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Appendix 

First, we define parti al orders > an d ~ between ( abductive an d consistency) deriva­
tions, by appropriately modifying the definitions in [3]. Given an abductive deriva­
tion o:: (G1, .6.1), ... , (D, .6.~), a consistency derivation 1c (L, Lln, ... , (0, il:;_.), 
where n, m ~ l, and an assumption A, 

K > a via A at step i, where l ::; i < m, ifA is selected In the chosen goal in S; 
and a step of type (C4)(i) takes place, invoking o:, 
i.e. S; = {+-L', Q} U S', ~ selects L'in+- L', Q, L'= A, 

L' (j. Llf, G1 =+-A, L:lr = Af, S;+l =S' and L:lf+t = L:l~; 

a > K via A at step i, where l :5 i < n, if A is selected in G; and a step of type 
(A3) takes place, invoking K, 

i.e. G; =+-L', Q, lR selects L'in G;, L'= A, L' (j. Lli", 
L= A, L:lì =~i U {A}, G;+l =+- Q and Af+l = ~:;,; 

~ is the transitive closure of >. 

Let o:o denote the successful abductive d~rivation ( +- Q, 0) to (D, ll.) as in the­
orem 4.1. By de:finition of successful abductive derivation, o:0 is finite and there 
exists a finite number of successful and finite derivations 8 such that a 0 ~ 8. 

Lemma 6.1 For each derivation 8: (Ub .6.1), ... , (Un, ll.n) with a 0 ~ b: 
Ll; ç: Llj, for all i,j =l, ... , n with i< j, and 
6; ç: Ll, for all i = l," .. , n. 

This lemma can be easily proved by induction on the number of derivations 6' such 
that 5 ~ 5' (see [9]). 

Let 1il3not={ not AIA is an atom in the Herbrand base of P}" The assurnption 
set of an abductive de:rivation a:: (G1, ll!), ... , (G,., Lin) is the set ass(a) = 
{A l :lG; such that A E G;n(.ABKMUh'Bnot)}" (We interpret goals, i.e. conjunctions 
of literals, as sets of literals.) 

Lemma 1{io2 Given an abductive derivation o::( +-Q', .6.1), ... , (D,~,.) with a:0 ~a, 

l. ass( a) ç Ll, an d 

2. PUass(a) 1- Q'. 

Proof: 

241 

l. By definition, each A E ass(o:) occurs as a subgoal in some G; in a:. By 
definition of abductive derivation, for each such A there exists L'l; such that 
A E L'l;. Therefore, directly from Lemma 6.1, each such A is in .6.. As a 
consequence, ass(o:) ç ~-

2. Directly from the definition of abductive derivation, P U ass(o:) f-sLD Q'. By 
soundness of SLD resolution, PUass(o:) f- Q'. 

Corollary 6.1 Given an abductive derivation o:: (+-L, ~1), ... , (D, Lln) with O:o ~ 
a and L an atom or the negation of an abducible atom, .6. attacks the assumption 
L via case (i) or case (ii). 

Let the assumption set of .a consistency derivation 1c (L, .6.1), ... , (Sn, Lln) be 
the set ass(K) = {ass(B) iBis a branch of the treeT(K) corresponding to K}, where 
the assumption set of a branch 13 in T(K) is the set ass(l3) ={A I:JG; ìn 13 such 
that A E G; n (ABKM U 1i13not)}, and the tree T(K) corresponding to K is T'n, 
such that, assuming that for each i= l, ... , n, S; = {+-L;, Q;} U s:, and for each 
i= l, ... , n -1, S;+l is obtained by choosing the goal +-L;, Q; and by selecting the 
literal L; in it: 

To consists only of the root, which is the ernpty goal; 
for each i ~ l, given T; and Si+l> then T;H Ìs obtained as follows: 

l. if L; is an atom an d case (Cl) applies, then T;+l is T; where all resolvents of 
+- L;, Q; on L; in P are children of +- L;, Q;; if there is no such resolvent, 
failure is the only child of +-L;, Q;; 

2. if L; is an assumption and L; E li;, i.e. case (C2) applies, then T;+l is T; where 
+- Q1 is the only child of +-L;, Q;; 

3. if L; is an assumption and Li E il;, Le. case (C3) applies, then 1i+l is 1i where 
failure is the only child of +- L;, Q;; 

4. if L; is an assumption, L; f/. il; and L; (j. ~i, i.e. case (C4) applies, then, 
if there exists an abductive derivation from (+-L;, li;) to (D, l\') (case (i)), 
then T;+l is T; where failure is the only child of-!- L;, Q;; 

otherwise (case (ii)), 7i+I is T; where +-Q; is the only child of +-L;, Q;. 

Lemma 6.3 Given a consistency derivation K : (L, .6.1), ... , (0, ~n) with o:o ~ ;;;, 
ass(K) 2 {L::.'I~' is a minimal (with respect to set inclusion) attack against L}. 
Proof: By definition of consistency derivation, since all resolvents are considered at 
any step of kind (Cl), ass( K) conta.ins all sets of assumptions ll1 such that 

P U ll.' 1- SLD L, an d 
P U l\' l-SLD L1, ... , L;-1, L;+l, ... , Lm, for some -,[Ll 1\ ... 1\ Lm] in IKM 

with L; = L for some i = l, ... , m. 
But note that, for any (definite) program P' an d query Q', if there exists a rninimal 
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subset P" of P' such that P" f- Q' then P' f- SLD Q'. As a consequence, directly 
from the definition of (minimal) attack, each minimal attack l!.' against L belongs 
to ass(~~:). 

Lemma 6.4 For each consistency derivation 11: such that a0 ~ ~~:: 

l. there exists an abductive derivation a such that a > ~~:; 

2. for any abductive derivation a such that a> ~~:,via L at step i, for each branch 
BE 7(~~:), if ass(B) is a minimal attack against L then for some L'E ass(B), 
(a) l!. attacks L' via case (i) or case (ii), an d (b) L' ;f. l!.. 

Proof: Part l. is obvious. Let us prove part 2. To prove (a), note that each B E 
T(~~:) terminates with failure. If ass(B) (minimally) attacks L, then, by completeness 
of SLD resolution, failure cannot be generateci via case (Cl). Therefore, failure must 
be generateci via case (C3) or (C4)(i), due to the selection of an assumption L' at 
some step j. (Note that necessarily L' E ass(B).) In the first case l!. attacks L' 
via case (i) or via case (ii) trivially holds. In the second case, there must exist an 
abductive derivation a' such that 11: > a' via L'. By definition, a' is a derivation 
from (+--L', l!.;), where l!.; is the set of assumptions accumulateci at step j in 11:. By 
corollary 6.1, l!. attacks L' via case (i) or via case (ii). 

To prove (b), suppose by contradiction that L' E l!.. Necessarily, L' ;f. l!.;, 
otherwise a step of type (C2) would have taken place. Therefore, there must exist 
an abductive derivation a" such that L'E ass(a") and a'~ a", and a consistency 
derivation ~~:' such that a"> ~~:'via L'. Since l!. attacks L' (see (a)), by completeness 

_ of SLD resolution there must exist a branch B E 7(~~:') such that ass(B) = l!.' for 
some l!.' ç;: l!., and B terminates with D. As a consequence, a0 cannot terminate 
successfully. This gives a contradiction. 

Lemma 6.5 Forali sets of assumptions A and l!. in the assumption-based frame­
work corresponding to a KM abductive logic program (P, AB KM, IKM), the follow­
ing statements are equivalent: 

l. ifA attacks l!., then l!. attacks A- A; 

2. ifA is a minimal attack against l!., then l!. attacks A- l!.. 
Proof: l. ::} 2. trivially holds. To prove 2. ::} 1., note that ifA is a non-minimal 
attack against l!., then there exists A' C A such that A' is a minimal attack against 
l!.. Then, by 2., l!. attacks A'- l!.. Therefore, l!. attacks A- l!.. 

Proof of theorem 4.1: Part l. holds by lemma 6.2. Part 2. can be proved as 
follows: by lemma 6.5 we only need to consider minimal attacks against l!.. By 
definition of attack, for each (minimal) attack A against l!., there must exist L E l!. 
such that A attacks L. Moreover, by construction of l!., for each such L, there must 
exist an abductive derivation a such that a0 ~a and L E ass(a), and a consistency 
derivation 11: such that a > 11: via L. By lemma 6.3, AE ass(~~:). By lemma 6.4 l!. 
attacks A-l!. via case (i) or via case (ii). This concludes the proof. 
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Abstract 

Higher-order programming languages, as ÀProlog can be used with success 
in implementing program transformation systems, exploiting the capability of­
fered by higher-order unification and by the availability of À-terms. Through 
these features many operations on programs can be naturally expressed as 
higher-order term-rewriting systems. In this paper we apply higher-order 
term-rewriting techniques in the context of program transformation using 
ÀProlog as metalevel language. In particular we give a theoretical setting 
and we propose an implementative solution to the execution of the rewrite­
by-lemma and fold steps of a program transformation strategy proposed in 

[17]. 
W e propose a solution involving algebraic specification for dealing with the 

rewrite-by-lemma steps, which encapsulates the complete knowledge of alge­
braic properties of a data-structure into a finite set of axioms. These steps 
are carried aut through term-rewriting techniques, and we propose two dif­
ferent interpretational approcbes of them in ÀProlog. Moreover the execution 
of folding steps is performed through rewriting techniques in the setting of 
recursive program schemes. 

Keywords: higher-order logic programming, program transformation, 
term-rewriting techniques, algebraic specifications. 

l Introduction 

Severa! program transformation methods based on rewriting techniques have been 
proposed in the literature. One of the most famous is due to Burstall and Dar-

'This work has been partially supported by MURST 60%. 
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lington ([5]), where program transfmmations are expressed as rewriting systems. 

In [7] the connections between program transformations and compiled techniques 

are described where, through the application of suitabie rewriting-steps (semantic­

preserving) new programs can be derived. 

In this context, different programming languages paradigms have been adopted. 

In particular, the uselfuness in using higher-order logic programming languages, 

such as .\Prolog [15], to specify and implement program transformation t.echniques, 

has been outlined for example in [9], [13]. The main advantages achieved in using 

this language are related to the declarative features of logic programming, to the 

higher-order intensional features of .\-terms for representing programs and to the 

availability of higher-order unification. Through the .\-abstraction built into .\­

terms it is possible to easily represent quantification in formulas or abstraction in 

functional programs, and so many operations on formulas and programs can be 

naturally expressed as higher-order rewrite systems, as we will see in this paper. 

The mai n goal of this research is the implementation of rewriting techniques using 

.\Prolog (we have used the l\I[ALI implementation of .\Prolog developed by [4]) for the 

automation of a particular program transformation strategy, called "higher- order 

generalization strategy" or "À-abstraction strategy ( [17]). Higher-order expressions 

and higher-order reasoning arise naturally in meta-leve! manipulation of program 

code. Exploiting modularity of .\Prolog we can symbolically rewrite the object­

level program expressions through a revvTite-rule system originated by an aìgebraic 

specifications. 

In this paper, to the extent of supplying the program transformation strategy 

with as much unìformity as possible, we decided to use the Recursive Program 

Schemes ([6]), which show how splitting a program into its contro! an d its data­

structures represents a powerful method for investigating on the genera! properties 

of programs. To specify these properties of data-types involved in programs, we use 

algebraic specifìcations and so we focus our attention on the way to implement them 

in a higher-order context. 

Term-rewriting systems represent an adequate tool for execute algebraic specifì­

cations and a way to implement them is to translate algebraic specifìcations directly 

to .\Prolog programs. The translation from term-rewriting systems to .\Prolog pro­

grams benefits from the fact that higher-order unification, in connection with a 

decomposition of .\-terms is very successfull to describe the mechanism of subterm 

revvriting. In particular, through higher-order unification we apply transformation 

steps involving symbolic rewriting of different parts of the programs. The precise 

mathematical semantics of algebraic specifications can then serve as a basis for a 

forma] verification of the translation sc:hemes. In this \Vay we describe an interpre­

tationa.l approach to term-rewriting using /\Prolog. \Ve apply higher-order rewrite 

rules techniques for the manipulation of program expressions, where semantically 

safe rewrite rules are nec:essary for passing smoothly from one program to another, 

as suggested by [5), through fold/unfold style transformation steps. 

How directly implement through .\Prolog rewriting techniques have been shown 
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l!Jr Heering in [10]. These techniques, although appealing for their simplicity of 

ffi1plementation, introduce spurious solutions due to higher-order unification. For 

,\his reason we developed quite a new approach to the implementation of rewriting 

''lechniques, based on the "context-closure" of a term. 

Other related works, in the literature, on the definition and the application of 

b.gher-order extensions of rewriting techniques, are for example [11], [16], [8], [19]. 
ll'he paper is organized through the following sections. 

In section 2 we introduce algebraic specifications by which we specify the prop­

il!Tties of data-types involved in programs, introducing modularity in the implemen­

J:ation of the program transformer. \Ve then briefiy introduce the principal features 

·J>f the .\-generalization strategy an d w e show how fold/unfold transformational steps 

muld be uniformly dealt as rewritings of program expressions, if such transforma­

aiions are seen in the light of recursive program schemes. In section 3 we describe how 

'idnough the interpretational approach of a]gebraic specifìcations coupled with the 

,ieclarative power of a logic programming language, such as .\Prolog, it is possible 

':o directly implement term-rewriting systems as a modular structure of the archi­

'lectural design of the program tranformer, and we show how higher-order rewriting 

iiechniques are useful in automatic execution of folding steps. Two different im­

ì}Ùementations in .\Prolog of an algebraic specification of a list of objects are given, 

;frne exploiting higher- order unification for direct rewriting, and the other obtained 

cilirough the transitive closure of a set of rewrite rules. Finally we conclude and 

!liriefiy discuss some future research directions. 

2 Using 
Program Sche:rnes 

One of the major problems connected ·with strategies for program transforma­

~;ion is enlarging tJie range of their uniform applicabìlity. Besides, since the software 

;;naintenance and d:evelopement of complex systems is greately improved by a mod-. 

!'J!lar design, it ÌS' preferable to ha ve modularity in the architecture of the program 

ìtransformer. \7\/,e then decided Lo choose two combined theoretical approaches, to 

rnake the transfòrm.ation strategy as uniform as and to refiect the modular 

!features of .\Prolog in the modular design of the implementation: Recursive Pro­

q,ram Schemes and Algebraic Specifications. There are severa! reasons to introduce 

::llgebraic specifications in program transformations. They incapsulate knowledge 

trelative to the algebraic properties of data-types in a finite number of axioms, so 

~(; is possible to demand the execution of some particular transformation steps, i.e. 

«ewrit.e by lemma steps, to a module implementing the algebraic specification. Fur­

llher algebr:aiil pmperties could be deduced from the axioms of the specification. 
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2 .l Alge br aie specifications 

In our approach, the data structures instantiating the recursive program schemes, 
i.e. the interpretations, are represented by means of algebraic specifications, which 
abstract the declarative L~atures of data-types from the implementation details (see 
[18] for a complete survey o n the subject). An algebraic specification is a couple 
(I:, E) where I: is a first-order signature (F, S), Eisa finite set of equational axioms 
on I: and F is a sorted signature with set of sorts S. In the following we use 
algebraic specifications, expressed in the formalism of ASF of [3], to represent the 
data structure list of objects : 

module ListofObjects 
be gin 
parameters 

Object 

exports 
be gin 

end 
variables 

x,y, z 

equations 
[sl] hd[l : x] 
[s2] tl[l : x] 
[s3] O @x 
[s4] x@[] 

l 

[s5] [l : y] @ z 
[s6] x @ (y @ z) 

end ListofObjects 

be gin 
sorts OBJECT 

end Object 

sorts LIST 
functions 

o : 

t] : 

h d: 

OBJECT # 

@: LIST # 

-> LIST 
-> OBJECT 

x 

x 
x 
[l: (y@ z)] 
(x@ y)@ z 

-> LIST 
LIST -> LIST 
LIST- > LIST 
LIST- > OBJECT 
LIST -> LIST 

Algebraic specification can also be used a t object-level in program developement, 
as part of a prototyping language for input programs, by means of interpretational 
implementation of rewriting systems, originated by suitable orientation of equational 
axioms. Beside, when the existence of an initial algebra is granted, the semantics of 
the algebraic specifications is easily at hand. 
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2.2 A Program Transformation Technique: À~generalization 
strategy 

The program transformation strategy given in [17] avoids tenn mismatch uscless for 

folding steps by means of .\-conversion of À-terms. Basically, this strn.tcgy callcd 
À-generalization strategy represents a higher-order variant of the classica! geJJeral­
ization strategy of Aubin described in [2] and consists of a sequence of applintt.ious 
of the following elementary transformation steps: 

~ define a suitable auxiliary function 

~ instantiate the auxiliary function 

" unfold the occurrences of left hand side of input program equat.ions 

~> rewrite program terms according to data-type properties 

" fold the occurrences of right hand-side of the equation defìning t lw llll\i!i11ry 
function equation 

The À-generalization strategy is used, when in the input. progrum, 11 nuvmntcb 
between an expression E [e] an d a subexpression e occurs. In t.his cas<> tlw folding 
steps are not applicable. In order to circumvent the problem, an auxiliary fttac! in n 

Àx. E[x] is defined, linked to E[e] through À-conversion relation E[ej c-• (h ) '· 
allowing folding operations which are not otherwise enabled. This auxilil:'.ry fnncc 
tion meets the ftexibility and the free advantages of À-conversion rulco, nwking 
fold/unfold transformation steps easier to obtain. In [1] we applicd the str11!q~v tn 
transform the naive version of reverse of lists into a less time-consumitq; !l(•fld_JV(' 

one. The fold/unfold transformational steps could be uniformly dPa!t l!t" H·wnt 
ings of program expressions if we see such trasformations in the light of H~·un<iv<> 

program schemes. Given a set of sorts S an d two disjoint S -sign11ttHH~ i' an d 
!P, a system of equations aver F with se t of unknowns <P is an l\- tu pk of (·q 1w 

tions of the formI:= (</J;(xi,l, .. , x;,n;) =t;, i = l..n), where for t'1u:h 1 l ,\', 
ti E M (FU !P, {(x;,1 , ... , x;,nJ ). A recursive applicative pmgmm .~cJanu-r t>l ,., pP,I!1 

(I:, t),where I: is as above and t is a particular term that cun b!" i!if{•rpt('!<"<l t:.~ ~~n 

applicative entry point in the computation of a program. An applicntiv,~ prn,~r.,.m 

is an instantiation of a recursive program scheme under an int.l"rpr!'l.nt;nu w!nd, i;• 
modelized by an F-algebra M. It is nice keeping M in the cnt.-egon o( n,.,.J,-.Jr, l•f 
an equational set of axioms E, so we can benefit of thc in i t iality prop<N! 

associateci algebraic specification (F, E). With such an approacb Il! t ,,,,~p 

could be seen as a rewrite-ruJe·system I:= {t,D;(xi,1, ... ,:r;,n,l ~"~ 1,, t n), 
while a folding step could be seen as the reverse of such a rPllltiou ~.: 1 { 

</i;(x;,l, ... , X;,nJ i = l ... n}. In the higher-order case, wc ha\'P lo jutn 1~·· '~)'!d.Nn··. '~ 
and I:-1 the rules of À-conversion. The advantages to usc rccursh••· prorarn •dwton> 

in program transformation are stated in the following poiut.s: 
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l. the separation of the dat.a strucLures of the input program from its contro! 
structures allows focusing on the interpretation modelized by an algebraic 
specification; 

2. the class of input programs, where the program transformation strategies are 
uniformly applied, is enlarged ( as outlined in [l]). 

Hence, as pointed out in this section, the fold/unfold steps in the transformation 
of applicative programs have proven to be a particular case of term-rewriting. As 
such, in their >-Prolog implementation, they could be dealt with the same generai 
rewrite-rule based techniques we elaborateci for the a!gebraic specifications. 

3 Term-Rewriting Techniques in the Context of 
Program Transformation 

We design the program transformer according to a top-down methodology which 
allows us to distribute the architecture of the program into severa! modules. Term­
rewriting is ubiquitous in fold/unfold strategies, expecially in rewrite-by-lem.ma 
steps. Following a modular style of programming, we bave written a module in 
.>-Prolog containing a specification of a data-type, in our case the data-type list. À­
bounded variables in program expressions need a higher- arder extension of rewriting­
rule; for these reasons we embedded the algebraic specification into a higher-order 
specification Janguage such as .>-Prolog which gives it for free. 

The implementation of algebraic specifications exports a predicate, called reduce, 
invoked every time the strayegy musi. pcrform rewrite-by-lem.m.a steps. The main 
module, containing the program transformer, imports the predicate reduce through 
the top-leve! commands use, import, export of the >-Prolog compiler. 

In the following we give t.wo differcnt. implernentations of an algebraic specifica­
tion of a lists of objects in .>-Prolog. 

3.1 Direct Rewriting Through Higher-Order Unification 
According to the interpret.ational approac.h, u rewrite rule is described as a di-adic 
predicate instantiated wit.h t.hc two sid<'l< of llw rcwrite rule. The main advantage 
offered by higher-order .>-Prolog implr>mcnt alion, is that a suitable higher-order vari­
able, namely H, allows t.he highc-r-ordC'r matching of the extended left band si de 
of the equation with the full input t<•rm. rl('rforming the subterm lookup implic­
itly. The major drawback wit.h t.Jiis lPclllliquc is due t.o the introduction of spurious 
bindings for the variable Il t.o >.-tenns of kiud Àx.s, originated by the application of 
the imitation rule of the higher-onler unifìcntiou algorithm. Consider the following 
example: 
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kind in t type. 
type o in t 
type plus in t -4 in t .... int. 
type reduce A ......; A -+ o . 

reduce H (plus X O) (H X). 

By trying the goal ?-reduce (plus 3 O) Xs, higher-order unification will pro­
duce a disagreement set of the kind { ( (plus 3 O) , H (plus X O) ), ( Xs, (H X) 
) }. Now, the matching procedure will yield two substitutions for H, {H--" x\x} 
and {H_, x\x plus(Hl X)(H2X)}. Only the first substitution will give a correct 
answer {X s _, 3}, the other one results in a spurious one. A way to solve this 
problem would be turning the rewrite rules expressed in form of facts in >-Prolog 
into rules expressing conditional rewriting. Actually, the body of the rule contains 
the specification of the correct binding for H; as for the above example, the program 
line would be substituted by the following: 

reduce (H (plus X O)) (H X) :- context(H). 
context(x\x). 

The definition of higher-order rewriting system given in [19] is consistent with 
the implementation technique given above, to the extent that the matching between 
a subterm and the left hand side of a rewriting rule is automatically computed 
by instantiating the variable H. Of course this implementation technique is no t 
acceptable from the computational point of view, since many solutions produced by 
higher-order unification mechanism would be discarded by the context predicate 
definition, producing useless work of .>-Prolog interpreter, but in anyway, for "small" 
signatures there are no significative problems. 

Another major drawback of these techniques is the unadequacy of dealing with 
bounded variables for truly higher-order rewriting rules. To show this, consider this 
example: 

type [] list A. 
type @ list A-> list A_.. list A. 
type A-> list A_.. list A. 

type reduce A _.. A -+ o. 

reduce (H (Xs @ [] ) ) (H Xs). 

When we try the goal, ?- 'reduce (x\ (x @ [])) Xs, the disagreement set is 
not able to produce the right substitution since the computed answer will never 
bind Xs to a closed term. A partial solution to this problem would be substituting 
the above program line with the following line: 
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reduce (Xs \H (Xs@ [])) (Xs \ (H Xs)). 

However such a solution would result in a loss of generality because a kind of 

first-order /higher-order switch would be necessary. W e adopted this solution in [l J 

because only h1gher-order, bounded variables were used in program expressions. 

We present in the following the implementation of the whole list module that is 
invoked by the program transformer. 

module lists. 
kind list type - type. 
type [] list A. 
type A-> (lst A) - (1st A). 
type h d (1st A) A. 
type t l (lst A) - (1st A). 
type @ (lst A) --+ (1st A) ---> (lst A). 
type extrule (1st A) ---> (lst A) - o. 

extrule 
extrule 
extrule 
extrule 
extrule 

extrule 

context 
context 
context 
reduce 

(Xs\ H (hd [X : Xs] ) ) (H X) context(H). (1) 
(Xs\ H (t l [X : Xs])) (Xs\ H Xs) context (H) . (2) 
(Xs\ H (Xs (Q [])) (H Xs) context(H). (3) 
(Xs\ H ( [] @ Xs)) (H Xs) context (H). (4) 
(Zs\ H((Xs @ Ys) <!l Zs)) (H (Xs @ (Ys <!l Zs))) 

(Zs \ H ( [X : Xs] <!l Zs) l H ( [X 

(x\x) . 
(x\y\x). 
(x\y\y). 

:- context(H).(5) 
(Xs <!l Zs)] )) 

context(H). (6) 

(7) 
(8) 

(9) 
X Y :- extrule X Y. %this is the predicate to be exported 

The mo~ule list exports to the maìn module, which manages the program 
transformatwn strategy, the predicate reduce. 

We have also found that higher-order rewriting techniques, are useful in auto­

matic .executi~n ~f foldin~ steps. To clarify our idea, !et us consider the following 
recurs1ve applicative verswn of the program computing the reverse of a list: 

rev([]) = [] 

rev([hd(l) tl(l)J) = rev(tl(l))©l[hd(l)J 

The application of the À-generalization strategy to the above function will first 

yi:ld .the auxiliary higher-order function g(l) = Àx. rev(l)@x. Through the ap­

phcatwn of a sequence of rewrite-by-lemma steps, we get the program expression 

Àxrev(tl(l))©l[hd(l): x]. At this point, we exploit theJollowing relation among 
À-terms: 

Àx.rev(tl(l))©l[hd(l): x]=>, Àx. [Ày.rev(tl(l))@y] [hd(l) x] (l) 
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Then we apply a folding step to the À-term Ày. rev(tl(l))@ y which, matched against 

the equation g(l) = Àx. rev(l)@ x, gives the term g(tl(l)). Substituting the latter 

term with the left han d si de of equation (l) an d considering this equation as the 

leftmost part of a chain of À-conversìons beginning with g([hd(l) : tl(l]) and obtained 

through the application of the À-generalization strategy, we have a new recursive 

expression of the auxiliary program function g, that will yield a ne w iterative ver­

sion of the reverse function. In this way the folding process could be seen as a sort 

of conditional term-rewriting process, and so logìc programming-style ìmplementa­

tìon is immediate. Besìdes, higher-order unification mechanism inherent to ÀProlog 

provìdes À-term probing for performing foldìng steps of subterms and for replacìng 

them in the originary contexts. In our implementation we obtain the folding steps 

through the following ÀProlog lines: 
fold X\ (K M (N X) ) (X \ Y (N X)) :- reYritefun Y (X\K M X). 

rewritefun (H (g L)) (H (X\ (rev L) ) @ X). 

In these lines the search for foldable expressions is demanded to the instantiation 

of variable M, while folding step is up to the body predicate rewritefun (which 

]s invoked with the first argument uninstantiated) through the instantiation of the 

variable Y. Higher-order variables K and N contro! the context of the program 

expression. In the case we studied, higher- order unification, on invocation of the 

. following goal: 
?- f al d x \ ( re v C t l (L)) @ [ h d (L) : x] (x \ Y C N x)) 

produces the bindings K----; x\ y\(x@ y), N--+ x\ [hd(L): x], M----; rev(tl (L)) and 

Y ----; g( t l (L)), instantiating the second argument of the goal to x\ g( tl (L)) [hd(L) : 

x] , i.e. the left hand side of the new recursive program equatìon. Now, observe that 

the ÀProlog clause fold, does not depend on the particular input program. Also 

rewri tefun is a predicate that could be replaced by a set of predicates that depend 

only from the recursive program scheme associateci to the input program. In this 

way the scope of the strategy can be enlarged to the class of programs instantiated 

the same recursive program scheme. 

3.2 Congruence Closure of a Set of Rewrite Rules 

On account of the drawbacks described in the previous section, we have formulateci 
an alternative version of the list module. In this latter approach, we formulate 
a set of predicates specìfying the elementary rewriting steps and then we expand 
them as respect to the signature. It is a method which grants uniformity as respect 
to signature, avoiding the problèms originated by the use of higher-order variables. 

modula lists 
kind lst type -4 type. 
type [] lst A. 

type A-+ (lst A)---> (lst A). 



type hd 
type tl 
type @ 

re v x ® 

re v [] 
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(lst A) A. 
(lst A) (lst A). 
(lst A)~ (lst A)-. (lst A). 

[] x 
@ x 

re v ( [X : Xs] ® Ys) C [X (Xs@ Ys)]). 
@ z . re v X ® C Y @ Z) (X ® Y) 

rev hd ([X : Xs]) x . 
re v t l ([X : Xs]) Xs 
re v (x \ M x) Cx\ N x) 

pi x \[rev x x=> re v (M x) (N x)] . 
re v (Al A2) (Bi B2) 

rev(Al El) , rev(A2, B2). 
reduce (Xl @ Y2) (X2 @ Y2) reduce Xl X2. 
reduce (Xl ® Yl) (Xl ® Y2) reduce Yl Y2. 
reduce (hd [Xl Xsl]) (hd [Xl Xs2]) 

(1) 

(2) 

(3) 

(4) 
C5) 
(6) 

(7) 

(8) 

(9) 

(10) 

:-reduce Xsl Xs2. (11) 
reduce (t l [Xl Xsl]) (tl [X2 : Xsl]) 

:- reduce Xl X2 (12) 
reduce x y rev X Y . (13) 

The main advantage of this module is that the code lines specifying the congru­
ence closure of the term-rewriting system (lines 9 through 13) are uniform respect 
to the signature of the data- structure. Line (7) allows dealing with À-bounded 
variables by means of \f-bounded variables at propositionallevel, turning the former 
class of variables into a sort of local parameters that could be dynamically reduced 
by means of first-order rules. Informally, we can think of line (7) and (8) as an 
"higher-order closure" of the first-order term- rewriting system. 

4 Conclusions and Future Developments 

In this paper we h ave investigated a particular application of rewriting techniques 
in solving program transformation tasks. We have used the higher-order language 
ÀProlog as metalanguage for implementing rewriting techniques, exploiting in this 
way the higher-order features of the language and the availability of .>..-terms to 
express different operations on programs. 

Beside, our work has pointed out that the use of algebraic specification and 
recursive program schemes in program transformation reduces the problem of folding 
programs expressions to a problem of term-rewriting, to be solved into the theory 
of generalized equational unification. We realized that three kinds of unification 
problems have been involved in our research: the higher-order unification of À­
terms, the higher-order equational specification of algebraic specification and the 
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I:-unification of recursive program schemes. The study of the decidability problem 
in the generai theory of unifcation will be the theoretical support for a successful 
application of rewrite- by-lemma steps leading to signifcant foldings of object-level 
programs. 
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Abstract 

In the framework of a simply typed higher order À-calculus, we study one 
particular possibility of extending the call-by-value semantics frorn first order to 
higher order functions. The basic assumption is to discriminate the undefined 
function from the pointwise undefined function. The calculus is elaborateci 
under two basic aspects, viz. reduction and denotational semantics. 

Keywords À-calculus, call-by-value semantics, strictness, higher order functions 

l Introduction 

' The foundations of functional programming were laid by the À-calculus (for the his-

toric origin see [6] and [8], for recent books [3] and [13]): its conversion rules, viz. 
the a-, /3- and 17-conversion, define the basic equivalence of applicative expressions, 
its models like noo or P"' provide a sernantic universe for interpreting them. At a 
closer look, however, pure .À-calculus does not adequately formalize the semantics of 
an applicative language with a call-by-value sernantics. 

In this paper we investigate one particular aspect of the semantics of a simply typed 
higher order .À-calculus: How to extend the call-by-value semantics from first arder 
to higher functions? This can be rephrased in denotational or operational terms as 
follows: 
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e What is the appropriate semantic domain associateci with higher types under a 
call-by-value semantics? 

o How can the /3-conversion an d the 1)-conversion ( ex:tensionality) of pure À­

calculus be modifìed to meet a call-by-volue semantics for higher order func­
tions? 

For a first order function the call-by-value regimen evaluates the argument before the 
function is applied. Hence the evaluation of an application diverges, if the evaluation 

of its argument does. In the semantic model this leads to strict functions which yield 

undefìned whenever their argument is undefì.ned. 

This suggests to consider strict functions also for higher types. However, this straight­
forward denotational semantics allows no sìmple operational rules. The difficulty lies 
in checking an argument of higher type whether it is different from the least element. 

For fìrst order functìons, the argument is of ground type and can be completely eval­
uated. For a higher type, the test could only be performed by evaluating the functìon 
at al] its arguments in a fair manner in parallel. 

This inadequacy originates from taking the pointwise undefined function as the least 
element in the function space in which the functionals are requìred to be strict. To 

overcome this difficulty, we enlarge the function space by the undefined function which 

ìs properly less defìned than all genuine functions. The undefì.ned function models non­
terrnination when computing the function as the result of a higher order function. 
The poìntwise undefìned function models a well-defìned functional object which is 
undefìned at each argument. 

In the sequel, we explore the consequences of this design decision to the semantics of 
a simply typed higher order À-calculus under two major aspects, viz. reduction and 

denotational semantics. In particular, we characterize the notion of extensionality 
of higher order expressions under a call-by-value semantics and establish the call-by­
value 17-reductìon. In summary, the discrimina.tion between the undefìned function 
and the poìntwise undefìned function allows a coherent framework for higher order 
call-by-value programrning. 

The rea.der should be familiar with the founda.tions of functional programrning, in 
particula.r with term rewriting (for overviews see [9] and [14]), denota.tional sema.ntics 
(see, for example, [17] and [20]) and the underlyìng domain theory (see, for example, 
[12] an d [22]). 

2 Syntax 

In this section we introduce the syntax of the language together with the syntactic 
functions to manipulate expressions. By incorporating suitable typing rules into the 
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inductive defìnition, we only generate well-typed expressions. Hence we care on 
the deduction of expressions without having to treat simultaneously the deduction 
types (as in [4] or [11]). 

We base the language on the :fixed signature I; = (S, K, F) of natural nurnbers 
an d Boolean values comprising the sorts S = {bool, nat }, the constants ](bool 

{ true, false} an d Knat = {zero}, as well as the operators :;::nst->nat = { sncc, 
and P"t-tbool = { iszero}. 

Types are syntactic attributes that impose a discipline on forrning expressions. 

L Definition The set T of types over S is defìned inductively: 

(1) Ground types S ç T. 
(2) Higher types Ifr,s E /,then (r -J> s) E/. 

Types will be denoted by the bold face letters r, s, t. In applicative expressions vari­
ables are bound by abstractions and by (recursive) declarations. 

2. Definiti.on A /-typed variable family X = (Xt)tET consists of countably infi­
nite, pairwise disjoint sets X' of variables. A basis (:E, X) consists of a signature :r, 
and a variable family X disjoint to E . 

2.2 Syntax of Applicative Expressions 

The expression language follows the applicative style of functional programrning. Ex­
pressions of higher types are built over a fìrst order signature. 

3. Definition The farnily EXPR = (EXPRt)tET of (applicative) expresswns over 
the basis (E, X) is defìned inductively: 

(l) 
(2) 
(3) 
(4) 

(5) 
(6) 
(7) 

Constants 
Operators 
Variables 
Conditional 

Application 
Abstraction 
Recursion 

K" ç EXPR" (sE S): 
:r<->• ç EXPRr->• (rr, s ES). 
Xt ç EXPR'. 
IfE E EXPRbool and F, G E EXPR', 

then ifE then F else G fiE EXPRt. 
If F E EXPR<->• andE E EXPR', then F(E) E EXPR". 
If x E X' and E E EXPR", then (.\x.E) E EXPR<->•. 
If x E X' and E E EXPRt, then (J.Lx.E) E EXPRt. 

The language supports the explicit typing paradigm ( originally introduced in [6]) -
an d not the implicit typing paradigm ( [7], [8]), The language corresponds t o the de­
terrninistic kernel of CIP-L ([5]) and to the programrning language PCF for computable 
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functions ([21]). 

4. N otation. Constants will be denoted by c, d, operators by f, g, h, variables by 
x, y, z, and expressions by E, F, G, H. The syntactic equality of expressions is denoted 
by = . In writing expressions parentheses may be dropped with the usual conventions. 

5. Examples 
a) Natural numbers: succn(zero) = succ( ... (succ(zero)) .. . ) (n E .N) ...____,___.., 
b) Addition ofnatural numbers (x E xnat~(nat....,nat), y,z E xnat): 

add=ttx.Ày.Àz.if iszero(y) then z else x(pred(y))(succ(z)) fi 
c) Syntactic error element representing non-termination: errort = ttx.x (x E X t) . 

In particular, error"'"""" will represent the "undefined function". 
d) Expression representing the "pointwise undefined function": 

omega•'"""• = ).y. error" (y E X') . 
e) Constant zero function (x E Xt): constzerot....,nat = >.x.zero. 

Every expression of the language possesses a unique type. The finite type structure 
of the language excludes the self application of expressions. 

W e will no t build the consistent renaming of bound variables into the conversion rules 
([6]). Rather we identify alphabetically equivalent expressions on the syntactic level 
([3], [4], [11]). 

6. Definition The family EXP = (EXP)tET of (a-congruent) expres:oions comprises 
the a-congruence classes of EXPR. k 

The free variables of an expression are not changed by a consistent renaming. 

7. Definition The set of free variables of an expression E E EXP is denoted by 
free(E). The family CMB = ( CMBt)tET of combinators consists of dosed expressions 
having no free variables. 

The substitution [E]~ replaces all free occurrences of the variable x in the expression 
E by the expression F of appropriate type. 

2.3 Values 

To meet the strictness constraints of a call-by-value semantics, we introduce a sub­
family of expressions the syntactic form of which will ensure that they have a defined 
interpretation. 

8. Definition The family VL = ( VLt)tET of values is defined inductively: 

(1) 
(2) 
(3) 
(4) 

Consiants 
Operators 
N o n-zero Numbers 
Abstractions 

/C" ç VL" ( s E S) . 
P'"""" ç VL"'"""" (r, sE S). 
If w E VLnat, then succ(w) E VLnat. 
If x E X' and E E EXP", then (>.x.E) E VL"'"""". 
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Values of ground types denote Booleans and natural numbers, values of higher types 
are operators and abstractions denoting genuine functions. Values are closed under 
substitution. 

3 Denotational Semantics 

In the denotational semantics we concentrate on the strictness properties of the ex­
pression language. 

3.1 Flat Domains 

With the underlying data structure we associate :flat domains with strict functions. 

l. Definition The continuous :E-algebra A consists of the carrier sets boolA = 
{-.Lbooi,T,F} and natA= {l_nst,0,1,2, ... }, the constants trueA =T, falseA = F 
an d zero A = O, an d the operations succA, predA: natA -7 natA an d iszeroA: natA --+ 
boo!A with the usual interpretation. 

3 02 Domain of Strict and Continuous Functions 

With function types one usually assocìates the domain of continuous functions. 

2. Definition For complete partial orders 'D= (D,ç;D,l_D) and R = (R,ç;;R,l_R), 
([D --+ R], ç;;, [!D'"""R) denotes the cpo o[ continuous functions from D to R with 
the order f ç;; g iff f(d) ç;;R g(d) for all d E D. The poìntwise undefìned function 
[!D'"""R: D--+ R with [!D---+R(d) =l_ R for all d E D is the least element. 

To meet the call-by-value semantics we select the subspace of strict and continu­
ous functions. For complete partial orders 'D and R, the set [D ~ R] of strict 
and continuous functions forms a subcpo of [D --+ R]. Moreover, the retraction 
strict: [D --+ R] --+ [D ~ R] given by strict(f) = f[l_ D/ l_ R] is continuous; here 
.[.j.] denotes the update operation on functions. 

3.3 Lifting the Function Space 

The lift attaches a new least ele'ment to a domain. 

3o Definition Fora complete partial order 'D= (D,ç;;D,l_D) the lifted complete 
parti al order 'D .1. consists ofthe set D .1. = (D x {O}) U {l_} endowed with the or der 
relation x ç;; y iff x= l_ or x= (d, O) and y =(e, O) and d ç;;D e. 

For a complete parti al or der 'D= (D, ç;; D, l_ D) the lift 'D .1. = (D .1., ç;;, l_) is a complete 
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partial order. The rnappings in: D--+ D.1 with ·in(d) =(d, O) as well as ou.t: DJ.--+ 
D with aut( _L) = _L D and aut( d, O) = d are continuous with aut o in = id v and 
in o aut :;;) idv.L. 

4. Definition For epos D an d R, the lifted functio11 space [D --"+ R]J.D->R is the space 
of strict and continuous functions extended by the undefined function j_ D-+R. The 
apply operation apply: [D--"+ R].ln.-,R x D--+ R is given by apply(f, d)= ( out(f))(d). 

The undefi.ned function _L D-+R is properly less defi.ned than every genuine function, in 
particular less defi.ned than the pointwise undefined function o,D-+R The undefined 
function denotes expressions of functional type with non-terminating cornputations 
whereas the pointwise undefined function denotes abstractions that lead in every 
application to a non-terrninating computation. The lifted function space integrates 
two orders: a function can be applied as an operator to an argument - this leads 
to the pointwise order on the space of genuine functions. But a function can also be 
the argurnent of a higher order function - this leads to a fl.at order on the extended 
function space. 

:3.4 Interpretation of Expressions 

First we associate complete partial orders with the type system. 

Definition The interpretation of the types is defi.ned inductively: 

(1) [s] =sA (sE S) 
(2) [r--+ s] = [ [r] --"+ [s] ].ir_,, 

Valuations record the binding of variables to semantic elements. 

6. Definition A valuation p= (/: xt--+ [t])tET is a family of rnappings associatìng 
elements to variables. The environment ENV denotes the set of all valuations. 

1. Definition The interpretation [.] = ([. ]t)tET of applicative express10ns 1s a 
family of mappings [. ]1: EXP--+ [ENV--+ [t]] defined as follows: 

(l) [c]"(p) =CA 

(2) [ff-+•(p) = in(!A) 
(3) [;v]t(p) = pt(x) 

(4) [ifE then F else G fi]t(p) = J t;]'(p) l [G]'(p) 
(5) [F(E)]"(p) = (out([F]<-+•(p)))([E]"(p)) 

if [E]bool(p) = j_booi 
if [E]bool(p) =T 
if [ E]bool(p) = F 

(6) [> .. x.E]r-+"(p) = in(strict(d >--+ [E]"(p[x/d]))) (d E [r]) 
(7) [J.Lx.EY(p) = J.L(d >--+ [E]'(p[x/dJ)) (d E [t]). 

Above J.L denotes the least fixpoint operator. Two expressions E, F E EXP' are 
called (semantically) equivalent ( denoted by E ;::;t F), if for ali p E ENV we ha ve 
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We illustrate the interpretation assigned to the e:h."Jlressions denoting the 'undefined 
function' and the 'pointwise undefined function'. 

8. Example 

[ errar-t•] (p) 
[J.Lx.x] (p) 

[ omegar-+•] (p) 
[Ày. errar"] (p) 

J.L(f >--+ [x](p[x/ f])) 
J.LU >--+ f) 

in(strici(d >--+ [error"](p[y/d]))) 
in(strict(d >--+ j_l•l)) 

_L[r]-+[s] in (siri et ( Dir]-+[•])) 
in(Dir]-+1•1) 
( n!r]-+[•]' o) 

Values have a defined meaning in ali environments. 

9. Proposition Forali p E ENV and W E VLt we have [W](p) =/=_L t. 

4 Reduction 

The reduction aims at simplifying an expression completely to some normal form. 
The confluence (terrnination) of the reduction relatìon ensures that every expression 
has a t most (a t least) one normal form. 

4.1 Basic Reduction 

The reduction comprises the execution of basic operators ( 8-reduction), the simplifica­
tion of the conditional ( ')'-reduction), the application of an abstraction to an argument 
(;3-reduction), and the unfoldìng of (recursive) declarations (tt-reductìon). 

1. Definition The one-step r-reduction --+.= (--+~)tET with rE {J,')',JJ,tt} is the 
least family of compatible relations --+! on EXP' with 

5-reduction pred( zero) --+f"t zero 
pred( succn+l (zero)) --+§"' su cc n( zero) (n E N) 
iszero(zero) -+f001 true 
iszero( succn+l (zero)) --+f001 false (n E N) 

')'-reduction l.f true then F else G fi --+; F 
if false then F else G :fi --+~ G 

(J-reduction (>.x.E)(W) --+{3 [E];v ·:-';• Ì' •!:'';:,;:', 

J.L-reduction ;.tx.E -+t [E]~"'·E. 

The r-reduction ---l?r is the ref!exive transitive closure of --+, ; the r-equivalence ==:, is 
the symmetric transitive closure of --l?, 
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In a /J-reduction the argument W is substituted for the bound variable x into the body 
E of the abstraction Ìlx.E. For a call-by-value semantics, it is essential to confine the 
argument expression to a value. 

2. Notation For R ç {8,ì,/J,.u} the relation --+R denotes U"ER --+,; rnoreover -*R 
is the re:fiexive transitive closure of--+ R, '=R is the equivalence closure of---* R 

The elementary properties of the reduction are surnmerized in 

3. Proposition. 
a) (Substitutivity) 
b) ( Substitutability) 
c) (Free Variables) 
d) (Values) 

IfE--+" F, then [EJ: --+r [FJ: (rE {8,ì,/J,.u}). 
IfE -*r F, then [GJ~ -*r [GJ~ (rE {tl",ì,/J,.u}). 
IfE -*o-y{3,. F, then free( E) 2 free( F). 
If W E VLt and W -*o-rf3,. E, then E E VLt . 

The reduction properties of this language, extended by the smash product, rnultiary 
functions and the treatrnent of the finite error, but without extensionality were stud­
ied in [10]; we cite two relevant results: 

4. Theorem --+a-yf3!' is confluent and --+o-yf3 is Noetherian. 

As an immediate consequence the expression for the unde:fined function and the point­
wise unde:fined function are not OìfJ.u-convertible. 

5, Corollary errorr-+• ::f=o-yf3f' omegar-H . 

The reduction relations respect the assignrnent of meanings to expressions. 

6. Theorem (Soundness) IfE '=é-yf3J.L E', then E ~t E'. 

4.2 Extensionality 

The extensionality states that a function is completely deterrnined by its application 
to argurnents. In the À-calculus the extensionality can equivalently be characterized 
by the ry-conversion or the rule ( ext). 

4.2.1 ry-Reduction. 

When adding the classicalry-reduction to the calculus, we loose the confluence of the 
overall reduction relation. Hence we suitably modify the ry-;~d~ction rule to meet the 
call-by-value semantics for higher arder functions. 

7'. Definiti o n The one-step call-by-value ry-reduction --+'l= ( --+;)tET is the least 
family of compatible relations --+~ on EXPt with 

If x tf. free(W), then Àx.W(x) --+~-+• W. 

The basic reduction properties are surnmarized in 

8. Proposition 
a) (Substitutivity) 
b) (Substitutibility) 
c) (Free Variables) 
d) (Values) 
e) (Soundness) 
f) ( Confluence) 
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IfE --+'l F, then [EJ; -+'l [FJ;. 
IfE -*'l F, then [GJ: -*'l [GJ~. 
IfE ---* 11 F, then free( E)= free( F). 
If W E VLt and W ---+t'l E , then E E VLt . 
If E ='l E', then E ~ E' . 
--+'l is strictly confluent. 

4.2.2 dìfJ.U7J-Confluence 

Next we aim at establishing the confluence of the overall reduction relation. To this 
end we investigate how the ry-reduction cooperates with the other reduction relations. 
For pure Ìl-calculus, the /Jry-con:fl.uence was :first proved in [8]. 

9. Definition Let -+r, --+, be two reduction relations on EXP. The relation -+r is 
said to commute with --+,, iffor allE, F, G E EXP with E -*r F andE ---*• G there 
is an H E EXP with F ---+t, H and G ---*• H. 

Thus a reduction relation on EXP is con:fl..uent ìff i t comrnutes with itself. 

10. Proposition -+o-yf31-'- commutes with --+'1 . 

Usìng the 'Lemma of Hindley and Rosen', we obtain the main result of this section: 

11. Theorem -+a-yf3f'TI is confluent. 

This deduction result shows that the call-by-value ry-reduction neatly fìts into the 
calculus. 

4.3 Relating Denotational and Reduction Semantics 

The simple results from first arder functions over :fl..at epos (compare, for example, 
[15], Section 5.3) do not carry over to higher arder functions, since the corresponding 
function spaces are non-:fl.at domains. First we note that an eJ,:pression with an unde-
:fined meaning cannot reduce to a value. · 

12. Proposition If [E](p) = J.t andE -*~"''f31-'-(7J) E' then E' tf. VLt. 

In particular, a closed expression with an unde:fined meaning has no normal form. 

13. Propositi.on No E E CMB with [E](p) = J.t for some (and hence for 
p E ENV has a dì,B/1('11)-normal form. 

On the contrary, if a closed expression with .a de:fined meaning has a normal form, 
then it is a value. 

14. Propositi.on IfE E CMBi has a tlì,B,LL(ry)-norrnal form, then [F](p) f. l t for 
some (and hence for all) p E ENV. 
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A closed expression of higher type with a defined meaning need not have a normal 
form. 

15. Example The expression constzerot--+nat for the constant zero function has a 

0/,Bp-normal forml since it is in O,,Bp-normal form. The pointwise undefined function 

omegar--+s has no 0/,Bp-normal forml since i t p-reduces only to itself. Both expressions 

are closed and have a defined meaning. The same argument holds for their o1 ,Bpry­
ilormal forms. 

In summaryl we get the following adequacy result for closed expressions of arbitrary 
type. 

16. Theorem Forali E E CMB 1 with [E](p) =f: .1..1 for some {:nd hence forali) 

p E ENV there exists U E VL1 with E --*o-r/31" U. 

For ground typesl the adequacy result can be strengthened. 

17. Corollary Let E E CMB" with s ES. If [E](p) = [U](p) for some U E VL" 
and p E ENVl then E --*0-r/31" U. 

Cor. 17 does not hold for higher types since functions can be represented by equivalentl 

but non-convertible expressions. 

18. Example The expression constzeronat--+nat for the constant zero function is a 

value and ·semantically equivalent with (z E xnat--+nat l x E xnat) 

nat--+nat , 'f · ( ) h ( reczero = pZ.AX.l zszero x t en zero else z pred(x)) fi. 

The expressions constzeronat--+nat and reczeronat--+nat are not convertible. In particu­

larl we do not have reczeronat--+nat --*o-r/31" constzeronat--+nat . 

5 Conclusion 

The reduction can be narrowed to an operational semantics by endowing it with an 

evaluation strategy. The operational semantics is a non-compatible relation usually 

de:fined by structural transition rules. 

The evaluation relation ::::}= (=>1)tET of expressions comprises the local transitions 

pred( zero) ::::}nat zero 
pred(succn+l(zero)) ::::}nat succn( ... 
iszero(zero) ::::}bool true 

· r·o) (n E N) 

iszero( succn+I (zero)) ::::}bool false 
if true then F else G fi ::::}1 F 

(n E N) 

if false then F else G fi :::}t G 
(Àx.E)(W) =>" [E];v 
px.E =>t [E]~"-E 
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equipped with the strategy 

IfE ::::}bool E' l then ifE then F else G fi =>t ifE then F else G fi ; 

If F =>......," F', then F(E) =>" F'(E); 
IfE =>r E' l then F(E) =>" F(E'). 

Thus in a conditional expressionl the condition is evaluated :first. In an application, 

the operator is evaluated and - according to the call-by-value strategy - also the 

operand. 

The evaluation relation is con:fl.uentl since it contracts only disjoint redexes. In con­

trast to reductionl the evaluation simplifies an expression ofhigher type only partialiy, 

since the body of an abstraction is not evaluated. Therefore an expression may have 

an :::}-norma! form, although is has no o,,Bp-normal form. 

In particular, the expression omegar--+s denoting the pointwise undefìned function 

is in ::::}-normal forml although it has no 0/,Btt-normal. form. On the contraryl the 

expression errorr--+• denoting the undefined function ha.s.neither a :::}-norma! form nor 

a o'"Y,Btt-normal form. This different evaluation behaviour of the expressions omega<~• 

and errorr--+s motivated the presented semantic model which carefully discrirninates 

between the undefìned function and the pointwise undefìned function. 
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Abst.raet 

Object.-orienl.ed progra.mming has proven t.o be appropriate for the construction of complex 

software systems. Cln the other hand, logic progra.mming stands out for its decla.ra.tive flavor, 

built-in inference cn.pa.bilities a.nd well defined semant.ics. 

We present a la.ng,uage, called 100, which combines object-orient.ed programming a.nd 

]ogic programming. We mode! classes a.s sets of clauses which represent their methods. An 

object is an instance of a class and i t. is identified by a unique name. W e use a. set. of opera.tors 

aver theories far ha.ndling state changes and for modeling inheritance. A message sent to 

an object is transla.ted into a. goal which is solved with respect to a dynamic composition of 

clauses representing its class a.nd its current state. 

The challenge lies in avoiding the superimposition of a complex: syntactic and semantic 

structure aver t.he simple structure of logic programming. W e h ave tried to extend logic pro­

gramming in a conservative wa.y as much as possible, in arder to retain a simple and clear 

sernantics. 

Keywords : Logic programming, Object.-Oriented progra.mming, Program composition, Se­

ma.ntics 

l Introduction 

Our long term goal is t.he clefinit.ion of a unified la.nguage a.imed at integrating the functiona.lities 

of programming, program specifica.tion, databases. lmowledge representation an d problem solving. 

There are at. leasi two rea.sons for this endeavor: int.egrating clifferent proposals in a common 

setting in order to have a. common semantic. foundation which allows a deeper comparison, and 

having a single language which mn be used during the various phases of software production1, 

from the requirements a.nalysis down to the program solving the inìt.ial problem. Nowadays such 

a language does not exisl., but we believe tha.t the merging of two complementary paradigms, i.e. 

Object-Oriented Programming (OOP) a.nd Logic Programmìng (LP), can yìeld it. 

Logic programrnìng combines clean a.nd simple semantics, ease of use and expressive power. 

lts development, howe,·er, has show11 that the basic formalism of Horn cla.uses does not suflìce 

to dea! with severa! c.omputing problems. In this pa.per, we focus upon the limitation of logic 

programming deriving from the lack of abstra.ction mechanisms for structuring a.nd modularizing 

programs. A logic program consists of a fla.t set. of clauses and does not embody abstraction 

mechanisms which help in ma.stering the complexìty of realistica.lly sized applìcations. On the 

other hand, the OOP (see, e.g. [11, 12, 13]) is recognized as an excellent vehicle to simulate 

physical worlds, since physical entities and menta! concepts can be directly represented as objects. 

Interactions among objecl.s are modeled by message exchange. Every object belongs to a class 



m 
specifying the interface nf the object with the extema! wotld (that ie the SBt. of messages accepted 
by the objects of the class). Classes also serve as templates for creating objects with the specified 
interface and implementation behavior. Inheritance is a mechanism for sharing the code common 
to a collection of classes. Inheritance collects ahared properties of classes into superclasses and 
reuses them in the definition of subclasaes. This allows an incrementai style of programming. In 
fact, ìt is not necesaary to modify the code of existing classes but it is possible to create new classes 
by specifying how they differ from those already defined. H is evident that, via inheritance, we 
can ha ve forms of non-monotoni c reasoning. 

'I'he main advantage of extendìng LP with OOP features is the acquisition of the OOP paradigm 
as a guiding principle for writing programs. This offers a simple but powerful mode! for encoding 
applications as computational entities, or objects, which communicate each other via message 
passing. An object is encapsulated: a client can access objec.ts only by issuing requests for services. 
Clients cannot directly access or manipulate data associated with objects. In this way we increase 
LP with a form of abstraction and with the possibility of having inforrnation hidìng. The dasa 
construct removes one of the wealmesses of LP, namely the lack of structuring mechanisms for 
programming in the large. 

Nevertheless, most 00 programming languages do not have formai semantics. Hopefully, valid 
semantics insights can be gained by integrating an 00 programming language with a logic based 
language. Moreover, even if 00 languages provide good abstraction mechaniams for structuring 
software, they do not support a declaratìve specification of software. If we combine OOP with LP 
we can use an 00 approach for the representation of the problem domain and we can use logic to 
set constraints and rules. 

The ma.in obstacle to the integration seems to be that the LP paradigm does not support the 
notion of a mutable state which is an essential feature of the 00 paradigm sin ce i t allows to mode! 
the inherent dynamics of physical entities. A mutable state implies a certain form of non-monotonic 
reasoning, since assertions which are provable in a given state may become invalid after a state 
change. The standard mode! theoretic semantica of LP disallows this non-monotonic behavior. 

In the literature, many approaches to the integration of logic and object-oriented programming 
have been proposed. The survey by Davison [6] is a good, generai introduction to these languages, 
showing how they dea! with the representation of objects and classes, message passing and in­
heritance. The first proposal we mention bere is McCabe's objects as theories (9], where objects 
and classes are represented by meana of a single construct, the class temp/ate. A class template is 
formed by a set of ciauses labeled with a Prolog term an d a set of class mles which mode! inheri­
tance. However, Mc Cab e do es no t give state changes a logical characterization. On the contrary, 
Conery [7] wants just to mode! objects with changing states. He has adopted objects as atòms. 
Classes are defined through object dauses, i.e. clauses containing a conjunction of two atoms in 
their head. Roughly, the lìrst head atom represents the object and its state, and the second atom 
represents a method. Finally, objecis as processes were first proposed by Shapiro and Takeuchi 
(lO]. An object is represented as a process which calls itself recursively an d holds its interna! state 
in unshared arguments. Objects communicate with each other by instantiating shared variables. 
This approach deals with the representation of state in a sìmple manner, an d allows concurrency 
a t the inter-object leve!. However, the sema.ntics of languages based o n this approach are qui te 
complex because of the interaction between concmrency and Horn clause !ogic. 

The proposal of this paper builds upon a long atream of resea.rch on the use of a!gebras of logic 
programs as a meana for ìmplementillg common senee reasoning and program struduring [1, 3, 8]. 
In order to combine OOP and LP, we extend the language presented by Brogi et al. [4], which 
a.lready offers basic mechanisms for building object-oriented featurea into iogic programming. The 
advantage of our approach with respect to many othera which have been proposed [6] is in the firm 
rooting of the semantics in a conservative extension of the semantics of pure logic programming. 

2 Prog:ram exp:ressions 

'I'he starting point of our work is the language of prograrn expressions de~ned in [l, 3, 8]. This 
Janguage is a conservative extension of logic programming consisting of movmg frorn a s1~gle log1c 
program to a collection of logic prograrns (theones), 1dentlfied by names. Bes1des 1t prov1des a set 
of cornposition operators over such programs. . 

The language of program expressìons Ez:p is defined by the followmg a.bstract syntax: 

Exp ::=P l Exp U Ex p l Expn Exp l (Exp)' l Exp <l Exp l Ex p;-< P 
i.·, . 

where P is a plain program, i.e. a collection of clauses. . . . 
The semantics of a plain program P is taken to be 1ts 1rnmed1ate consequence operator T p. 

This eh o ice allows o ne to give the semantics of the operators, U n * <l -<, in a compos1twnal way 
by expressing the meaning -of a program expression in terms of the meanin?s of its component su~­
expressions. Informally, union (U) and intersection (n) of program expresswns lead to behavwrs m 
which programs either cooperate or constrain each other .step .by step [l, 3]. Encapsulatwn (*) !S 

a unary operation which supports a form of implementatwn h1dmg. The code of an encapsulated 
program is hidden to other programs, thus making the program behave d1fferently when comb1~ed 
with others via binary operators. The import operat10n ( <1) allows one to have a ~ne gramed nohon 
of informatìon hiding/export [1, 3]. Finally, the restriction operator, Q -< P, dwcards the clauses 
of a program expression Q which define predicates already defined in the program P.. . . 

These operators can be exploited to support notions ofmodule and module compos1tlons wh1ch 
encompass the essen ce of conventional modular programming lang~~ges, su:h as .Ada [3]. M~reover, 
they can suppor t forms of hierarchical reasoning, that 1s the defimtwns of m.her1tance relatwns be­
tween programs. For instance, the relation isa, whìch will be used m our obJect-onente~ language, 
can be defined a.s follows. Let P and Q be logic programs, then P isa Q meana that P mher1ts al! 
the predicate definitions frorn Q, except for the predicates defined in P. This hierarchical relation 
can be modeled by the composition P U (Q-< P) (see [l]). . 

This !anguage of program expressions is employed as a meta-language for cornposmg programs 
written in a separate language, namely definite programs. In [4] a single language amalgamatmg the 
language in which programs are written ( object language) an d the la~guage of prog~am e~resswns 
(meta-language) is presented. Namely programs are e~tended defimte .progra.ms m wh1.ch cla~se 
bodies may contain meta-leve! calla to program expresswns. More prec1sely, a.pr~gram 1s a fim~e 
se t of extended definite clauses of the form A >---- B1, ... , B,. where each Bi 1s e1ther an atomtc 
formula or a meta-leve! formula of the forrn B in E, where Bis an atomic formula and E is a 
program expression. . . 

The in feature can be interpreted as a means of sendmg messages from a vntuai program to 
another virtual pmgram. Here, by virtual program we mean the co!lectìon of dauses which can be 
proved frorn a program expression. . 

Therefore, the amalgamated !anguage can mode! message passing an.d inhe~itance. However, 1t ' 
is not suited to represent knowledge evolution because prograrns are atlll stat1c and the l<mgua.ge 
does not support any mechanisms to change them. We rnust extend the amalgamated language 
wìth conetmc.ts to dea! with classes an d with a notion of state in order to cope w1th the dynam1~ 
evolution of lmowledge bases. 

3 Syntax of LOO 

The main constructs of the language LOO are: 

., claBilldeCl(Pred_list) {Clauses} 

wi.th lnitiaLState 

to dedare a c!Ms; 

l 
l 
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© new(IdeCI,IdO) to create objects; 

., update( {X <-}) to change the state of an object; 

" A in O to mode! message passing. 

IdeC/is a constant which identifies the dasa. A class has three components: a set offresh state pred­
icate names (Pred_list), a se t of extended clauses ( { Clauses}) an d a set of uni t clauses (InitiaLState). 

A state predicate is a predicate that can be modified by the update predicate. It cannot be 
defìned inside { Clauses}, where, however, it can be used. Indeed state predicates are the only 
predicates whose definitions can be changed. They fulfill a role similar to instance variables in 
conventional 00 programming languages. 

{ C/auses} is a theory with extended c!auses ofthe form: A+-- B1 , ... , Bn(n 2: 0). A is an atom, 
whose predicat.e name is neither update, nor new, nor a state predicate, and B; is either: 

" an atom p(t1 , ... , t m) where ali ij are terms which might include the sel:fkeyword an d p can 
be a state predicate, or 

., a meta-leve! formula B in O where B is an atom an d O can be a variable, an object identifier 
or the self keyword, or 

" a meta-leve! formula new(IdeCl, I dO) where IdeCI is a class name or a variable and I dO is 
an object identifier or a variable, or 

" a meta-leve! formula update( {q(t1 , ... , tk) <--}) where q is a state predicate. We suppose that 
if update is the predicate of B; then update is the predicate of every Bj (i:::; j:::; n), too. As 
a shorthand, update({X1 <--, ... ,Xr t-}) stands for update({Xl <--}), ... ,update({Xr <--}). 

The constraint that requires updates to appear only at the end of clause bodies, goes in the 
direction of keeping method definitions as dec!arative as possible by compelling assignments to 
occur only at the end of the computation of methods. 

The seif keyword is used to perrnit self communication. It is a special term which has a value 
dependent on the context: i t stands for the identifier of the active object. W e shall further explore 
the role of self in Section 4.3. 

InitiaLState is a set of unit clausea which define the state predicates of the class. We can 
consider these definitions as default de:lìnìtions: when an object of the dass IdeC/ is created its 
initial state is just this set. of uni t clauses. 

An object is created by the ne w predicate. new(IàeCl,IdO) meana that an object identified by 
I dO and belonging to the dass I de C/ is created. I dO, a ground term, is the unique name of the 
object: this name models object identity. Indeed an object is an instance of a class: it hM the 
methods defined in its class and ìts own state represented by a virtual program of unit dauses 
defining the current values of its cl<lll!s state predicates. In this way the set of da.uses modeling 
an object is obtained by a meta-leve! composition of these two theories. This view of an object is 
similar to [5], where, however, there is no notion of dasa. 

It is worth observing that the theory { Clauses} of a cla.ss is a sort of parametric theory where 
parameters are just the state predlicates. The fact that state predicates have no clefinition in 
{ Clauses} allows us to modify their values simply by combining { C/auses} with different seta of 
uni t clauses defining the current values of state predicates. In fact, this is how we implemeut state 
changes. The resolution of updat:e( {X <-}) modifies only the state theory. 

The meta-leve! formula A in O is used to send the messa.ge A to the object O. Conceptually, 
the message is treated as a goal to be solved by using the clauses that mode! the object O, that is 
A must be sol v ed in the composition of the class of O with the current state of O. 

In or der to re! ate different classes to each other by meana of inheritance, inside { C!auses} w e use 
unit dauses of the kind: link(Super) <- where Super is a claas name. Supe?' is a superclass of 
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the dass Id e Cl which identifies { Clauses}. It 'is worth noting that this language naturally supporta 
multiple inheritance by allowing more than one link clause in { Clauses}. 

The inheritance rules state that a subdass inherits state predica.tea an d rnethods from ìts super­
class(es). In addition to the inherited state predicates, a aubclooa can dechre fresh state oredicate 
names, different from inherit.ed ones. Methods in the subclasses override inherited met.hods. 
According to these rules, we define the function StatePred : Class -+ Pred as follows: 

For each I dC/ E C/ass dedared by 
dasa IdCl(Pred_/ìst) {Ciauses} 
'>'lrith I nitiaLState 

{ 
Pred_/ist 

StatePred(IdCl) = Pred_list Un 
if no link dauee belongs to { Clauses} 
if link(Super) <- belongs to { Clauo~es} 
ancl StatePred(Super) =n 

For each class, this function returns, as its value, the set of ali its state predicates, both proper ones 
an d inherited ones. Class is the se t of ali class names an d Pred is th.e powerset of state predicate 
names. In the above definition ·we support on!y sìngle inheritance, even though it is easy to extend 
i t in order to dea! also wit.h multiple inheritance. In fact, in this case we have more than one link 
dause. Therefore, TI is the union of ali the state predicates of these superclasses. 

Finally, a JLOO program is a set of class declarations along wHh a main program. A main 
program is an extended program, where the meta-predicate new is used to create objecis, and the 
meta-predicate in is usedl to senà messages to the newly created objects. In the main program we 
cannot use the updàte predicate and the self keyword because such a program is not an object, 
whereas ·11pdate and self are only related to object management. 

'With respect to the arnalga.mated language of [4] we have a further level of abstraction rep­
resented by objects. Besides, the operatore for building program expressions are used here as 
implementation means for the realization of the object-orientedl features of LOO. O n the other 
hand, program expressions are not allowed in the in construct where one can refer only to objects. 

In the next section we will see how program expressions are used to implement the object-orientecl 
features of our language. 

Example 1 W e preseni the classes stack and stacknum ihat is a subclllssofsta.ck. In sta.clmum 
we h ave added a s,t_a,t~ pr_erli.c!lt~ storing the number of elemento in the ata~k. - - --

dass stack(list) 
{push(X) +- list(S), 

update( { list([X l S]) ,_..}) 
pop(X) <-- list([X l S]), 

update( {list(S) <-D 
1:op(X) '-- list([X l S]) } 

with { list(O) <--} 

'The main program is: 

P: r(o) +-

dass stacknum( num) 
{push(X) ,_ list(S), num(N), 

update({list([X l S]) +--, num(s(N)) +--}) 
pop(X) <- list([X l S]), num(s(N)), 

update( { list( S) <--, num( N) <-}) 
link( stack) +--} 

with { num(O) +-, Jist(O) +-} 

go(X) <- new(stack, st),push(X) in st 
p( X, Z) <-- pop(Y) in X, top(Z) in X 
q( X) <-- ne w( stacknum, X), r(Y), p·ush(Y) in X 

In order to illustrate the use of StatePred, notice that 
StatePred(stack) = {list} and StatePred(stacknum) = {list, num} 
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4 Semantics of LOO 

W e present a semantics for the language by means of a transition system, called 5099 . I t has 
two types of configurations: 

" (E, P, I dO, G) representing that the goal G has to be solved from the multi-object environ­
ment E: and by using the clauses of P; 

., (E, P, I dO) representing a terminai configuration. 

Formally, the set of configurations of the 5099 system is: 

fogg ={(&,P,IdO,G)I&EEnv, PEPExp, IclOEObjU{main}, GEGoal} 
U {(E,P,IdO} l E E Env, P E PExp, IdO E ObjU{main}} 

W e now describe the various components of a generi c configuration (E, P, I dO, G}. 
E is the multi-object environment which represents the set of objects that have been created 

up to now. For each object, we are interested in its narne, the class it belongs to, and its current 
state. This set is denoted by a sequence defined by the following abstract syntax: 

Env ::= 01 (I dO, Cl, S) l Env :: Env 

where Cl E Class, IdO is an object identifier and S is a program expression formed by theories 
defining only state predicates and composed together via the isa operation. 0 represents the empty 
sequence: no object has yet been created. Via the new predicate we add new tuples, that is objects, 
to the environment, whereas via the update predicate we replace tuples of the environment with 
new ones where only the third component, that is the state, ha.s changed. 

P is a program expression which represents the theory where the goal G is executed. Initially, 
P is the main program. Then, when a message is sent to an object O, P becomes a program 
expression representing the theory associated with the object O. The set of program expresaions 
P Exp is defined by the following a.bstract syntax: 

PExp ::=P l PExpU PExp l Pisa PExp l PExp-< P l (PExp)* 

where P is a collection of extended clauses as defined in Section 3. When we use a class name in 
a program expression, this na.me stands for the theory { Clauses} of this class. In the following, 
program expressions are ranged over by calligraphic capitai lettera, such as P or Q, while plain 
programs are ranged over by plain capita! lettera such as P or Q. We have considered a subset of 
the language of program expressions defined in Section 2 because U, -<, * and isa suffice to support 
the object-oriented features. 

I dO is ma in when P is the main prograrn. Otherwise i t is the identìfier of the object in which 
we solve G. Any change, determined by G provability, affects the state of IdO. Obj is the aet of 
object identìfiers which are ground terms. 

G is the goal to aolve. G may contain atoms whose predicates are defined in the main program, 
or whìch can create objects by new, or which can send messages to those objects via meta-leve! 
constructs of the form A in O. Goal is the set of dausea of the form .--- B1, ... , Bm where B; can 
be: 

- an atom p( t l, ... , tn); 

- A in O where A is an atom and O can be a variable or an object identifier or the keyword self. 

Terminai configurations are characterized by the lack of the Goal component: if we have 
(t:, P, I dO, G), as initial configuration, and we derive a terminai configuration from i t, this deriva­
tion is a refutation for G. 

Given a generic program with maìn program P and a genera! goal G, then the initial configu­
ration of the system Sogg is: (0, P, main, G). 

A criticai issue is the kind of inheritance supported by the language. In fact, in logic program­
ming, the knowledge about a predicate is available at two different levela: the intensiona/ and the 
extensionallevel. The former is represented by the collection of clauaes defining the predicate. The 
latter ia the set of atomic formulae provable for thal predicate. For example, consider the following 
program (the main program is empty) : 

claas Ch() 
{r(a) +-

p(X) +-- r(X)} 
with {} 

class C/2() 
{r(b) <­

link(Cld <-} 
wi.th {} 

and the goal+-- new(C/2 , ob),p(X) in ob. 
If we use atomic inheritance (extensional leve!) the computeci answer substitution is {X +- a} 
because ob inherits the relations p, r from the superclass C/1. On the other hand, if we adopt 
inheritance at an intensional leve!, ob inherits the definition of p, i.e. the clause p( X) +- r(X), 
from Cl1 and hence computes {X<- b} as an answer substitution since the derived goal r(X) is 
solved using the definition of r in C/2 , which overrides the definition in C h. 

In the next section we show how the inference mles can accommodate both approaches to the 
semantica of inheritance. 

4!.1 Atomic Inheritance 

The definition of the transition relation is given by rules of the form 

where r _,. -y' ( Conclusion) holds whenever C1, C2 , ... , Cn ( called Premises) hold. Besides we use 

the notation r ~ -y' to indicate that e ia the computeci answer substitution for the variables of 

h l · fi · d e * 1 h . d . . e, o, e; t e goa m -y con gurat10n an -y -+ 1 to express t at ex1sts a envatwn /o -+ il -+ ... -+ "(; 

satisfying ro = r, "li= -y' where -y' is a terminai configuration, ande= el o ... o 9;. 
Let us first present the transition rules ((1)-(5)) to derive new configurations when P is a 

complex expression. The meaning of the operators U, *• -< and isa is not modified, but it is simply 
adapted to the multi-object environment. 

(E,P,Ogg,A) ~ (&',P,Ogg,G) 
(l) 

(E, P u Q, Ogg, A)! (t:', P u Q, Ogg, G) 

(t:, Q, Ogg,A) ~(E', Q, Ogg, G) 
(2) 

(&,P U Q, Ogg, A)~ (E', P u Q,Ogg, G) 

These rules state that either program may be used to derive a new configuration. Since any 
subexpression (P or Q) can contain an encapaulated subexpression of the form n•, the overall 
environment can be modified, as we are going to explain next. 

o • 
(E,P,Ogg,A)-> (&',P',Ogg) (3) 

(E, P", Ogg, A)~ (E', p•, Ogg, empty} 
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This rule states that we can derive a new configuration if A is provable in P. The resolution of A 

may involve sta.te changes which may modify the overa.ll environment. 

(E, Q, Ogg,A) ~(E', Q,Ogg,G) 
pred(A) rt defs(P) 

(E, Q-( P, Ogg,A) ~(E', Q-( P, Ogg, G) 
(4) 

Given a program expression Q and a plain program P, if we can rewrite A with Gin Q, then it is 

possible to rewrite A with G in Q ..( P only if the predicate of A is not a predicate defined in P. 
defs(P) is the se t of predicates defined in P. 

(E,PU(Q ..( P),Ogg,A) ~ (E',PU(Q ..( P),Ogg,G) 

(E, Pisa Q, Ogg, A)!.,. (E', Pisa Q, Ogg, G) 
(5) 

Recai! that P isa Q (see Section 2) means that P inherits all the predicate definitions from Q, 

except for the predicates defined in P. Rule (5) states that the isa relation can be modeled by 
union and restriction operators. 

The following four rules mode! SLD resolution. 

(E,P,X,empty) Q. (E,P,X) 
(6) 

This rule states that the empty goal is solved in any program expression and it allows us to obtain 
a terminai configuration. 

Given a set of predicate names 11", let 1,. denote the program: {p( X~, ... , Xn) l p E 1r}. W e 
use this kind of programs in the following rule: 

e ' 
(E, P,Ogg, Gt)---> (E', P', Ogg) E'= Et :: (Ogg, Cl, S) :: E2 

(E, P, Ogg, (Gt, G2)) ._!.(E', SU (P..( lstatePred(Cl)), Ogg, G2(}) 
(7) 

(E, P, mai n, Gt) ~' (E', P, mai n) 
(8) 

These rules allow us to solve a conjunction of goals (Gt,G2)· The leftmost goal is removed from 

the current goal statement and the system tries to solve it. Our system is sensitive to the order 

in which methods are called. We lose referential transparency and independence of selection rule. 

This is the price to pay for allowing objects with changing states .. 

It is worth observing that the environment t: can change, a.s a side effect of the successful 

resolution of Gt. If the third component of the configuration is an object identifier, i t is necessary 

to change P, too, because P "contains" the old state of Ogg. lnstead G2 will have to be solved by 

using the current object state S. The new program expression will beS U (P ..( lstatePred(Cl)): ..( 

is the restriction opera.tor which "retracts" from P the state predicates definitions. This is not the 

case if the conjunctive goal is computed with respect to the main program, which has no state, as 
it is axiomatized by rule (8). 

A' <-- G E P (} = mgu(A, A') P is a set of clauses 

(t:,P,Ogg,A} ~ (E,P,Ogg,G9) 
(9) 

This rule states that, to sol ve an a.tomic goal A, choose a clause (A' <--G) from P whose head is 

unifiable with A. Let 9 be the m.g.u. among A and A' then recursively solve G9 in P. 

The following rule models atomic inheritance: 

E= Et :: (Ogg, Cl, S) :: E2 link(C) <-E P 

(E, (Cu S)* ..(P, Ogg, A)~ (E', (C U S)' ..( P,Ogg, empty) (lO) 

(E, P, Ogg, A) ..!. (E', P, Ogg, empty} 

This rule enriches the set of atoms provable in P with relations inherited from a superclass except 

for predicates defined in P. By meana of the * operation we import the ato~ic formula A '":- from 

C U S. Recall that a class C is a sort of parametric theory. Therefore, m order to denve the 

class rela.tions, we must join i t with S, that contains the current definitions of its parameters. The 

inherited relations vary according to the current state of the active object. 

We now define the rule dealing with update. 

t:- Et :: (Ogg, Cl, S) :: E2 
(11) 

(E, P, Ogg, update({X <-l}} .Q (Et :: (Ogg, Cl, {X<-} isa S) :: E2, P,Ogg) 

This rule states that solving a goal of the form update( {X <-}) leads the system to a terminai 

configura.tion in which t: has changed: the tuple related to Ogg in E is replaced by a ~ew one where 

the current state becomes {X ,___} i sa S. The definition of the predicate of X, whtch belongs to 

S, is overridden by X <--. 
The next rule deals with the creation of objects. 

undefined(O, E) O E Obj 
(12) 

(E, p, Ogg, new(CI, O)) Q ((0, Cl,lnitState(Cl)) ::t:, P, Ogg) 

This rule states tha.t solving a goal of the form new(Cl,O) leads the system to the terminai 

configuration ((O,Cl,InitState(Cl)) :: E,P,Ogg) where we have added atuple, representing the 

new object, to the environment. This tuple contains the object identifier (C!), t?e cl~s name Cl 

and the initial state of every object belonging to Cl (InitState{Cl)). The obJect tdentJfier O must 

be ground (O EObJ) and unique ( undefined(O,t: )). The predicate undefined{X, Y} is true if no 

tuple with the first component X exists in the environment Y. 

When an object is created, it becomes visible to any other object, to the main program and to the 

top-leve!, because we have a unique multi-object environment. 

E= Et:: (0, Cl, S) :: E2 

(E,(ClUS)'-( l(state?red(CI)u{updatel),O,A) ~ (E',P',O,empty) 

(E,P,Ogg,A in O)_!. (E',P,Ogg) 

(13) 

This rule states that a goal of the form A in O is provable in P if the goal A is provable in the 

program expression (Cl U S)' -( l(statePred(Cl)u{update}). Cl U ~ is the theory currently associateci 

with the object 0: Cl is the class that O belongs to and S 1s the current state of O. We use , 

the * operator to hide the way A is solved in Cl U S. It is worth observing that the restriction 

..( l(statePred(Cl)u{update}) ensures that the predicate of 1 is neither a s.tate predicate nor ~he update 

predicate. This ensures that the state is encapsulated: 1t cannot be dir~ctly read or mo~tfied. T~e 

sender of a message does not know which definitions are used to solve 1t. Moreover, not1ce that m 

the proof of A, the current object isO and no longer Obj. . 

By exploiting unification a.nd non-determinism, we can use the above rule to search for an obJect 

where the goal A can be solved. This exploitation of the logica) variable offers a mechanism much 

more powerful than the ones supported by traditional object-oriented languages. 

(E, P, Ogg,A in self) ~(E, P,Ogg,A in Ogg) 
(14) 

This rule sta.tes that the self keyword stands for the active object. The consequences of this 

definition are shown by an example in Section 4.3. 
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4.2 Inheritance at an intensionallevel 

To mode! inheritance at an intensionallevel we must only change the transition rule (10). 

link(C) +-E P (e, C-< P,Ogg,A).!!.. (e', C-< P,Ogg,G) 
8 0~ (e,P, Ogg,A)-+ (e', P, Ogg, G) 

Via this rule we inherit the definitions of the superclass except for the predicates defined in p. In 

contrast with atomi c inheritance, the set of inherited clauses does not depend on the state of the 
active object. 

It is worth noting that, in particular, rules (10), (11), (13) and (15) show the expressive power of 

the operatore U, *• -< and isa. They a.llow us to mode! naturally different forms of inheritance 
state changes and message passing. ' 

4.3 Discussion of inheritance schemes 

The main difference between inheritance at the intensional leve] and atomic inheritance is that 

the former puts together clauses belonging to different classes, whereas the latter hides the code 

of a class to other classes, even to its descendants. Therefore we can use the superclass only as 

a black box, by querying the relations defined in it without accessing its clauses. This is why we 
talk about delegation [13). 

. A_ seriou~ proble~ with intensional inheritance is that i t can behave incorrectly when multiple 

mher1tance IS used, smce classes may start to interact in unexpected ways. For example consider 

the class C which is a subclass of the classes A and B that are not related to each other'. 

class A() 
{r(X) +-q( X) 
q(a) <-} 

with {} 

class B() 
{q(b) +-} 

with {} 

class C() 
{p( X) +- r(X) 
link(A) +­
iink(B) +-} 

with {} 

The goal+- new(C,o),r(b) in o is solved, although A is unrelated to B. 

The dra":'ba~~ of atomic inheritance is that only atomic consequences of a theory are inherited. 

However, a JUdicwus use of t~e. self keyword can have the effect of inheriting ali the necessary 

consequences. Furthermore th1s ts under prograrnmer contro!. Contiider the following example [9). 

W e want to define a class animai with a predicate mode expressing the fact that if an animai 

~as t':o legs then it runs. Otherwise, if it has four legs, it gallops. This rule for mode of travel 

IS v~d for al~ types of _animala but it depends on sub-relations which are specific to each class 
denotmg part1cular spec1es. To reso! ve this conflict we use self reference. 

1et animai and bird be the following classes: 

class animai() 

{mode(run) +- nJegs(2) in self 
mode(gallop) +- n_/egs(4) in self 

with {} 

class bird() 
{covering(feathers) +­
n_iegs(2) +-
link( animai) +-} 

with {} 

:ro find out if t~e bird tu:eety runs or ~al_lops, we solve the goal +- mode(X) in tweety. Since mode 

IS not defined m b1rd, VIa rule (10), 1t 1s delegated to the superclass animai. Here, we can use 

the_ clause mod;,(run!, +- n_/eg~(2} in self an d by ~pplying t~e rule (14) we bind self with tweety. 

!hts _allows t? root us back mto the class to wh1ch the object belongs, that is at the root of the 
mherttance hterarchy. Therefore, we can correctly solve the goal n_iegs(2). 
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It is worth noticing that ifa class refers to self then i t can only have a "complete" meaning in 

terms of its various specializations. This is a situation similar to the notion of an abstract class in 

conventional 00 languages, such as C++. 
Moreover, thanks to self, the inheritance at an intensionallevel can be coneidered as a particular 

case of atomic inheritance. 

5 Conclusions 

We have presented an integration of logic and object-oriented programming which combines 

fundamental features of both, taking the object-oriented view to mode! the problem domain, and 

logic programrning to describe the entities and to provide the computation engine. 

On the one side, the resulting language provides a logica! underetanding of object-oriented 

features. Typical object-oriented mechanisms, such as inheritance and message paseing, can be 

underetood in terme of deduction processes. On another eide, it exemplifies a proper extension of 

typical object-oriented forrnalisrns by allowing the logica] definition of methode and hierarchical 

links. It overcomes the imperative flavor usually associated with messages, and it gives objecte a 

more "intelligent" appearanc.e. Finally, this language provides logic prograrnming with abstraction 

mechanieJns and a notion of mutable state. State is given a logica! characterization, and thie is one 

of the most interesting points. In fact, many logic programming-based object-oriented languages 

use the extra-logica! Prolog primitives assert and retract to dea! with state changes or they simply 

ignare state changes, thus lacking a vita] feature of object-oriented programrning. 

100 can be easily ext.ended with a primitive ki/1 for destroying objects. ki/1(0) destroys the 

object O and its semantics is simply obtained by deleting the tuple associated with O fro~ the 

multi-object environment. Moreover, thanks to the restriction operator ( -<), we can allow prtvate 

clauses in a class, that is dauses defining a predicate that is kept hidden ( this corresponds to 

C++ private functions). Another possible extension of 100 consista in having meta-leve! clauses 

of the form A in E where E is a prograrn expression of objects. For exarnple, !et 01 and 02 be 

object identifiers, then we can compose them in the expression O tU 02 with the intended meaning 

of joining the theories modeling these objects. Therefore, on one side classes allow ue to create 

objects dynamically with a well-defined behavior, and on the other side expressions allow us to 

combine them at execution time. 
This language has a meta-logica! implementation obtained by simply turning the inference 

rules of Section 4 into meta-leve! axiome. The axioms ha ve the form of an extension to the vanilla 

metainterpreter. The meta-logic preservee the simple an d concise description of the inference rules, 

and it provides an "executable specification" of 100. This implementation is however coetly in 

terms of eflì.ciency. As a step towards a rea! system, we are trying to extend the compiler an d the 

extended WAM proposed in [2) with the object-oriented features. 
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Abstract 

The notions of computation and state are essentìal in computer science. 
An operational semantics can easily describe the history of state changes 

occurring in a computation, while a declarative semantics, which is adequate 
and corresponding to the operational one, is much more difficult to obtain. 

Linear Logic [lO] gives some hints to salve this problem. We can look al a 
proof a.s the witness of a computation, i.e., a.s describing, in logica] terms. the 
beh avi or of a syst.em. lt is interesting to study object-onented ba.sed systems 
from this point of view: in this setting the state of the system consists of the 
set of the currently active objects. 

In our work we will reconsider some proposals for the integration of object-
oriented and linear logic programming. For this purpose we will exploit Fo­
rum [20], a presentation of Higher-Order· LineaT Logic, which is endowed 
with a characterizing property of logic programming languages, namely the 
uniformity of proofs. 

In this pa.per we will outlìne our proposa.l by presenting a specialization 
of Forum for state-ba.sed computations and by showing how to exploit it for 
representing objects. 

ìKeywords: Logic programming, object oriented and higher-order linear logic. 

1 Introduction 
Programming languages are based on the intuiti ve idea of comput.ation. Assigning 

;m operational semantics to the constructs of a language allows to describe the 
fu.ehavior, or the possible behaviors. of a program. 

The more powerful is the language, the more complex becomes the operational 
,Jescription. As a consequence. the operational semantics can be unsuitable for 
!ftudying properties of programs and i t can be very difficult to find a more abstract 
semantics. 

--- -- -------- -- ~- --------~----·--- -· 
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The object-oriented programming paradigm is probably the most important 
exa~ple of t~is situation. Here the challenge is to assign a clear meaning to the 
notwn of objed, an individuai entity having a complex data structure, and to its 
interactions with the external world. 

In the last years, many efforts have been spent in studying this problem from a 
logical point of view; there ha ve been proposals both to give a formallogical meaning 
to some features of o.o. programming and to understand how to integrate them in 
a logic programming setting. 

In our opinion, this second aspect is very important in order to develop logic 
programming tools able t6 deal with large applicative programs, i.e., able to perform 
reasoning over powerful data representations. In the following we will address some 
generai considerations about o.o. and Lp .. 

Some basic notions of the o.o. methodology 

We list here the basic properties the standard notion of object is endowed with. 
First of all, objects have unique individuai narnes. Objects encapsulate both data 
and methods. Methods must be the only vehicles to access and modify the data of 
an object, i.e., to perform operations over thern. Public methods can be invoked 
from outside an object, while private ones can be only invoked by the other methods 
of the considered object. The set of public methods represent the external interface 
of the object. Some o.o. languages also provide shared methods and public data 
variables. 

An o.o. language provides constructs to create objects according to a given 
pattern, to kill them and, possibly, to modify their structure. 

Definitely, encapsulation makes the difference among objects and other data 
structures. For instance, having methods inside an object allows to dynamically 
~odify i t~ ~ehavior according to the conditions of the environment. A clear exarnple 
1s the ObJect Calculus [l] by Abadi and Cardelli, where objects consistof only method 
declarations. · 

Also, Òbjects have been interpreted as perpetuai processes communicating via 
messagepassi . .ng. See, for instance, (14, 17] where methods are nothing but rewriting 
rules transforming a configuration into another one. 

A class can be considered as the description of a uniform set of objects. This 
notion can be complicateci introducing, for instance, inheritance relationships and 
declarations of shared instance variables. Notice that inheritance can be considered 
as a specialization of the delegation mechanism. 

In [26] Peter Wegner suggested the following classification: object-based, la.n­
guages which provide the very basic notion of objects (e.g. the Actors language); 
class-based, object-hased languages supporting the notion of class; object-oriented, 
dass-based languages providing inheritance (e.g. Smalltalk). In this preliminary 
work we will focus our a.ttention on class-based languages. 

Some of the above aspects ha ve been already studied from the logic prograrnming 
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point of view. \Ve will discuss some proposals in the following paragraph, with 
particular regard to the representation of the objects. 

Integration between o.o. and !.p. 

The first representation we mention here is objects as variables, the approach pre­
sented in [2.5] by Chen and Warren. They assigned a dynamic meaning to logica] 
variables, i.e., a function from states to values, focusing on the problem of state 
updating. 

The next one is objects as terms. For instance, Ai't-Kaci and Nasr proposed the 
languages Login and-Life-[3I wh·~;e terms have a record-like structure induced by 
their types~-~~-~- also [23]. 

Objects as atoms is the representation closer to our approach. It was already 
adopted by Conery in [9]. In his approach the evolution of an object was deter­
mined by applying Prolog-like clauses with conjunction of atoms in the conclusion, 
in order to simultaneously ~ewrite the atom representing the object and the atom 
representing the message. The resulting operational mechanism was quite involved. 

Linear Logic revealed itself well-suited for such a kind of approach, as shown by 
Andreoli and Pareschi in [7]. They substituted the classica] conjunction in the head 
of methods with the linear logic multiplicative disjunction, considering an object as 
a multiset of atoms. We will return to their approach later. 

The fina! representation that we consider is objects as theories. The origina] 
idea was due to MacCabe [16], which considered objects as named Prolog programs, 
without the possibility of changing their state. His approach stimulatecì the study 
of modules an d inheritance as shown in Contextual Logic Programming [21], Other 
approaches to modularity exploited connectives like ·intuitionistic implication and 
universal quantification for handling local variables [8]. 

Linear Logic and Forum 

Girard's Linear Logic [lO] allows to study the very basic notion of computation by 
different perspectives. 

For instance, in the functional interpretation where pToofs can be reduced to À­

terms by the Curry-Howard isomorphism, cut elimination is considered as the basic 
computational mechanism [2, 11]. 

It is also possible to interpret proofs as computations. The main point is to 
fin d the analogies between the structure of the ,r21le,s"'~t~. Eut [~e,~. ~t~~e,rr; an d the 
operational st_eps Òf a~()rn.PutatioJ:l, see for example [22] for a survey. 

Li~~;;:~j'~gic sequent calculus does not allow the use of contraction and weakening. 
Consequently, each formula in a proof can be used only once, yielding the notion of 
bounded-use resources. Re-usable formulas are re-introduced in the logic by means 
of the exponentials, namely ! an d ? . 

Another consequence of the elirnination of the above mentioned structural rules 
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is that two 'ersions of connectiws must be considered, namely additive and multi­
plicative ones. 

In tbe Logic Programming settìng, t.hese aspects bave been investìgated among 

tbe others by Miller and Hodas [13, 20]. In particular Miller's work results in the 

definition of a powerful specification language called Forum, a presentation of full 

Higher-Order Linear Logic, see also [4], wbere tbe cut-elimination theorern holds. 

This language is based on the linear connectives 78 ( multiplicative disjunction), & 
(additive disjunction), o- (linear implicatìon), =;> (intuitionistic irnplication), T, j_ 

and V. 

The rules of the Forum proof systern are designed to reflect the idea of uni­

form proof, i.e., a proof where left introduction rules are applied only after having 

decomposed all the formulas in the right hand side of sequents. 

Considering simply typed À-terrns as elernents of the language allows to bave a 

higher-order theorern prover. This is very important in order to use tbe language 

as meta-leve/ specification for prograrns an d proofs. U sing t be previous notions w e 
can briefiy explain what is rneam for proof as comp1Ltation. 

Let us consider a generic cornputation starting from a state Si and ending with 

state S1 . The idea is to mimic it by a proof for the linear formula S,' o- s;, where 

Sj, St are logica] representa.tìons of 51 and S;. Thus, one or more applications of 

Forum rules should mimica single step in the computation, 

Our approach 

In our current work we are using Forum as a specification language for state-based 

systems, i.e., w e ha.ve defined a simplified version of Forum, called F &O, in or der to 

express an explicit notion of state in the sequent and modelìng its evolution using a 
subset of linear logic formulas. 

The fragment of linear logic considered in our language consists of the connectives 

V, &, 1S', o-, T and j_, with a further restrictions on the form of the formulas, in 

order to have multi-conclusion clause with 1S' of atomic formula.s in the head and 

allowing the other connectives to occur in the body, see [7]. 

In the following scheme we show how F &O fits into the context of the integration 
between o.o. and Lp. 

Class-Based Language =? Fo-rum fj Object =? l Fo-rum l 

Thus, it is possible to give a logica] counterpart to some object-oriented languages 

using an adequate embedding in Forum, using F&O as an intermediate stage. 

Andreoli and Pareschi, in their ba,sic pa.per on the language LO [5], represented 

an object as a multiset of a.toms, i.e., the collection of its attributes, floating in 

parallel (78) in the right-ha.nd side of a sequent. Using the additive conjunction (&) 
they cloned objects spreading them on different branches of a proof. In order to !et 

the objects communicate through messages, a common logica] varia.ble, acting a.s a 

blackboard wa.s added to the sequents [6]. 
We are ~oing to reconsider such an approach using a.different repr:sentation of 

objects ( objects a.s atoms), in order to capture features hke encapsulatwn and data 

hiding that were not treated there. 

These features can be captured using the higher~order nature of Forum, and 

thus of F&O, see, for ìnstance, [18], a.s we will explain in the fina! p~rt ~f the paper. 

Furthermore, we will simplify the communication model, representmg m a sequent 

the globai current state of a computation in an o.o. system. . 

To be fair to them, in their approach inheritance is very natura!, wh1le, for the 

time being, we have restricted our study to dass-based systems. . . 

In the paper, Section 2 will be devoted to describe the F&~ formulas.' wh1le m 

Section 3 we will discuss the corresponding proof system. In Sed1on 4 we w1ll p~esent 

the o.o. aspects of F &O and, finally, Section 5 will be devoted to the concluswns. 

2 The Ianguage F &O 

Our staring point is a formulation of Forum [20] in w?ic~ the .right hand s!de of 

a sequent is a multiset. As previously mentioned, o~r aJm 1s to tsolate a not1~n. of 

state in a linear logic sequent. The simplest approach 1s to use data constr:-ctoro (1..e. 

predicate symbols) and to embed state values inside them. In the foHowmg we w~ll 

assume to have a sign.ature :Es containing a given set of state const~dors. We w1ll 

consider simply typed À-calculus a.s the ba.sis of our language to umformly handle 

terms and formulas. Given a signature :E containing :Es, simply typed À-terms can 

be defined :as usual by induction. It is important to notice here that formulas are 

nothing but .\-terms with a particular type o. 

We consider only the fragment of LL consisting of :l)], &, V, o-, T and ..l. The 

linear connectives can be represented as constants with an ad hoc type, thus, f~r 

instance ~ has type o -+ o -+ o an d V,. has type (T -+ o) -> o. The set of atom1c 

formula-s', whose top level constant symbol is in :Es, wiU be referred as llEs· 

F &O Fo:rmulas 

As mentioned above, formulas are -~-terms with type o. We are interested i~ a 

subset of ~!J:l:~~~ ~?g;ic_f()rmulas, namely the smallest one generateci by the followmg 

grammar: 

D::= V(Ho- 9) l D1&D2 
g ::= G1&G2 l G1 :l)] G2 l VG l T l j_ j1-l o- 'D l A 
H::= 'ill1-l2 l A 
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sa.me perspective Q-formulas can be considered as extensions of usual goals. w i t h 
implication and universal quantification. It is important to observe that 'D-formulas 
cannot. contain ..l and T in their heads, i.e., the consequence of the top levellinear 
implication. 

'\ We are interested in a proof system which refiects the similarities between our 
l langua~e and a l_<2_~~~ç>ge. Essentially, we will eliminate the ~e 

rule an d all the left introduction rules ( except the & o n es), see [20], an d we will 
substitute them with two backchaining rules. 

.._..._,.,-~---"----·-

3 The F&O Proof Syste1n 

In this section, we will try to customize Forum. see [20] for the complete set of 
rules, in order to highlight its use as a specification language for state-based systems. 
In the formulatìon of Forum that we are going to consider the right hand side of a 
sequent is a multiset of formulas. 

First of al!, we slightly modify the structure of sequents: 

I:: P; n -"s A1 

where I: is a signature containing ali typed constants of the sequent, P is a set of 
'D-formulas in clausal form, namely V( H o- Q), and using the logica] equivalence 
!(A&B) =:!A.181!B we can avoid to explicitly express the conjunction between the 
clauses. n is a multiset of 'D-formulas, .Vi is a multiset of Q-formulas and s is a 
multiset of atoms in Ih5 . The intuition is tbat P corresponds to a set of global 
definitions (always usable), n is a set of bounded definitions which can be consumed 
only once, S can be considered as the current state of the system that we want to 
simulate and, finally, .A-1 is the multiset of pending activities in the system, e.g., 
messages. In terms of linear logic the previous sequent can be read as follows: 

In figure l, we bave depicted the set of F&O rules. 
The letter M denotes an arbitrary multiset of Q-formulas, w bile the letters N an d 

Q denote multisets of atomi c formulas. In the backchaining rules we also require that 
/1/ and Q consist of only non-state atoms, furthermore, {A.I[t/x], ... , A.n[tjx]} = N~S 
where tbe left side of the equation is a multiset and ~ denotes the multiset union, 
i.e, the merging of the elements of the two multisets. 

Besides the two backchaining rules, whicb clarify the role of a 'D-clause in a 
computation, we bave introduced the axiom final to isolate the fina! state of a 
computation. 

Sucb axiom has not a direct Forum counterpart. As explained in the introduc­
tion, the idea is to prove im_p}~~.~ti<:>Q~.<:>fth~~for:ll1 t?'LCl:::'.S f in Forum which implies t o .... ~-~ -- " . ~ 
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fina l 
I::P;n-'rs I,M 

al! 

A E IIr;s I: : P: n -"A,S ;\.1 
I: : P: n -"s .4 .• VI 

a dd 

I::P;n-"sA,M I::P:n-"sB.;\11 
I:: P; n -ts A.&B, M 

I:: P: n -"sA. B. )vt 

I:: P: n -+sA~ B. M 
par 

rwith 
I::P:n-'rsM 

I: : P: n -"s ..l, .\.1 
·•'*""""'·~ 

an ti 

v;·: T,~·: P; n -'rs B[y/x], M 
I:: P; n -+s VTx.B, M 

I::P;B,n-tsA,M 
impl forali I::P;n-'r5 Ao-B,M 

I:: P; A., n -+s /l 
I:: P; A&B, R -+s N lwith 

I::P;B,R-'rsN 
I:: P;A.&B, n -"s N 

lwith 

tci:-terms I:: Vx.(~:I..n A; o- B), P; n -"T B[tjx], Q _backchaining-1 
I; : Vx.(~:I..n A; o- B), P; n -"s,T N, Q --~--

ù:I:-term I:: P; n -"T B[tjx], Q backchaining-2 
I: : P; Vx.(~:l..n A.; o- B), n -+s,T N, Q ~·-"'-'"'"''•<··~ 

Figure l: ~oof systeJE 

guess the fina! state Si at the beginning of the proof. The above mentioned axiom 
lays emphasizes on the fact that the final state si i~~ch~-~.!~E~rfo!mi~l?-! 
computation. 
~----

4 An Application for F &O 

The structure of the F &O proof system can help us to fin d a. natura] representa­
tion of the o.o. features discussed in the introduction. Botb higher•order and linear 
logic aspects are useful for such purpose. For the sake of this brief presentation we ' 
will consider a class-based system, where messages are processed in a completely 
asynchronous way, without any order upon the communication cbannel. With this 
simplific.ations, it is easier to show how encapsulation and data abstraction can be 
expressed in F&O. In the sEquel, we will define three basic rules to manipulate 
objects showing how to derive them in F&O. 

We can consider eacb F&O. sequent as a logica! representation of a snapshot of 
a computation in an o.o. system. 

The essential choices in our representation are: objects are atomic state formulas 
embedding attributes and methods an d possibly hiding some of them. Messages, i.e. 
method calls and primitive operations, are also atomic formulas, an d methods are V-
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formulas. Classes will be represented by universally quantified formulas, expressing 
the structure of the objects. We also consider auxiliary operations expressed by 
atomic formulas, for instance, we assume to have the new, send and kill operations. 

According to these ideas, an F &O sequent assumes the following form: 

:E: P;R-4-o1 , ... ,on M,n 

where P consists of the set of dasses an d auxiliary operations definitions; o1, ... , o, is 
a multiset of atoms representing all the living objects in the system, i.e., the global 
state; n contains the currently fired methods; M is the set of pending messages; n 
is th~ set of remaining invocations, i.e., auxiliary operations. 

The main point to notice here is how we represent every single objeci. We 
consider object constructors, i.e., typed con~tants, acting as individua! names. Let 
·i be a generic type and id a symbol with type 7 =i-? o-? o, thus, objects will be 
represented by atoms having the form id(Attrs,Meth}. 

It is necessary to have distinguished identifiers for distinguished objects, for this 
reason there must be a demon process in our system able to generate new names: a 
message asking for the creation of a new object must send a message to get a new 
identifier, too. For the sake of brevity, we will omit this aspect in the rest of the 
discussion. 

Notice that to have such kind of predicative identifiers it is enough to consider 
another constant name with type i -? 7 and implement them as name(t) with a 
different t for each objed, e.g., numerals. 

While we assume Attr s to be any term, representing in the pro per way the data 
of the object, we must fix the form of the methods. M et h is a conjunction of 
D-formulas M eth 1& .. &M et h,., where each M et h; has the followìng form 

Vx. id(Attrs,Ms) 'l'à(id: Head) o- id(Attrs',Ms') 'lf/Msg1 'l'à ... 7àMsg, 

where id is the identifier of the object that is fixed at the moment of the creation, for 
x denotes all the free variables of the dause and Head is a term expressing 

t.he na.me of the method and the parameters. We need to consider id, the name of 
the object, together with Head in order to avoid that messages with the same name 
are delivered to the wrong objects, hence the constant ':' has type r --? i --? o. 

Msgi (i: Ln) can be a method invocation, send(Id: Msg), a creation message, 
new(Class, I d), a killing message, kill(I d) or the invocation of auxiliary operations, 
w h ere either I d is variable in i or a constant na.rne. 

fo:r objeds 

Let us forget the sequent representation, i.e., hiding E and 'R and design three 
operational rules for our objects. 
The first one concerns the creation cf an objed: 

< M;new(cla.s.sname,id),fì;S >---+ < Ai;n;id(as,ms),S > (new) . p 
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provided classname is defined in P, i.e., i t is a templa.te for objects having strncture 
( as, ms ), an d id( as, ms) is a new instance with unique name id. A unique ickcntrfi.er 
id allows us t o refer t o the object id( as, ms) using its na.me. W e could also consider 
id a.s a structured term containing classname. To be able to mimic such a. ru}e ìr: 
F&O, it is enough to express classes in P the following 'D-formula: 

V 1./ d. new( classname, I d) o- I d( as, ms) 

where as and ms are two given patterns for the attributes and the meth::.ds. 
easy to see that the previous rule corresponds to the following inferencial 
F&O: 

:E :P; R -4-<d(as,m•).S M, n 
:E: P;'R-4-s id(as,ms),M,fl 

:E : P; n -?s .Al/, new( dassname, id), n 

(add) 
(backchaining-1) 

It i:o 
m 

Notice that we use higher-order quantification in order to deal with newly createci 
identifiers. 
The second rule concerns how to handle mess:age passing: 

< send(id: m),M;!l;id(as,ms),S >-i>< M';fl';id(as',ms'),S > 
p 

where a method m;, non-deterministicaUy chosen from m= m1& ... &m., match­
ing with id: m, is executed yielding id(as',ms'), M' and n' (i.e. the opera.tions in 
th~ body of m; are added to lVi and fl). Let us recall that we allow the maxima1 
degree of concurrency between messages. 

In order to handle such a representation we must define a dause governing the 
method calls. Let us include the following formula. in P: 

V -rl d. V; M sg, As.VoM s. 
send(Id: Msg) 'l'j/fd(As,Ms) o-

(((Id: Msg) 11J Id(As, Ms)) o- Ms) 

This clause is used every time a send has to be processed. It synchronizes the method 
invocation with the corresponding object moving its methods into the bounded con· 
text o n the left ( the meaning of o- in the body of the dause), so that a &al:,.cna::m:IUI-
2 rule can be applied. Notice that we use higher-order quantification to select 
methods. Hence, the send rule has the corresponding P&O figure: 

:E :P; m;, R -+.s id(as', ms'), M', n 
:E: P;ms, R -4-id(oa,mv).S (id: m),M,fl 

E: P; ms, R -+s (id: m), id(as, ms), A1,fl 
E: P; ms, R -+s M, (id: m) 1/Jid(as, ms),fl 

:E: P; 'R -4-.s M, ((id: m) 'l'àid(as, ms)) o- ms,n 
-- :E: P; 'R -tia(as,msV; .M, send(id: m), n 

(add) 

(backchaining-2) 

(add) 
{par) 
(impl) 

( backchaining-1) 
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where we suppose that ms = m1& ... &mn. For the sake of brevity, we have omitted 

the obvious passages consisting of ':2/J and add applications that allow to simplify the 

body of the method. There is another important aspect to consider. Since methods 

definitions are fired in the bounded context and thus used only once, each recursive 

call must be embedded into a send call. 
The last rule concerns killing an object: 

< M;kill(id),O.;id(as,ms),S >--t< M;D;S > (kill) 
'P 

This can be achieved specifying the following definition for the kill operator, whose 

only goal is to consume the object. 

We resort to. anti, the neutral element of ':2/J, since it does not influence the other 

resources in the right part of a sequent. 

Regarding the objects, so far we have shown how to obtain encapsulation. With­

out modifying the previous rules, but only the formulas defining classes, it is also 

possible to obtain data abstraction. The idea is to use a universal quantified 

variable on the right hand side of the sequents, whose scope extends over the part 

of objects to be hidden: 

V rl d. new( classname, I d) o- V v. I d( as, ms) 

This representation is very powerful. For example, let us consider quantifying over 

the data constructors. Since the scope is extended over all the object, its methods 

can use them, while external operations cannot access that name (because of the 

side condition on the constant introduced by a V rule). In the same way, quantifying 

over a method name, we create private methods that can be used only by methods 

of the same object and quantifying over the narne of an object created with new 

yields local objects. 
W e ha ve not shown occurrences of rwith on the right, however, the idea is to 

exploit & for having auxiliary branches in the proofs where auxiliary properties can 

be proven independently from the main branch representing the state evolution. 

5 Condusions 

This work is only a preliminary overview of how to model objects using an 

hi.??~.~!::.?~,~~E~-~-~~l?,~~"!~S.~~i'?~Jj!s~J':2.r'-1JB: For the sake of brevity, we have only 
presented some simple aspects of the matter, i.e., how to represent objects and 

classes in the context of a specialization of Forum, that we cali F &O. 
There are many other aspects that have not been treated here, concerning other 

applications of F&O. For example, we can also model more complex object-based 
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systems with sequential computational models, using continuations to obtain se­
quentiality in linear logic. 

Also, we have also ~~~!c~e~ <l..~E,~I1,sJa:tion of ~, subsetof the object~oriented lan-

&_l:l.al!i~. ~O.?.~, ~~ic~.YviJ:l~~~ i~ .I~~l tEal1slf!-t~d)n 1!'~~~s~t~s: , · · -~·· , , · · 
Moreover, this kind of application of linear logic is also connected with many 

other topics like sequentiality in linear logic, different degrees of concurrency etc., 

e.g. see the works (12, 15, 19], that we will take into account in the future. 

At the moment, a prototype is also being implemented using À-Prol?~· 
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Abstract 

In [4], the semantics of monotoni c (i.e. no t -free) extended logic programs 
(ELP s) has been rephrased in t h ree-valued logic for two purposes: achiev­

ing tractable reasoning with incomiJlete infmmation and understanding the 
relationships between the existing semantics and many-valued logics. In thìs 

p a per, we generalize this approach t o unrestricted ELPs. W e obtaìn a unifying 
vìew of many formalisms, including the answer set semantics, the well-founded 

semantìcs, generalized stable models ( as in [11]), default logìc, autoepistemìc 

logic (AEL) and some of its variants (three-valued AEL and Schwartz's reflex­
ive AEL) . Our framework highlights surprising similarities between previously 

unrelated formalisms, such as TMS's with dependency directed backtracking, 
the WFSX semantics by Alferes and Pereira, and reflexive AEL. Moreover, we 

obtain very interesting new semantics, which make it possible to salve many 
hard benchmark problems with a substantial gain in elegance and efficiency. 

KEYWORDS: Three-valued Logic, Negation as Failure, Incomplete Informa­

tion 

Introduction 

Research on extended logic programs (ELP's) has been focussed on the semantics of 

default negation, no t, an don its interplay with explicit negation, ' (cf. [16]). While 

~~v-ei-"ifse~a~tics·h~ve been proposed for not , there is little variety of meanings for 

the no t -free fragment of the language, hereafter called monotonic. 
In [4], the semantìcs of monotonic ELP's has been rephrased in three-valued 

logic, for di:fferent purposes. The fìrst goal was improving our understanding of the 

relationships between ELP's and multiple valued logics, which are not completely 

clear, despìte numerous superfìcial similarities. The second goal was a purely se­

mantic account of ELP's, whose meaning is often defìned through pervasive syn­

tactic manipulations that transform negative literals into new atoms, both within 



programs and within interpretations. The fina! goal was finding a more powerful 
tractable semantics for ELP, capable of expressing and using incomplete knowledge 
without resorting to more complex forms of reasoning involving combinatoria! search 
or noncomputable inferences. The approach of [4] tackles all the above problems 
.an d leads t o a unifying view of dìfferent semantics for monotoni c ELP 's. The basic 
idea is considering a n_ot Jree program rule as a formula 

By interpreting <- as one of the standard three-valued implications illustrateci in 
Fig. l, different semantics can be captured. 

It is interesting to see how this approach behaves when we introduce default 
negation through standard nonmonotonic constructions. This ìs the purpose of the 
present paper. For the sake of generality we shall mode! dìfferent possible meanings 
of no t through a generai construction (stable classes) t ha t generalizes stable and 
well-founded semantics. By tuning two parameters, that ìs, the truth table of impli­
cation and the program transformation involved in the nonmonotonic construction 
( one of which is the familiar Gelfond-Lifschitz transformation ), w e obtain a unifying 
view of many formalisms an d highlight surprising similarities between previously un­
related formalisms. We shall prove that Lukasiewicz's implìcation induces some very 
interesting new semantics, which make ìt possible to salve many hard benchmark 
problems with a substantial gain in elegance and efficiency. Moreover, a well-founded 
version of Lukasiewicz's semantics constitutes a natura! semantics for Reason Main­
tenance, more powerful and more efficient than the skeptical belief revision model 
of [18]. 

2 Preliminaries 

2.1 Three-Valued Logic. 

Three-valued interpretations are mappings from the set of ground atoms into the set 
{ F, U, T}. As usual, three-valued interpretations will be represented as consistent 
sets of ground lìterals, so that A. is T (resp. F) in l iff A. E l (resp. -.A. E I). In the 
lìterature there is genera! agreement about the meaning of •, while the meaning of 
implication is controvertial. Three of the major proposals are recalled in Fig. l where 
<- K is Kleene's implication, <-L is the o ne proposed by Lukasiewicz, an d <= is a less 
famous but important implication which has been considered by severa! authors (cf. 
[l]) and has been applied to non-monotonic reasoning [5] . The classica! equivalence 
A. VB = A. <-K •E holds for Kleene's implication but not for <-L. The latter 
corresponds to a disjunction, usually denoted by 8, defì.ned by A. EB B :::= A. <-L -.B. 

)],\ 
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A\ -.A <-K \F u T ,__L l F u T <=iF U T 

fl 
T F T u F F 'T u F F [T·T' F 

u u T u u u T ,·T\ u UIT T u 
'-

F T T T T T T T T T T T 

Figure l: Truth tables for negati an an d various forms of implicatìon 
'' 11'' ' 

2.2 Default and Autoepistemic Logic 

VI/e assume the rea.der to be familiar with default logic (DL) an d autoepistemic logic 
(AEL). For an extensive treatrnent, see [12, 13]. A few variants of DL and AEL are 

briefly recalled in this section. 
Bara! and Subrahmanian [3] generalized default extensions by introducing the 

notion of extension class, that is a family of sets j such t ha t F = { f 6 (E) l E E F}, 
where f 6 is Reiter's operator. This approach is more robust than DL; in fact, every 
finite closed default theory has an extensìon class. 

In [l 7] , Schwartz introduced a variant of AEL based on the notion of refiexwe 
expansions, which are the solutions of 

E= {,P l Tu (LE:::= E) U -.LE f- 1/!}, (l) 

where LE = E is an abbreviation for { L1j! +-+ ,P 11/J E E} and ·LE= { •L1/! 11/J \t 
E}. Many theories without stable expansions ha ve a reflexive expansion. Moreover, 
re:B.exive expansions contain no weakly-grounded (i.e. self-supporting) beliefs. 

Three-valued autoepistemic logic (3AEL) [5] tackles similar problems with a 
different technique. The basic idea is that agents may have doubts. For a large and 
expressive class of theories, which generalìze Konolìge's autoepistemic norma! form, 
we have that every consistent theory has one minima! generalized stable expansion 
(GS:E), which enjoys a fixpoint construction and contains no weakly grounded beliefs. 

2,3 Extended Logic Programs 

The set of objective literals, denoted by LIT, consists of all atoms and negated 
atoms of the form ~A.. For all sets of sentences S, LIT( S) denotes S n LIT. 
Similarly, AT(S) denotes the set of atoms in S. As usual, we say that A and ·A 
are complementary, and Jet L' denote the literal complementary to L. A default 
lit:eral is a formula not L where L is an objective lìteral. ì~!e assume the rea.der to 
be familiar with extended logic programs (ELP's ); see [lO] for the definiti an of their 
s:ynt-ax and semantics. Notation: the unìque answer set of monotonic programs will 
be denoted by ANS(P); the Gelfond-Lìfschitz transformation of P w.r.t. S ç LIT 
wìll b-e: denot.ed. by P;L . 

Giordano a:nd Martelli [11] introduced a different transformation, and a notion of 
gene.r:a.lizecl stable mode] (GSM) for normallogic programs with constraints, which 
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captures the dependency directed backtra.cking (DDB) mechanism of TMS's. Given 
a classica! interpretation J..;f their transformation hereafter denoted bv pM 1·s 

· . l l .J GM l 

obtamed from P m three steps. First, all the literals notE such that E rf_ M are 

removed. Then the remaining default literals notE are replaced by -,E. Fìnally, 

among the resulting rules, select those which are strictly satisfied by J..;f, i.e. the 
rules L1 <- L2, . .. , L n such that 1\;f evaluates n- l of the literals L 1 , L 2, . .. , L n t o F 

and one of them to T. The GSM's of P are the classica] models of P (when default 
lìterals notE ìn P are replaced by -,E) that are soìutions of the equation 

AT(l\1) = AT(Cn(P:~J). 

In [4], the semantìcs of monotonic ELP's has been rephrased in three-valued 
logic. The basic ìdea is regarding ELP rules as sentences of the form 

( ... (Lo +- L 1 ) +- ... ) +- L., , 

where +- is one of the standard implìcations illustrateci ìn Fig. l. The semantìcs of 
a monotonìc ELP P is captured by ANSx(P), which denotes the set of lìterals that 
a.re logica] consequences of P ìn X-valued logìc (X= 2, 3). It has been shown that 

<= yìelds the answer set semantics, whìle +-K captures classicallogic. 

Theorern 2.1 ([4)) Far all manatanic ELP's P, 

i) Ij +- is <=, then ANS 3 (P) = ANS(P). 

ii) Ij +- is +-K, then ANS3 (P) = ANS 2(P). 

Lukasiewicz's implication yìelds a. new interestìng semantics, whose opera.tiona.l se­
ma.ntics is a restricted form of unì t resolution (1-uR), where clauses should be treated 
as multìsets, rather than sets. A sìmilar restrìctìon of ìnput lìnea.r resolution (f- ) . rn, 
constJtut~s an equìva.lent opera.tiona.l sema.ntìcs, which models top-down, SLD-like 
computatwns. 

Theorem 2.2 ([4]) Far all manatanic ELP's P where +- is +-L, 

i) Ij P is consistent, then ANS 3 (P) is the least model of P. 

ii) If P is consistent, then its declarative, opemtional and fixpoint semantics 

incide. If P is inconsistent, then the three semantics are ali inconsisient. 
co-

iiì) ANS3(P) = ANS(CNTp), where CNTp is tl contmpositive campletion of P, 

that is, P U { Lk +- L1, .. , Lk-l, Lo, Lk+l, . . Ln l L 0 +- L1, ... , Ln E P}. 

3 
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Sernantics 

In this section, the three-valued semantics for monotonic ELP's ìntroduced in [4] ìs 
extended to unrestrìcted ELP's. Default negation Ìs interpreted through the con­
struction underlyìng stable classes, which ca.ptures well-fop.nded a.nd stable semantìcs 
in a uniform way. In our framework, the meaning of a:q(ELP is determined by two 

parameters, namely, the program transformation ( e.g. GL, GM) and the truth table 
of implicat.ìon (cf. Fìg. l). Accordìngly, we replace the oper.ator F'p Ìnvestigated by 
Bara.l and Subrahmanian wìth F;R,~(X) = ANS3 (P.{,), where TR is a program 

transformation a.nd implication is interpreted as +- , whìch should be one of the 
connectives illustrateci in Fig. l. 

Definition 3 .l A nonempty family of sets :F, cont.aineci in the powerset of LIT, ìs 
a TR(+-)-answer class of an ELP P iff :F = {F;R,~(X) l X E F}. If :F = {5}, 
ì.e. if 5 is a fìxpoint of F;R,~ , then 5 is called a TR( +- )-answer set of P. If 
:F = {51, 52}) where 51 ç 52) F;R,~(5J) = 5z and F;R,~(52) = 5]) then we say 

that :F ìs an alternating TR( +- )-answer sei of P, a.nd denote :F by (51 , 52). 

The major results of [2] can be immediately extended to our framework. Fìrst of 
ali, P;R,~ is anti-monotonic when TR is GL or the transformation RE which will 
be introduced in Sec. 3.2. Secondly, when FJ,R,~ ìs anti-monotonìc, its square power 

ìs monotonìc, and every program P has an alternating TR( +- )-answer set 

(2) 

which is also the least TR( +- )-answer cla.ss under Hoare's ordering. The proofs of 

these claims are sìmple adaptatìons of the proofs in [2] and are left to the reader. 
We say that an objective literal L is derivable from an answer cla.ss :F iff, for a.ll 

5 E :F, L E 5. \Ve say that a default lìteral not L is derivable from an answer class 
:F iff, for ali 5 E :F, L rf. 5. In partìcular, if :F consists of an answer set 5, then L 
is derivable ìff L E S, and not L ìs derivable iff L rf_ 5. When :F ìs an alternating 

a.nswer se t (51 , 52), L is deriva.ble iff L E 51 , an d no t L ìs derìvable iff L rf. S 2 . 

Under this interpreta.tion, the least alternating answer set (2) induces well-founded 
sema.ntics for ELP's. In the rest of thìs section we investigate the rela.tions between 

the above framework and the semantics proposed so far. 

3.1 GL-Answer Classes 

First we stndy the relationships between GL-answer classes and the existing se­
m.antics of ELP's. In [4], it was proved that <=, whìch behaves much lìke an 
inference ruie, preserves the standard meaning of monotonic ELP's. This result 

can easily be extended to unrestrìcted ELP's. Actually, we shall prove a more 

generai result, relating ELP's wìth default logìc. By followìng the terminoJogy 

in [14], grv= a program P, we will denote by tr1 (P) the default theory ( 0, D) 
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where D is the set of defaults L1 Il ... /\ Lm -.Lm+l, . .. , -.Ln 1 Lo, such that 

Lo<-- L1, ... , Lm, not Lm+l, ... , not Ln is in P. 

Theorem 3.2 Far all ELP's P, there is a one to one correspondence between ex­

tension classes of tr1 (P) and GL( .ç:::. )-answer classes of P. 

As a special case of extension classes, we capture various semantics of normallogic 

programs (cf. [2, 10]). GL( .ç:::. )-answer classes capture stable classes· the well-founded 

model is captured by the least alternating GL( .ç:::. )-answer set of P . Moreover: 

Corollary 3.3 Far all ELP's P, every answer set oj P is a GL( .ç:::. )-answer sei of 

P and vice-versa. 

The least alternating GL( .ç:::. )-answer sets of ELP's are a natura] generalization o{ 

the well-founded semantics. By Theorem 3.2, they correspond to Barai an d Subrah­

manian's well-founded semantics of default logic [2]. 

Next we focus on Kleene's valuation, which yields a semantics whose monotonic 

inferences ~re exactly ~he .ones supported by classica] logic (cf. Theorem 2.1). The 

correspondmg embeddmg m default logic is tr2 , introduced in [14], which translates 

Lo <-- LI,··· , Lm, no t Lm+l, ... , no t Ln in t o : -.Lm+l 1 • •• , -,Ln l L0 <-- L111 . .. i\Lm . 

Theorem 3.4 Far all ELP's P 1 there is a one to one correspondence between ex­

tension classes of tr2(P) an d GL( <--K )-answer classes of P . 

Next we clarify the correspondence with 3AEL, which encompasses AEL as a special 
case. 

Theorem 3.5 Lei P be an ELP and let AE(P) be the autoepistemic translation 

of P obtained by replacing not with -.L and <-- with .ç:::. . There is a one to one 

correspondence between: 

i) GSE's of AE(P) and consistent alternating GL(<--K)-answer sets of p. 

ii) standard stable expansions of AE(P) and GL( <-- K )-answer sets of P. 

Finally, we consider Lukasiewicz's implication. It induces new semantics where 

contraposition is allowed. In particular, for a given program p let CNT be the 
t . . l ' p 

con raposztwe comp etion of P, consisting of P and all the coritrapositives 

L;<-- L1, · · ·, Li-1 1 Lo, L;+l, ... , Lm, not Lm+I, ... , not Ln, (3) 

~{ the rules Lo <-- L1, · · · , Lm, no t Lm+l, ... , no t Ln in P . The following proposition 

IS an easy consequence of Theorem 2.2.(iii). 

Proposition 3.6 For all ELP's P 1 the GL( +-L)-answer classes of P and the GL( .ç:::. 

)-answer classes of CNTp coincide. Moreover, the GL( <--L)-answer sets of p are 

the {standard) answer sets of CNTp . 
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l. a( x)+- w( x). a( x)+- f(x). a(x) +- s(x) 

2. w( wl)· f(h). b(b1). c(cl)· s(st) 

3. g(gl)· p(x)+-g(x) 

4. sm(x,y) +- b(y),c(x) 

5. sm(x, y) +- b(y), s(x) 

6. sm(x,y) +- b(x),j(y) 

7. sm(x,y) +- f(x),w(y) 

8. -,l(x,y) +- w(x),f(y) 

9. -,l( x, y) +- w(x),g(y) 

10. -,l(x, y) +- b(x ), s(y) 

11. l(x, y) +- b(x ), c(y) 

12. l(x,p2(x)) +- c(x). p(p2(x)) +- c(x) 

13. l(x,pa(x)) +- s(x). p(pa(x)) +- s(x) 

14. [l(x,y) +- p(x)] $ [l(x,z) +- a(z),sm(z,x),p(u.),l(z,u.)] +- a(:z:) 

Figure 2: An ELP for Schubert's steamroller 

Contrapositives may not seem a significative extension, at fìrst glance. On the 

contrary, contraposition makes it possible to solve in a natural and efficient way 

many difficult benchmark problema for automatic theorem provers. About 60% of 

the benchmarks without equality listed in [15]- including some of the most difficult 

ones, according to Pelletier's rating-can be solved through Lukasiewicz's semantics, 

and contraposition proves to be essenti al (cf. [4]) . This is an astonishing result for 

a monotonic logic programming language. The problems that can be successfully 

solved include Schubert's Steamroller-one of the two most difficult problems of 

[15]-and the Dreadsbury Mansion Mistery. Both have been recently considered in 

[19], where a nonmonotonic version of the Steamroller is introduced and proposed as 

a benchmark. In the following example, we show how the non-monotonic Steamroller 

can be solved through Lukasiewicz's semantics. To enhance readability, we shall use 

ED as syntactic sugar. Note that every formula in the following example can be 

turned into an equivalent ELP rule of the same size. 

Example 3. 7 The following is a description of the non-monotonic version of Schu­

bert's Steamroller due to Wagner; numbers refer to the formalization illustrated in 

Fig. 2, where +- should be interpreted as +-L. Default rules like "Normally F if G" 

are expressed through semi-normal rules F( :r.:) +- G( :z: ), no t abR( :z: ), no t -.F( :z:). 

Wolves, foxes, birds ca.terpilla.rs and sna.ils are animaJ.s, and there are some of 

each of them (1-2). Also, there are some gra.ins a.nd gra.ins a.re pla.nts {3). 

Caterpillars and sna.ils are much smaller than birds, which are much smaller 

tha.n foxes, which in turn are much smaller than wolves ( 4-7). Normally, 

wolves do not like to eat foxes or gra.ins, while birds like to eat caterpillars 


