170

Most proposals in the literature augment deductive databases with a procedural se-
mantics to implement the control mechanisms needed to support updates (see [Mon93] as a
source of references.) Often the semantics of this procedural component is accommodated
in some logic capable to deal with dynamics. This is the case of transaction logic [BK94],
dynamic logic [MW88] or various modal logics. For instance, in £LDL transactions are
special rules with updates, which are evaluated top-down and their semantics is given by
dynamic logic. This combination of declarative and procedural semantics has as a major
disadvantage the fact that the architecture of the abstract machine supporting deductive
databases is deeply altered. As a conmsequence, the available optimization techniques are
no longer directly applicable. )

We propose, in a more conservative way, to leave the simple declarative framework

unaltered. This is achieved by means of a transformation of updates and transactions into
sets of clauses which

o reflect the intuitive meaning of state changes in a declarative way, and

o can be efficiently executed using the ordinary bottom-up, fixpoint-based evaluation
of deductive databases.

We apply this transformation technique to a generalization of £DL transactions, i.e.,
clauses containing update predicates in their body. The subgoal preceding the updates
is the precondition, and the subgoal following the updates is the postcondition of the
transaction. Pre/postconditions are used to preserve database integrity: in particular,
the updates are actually performed only if the postcondition is fulfilled, otherwise the
transaction aborts.

The notion of LDL transaction provides a form of integration of query and updates, in
the sense that there is a uniform notation. However, different evaluation methods are used
for query and transaction clauses. The proposed compilation allows to execute transaction
clauses in a bottom-up way, similarly to queries. The transformation is based on the
notion of XY-stratification [AOZ93], i.e., a syntactic property of programs which properly
extends ordinary stratification. A remarkable characteristic of XY-stratified programs is
that they can be executed by an iterated fixpoint procedure, even if they are recursive,
non monotonic programs. X Y-stratification is defined in terms of stage arguments, i.e.,
predicate arguments which record the stage of the computation, and allow to control state
changes. The language Statelogt™, proposed in [LL93] is directly related to our work:
here, a different formalization of state change leads to similar results, e.g. the capability
to compute the perfect model of programs with updates. The main differences with our
approach are that we do not admit states as first class values in the language, and that
our focus is on compilation of updates aimed at providing efficient executions.

Section 2 gives a formal account of XY-stratification. Then sections 3 to 5 gradually
introduce compilation of updates into XY-stratified programs: simple updates, compo-
sition of updates, simple and nested transactions. In all cases two different semantics
are explored: parallel semantics and sequential semantics. Section 5 also presents as an
example the compilation of a simple transaction. Section 6 contains a few final remarks.

171
2 XY-stratified programs

The basic concept of our approach is the notion of XY-stratification, i.e. a syntac'tic pIop-
erty of non-monotonic recursive Datalog;, programs 1. The class of programs 1de‘nt1ﬁed
by such property, named XY-programs, captures the expressive power of the inflationary
fixpoint semantics. '

The basic idea is that recursive predicates have a special argument named st.age which
is an integer. There are two different ways to use the stage: in rules which do n‘?trmcren_lent
the stage (X-rules), and rules that increment the stage by one (Y-rules). An XY -stratn.‘ie'd
program allows recursion only when there is an increment of the ste%ge. H there exists
a teordering of the rules of the predicates which induces a XY-StI‘&tlﬁCath.]l., t'hen it 1is
possible to apply an iterated fixpoint procedure which distinguishes the application f)f X1
rules by the application of Y-rules. Such procedure computes the perfect model associated
to the set of recursive predicates.

The following subsections introduce syntax and semantics of XY-stratified programs
following the presentation of [AOZ93].

Syntax

Definition 2.1 Given a program P, a set of rules of P defining a maximal set of mutually
recursive predicates will be called a recursive clique of P.

Definition 2.2 Given a recursive clique @, the first arguments of the recursive predicates
of a rule r in Q will be called the stage argument of r.

The usage of stage arguments is for counting as in the recursive definition of integers: nil
stands for zero and s(1) stands for I-+1.

Definition 2.3 Let Q be a recursive clique and r be a recursive rule of Q. Then r is called
an

e X-rule if all stage arguments of r are equal to a simple variable, say J, which does
not appear anywhere else in 1 -

o Y-rule if (i) some positive goal of r has as stage argument a simple variable J, (if)
the head of r has stage argument s(J), (iil) all the remaining stage arguments are
either J or s(J) and (iv) J does not appear anywhere else in 1.

Definition 2.4 A recursive clique @ will be said to be an XY-clique when all its recursive
rules are either X-rules or Y-rules.

Priming: an atom p/(2) is called the primed version of an atom p(t).
Given an XY-clique Q, its version primed is constructed by priming certain occurrences
of recursive predicates in recursive rules as follow:

o X-rules: all occurrences of recursive predicates are primed,;

! Datalogss is a simple extension of Datalog which admits a single unary function symbol s(.). This
language has been used for temporal reasoning in [CHO93].




172

e Y-rules: the head predicate is primed, and so is ever

y goal with stage argument
equal to that of the head.

Definition 2.5 An XY-clique Q will be said to be XY-stratified when
e the primed version of Q is non recursive

o all exit rules have as stage argument the same constant.

where a rule is an erit-rule if all predicates in its body are not defined in the clique.

Definition 2.6 A program is XY-stratified if every recursive rule that contains a negated
recursive goal in its body belongs to an XY-stratified clique.

The dependence graph for a primed clique provides a very simple syntactic test to check
whether a program is XY-stratified: it contains no cycles, thus there exists a topological

sorting of the nodes of Q’ which obeys stratification, and such that the unprimed predicate
names precede the primed ones.

N °
Semantics

We can partition the atoms in the Herbrand Base B of the original program Q

into
classes according to their predicate name and their stage arguments as follow:

o there is a distinct class, say 0g, containing all instances of non recursive predicates
in Q, without a stage argument;

o all atoms with the same recursive predicate name and the same number of function
symbols s in the stage argument belong to the same equivalence class Onp, With n
denoting the number of s function symbols in the stage argument of .

- The partition ¥ of Bg constructed in this way can be totally ordered, by letting oq be
the bottom stratum in ¥ , and then letting Onyp < Om,gq if

e n < m,or

e if n = m but p’ precedes ¢’ in the primed sorting of the clique.
The totally ordered ¥ so constructed will be called stage layering of Bg.

Theorem 2.1 Fach X Y-stratified clique Q can be locally stratified according to a stage
layering of Bg. Then for every instance r of each rule in (), the head of r belongs to a
layer strictly higher than the layers for the goals in r (strict stratification ).

Since the stratification is strict, in computing the iterated fixpoint, the saturation for each
stratum is reached in one step. Therefore, the compiler can reorder the rules according to
the primed sorting of their head names; then having derived all atoms with stage value J a
single pass through the rules of ) ordered according to the primed sorting computes all the

atoms with stage value s(J). To formalize the iterated fixpoint procedure for X Y-stratified
programs, we introduce the following notions.

o Let p’ be the k-th predicate name in the primed sorting.

173

o Let T} be the immediate consequence operator for the recursive rules in ¢ defining
p.

¢ The composite consequence operator I'g will be defined as follows:
To(I) = Tn(Th-1...(Ta(D))...)
where I is an interpretation over ’s Herbrand Base Bg, and n > 1.

e Let Ty be the immediate consequence operator for the ezit-rules. By the second
condition of XY-stratification, all atoms in To(() share T,he same sta‘ge argume.nt.
However, additional atoms with the same stage value mght be o‘F)ta.med b?f firing
the X-rules. Therefore, if p; is the k-th predicate name in the prm.led sorting, we
define TE( the immediate consequence operator for the X.-rules Wlﬂl. head name
Pk, if any such rules exists, and the identity transformation ;therwme 'Wexcaf
define the composite consequence operator for the X-rules, I'y as follow: I'y =
TX(TX ... (TE£(I))...). Thus, the ground atoms with the same stage argument as

the ezit-rules are F%(TO(EDB)).

Theorem 2.2 Let Q be a XY-stratified clique, with ggmposite consequence operator I'g
and composite consequence operator for the X-rules 'y, then

o @ is locally stratified,

X .
o the perfect model of @ is Mg = 5(Mni1), where Mnyq = I'g (To(0)) e To is the
immediate consequence operator for the ezit-rules of Q.

Thus the perfect model of an XY-stratified clique can be constructed. as i]:l1 the Eis: oi
positive programs. Computation of XY-stratiﬁ.ed programs procee.ds s1mlla.1§ y to z; g)e
stratified programs: all the non recursive predicates in the recursive XY-clique mus
saturated before the recursive rules in the clique are computed.

3 Simple updates

In this paper we consider only updates in the body of the rules, as we are interested in
extending LDL transactions. . '

Upda:gtes are often classified according to two different semaptms: weak .upda,tes anfl
strong updates. Strong updates are those which allow to delete atoms only if they are u;
the current database state and allow to insert atoms only if they are not. In t.he case O
weak updates no precondition is checked. Consider, for example, the database ‘mstanceb{
p(a), p(b), ¢(a) }. Under the weak semantics the insertion of p(b) or the deletion of'q( )
does, not change the database, although they are allowed. Under the strong semantics a
failure is reached. ' .

We consider here simple updates of the form +p(a), —p(a), corresl?ondlng respectively
to insertion and deletion of an EDB predicate. As a consequence, view updates are‘not
considered in this paper. Also, we refer here to the weak semantics, although we briefly
sketch later how strong semantics might be dealt with.




174

The idea is to associate with every n-ary EDB predicate p two new (n+1)-ary predicate
symbols: Dstage and pge where the extra argument is the stage argument in the first
position. The stage argument in Dstage Will model the various state transitions of the EDB
predicate p performed by the updates. pg.; will play the role of a delete list, keeping tracks
of the tuples to be removed from p.
An update predicate +p(a) is then compiled into an XY-stratified program which
defines the predicates Dstage and pgy. The following definition shows the code which
updates are compiled to. For generality of exposition, we deal here with updates £p(a)
where the tuple a may contain variables. The compilation is therefore parametric with

respect to a query g such that vars(a) C vars(q), which provides the actual tuples to be
inserted in or removed from .

Definition 3.1 Let p be an EDB predicate,
vars(g). The code realizing the
T1g)(=p(a)), is the following:

@ a tuple and ¢ a query such thas vars(a) C
deletion —p(a) with respect to the query ¢, denoted

1t pstage(:nily :L’) - p<$)
T : pdel(s(nil),a) G, Pstage(nil, ).
T3 Pstage(s(nil), ) Pstage(nil, z), “paer(s(nil), z).

{ezit-rule}
{deletion-rule}

{copy-rule}
Definition 3.2 Let p be an EDB predica
vars(g). The code realizing the insertio
Tlg)(+p(a)), is the following:

te, a a tuple and g a query such that vars(a) C
0 +p(a) with respect to the query ¢, denoted

] psta.ge(nils ‘73) A p(:l))
Tg: pstags(s(nil), U,) — q,Pstage(nila—)-
3l pstage(S(nil)a Ll?) — pstage(nilv (Z?), _’pdel(s(nil), "E)

{ezti-rule}
{insertion-rule}
{copy-rule}

In both definitions, r; is an exit rule which initializes Dstage- T2 is a Y-rule. In case of
deletion 74 records in Pdellatex that tuple a has to be deleted; in case of insertion 7o adds
10 Pstage the new tuple a in the next stage. Finally, in both definitions, the V-rule rg is
the copy-rule, which allows to copy to the next stage of predicate Dstage all tuples which
bave not been canceled. Notice that, r3 acis as the JSrame aziom which states: whenever
something is true in some stage and it is not explicitly deleted, then it will also be true in
the next stage. In the insert and delete rules, the query ¢ plays the role of providing the
actual tuples to be inserted /removed. ¥ a is a tuple of constants, then ¢ is not needed.

It is simple to show that programs Tlgl(4p(e)) are XV-stratified. Tt is therefore
meaningiul to consider their perfect model computed with the iterated fixpoint procedure.
Notice that the new extension of p after the update, denoted by 7', is given by the set
of tuples with the maximum stage computed by the the corresponding fragment (insert or
delete) of Dstage:

ro: P(z) Pstage(s(nil), z).

In fact, in the case of single updates, the maximum stage is simply s(nil), as the fixpoint
is reached after two iterations. A more complex situation will arise when considering
composition of updates.

Consider now the perfect model I/ of the program formed by rule ry and Tlq)(£p(a)).
By our construction the extension of P’ in M represents the effect of the update on the

e

175

tension of p. In this semse, the above simple translation of updates i.Ilt?O rules is a
ension . . : ‘ o
?izcla.rative reconstruction of an operational sema?ﬁflcs based on ;tfte ;c;jzzs:e " wpdates.
It is worth noting that the fragments in definitions 3.2 g.ng 1 .t r:ules [ Tpdaes,
i nly for the insert and delete R
code for strong updates differs o : .
;I‘hl;ik for absence (resp., presence) of the tuple to be inserted (resp., removed)

{delete-rule}

pdel(s(nil), a) — %Pstage(nilaa)' {i'n,seTT,—I‘Ule}

Pstage(8(nil), @) — @, "Pstage(nil, a).

4 Composition of updates

In this section, we consider compositions of updates denot-ed byaJUht.';)'rz !;(L;; u( ;d:tis). w;:cc}i
it e to two different semantics: parallel and seque.ntlal evaluati . fes Ao
cording h allel semantics, also referred to as non-immediate semannc‘s, updat
Cordﬁlgt(:g In i\f/irphases Duriné the first phase updates are collected and, in the second,
they : wi i ach other.
e e?fecuteihaﬂ Zoizgizl‘;V;:r}::;:i;ifz:;nrgegarred to as smmediate semcfntics, u;pdautes
Accordn:ig . zli ;15 they are encountered. The presence of updates in a rule v.vxth
b exe:CUte . 51.::') ¢s leads to evaluate a query in a sequence of database states.. Insertions
1m§1:$:;$n:i: ilmmediately triggered when a body rule is satisfied, thus a single query
an

can be evaluated on different states.

Parallel Semantics |
t
i are evaluated concurrently withou
ing to this semantics, the updates Ut Un d con : ithout
ff?::triilg geach other. Therefc;re the code realizing parallel composition is obtained by
simple union of the programs of the single updates.

Deﬁllltl()ll 4.1 Let UgyoonyUp be a COmpOSlth]l Of '3 pdd;tes, a:]ld q a query SuCh tha,t
( crt ) = ( )' g h m
vars(ul, Un C vars q Ihen thE COdE IEa.llZln the Pa'I‘ﬂ‘HE]- semantics Oi the co PO

sition is the following:

Trarlgl(v1, - -, ) = Tlgl(ua) U - ..U T g](ea).

Observe that as a consequence of the union opemtqr, the ;mzl rul«zs :sni the copy :rulee‘
in the programs of the single updates occur only once m the fin pr1 jg_t.ce;n e modelled
le, let us consider the update of an attribute of a tuple; i : ' e
i e exaanllipl ’ mposition of the deletion of the old tuple and the msertmin, o \
Wlt}‘llifilz tpj;le eL;(:) ppbe an EDB predicate and a and b tuples. The code realizing the
f;date of tuple a into tuple b is the following: |
{ezii-rule}
{insertion-rule}
{deletion-rule}
{copy-Tule}

T pstn,ge(nila 03) A p(x) .

Tg: pstage(s(nil)7 b) — q,Patag(e(?;'Ll‘:)—)-

r3: paer(s(nil), a) — g, Psiage(nil,-)- ‘

T4 pstage(s(niz)7 flf) Ane pstuge("”l» 'T)v "Pdel(-?(ml), z)

- din,
Observe that the parallel composition of complementar}.f updates +p(a), —p(a), according
the specified semantics, results in performing the insertion +p(a).




176

Sequential Semantics

According to this semantics, the updates u, ..., u, are evaluated sequentially so that the
updates on the same predicate affect each other. Therefore, the code realizing the single
update in the sequential composition is now dependent on the set of updates on the same
predicate which have already been performed.

Observe that the sequential composition differs from the parallel one only for updates
of the same predicate. Given a composition of updates uy, . . -3 Un, We can rearrange it as a
parallel composition of sequential composition of updates on the same predicate, without
affecting the effect of the overall composition. As a consequence, it suffices tc;) Testrict
ourselves to consider only sequences of updates on the same predicate.

Definition 4.2 Let p be an EDB predicate, a a tuple and ¢ a query such that vars(a) C
vars(q). Let up,...,u, be a composition of updates over the same EDB predicate p. -

o The code realizing the insertion u; = +p(a) (i € [0,n]) with respect to the query gq,
denoted Zi[g](+p(a)) is the following:

Ty pgmge(.sif(nil)?z) — psmge(s”‘l(nil), z). {ezit-rule}
2% Pstage(s*T(nil), q) 0, Pstage(s%(nil), ). {insert-rule}
T3 : Psiage(321+1(nil)> 2) — pstage(sm(@il), Z);
“Paer(s¥ 1 (nil), ). {copy-rule}
o The code realizing the deletion u; = —p(a) (i € [0,7n]) with res
i pect to the query
denoted 7;[g)(—p(a)), differs only for rule ro: , v
T2 ! pdel(sﬁ-’-l(nﬂ)) [l) — %pstaga(sﬂ(nil)y—)-

Notice that, for ¢ = 0, the clause T1 i8

{delete-rule}

pgtage(so(nil), T) psmge(s_l(nil), ).

We stipulate that Pstage(s™ (nil), ©) stands for p(z). Since s%(nil) = nil, the clause 7y
becomes the ordinary exit-rule of definition 3.2 and 3.1:

Pstage(nil> $) - p(:l:)

Notice that there are two differences with the simple updates of definitions 3.1 and
3.2: a different exit rule 7y has been added; and the code is parametric with respect to
the number of occurrences of updates on the same predicate. Rule 73 records the result
of the last update on the same predicate. After i updates on predicate p, szi‘1(1zil) is the
maximum stage argument of Dstage-

The composition of updates according to the sequential semantics is given by the
following definition.

Definition 4.3 Let uy,...,u, be a composition of updates over the same EDB predicate

p, and 7 a query such that vars(uy,..., un) C vars(q). Then the code realizing the parallel
semantics of the composition is the following:

Toegla)(wa, -, v0) = Ti[g)(wr) U ... U T [g](u,).

177

As an example, let us consider again the update of an attribute of a tuple; it can be
modelled with the deletion of the old tuple and the insertion of the new tuple.

Let p be an EDB predicate and a and b tuples. The code realizing the update of tuple
@ into tuple b according to sequential semantics is the following:

T Dstage(nil,z) « p(z).. {ezit-rule}
r2: pae(s(nil), a) — g, pstage(nil, ). {deletion-rule}
T3: Pstage(8(nil), T) — Dstage(nil, x), ~paer(s(nil), z). {copy-rule}
T4 Pstage(s(s(nil)), ) — pstage(s(nil), ). {exit-rule}

T5 1 Pstage(8(8(8(nal))),b) «— ¢, Pstage(s(s(nil)), ). {insertion-rule}
76 : Pstage(s(s(8(nil))), 2)  Pstage(s(s(nil)), z),

—xpdeI(S(S(S(nil))), x) {copy-ru]e}

5 Transactions

In this section we tackle the problem of integrating updates and queries. We propose how
to integrate the two modalities of interacting with the deductive database in a unique
framework which can be executed by a fixpoint evaluation. Such framework defines the
concept of a transaction, which will be introduced gradually: simple transactions and
nested transactions.

5.1 Simple Transactions

A simple transaction is a single rule of the form:
h «— pre,uy,. .., Uy, post.

where uy, ..., Uy is a composition of updates, pre and post are queries, and the predicate
symbol in the head %, called a transaction predicate, is a fresh predicate symbol, which does
not occur anywhere else in the program. pre is called the precondition of the transaction,
and post the postcondition. It is worth noting that preconditions and postconditions play
the role of integrity constraints, and the interesting case is when the same predicate is
involved both in pre/postconditions and in updates.

As in the case of multiple updates, the parallel and sequential semantics of transactions
behave differently, and therefore they are considered separately.

Parallel Semantics

In this case, each single update is constrained by the success of the precondition, so that
it has to be evaluated before the execution of every update. Moreover, pre is needed to
provide the actual tuples to be inserted /removed. Therefore, we use the code Tpor[pre](u)
of definition 4.1 mstantiated on the precondition pre of the transaction.

Next, we have to take into consideration the postcondition. In fact, the success of the
transaction, as well as the possibility of inferring facts of the transaction predicate h, is
subject to the satisfaction of the query post. However, the evaluation of post must take
into account the effect of the updates on the extensional predicates. To this purpose, we
use the following derivation-rule ry for h:




178

rq: h «— pre,post’. {derivation-rule}

where post’ denotes the query post evaluated with respect to the program modified by
replacing every occurrence of an extensional predicate p in a rule with the predicate p/,

denoting the final extension of p after the updates. In the case of parallel semantics, p’
can be simply defined as follows:

P'(z) « Pstage(s(nil), z).

Finally, the code for a transaction h « pre,us,..., un, post under a parallel semantics is
obtained as follows, by cumulating the compilation of the parallel composition of updates
with the derivation-rule ry:

Tpar(h — pre,us, ..., Um, post.) = Tpor[pre)(ut,. .., um) U {rqa}.
As a simple example, consider the following LDL transaction on an EDB relation
emp(name, dept)
which transfers all employees of the toy department to the shoe department:
tr: transf(z) « emp(z,toy), —emp(z,toy), +emp(z, shoe).
According to the proposed compilation scheme, we obtain the following code for Zpq,(tr):

T1: €Mpsiage(nil, z,d) — emp(z, d).

T2 empaer(s(nil), z,toy) — emp(z,toy), empyiage(nil, ).

T3 €MPstage(s(nil),z,d) — empytage(nil, z,d), mempya(s(nil), z, d).
T4: €MPgiage(s(nil),z, shoe) — emp(z,toy), empsiage(nil,_,-).

rs: transf(z) « emp(z,toy).

Observe that, in absence of postconditions (which is precisely the case in LDL ), there is
no need to exploit the updated EBD predicates to compute the derivation rule rs. We next
add a postcondition to the transaction, by requiring that no more than 20 employees can be
associated with the shoe department: i/ :  iransf(z) — emp(z,toy), —emp(z, toy),

+emp(z, shod count(emp(, shoe)) < 20. According to the proposed compilation
scheme, we obtain for Tp,,(ir’) the same code as above, except from the derivation rule
r5, which now becomes:

75 transf(z) « emp(z,toy), count(emp’(_, shoe)) < 20.
where emp’ is the updated version of emp, namely:
emp(z,d) — empsiage(s(nil), z, d).
Sequential Semantics

In this case, the precondition must be re-evaluated before each update in the transactions,
in order to take into comsideration the effect of the preceding updates. To this end, we
adapt the compilation of transactions with parallel updates by simply modifying how

e asean

179

preconditions are compiled, in a way similar to postconditions in the parallel semantics.
Given a precondition pre, we denote by prej, the query pre incrementally modified after k
updates as follows. Every occurrence in pre of an extensional predicate p is replaced with
the predicate p}, denoting the current extension of p after i updates on p itself. In the case
of sequential semantics, the current stage of a relation after ¢ updates can be retrieved
using the formula s*~1(nil) as stage argument. So after i updates on p, p’ is defined as
follows:

p/(z) - ps:’ta.ge(szi_‘l(717:1)7 z)

Notice that, in prej only those extensional predicates of pre for which one or more

updates have been performed by the sequemce wg,...,u; have been replaced. So the
above definition of p* simply accumulates the updates on the same relation, while pre),
accumulates the updates on all extensional predicates in pre executed by uq, ..., ux.

We can now redefine the compilation of definition 4.3 as follows:

Toeglprel(us, - - -, un) = Tr[prel(us) U Ta[prei)(uz) U ... U Tolpren_1](un)-

Under the above definition of the updated predicates p’, the same derivation-rule 74
for h adopted in the case of parallel semantics can be used:

rq: h + pre,post’. {derivation-rule}

Finally, the code for a transaction & « pre,ui, ..., Unm, post under a sequential seman-
tics is obtained as follows, by cumulating the translation of the sequential composition of
updates with the derivation-rule rg:

Toeq(h « pre,ua, ..., Uy, post.) = Tyeq[prel(u, . .., tm) U {rd}.

5.2 Nested transactions

Tn general, transactions are nested in the semse that tramsaction predicates may occur
in the pre- or postconditions, although recursive calls to transaction predicates are not
allowed. This is the case in LDL , where moreover postconditions are not allowed. We
do not explain here in detail how nested transaction are compiled for limitation of space.
However, the idea of the compilation is the following. A set of nested, non recursive
transaction predicates can be repeatedly unfolded, until a single rule is obtained. At this
stage, a transformation scheme which closely follows that for sequential composition can
be directly applied.

6 Final Remarks

We proposed in this paper a compilation of updates and transactions based on their declar-
ative reconstruction in terms of X Y-stratified programs. Despite its simplicity, the pro-
posed compilation produces code that can be efficiently executed by a machine supporting
bottom-up execution of XY-stratified programs, such as that of LDL . In particular:

o the stage arguments can be actually implemented as a single counting variable, global
to the database, thus avoiding the overhead of the copy rules;




180

e the compilation technique directly support virtual updates, which can be actually
executed after the transaction commits.

Various more general forms of transactions can be supported on the basis of the pro-
posed technique, and are currently under investigation. These include recursive trans-
actions (and active rules), and updates and transactions in object-oriented deductive
databases. In this latter case, we refer to the object-oriented extension of deductive
databases of [Zan89], which is based on a logical definition of object-identity by means of
the non deterministic choice construct [NT88, GPSZ91, CF94]. Preliminary investigations
show that the proposed compilation smoothly scales to the extended framework.

References

[AOZ93] N. Arni, K. Ong, C. Zaniolo. Negation and Aggregates in Recursive Rules: the
LDL ++ Approach, In Proceeding of Deductive and Object-Oriented Databases —
Third International Conference, Springer-Verlag, (Ed. S. Ceri, K. Tanaka, Shalom
Tsur), LNCS, pp. 204-221 (1993)

[BK94] A.J. Bonner, M. Kifer, An overview of Transaction Logic, Theoretical Computer
Science, Vol. 133, pp. 205-265 (1994)

[CF94] M. Carboni, V. Foddai Aspetti dinamici delle basi di dati deduttive, Laurea Thesis.
Dipartimento di Informatica, Universita di Pisa. (1994) (in Italian)

[CHO93] M. Baudinet, J.Chomicki, P. Wolper, Temporal Deductive Databases, in Tempo-
ral Databases, eds. Tansel, Clifford, Gadia, Jajodia, Sagev, Snodgrass, Benjamin and
Cummings (1993)

[GPSZ91] F. Giannotti, D. Pedreschi, D. Sacca, C. Zaniolo. Non-Determinism in Deduc-
tive Databases, In Proceeding of Deductive and Object-Oriented Databases Second
International Conference, Springer-Verlag, (Ed. C. Delobel, M. Kifer, Y. Masunga),
LNCS, pagg. 129-146 (1991)

[LL93] G. Lausen, B. Ludischer. Updates by Reasoning about States, Second Compunet
Workshop on Deductive Databases, Athens (1993)

[Mon93] D. Montesi, A Model for Updates and Transactions in Deductive Databases. PhD.
thesis, Dipartimento di Informatica, Universita di Pisa (1993)

[MW88] S. Manchanda, D.S. Warren. A Logic Based Language for Database Updates. In
Deductive Databases and Logic Programming, Eds. J. Minker, pp. 363-394. Morgan-
Kaufman (1988).

[NT88] S. Naqvi, S. Tsur. A Logic Language for Data and Knowledge Bases, Computer
Science Press, NewYork (1988)

[Zan89] C. Zaniolo. Object-Identity and Inheritance in Deductive Databases- an evolution-
ary approach, In Proceeding of Deductive and Object-Oriented Databases Conference,
Kyoto (1989)

NEGATION




An Introduction to Regular Search Spaces

Alberto Momigliano Mario Ornaghi
Department of Philosophy Dipartimento di Scienze dell’Informazione
Carnegie Mellon Universily Universita’ di Milano
15213 Pittsburgh PA, USA, Via Comelico 89/41, Milano, Ilaly,
mobile@lcl.cmu.edu ornaghi®unimi.it
Abstract

The aim of this paper is to present the proof-theoretic analysis of logic programming
developed in [10, 11], and to show an application to negation-as-failure (NF). We define
AAR-systems, i.e. inference systems based on Axiom Application Rules of a very general
kind and we introduce the concept of regular search space. We show that regular AAR-
systems enjoy the analogous of the very features that make Prolog a feasible and successful
implementation of logic. Finally, we discuss our application to negation-as-failure. We
contend that the notion of regularity provides a better understanding of the traditional
theory of NF. However, NF is not our main concern; our aim is to show through that
the adaptability and versatility of our approach.

Keywords. Foundations of logic programming, proof-theory, negation-as-failure, search
spaces.

1 Introduction

In this paper we present the main {eatures of the proof-theoretic analysis of logic programming
developed in [10, 11]'. Firstly we explain the concept of aziom application rule (AAR), which
can be seen as an abstraction of an inference step of a logic programming interpreter and
of most general proof tree (mgpt), which is the analog of a SLD-derivation. Mgpt's are in
fact based on the notion of AAR, which easily generalizes to various definitions of clauses
and goals. Finally, in the background, all is connected by the notion of regular search space,
which plays the role of a Prolog-like search space. i

Secondly we give a treatment in our proof-theoretic terms of the issue of negation-as-
failure (NF) [4] and we analyze the incapability NF to providing logically justified answers
to open queries.

We will contend that the notinn of regularity provide us with a better understanding of
the traditional theory of NF. In [11] it is also shown that our approach provides a firm and
natural basis for a form of constructive negation. in the sense of [3, 13. 2]

We want to stress at this point that our interest lies here m ainly in showing the versatility
and the adaptability of our approach — once digested a few but simple initial definitions -
rather than keeping up with the front-line of research on negation in logic programming: in
particular we shall deal only marginally with new developments in the field (see for example
the recent survey by Apt & Bol [1]).

The paper is organized as follows: in Section 2 and 3 we review the theory of Regular
AAR-Systems formulated in [10, 11]. Section 4 deals with the proof-theory of NF and, finally,

1This paper is, to a great extent, a subset of those.




184

Section 4.3 studies the problem of evaluating open negative queries. Proofs of results stated
here can be found in [10, 11].

2 Systems Based on Axiom-Application Rules

Our view of an abstract logic programming system is that of an idealized interpreter endowed
with rules — the inference mechanism - that apply azioms — the program — starting from
a goal and searching for a proof. We formulate this approach in all its generality and we
exemplify it with a system that is related to SLD-resolution.

2.1 AAR-Systems
An AAR-system is a triple (£, A, R) where:

1. &is a set of admissible goal-expressions. In this paper goal-expressions will be atoms or
literals, but more general forms could be used (see [10]). Goal-expressions should not
be confused with goals of the form — Ly,...,L, as intended in logic programming.

2. Ais a set of admissible axioms. For example, an admissible axioms could be (the uni-
versal closure of) definite or normal clauses, the completed definitions of the predicates
of a program, or more general kinds of axioms (see [10])

3. Ris a set of axiom application rules. A rule R € R is any relation from goal-expressions

and axioms to sequences of goal-expressions, including the empty sequence A, i.e. R -
(Ex A)x &

Goal-expressions will be indicated by E. E1,.... We shall say that E; ... i En € R(E, Az)
for those sequences of goal-expressions such that ((E,Az), Ex;.. s E,;) € R (namely R(E, Az)
is a set of sequences of goals). We will draw it as

By By Az
T &
When A € R(E, A2), we write
Aw
—(
7 (&)

In the framework of an AAR-system, one may have program.
of axioms from 4 and its computations search for proofs w
P. Before considering proof-search, we complete our
an AAR-system.

s, where a program P is a set
ith rules from R and axioms from
basic definitions and give an example of

The set of proof trees 7(£, A, R) of an AAR-system (£,.4, R) is inductively defined below,
where II :: E is our linear notation for a pt II with root E:

Definition 2.1 Every E € £ is a pt. If II; Eq,..

1In i By are pt’s and Ey;.. 0 E, €
R(E, A), then the following is also a proof tree:

Hl Hn
Ey; o EL Az
B

185

We say that a goal-expression is an assumption of a proof tree if it is a minor premise in
some leaf. The azioms of a proof tree are the ones appearing as major premises. The root of
a proof tree is called its consequence. o ‘ N

If the axioms of a pt belong to a program P C A, we say that it is a proof tree with
axioms from P.

Definition 2.2 A proof tree is a proof of E iff E is its consequence and it has no assumption.
If it has at least one assumption, we say that it is a partial proof.

" Substitutions, or more properly instantiations, will turn out to be centrali in our tre.atm‘ent.
Hence we restrict to goals and pt’s for which a notion of substitution is sensible. Applications
of a substitution @ to goal-expressions and proof-trees will be indicated by ¢E,01l,.... We
assume, as well, that in 1] axioms and rules are not affected by 6.

2.2 P-System and SLD-Resolution

In the P-system goal-expressions are literals (indicated by L, L1, ...) and admissible ax.joms
are of the ‘form V(Vy(Ly A ---A L) — L), where the y? may appear in the L; but not in L.
If n = 0, then the axiom is V(L). - . .

There is a single rule P, defined as follows. For every substitution f renaming y with
eigenvariables:

0Ly;...;0Ln € P(OL,Y(Ny(Li A---A L) — L))

Recall that eigenvariables (often called parameters) are variables whose only possible substi-
tutions are capture-freeing renaming.
An application of P with positive conclusion is for example:

asum(v,v,X); Va(Vz-sum(z,z,a) — odd(z))

odd(X)

where an eigenvariable v has been introduced for the z's. ' .

The P rule is admissible in minimal logic: its instances are derivable in natural dgducmon,
as follows, where the vertical dots allude to a closing branch for the assumption ~sum(v, v, A ),
in a way similar to Miller’s [9], the eigenvariable v has uniformly substituted z and X is a
logical variable:

(P)

—sum(v, v, X)V—I Va(Vzosum(z. z,¢) — O’M(m))v_E
Vz.msum(z,2,X) Vzosum(z,z,X) — odd(X)
odd(X)

-E

Now we link the admissible axioms of the P-system to logic programs. Atoms wiﬂ be denoted
by A, B, As,.... To a clause ¢ of the form B : —4y,..., 4, we associate Az(c) of the form
‘v’iAl A...ANA, — B), and to a program P the set Az(P) of the axioms which correspond to
its clauses. ‘ . o

Thus §LD-resolution corresponds to the P-system, with the following restrictions: no
universal quantifier occurs in the body of a clause and no negative literal is involved in the
axioms.

2y(...) indicates universal closure and Yy a (possibly empty) list of quantified variables.




186

An §LD-derivation for a goal — 4. can be seen as a stepwise construction of a ptII = 6A
as shown below for the derivation — sum(ss0, 80, Xg), — sum(ss0,0, X7), 0. Notice that thé
foArmula‘e in the current goal correspond to the assumptions of the relative pt. We denote
with < the relation of continuation among pt’s, defined in 3.3.

_4230

sum(ss0,0,.\) ; Az P
( 1) A2y P sum(ss0,0, ss0) ; Az

sum(ss0,s0,sXNp) =<

sum(ss0, s0, s.X

( s0.5.X1) sum(ss0, s0, ss50)
In this'way every SLD-derivation can be translated into a pt and this yields the proof-
theoretical equivalence between the two systems (see [10, 11)). )

3 Regular AAR-Systems

The search-space of an AAR-system can be organized as a search-tree, where nodes are
(partial) proof-trees and search steps are continuations. Leaves are pts with’out continuations
A »]eaf that contains a proof is a success node. and a leaf that contains a partial rocﬂ is aL
fazlure node. In general, search in the complete tree is untractable, and one tries EI; re%r}ct
it to a subspace. This relates to the jdea of regular search space. a% follows. k

' .A subspace is obtained through a suitable equivalence relation among prooi-trees, i.e
it is built by a quotientation of the (entire) search space. Regularity is a property of’ tilé
equivalence classes. It ensures that a regular subspace is .su.cces.s--comple;,e. that is the flollowin

property holds: for every successful path from a goal-expression F to a ;;roof II'in the sea,rclg
space, the subspace contains at least one path from the equivalence class of £ to the one of H]
Thus reg}llarity entails that a search strategy working on representatives of the equjvalence.
classes will not miss success nodes. One of the problems is computing the right substitutions

It can be dealt with through a quotientation by a suitable similarity relation, that minlicé
top-down proof-search and agrees with the subsumption ordering on proof—tree’s.

3.1 Search Spaces for AAR-Systems

Un.der t11§ the more general version that we are developing, a pt II may be in T(E,AR)
while 011 is not. To ensure this, we introduce the following: A .

Deﬁnition 3.1 We say that an AAR-system (£, A, R) is closed under substitution il E € £
entails 0F € £ and. forall ReE R, A € Aand E € £, R(OE, A) = GR(E,A).

One easily sees that, if (£, 4, R) is clo ituti is 7(

\ 4, VAL closed under substitution, so is 7(&, A, R). i
T(E, A, R) entails 011 € T(E, A, R). ' AR e e

This allows us to introduce the following pre-ordering (intuitively to be read as 114 is less
general or more instantiated than My) and equivalence relation among proof-trees.
Definition 3.2

o II; < 1l iff there is a 6 such that Iy = 611,;

® H] = HQ lfle < HQ and Hz < Hl;

Remark that the induced equivalence relation on proof-trees corresponds to identity of
proof-trees modulo renaming of variables.
Now, let us consider how we could approach the following search problem in a Prolog-like

wav , N o - ~ o N - :
ay, where (ﬁmt?) sets of axioms are programs and the desired outcome of the computation
are answer substitutions. ’

187

Let P be a program and E € & a goal-expression: search for a proof II :: # £ with
axioms from P, for some substitution 6.

If a proof (i.e. a proof-tree without assumptions) I1 2 6F exists, we say that # is an answer
substitution for £ w.r.t. P. If, on the other hand. every proof-tree II :: A E with axioms from
P has open assumptions, we say that £ fails w.r.t. P.

We characterize our comiplete search space, which contains all the proof‘»trees\ through
the following notion of one-step continualion.

Definition 3.3 Given E € £. Az € P and R € R, we say that Az can be applied to E by R
using 6 iff there is at least one Ey;...:E, € R(E. Az). Given a proof II with an assumption
H such that E = 6H. the above application gives rise to a one-step continualion with
selected assumption H . as follows:

Eyp oot Ep A
——— (R)
0H
o1

The continuation relation is the reflexive and transitive closure of one-step continuations
and can be characterized as follows. Call TI' an indtial subtrec of IL iff 11’ is a subtree of Il

and they have the same root:

Proposition 3.1 Il is a continuation of 1, denoted Iy =< Tl,. iff there is an initial subtree
II5 of II,, s.t. I, < 1.

One immediately sees that E has an answer substitution ¢ w.r.t. a program P iff there is
4 continuation II :: 8E of the trivial (0-depth) proof-tree E without assumption. Then our
search problem can be restated as follows:

Let T(£, A, R) be the set of proof-trees of a AAR-system, T(P) C T(E,A,R) be the
(sub)set of the pt’s with axioms from P and 7(P, E) C T(P) be the (sub)set of the contin-
wations of E. < is easily seen as a pre-ordering on each of those sets. To obtain a partial
ordering we have to take the quotient T(P)/ = (i.e. consider proof-trees modulo variable
renaming). Finally, take the graph (that through standard duplications can be treated as a
tree with root E):

(T(P.E)/ =. %) )
The leaves are (equivalences classes) of pt’s which have no continuation; in particular, a
success node is a leaf containing a proof.

(T(P,E)/ =,<) is the total search space, which is the starting point of our analysis
of regularity. It contains all the proof-trees (modulo renaming) and our search problem
corresponds to the search of success nodes in such a tree.

For every node [II], where square brackets denote the equivalence class witnessed by 11, its
children can be characterized as follows. [II'] is a children of [IT] iff there are an assumption
E of [T}, an axiom Az from the program P.arule R from R and a substitution 6 s.t. Az can
be applied to E by R using 6, yielding [[I']. We will say that [I'] is an (E, Az, R, @)-children
of [M].

Sequences ((Eo, Azo, Ro,00), . - -, (En, An, R..8,)) correspond to paths in the tree. Thus,
in general, we may have to backtrack on four dimensions (choices of (B, Az, Ry, 0)). More-
over, due to the presence of substitutions, even using a finite set of axioms and rules, a node
may have infinitely many children. Consequently it is desirable to eliminate at least (and




188

especially) the need to backtrack on substitutions. This is what is achieved by first-order
resolution, thanks to the existence of most general unifiers. Moreover, SI D-resolution elim-

inates the choice of the selected goal E [8]. In our model this is reflected by proposition
3.5.

3.2 Regular Search Spaces

In our model the possibility of using a resolution-like method corresponds to the computation
of most general continuations, among the (possibly infinite) similar continuations.

To informally motivate the notion of similarity, let us consider a path in the tree (T(P, Eo)/
, %) Let us call similar two paths determined by the same sequence of selected assumptions,
axioms and rules, but possibly by different sequences of substitutions. Two proof-trees are
simular if their paths from the root are similar. The idea is that an idealized interpreter, to
avoid backtracking on substitutions, will follow one among similar paths by selecting a pt

in a class of similar pt’s. Similarity can be defined in a more abstract way, as a structural
property of proof-trees:

Definition 3.4 An aziom/rule-occurrence in a pt Il is a triple (p, A, R) such that p is a path
in II from the root to a node containing an axiom A applied by a rule R. We say that two

proof-trees IIy, II, are similar , written Iy ~ II,, if they have the same (non-empty) set of
axiom/rule-occurrences.

One easily sees that ~ is an equivalence relation; the corresponding equivalence classes,
indicate by [IT]., will be called similarity classes.

We use similarity to curtail the subspace (T(P,E)/ ~, =), where the continuation relation
= has been lifted to similarity classes as follows:

[H]]N =< [HQ]~ iff there are II; € [Hl]N,Hg € [Hz]N s.t. II; <11, (1)

An interpreter that does not perform backtracking on substitutions chooses suitable rep-
resentatives of the equivalence classes, and different choices correspond to different search
strategies. Since (1) does not require that every representative II of [1I;]~ has a continuation
in [Ty]~, a complete search strategy has to choose a ‘good representative’ of [II;]., i.e. a

Il € [I1]~ that has a ‘good representative’ of [II5].. as a continuation. Representatives could
be most general proof-trees:

Definition 3.5 Let [II]. be a similarity class. A pt I1* is a most general proof-tree in [II].,
iff, for every pt I’ € [Il], II' < II.

If a mgpt II* exists, then it is unique up to renaming and all the pt’s of the node [I1*] of
the search tree (7(P, E)/ =, <) are mgpt in the class [TI]~. Moreover, IT* is representative of
[IT]., because it subsumes every other pt of the class. Finally, if every similarity class contains
a mgpt, then mgpt’s are good representatives/, as stated by the following proposition.

Proposition 3.2 Let I}, II; be mgpt’s. Then [II}]. < (T3] iff I} < II3.

Unfortunately, in general, a similarity class may not contain a mgpt. Regularity is the
basis for the existence of most general proof-trees among similar trees:

Definition 3.6 A set S of proof-trees is a regular search space ifl, for every similar I, 1 €
S, thereis a T € S such that II; < 11 and I, <1

189

Proposition 3.3 If S is regular, then every similarity class [I]. contains a most general
proof-tree, i.e. a proof-tree II* such that, for every II' € [I], II" < TI”.

Let S be a regular search space and T(S, E) the set of the proof-trees II :: 'Q-E € ?;
define Gen(S) and Gen(S,E) to be the corresponding sets of mgpt’s. By proposition 3'.2,
the subspace (T(S, E)/ ~, <) is isomorphic to (Gen(S, E)/ =. =). T(? analyze the prope1tles
of this subspa.ce; and to understand the underlying geometry, we introduce the notion of
canonical continuation of a pt.

Definition 3.7 A continuation II* of a pt II is a most general continuation (mgc) if, for
every other similar continuation A. A < II*. A continuation is canonical iff it is a one-step

megc.

Proposition 3.4 If II is a mgpt, then its mgc's are mgpt’s. In particular, its canonical
continuations are mgpt’s.

By the above proposition (Gen(S, E)/ =. =) can be built using only canonical continua-
tions‘ thus avoiding even to take note of substitutions. Moreover, we can prove:
k)

Proposition 3.5 Let II be a mgpt of S and A be an assumption of II. If there is a proof A
that is a mgc of II, then there is a canonical continuation II' of I selecting H such that A is

a mgce of I".

Proposition 3.5 shows that, by using canonical (i.e. most general) cox'lt%nu.ations, the
selection of the assumption Ej, during search may be completely non dgtermlmsfmc. Thus we
can further reduce the search space by using selection functions F* which associate to every
pt one of its assumptions. An F-search tree is a subtree of (G’en(d?. By =.%) sucl? that, for
every node [II], its children are the canonical continuations selectn'lg t.he a.ssumptlon‘ F(H)
This is a second reason, beyond eliminating backtracking on substitutions, for stressing the
relevance of regularity in logic programming. . .

Now we say that an AAR-system is regular iff the set of its pll'oof-.trees isa 1‘egul'a1‘ search
space. As one can easily see, the regularity of the AAR.—system unpbes .the regularity of the
subspaces 7(P) and 7 (P, E). We can avoid backtracking on substitutions and search only
for most general proof-trees, and we can use F-search tregs. A .

The problem is then how to compute canonical continuations. We say that there is a
resolution method when canonical continuations can be computed depending on the selectec}
assumption and not on the whole pt.

Definition 3.8 An operator Res is a resolution method iff, for every goal-expres.sion E,
axiom Az, rule R, Res(E, Az, R) is defined iff Az can be applied to E by R and yields an
equivalence class (w.r.t. renaming) of the form [(8, Ex;. . .; E,)] and

Res(E, Az, R) = [(#,Exy;...; En))
iff B1;...; E, € R(AE, Az) and the corresponding continuation is canonical.

If the search space is regular, then for every R, Az and every pt with selected -assun'lp»
tion E, either there is canonical continuation (Res(E, Az, R) is defined) or no continuation
exists (Res(E, Az, R) is not defined). Moreover, for the same R, Az and selected E, any
two canonical continuations are equivalent; therefore Res(E.Axz. R) has been defined .a,S an
operator computing equivalence classes. This operator i.mports a'l] the search properties of
puré Prolog, in particular the independence of the selection function.




190

Example 1 The P-system is regular (see [10]) and its resolution method is defined as {ollows.
Let Az be ¥(Vy(L1 A...AL,) — H)and L be a literal. If @ is an idempotent mgu of H and
L, then Res(L,Az,P)=[(§,6L,;. 0L If H and L do not unify, then Res is undefined.
Note the complete analogy with SLD-resolution. Observe that no substitution is attempted
on the variables y. This is sound for such a simple form of axioms that involve literals only.
With more general rules and axioms, there are cases where eigenvariables must be renamed
by new names, if they occur in the current proof-tree. Analogously, to obtain most general
continuations, the variables of the current proof-tree that occur free in Yy(Li A ... A L), but
not in A, must be renamed. o

4 (PF)-Systems and SLDNF-Resolution

In general, failure (finite or not) simply means unprovability. However, after Clark [4], finite
failure w. 1. t. of logic programs is interpreted also as provability of negated formulas from
the completion. To study this approach. we first introduce the ' and PF-systems. Then we
use them to provide a proof-theoretic interpretation of SLDN F-resolution.

4.1 The non-Regular F and PF-Systems

In Clark’s equality theory we can derive the followine failure rule F to apply failure azioms of
1 A g PP}

the form: Va(p(z) — Jy.(z =t; A Ly)V -~V (¥ =1, A L,)), related to the weak completion
that we will introduce later:

neg(ai, Li, ); - .. neg(oy, Liy) € F(=p(a),Ya(p(z) — y.(2 = t; A Li)v--viz=t,nL,)))

where: neg(A) = ~A and neg(—A) = Ava,ty,..., 1y are terms; for 1 < A <k, 1;, and @ unify
with idempotent mgu 0y, , while the others do not. Moreover, if L;,. contains local variables,
i.e. variables that do not appear in ti,., those variables are substituted in oiLi.. by new
(w.r.t. p(a)) eigenvariables.

The PF-system contains the rules P and F.
The F and PF-systems are non-regular systems. Consider for example the following

proof-trees II;, II,, I3, where the failure axiom is Va(odd(z) — Iy(a = s(0) Atrue V 2 =
s(s(y)) A odd(y))):

Fax F) —odd(W FGI(F) ~irue -odd(v) Faz .
—\odd(O)( —odd(s(s(17))) =odd (W) (F)

they are similar, but there is no proof-tree Il such that II; <M fori=1.2,3.

As far as the last proof-tree is concerned, note that, among these examples, it is the only
one not closed under substitution. Second its derivation goes like this:

1. —true is generated since W and s(0) unify;

2. ~odd(v) is generated. since W unifies with s{s(y)) which is not substituted by the mgu
W = s(s(y)) and v is the eigenvariable renaming the existentially quantified Y.

In the absence of regularity, the notions of mgpt and of canonical continuation do not
behave as expected. This means that we cannot find a success-complete resolution method
unless we admit backtracking on substitutions. In particular Res has to compute many
candidate substitutions and goal sequences. Thus strategies like SLDN F cannot be success-
complete, as we discuss below,

191

Notice that the F can be formulated in a way such that the P(F')-system is closgd under

substitutions, still it is not regular, i.e. regularity and closure under substitution are indepen-
9 X ) .

dent. This is also the case for higher-order Horn clauses [9], where closure but not regularity

is guaranteed.

4.2 SLDNF-Refutations and PF-Proofs

We associate to a program its failure axjoms, which will be applied by the F-rule. The starting
point is the only-if part of the completion of a predicate p(...):

n h'$
Ve(p(z) — \/ Jy;(z =4 A L/\l Lix))
=1 r=

For every ki, ...,k such that 1 < k; < h; we infer

Fazy,, 5 (p):  Va(plz)— 3y \/(.'l‘ =1 ALig))

i=1

By convention, the failure axiom of a unit clﬁa‘use introc.luces the c011§ta11t tm@, heIn-ce
hi > 1is always fulfilled. Observe that these axioms contain e.mctly @ s:mg'leton lllterat mf
ever-y disjunct of the consequent. For a definite program P, Fax(P) will indicate the set o
its failure axioms in the latter sense.

Example 2 The only-if part of ¢ (for times), the usual program for computing the product.
is:
V(t(a,b,c) — 3x(a=2Ab=0Ac=0)V
Ja,y,s,wla=a Ab=s(y)Ac=z Alle,y.w)Asum(w,z, z)))

From it we derive the failure axioms:
Y(t(a.b.c)— Jz,y,z.0v ({a=2Ab=0Ac=0ATIrue)
Via=aAb=s(y)Ac=zAtlz,y,w)))
Y(t(a,b,c) — 3z, y,z,w ((a=2Ab=0Ac=0A1rue) )
Vie=aAb=s(y)Ac=2Asum(w,z,z)))
- o
Theorem 1 Given a definite program P and a definite goal — A, there is a ﬁmitely failed
tree for P U {— A} iff there is a proof 11 == =A in the F-system using only azioms from
Faz(P).

To a normal program P we associate the set Wl omp(P) = Az(P)U Fan;(P? of w?a!c
completion arioms, where Az(P), the success axioms, and Faz(P), the failure axioms, are
extended to normal programs in the obvious way. . ‘

The conjunction of the Faxy, . k,(p) is not’a,bly wealker and does not 1mply,.m. gemneral,
the only-if part of Comp(p). Therefore WComp(P) /4 Comp(P). Nevertheless this is enough
to ensure the soundness of standard N F, as indicated in the next theorem.

Theorem 2 Let P be a normal program and L a literal. If there is a finitely faile({ SLDA’F-
tree for PU{— L}, then there is a PF-proof T neg( L) with avioms from WComp(P).

(
¥ 7 P LY wiih answer substitution §. then there is a
If there is o SLDN F-refuiation ¢f P U{— L} with answer substitut Ltk




192
4.3 On (Un)Soundness and (In)Completeness of NF

SLDN F-resolution has a non-logical behavior if open negative goals are selected. In our
model, we can distinguish three different causes for that:

a) Incompleteness of the PF-system: there are literals 8L such that Comp(P) E 0L, in
classical logic but no PF-proof II :: 4L exists.

b) Soundness problems: during the computation (logically unsound) substitutions on
eigenvariables may occur.

¢) Success-completeness problems: given an open goal — L, SLDN F-resolution fails to
return an answer, even if there is a PF-proof II :: #L: the culprit can be found in the
lack of regularity, which lies at the basis of the success-incompleteness of N F'.

There are several reasons for (a). For example, failure axioms are weaker than the com-
pletion, even if they are sufficient to prove the soundness of SLDNF-resolution (see Theorem
2). Note that point (a) and (c) are independent: would the PF-system be complete w.r.t.
classical logic, yet not regular, the success-incompleteness issue would not be solved. The
discussion on point (a) is fully addressed in [11].

Soundness problems (b) are due to the fact that a non-legal substitution on the eigen-
variables may be introduced in some continuation step, as shown by the following example,
taken from [8].

Azl: p:—=g(X)
Az2: qla)

In standard Prolog, using an unsound selection function, the goal — - succeeds (since — p
fails), although it is not a logical consequence of the completion of the program. In our
model, safeness (i.e. soundness) is enforced not by an external condition on the selection
function, but by the usual proof-theoretic proviso on eigenvariables, i.e. that they cannot be
instantiated by substitutions, as the following proof-tree shows. Once we have obtained the
goal g(u), with eigenvariable u, we cannot continue our proof-tree in a sound way; so we do
not obtain any proof of —p

qu) p— 3“(1(1‘)(
op

F)

This shows that we have a natural way to distinguish proofs of negated goals (where such
a proof has no assumptions) from partial proofs with assumptions that cannot be continued.
The latter corresponds to unprovability.

We discuss (¢) more extensively. We show that there are P F-proofs which are ignored by
standard SLDN F-resolution and that the reason is the non-regularity of the PF-system.

Let us consider for example the following (non-stratified) program EVEN:

Azl :
Az2 .

even(0).

even(s(X)) : — =even(X)
Weomp(EV EN) contains the obvious success axioms and one failure axiom:
Faz: Va(even(z) — u(z = 0 A true V 2 = s(u) A —even(u)))

If we start from —even(X), SLDN F-resolution vields a finitely failed (not safe) tree and
no solution is found, even if the PF-system contains infinitely many proofs with axioms from

193

Azq, Azg, Faz and consequence —even(...).
non-regularity, as the following picture shows.

Ovals contain similarity classes. Since —even(Xp) is a mgpt, we can use it to generate all
the one step continuations of the root class. All the continuations are similar (only Faz can be
applied), and we get one children-class scp. The latter is non regular: it contains two maximal
pt’s, 71 and my. Since the identical substitution is more general than Xo/s(X;), SLDNF
selects 7y, wich contains the unprovable assumption -true, and fails. On the other hand,
7y has two children, and this shows that SLDN F-strategy is search-incomplete. Concerning
sc3, scq, the inscribed pt’s are mgpt’s. scz is a success node, whilst scy can be continued.
Since the unique assumption that can be selected for continuation is ~even(Xs), scqy behaves
as the root, i.e. it has one non-regular children-class.

Success-incompleteness of SLDNF is due to

—even(Xg) )54

_ —true; ?ven(v); Faz F oy even(Xl);r Fax . sey
—even(Xo) —even(s(Xy))
Az, P —even(Xy); Axg .
even(0); Faz . 8€3 even(s(Xs)); Faz . SCy
—even(s(0)) —even(s(s(X2)))

When a similarity class contains a finite set of maximal pt’s, backtracking on them pro-
vides success-completeness. An alternative solution is to split the (non-regular) failure axioms
into suitable regular instances. Regular splitting is studied in [11], and it is connected to the
method of constructive negation of [3, 13, 2].

5 Conclusions

Historically, the great majority of the papers on logic programming, in particular on its
extension, has been carried out in a semantic way. Unfortunately these semantics, being
mainly limited to term models, tend to hide proof-theoretic contents. We feel that many
features that are rather cluttered in this framework instead become natural consequences of
a proof-theoretic reading.

Basically two proof-theoretic approaches have been pursued in the literature, as outlined
in [5]:

1. Clauses as axioms and some Gentzen calculus to infer goals [9, 12].

2. Clauses as rules [5]: programs should be seen as sets of inference rules (inductive
definitions) for the derivation of (not necessarily ground) atoms.

We think of our approach as a development and enhancement of the latter: in full devel-
opment, AAR-systems can be seen as a weak logical framework in the spirit of LF [7], PID
[5] or hereditary Harrop formulae [9].




194

We have shown here that from this perspective much of the mystery of N F' disappears or
at least it is brought back to standard issues in basic proof-theory. This is more evidence of the
fruitfulness and explicative power of the notion of regularity as an abstract characterization of
SLD-resolution. For example, constructive negation can be seen as a side effect of regularizing
normal programs.

We plan to continue this investigation, for instance concentrating on the completeness of
PF-system w.r.t. the three-valued semantics of the (weak) completion.

In conclusion: while it is clear that the first steps for a new {ramework are the formalization
of more or less well-known problems in the field, we are going to show that the theory
of regular search spaces can be fruitfully used in more front-line subject such as program
transformation, abduction et. al.

References

[1] Apt K.A. & Bol R. Logic Programming and Negation: A Survey. Journal of Logic Programming,
to appear.

[2] Barbuti R., Mancarella P., Pedreschi D. & Turini F. A Transformational Approach to Negation
in Logic Programming. Journal of Logic Programmang, pp. 201-228, 1990.

[3] Chan D. Constructive Negation Based on the Completed Database. In : Proc. th Conf. Logic
Programming, Kowalski B. & Bowen K. (eds.), pp. 111 - 125, 1988.

[4] Clark K.L. Negation as Failure. In: Logic and Data Bases, Gallaire H. & Minker J. (eds.), Plenum
Press, New York, pp. 293 - 322, 1978.

[5] Hallnas L. & Schroeder-Heister P. A Proof-Theoretic Approach to Logic Programming: Clauses
as Rules. Journal of Logic and Computation, v.1 no. 2. pp. 261-283, 1990, v.1 no. 5. pp. 635~
660,1991.

[6) Harland J. On Hereditary Harrop Formulae as a Basis for Logic Programming. Ph.D. Thesis,
Edinburgh, 1991.

[7] Huet G. & Plotkin G. (eds.). Logical Frameworks , Cambridge University Press, 1991.

[8] Lloyd J.W. Foundations of Logic Programming. Second Extended Edition, Springer-Verlag,
Berlin, 1987.

[9] Miller D., Nadathur G., Pfenning F., Scedrov A. Uniform Proofs as a Foundation for Logic
Programming. Annals of Pure and Applied Logic, 51, pp. 125-157, 1991.

[10] Momigliéno A. & Ornaghi M. Regular Search Spaces as a Foundation of Logic Programming. In:
Eztensions of Logic Progremming, Dyckhofl R. (ed.), LNAI n. 798, Springer-Verlag, 1994.

[11] Momigliano A. & Ornaghi M. Regular Search Spaces and Constructive Negation. Journal of
Logic and Computation, to appear.

[12] Stark R. The Proof-Theory of Logic Programs with Negation. PhD. Thesis, University of Bern,
1992.

[13] Stuckey P. Constructive Negation for Constraint Logic Programming, Proceedings of the 1991
IEEE Symposium. on Logic in Compuier Science, pp. 328 — 339, 1991.

A framework for a transformational
approach to negation

Josep Humet

Departament d’Informatica 1 Matematica Aplicada
Universitat de Girona
Av. Lluis Santald s/n., E-17071 Girona, Spain
Phone: 84 72 418417 - Fax: 84 72 418399

E-mail: humet@ima.udg.es

Abstract

In this paper we introduce framed normal programs as a tool for comput-
ing negation by program transformation in CLP over the Herbrand universe
FT with infinite function symbols. In a framed normal program there are
two kinds of predicates: those with negation already computed by some dual
predicates (the frame), and those with negation still to be computed by con-
structive negation.

Framed normal programs are used as an intermediate step of a process
for transforming normal programs into positive programs. In particular the
aim is to compute a positive program called a t-completion which has the full
semantics (positive and negative) of the original normal program. '

Keywords: Constraints; Constructive Negation; Finite_Trees; Program
Transformation.

1 Introduction

Negation as failure rule is the most classical way to handle negative subgoals,
but it only works when they are ground. Constructive negation is an extension
of the negation as failure rule to handle non-ground negative subgoals. Both, in
essence involve taking a negative goal, running the positive version, and negating
the answers. In Chan’s [3] approach of constructive negation this is done “at the
end” when all the answers for the positive version have been computed, and in
Stuckey’s [10] approach this is done “meanwhile” the answers are being computed.
This difference makes Stuckey’s approach being “more complete” than Chan'’s.

In [2] a transformational approach to negation is given, assuming the domain
closure axiom. This assumption allows one to compute the complement of a term




196

as a finite disjunctions of terms. (The complement of a term t is the set of all
ground terms which are not instances of t.) When trying to satisfy a negative goal

candidates for negation to succeed are computed, then by negation as failure they

are checked and rejected if it is the case. The main reason for that work was to
allow a symmetric treatment of positive and negative knowledge, because negation
as failure (the paper was written in 1988) was too restrictive.

Efficiency is another reason for studying a transformational approach to nega-
tion. In both techniques, negation as failure and constructive negation, computing
negation is done “indirectly” and one could ask whether would it be possible to

"handle negation in general by only positive means, that is to solve negative subgoals
“directly”. A program with negation been already computed is presumable to be
more efficient than another (equivalent) but with negation still to be computed.

As said above, the restriction imposed in [2] of assuming the domain closure
axiom is a consequence of the need to compute term complements. We believe that
this restriction is not needed if we are allowed to write disequations in our clauses,
i.e. if working in the framework of CLP(FT), where constraints are equations and
disequations over the set of finite terms. In particular, let X be a set of variables and
t[X] be a term upon these variables. Then, the complement of the term ¢[X] may
be described by the disequation VX (T # t[X]) where T is a free variable. Because
computing negation is ultimately related to computing the complement of a term
and because disequations describe it, then positive programs enlarged with these
constraints have a enough expressive power. In some sense we want to show how
sufficient they are to express negation.

In our approach we introduce framed normal programs as an intermediate step
- of a process for transforming normal programs into positive programs. In a framed
normal program there are two kinds of predicates: those with negation already
computed by some dual predicates (the frame), and those with negation still to be
computed by constructive negation. Then given a framed normal program P we
compute by transformation techniques [8] a new framed normal program P’ such
that SEM(P) = SEM(P’) for some suitable semantic function SEM and such that
the frame of P’ includes that of P. Our aim is to compute, after some finite number
of transformations, a program P having all its predicates in the frame. Then P will
be a positive program (with disequations), which we will call a t-completion of P,
satisfying that its semantics is equivalent to the full normal semantics of P.

The main problem comes from the existence of (local) variables in the body of a
program clause which do not occur in the head. For this reason termination can not
be currently guaranteed, although in many cases it may be overcamed. Abstract
interpretation 4] could be a proper tool to analyze what could be done for reducing
that kind of incompleteness.

In section 2 we introduce framed normal programs. First, in subsection 2.1 we
define normal and positive programs in CLP(FT). Next, in subsection 2.2 we define
a frame as a one-to-one correspondence between two disjoint sets of predicates listing

197

those predicates whose negation have already been computed. Finally, in subsection
2.3 we define the semantic function SEM that has to be preserved under program
transformation and define what we mean by a t-completion of a normal program.

In section 3 we describe a transformation procedure. Subsections 3.1 and 3.2 give
the rules that are applied in the transformation distinguishing deniable predicates
(those which do not have any local variable in the bodies of its definition) from non-
deniable ones. Subsection 3.3 deals with termination and gives a rule to “complete”
the program in a particular case of non-termination of the transformation procedure.

In section 4 we give three examples.

Finally, in section 5 we draw some conclusions.

2 Framed Normal Programs

2.1 Normal Programs

Let L be a.language containing infinite function symbols and infinite predicate
symbols. We assume that all our programs are written using symbols taken from
L. Hence, the Herbrand Universe and the Herbrand Base are constructed from L,
independently of specific progtams. From now on, all predicates and all functions
are those from L.

An equation is a formula of the form s = ¢, also sy = t; A...As, =t,. Let E be
an equation. We denote with VAR(E) the set of all variables of E.

A disequation is a formula of the form VX(s # t), also VX(s; # ¢, V...V
8n # 1n), where X is the set of quantified variables of the disequation. We assume
that quantified variables of a disequation do not appear elsewhere. Let VXD be a

disequation. We denote with VAR(VX D) = VAR(D)\X the set of free variables of

the disequation.

A constraint will be either an equation or a disequation. A system (of constraints)
is any conjunction of equations and disequations. A solution of a system C; A..:AC,
is a substitution o with domain DOM(c) C VAR(C1) U ... U VAR(C,) such that for
every equation C; = s =t is s0 = 10 and for every disequation C; = VX (s # t) and
for every substitution r with X C poM(7) holds s7o # tro.

An atom is a formula of the form p(t) where p is a predicate an<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>