, ... , n, J =f i, if a( t) with a EABKM then L~ not a'(t), otherwise Lj = Lj, and 
if Li = not a(t) then a = otherwise, if = a(t), then a = a'(-t); 

()j for eveq abducible predicate a in ABKM, pABKM contains a pair of clauses 

<-- not 

a'(X) <- not 

If we adopt Kakas and Mancardla's restriction, that ali literals in domain·-specific integrìty constraints are either abducible atoms or the negation of abducible atoms, then it can be shown that the originai abductive logic program ABKM,IKM) and the transformed normal logic prograrn P' are equivalent with respect to all semantics defined in the underlying assumption-ba.sed frarneworks. This result is a corollary of the basic result that attacks before and aiter the transformation are preserved (see [9, 10] for more details). As a consequence, any proof procedure for NLP, sound with respect to an argumenta;tion-theoretic semantics expressed in the assumption-ba.sed framework for provides a proof procedure for ALP, sound with respect to the same semantics but expressed in the assumption-based framework for ALP. In particular, since the EK procedure is sound with respect to the p:referred extension semantics [3], by applying the EK procedure to the normal logic program P' corresponding to an abductive logic progran1 (P, A13 KM, Ix M), we obtain a procedure for ALP computing preferred sets of a.ssumptions, which therefore treats symmetrically integrity constraints to attack and counter attack Tbis is illustrateci by the 

5.1 The abductive 
logic program P' 

q ,__ not b' 
p f- n.ot a' 

program in exarnple 4.1 is reduced to the normal 

b' <·-p a+-- noi a1 

a'<- nota 
b <- not b1 

ll1-- not b 
where a' and b' are new atoms for the "complement" of the abducibles a an d b, respectively. By applying the EK procedure to the prograrn P', the query f-- q succeeds to be proved, with underlying negative assumption not b', corresponding to the positive abducible b with respect to ('P, .A13 KM, Ixu). In the proof of +-- q, the attacks {nota'} and {noi b} against {not b'}, corresponding to the attacks {a} and {noi b} against {b} with respect to (P, AEKM,Ixu), are counter attacked by 0 and {not b'}, respectively. The attack 0 against {nota'} corresponds to the attack 0 against {a} via case (iii) with to (P,ABKM,IxM)· 
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6 Conclusions 
ul f th Kakas-M an carella p re J-!rocedure We have presented a soundness res t ~r teh t" semantics. We have shown t t gumentatJon- eore lC 

. 
for ALP with respec o an ar . d . f edures for their computabon. . f . <\LP d pomte to proo proc . l other semantJcs OI " an f . bductive logic progranls mto norma d b d upon trans ormmg a 

c 
These proce ures are ase . . . t'es for NLP to the result Ot d th lymg exlstmg seman l 

. 
logic programs fìrst, an en app d h t th b haviour of the Eshghi-Kowalskl the transformation. W e hafve argdue t ala .proegra:s is preferable to the d l . d th trans orme norm . pro ce ure app 1€ e d r ed to the origina} log1c programs. of the Kakas-Mancaiella proof proce ure app l 
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