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Appendix

First, we define partial orders > and > between (abductive and consistency) deriva-
tions, by appropriately modifying the definitions in [3]. Given an abductive deriva-
tion a: (G1,A$),...,(0,A%), a consistency derivation «: (L, AF), ..., (0,A%)
where n,m > 1, and an assumption A, "

k > a via A at step ¢, where 1 < 1 < m, if A is selected in the chosen goal in S;
and a step of type (C4)(i) takes place, invoking a,
le. Si={«L,Q}US, RselectsL'in « L',Q, L'=A,
L'dAf, Gi=—A, A¥=Af, Sy =5 and Af, =AY

a > k via A at step 7, where 1 <1 < n, if A is selected in G; and a step of type
(A3) takes place, invoking «,
ie. Gi=—L'0Q, Rselects'inG;, L'=A4, L ¢A
L=4, Af=ATU{A}, Guyi=c Qand A%, = A%

> is the transitive closure of >.

Let ap denote the successful abductive derivation (« 2,0) to (O,A) as in the-
orem 4.1. By definition of successful abductive derivation, aq is finite and there
exists a finite number of successful and finite derivations § such that ag > 6.

Lemma 6.1 For each derivation 6: (U1, Ay), ..., (Un, A,) with ag > 6:
A; CAj foralld,j=1,...,n with { < j, and
A; €A foralli=1,...,n.

This lemma can be easily proved by induction on the number of derivations §' such
that 6 > &' (see [9]).

Let HBno={not A|A is an atom in the Herbrand base of P}. The assumption
set of an abductive derivation o: (Gy,4,), oy (Gn, Ay) is the set ass(e) =
{A|3G;such that A € GiN(ABgpyUHB,.,)}. (We interpret goals, i.e. conjunctions
of literals, as sets of literals.)

|
:
:
(

Lemma 6.2 Given an abductive derivation a:(«—Q’, A,),..., (3, An) with ag > «a,
1. ass(a) C A, and
2. PUass(a) + Q'.

Proof:
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1. By definition, each A € ass(a) occurs as a subgoal in some G; in . By
definition of abductive derivation, for each such A there exists A; such that
A € A;. Therefore, directly from Lemma 6.1, each such A is in A. As a
consequence, ass(a) C A.

2. Directly from the definition of abductive derivation, P Uass(a)Fsrp Q'. By
soundness of SLD resolution, PUass(a) + Q'

Corollary 6.1 Given an abductive derivation a: (« L,A;),...,(0,A,) with ap >
o and L an atom or the negation of an abducible atom, A attacks the assumption
T via case (i) or case (ii).

Let the assumption set of a consistency derivation «: (L, A1), ..., (Sa, An) be
the set ass(k) = {ass(B8) |3 is a branch of the tree 7 (k) corresponding to «}, where
the assumption set of a branch B in 7 (k) is the set ass(B) = {A|3G; in B such
that A € G; N (ABgwm U HBnot)}, and the tree T(x) corresponding te « is 7y,
such that, assuming that for each i = 1,...,n, S; = {« L;, Q;} U 5], and for each
i=1,...,n—1, S;y1 is obtained by choosing the goal « L;, @; and by selecting the
literal L; in it: ‘

7o consists only of the root, which is the empty goal;

for each 1 > 1, given 7; and Siy1, then Tiy; is obtained as follows:

1. if L; is an atom and case (C1) applies, then 74, is 7; where all resolvents of
— L;,Q; on L; in P are children of « L;, Q;; if there is no such resolvent,
failure is the only child of « L;, Q;;

2. if L; is an assumption and L; € Ay, i.e. case (C2) applies, then 74, is 7; where
«— Q; is the only child of « L;, Q;;

3. if L; is an assumption and L; € A, i.e. case (C3) applies, then 7;11 is 7; where
failure is the only child of «— L;, Q;

4. if L; is an assumption, L; € A; and L; € A;, i.e. case (C4) applies, then,
if there exists an abductive derivation from (« L;,A;) to (0,A) (case (i)),
then T;4, is 7; where failure is the only child of « L;, @
otherwise (case (ii)), Ti41 is 7; where «— Q; is the only child of « L;, Q.

Lemma 6.3 Given a consistency derivation & : (L,4,),...,(0,A,) with ag > &,
ass(k) D {A/|A is a minimal (with respect to set inclusion) attack against L}.
Proof: By definition of consistency derivation, since all resolvents are considered at

~ any step of kind (C1), ass(x) contains all sets of assumptions A’ such that

PU A ‘-SLD I, and
PUA“sipLy,...,Li1, Liy1,. .., Lm, for some —'[Ll A A Lm] in T
with L; = L for some ¢ = 1,...,m.
But note that, for any (definite) program P’ and query @', if there exists a minimal
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subset P of P’ such that P” + Q' then P'lgrp Q. As a consequence, directly
from the definition of (minimal) attack, each minimal attack A’ against L belongs
to ass(k).

Lemma 6.4 For each cousistency derivation & such that ag > «:

1. there exists an abductive derivation « such that a > «;

2. for any abductive derivation a such that « > &, via L at step 1, for each branch
B € T(x), if ass(B) is a minimal attack against L then for some L' € ass(B),
(a) A attacks L' via case (i) or case (ii), and (b) L' € A.

Proof: Part 1. is obvious. Let us prove part 2. To prove (a), note that each B €
7 (x) terminates with failure. If ass(B) (minimally) attacks L, then, by completeness
of SLD resolution, failure cannot be generated via case (C1). Therefore, failure must
be generated via case (C3) or (C4)(i), due to the selection of an assumption L’ at
some step j. (Note that necessarily L' € ass(B).) In the first case A attacks L’
via case (i) or via case (ii) trivially holds. In the second case, there must exist an
abductive derivation ¢ such that « > o via L’. By definition, o is a derivation
from (— I, A;), where A, is the set of assumptions accumulated at step j in x. By
corollary 6.1, A attacks L’ via case (i) or via case (ii).

To prove (b), suppose by contradiction that I’ € A. Necessarily, L' & A;,
otherwise a step of type (C2) would have taken place. Therefore, there must exist
an abductive derivation o such that L' € ass(a”) and o > o”, and a consistency
derivation «’ such that " > &’ via L'. Since A attacks L' (see (a)), by completeness

_of SLD resolution there must exist a branch B € 7 (') such that ass(B) = A’ for

some A’ C A, and B terminates with 0. As a consequence, ag cannot terminate
successfully. This gives a contradiction.

Lemma 6.5 For all sets of assumptions A and A in the assumption-based frame-
work corresponding to a KM abductive logic program (P, ABxum, Irm), the follow-
ing statements are equivalent:

1. if A attacks A, then A attacks A— A;

2. if A is a minimal attack against A, then A attacks A— A.

Proof: 1. = 2. trivially holds. To prove 2. = 1., note that if .4 is a non-minimal
attack against A, then there exists A’ C A such that 4’ is a minimal attack against
A. Then, by 2., A attacks A" — A. Therefore, A attacks A— A.

Proof of theorem 4.1: Part 1. holds by lemma 6.2. Part 2. can be proved as
follows: by lemma 6.5 we only need to consider minimal attacks against A. By
definition of attack, for each (minimal) attack 4 against A, there must exist L € A
such that A4 attacks L. Moreover, by construction of A, for each such L, there must
exist an abductive derivation « such that ag > o and L € ass(a), and a consistency
derivation & such that @ > & via L. By lemma 6.3, A€ ass(x). By lemma 6.4 A
attacks A—A via case (i) or via case (ii). This concludes the proof.
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Abstract

Higher-order programming languages, as AProlog can be used with success
in implementing program transformation systems, exploiting the capability of-
fered by higher-order unification and by the availability of A-terms. Through
these features many operations on programs can be naturally expressed as
higher-order term-rewriting systems. In this paper we apply higher-order
term-tewriting techniques in the context of program transformation using
AProlog as metalevel language. In particular we give a theoretical setting
and we propose an implementative solution to the execution of the rewrite-
by-lemma and fold steps of a program transformation strategy proposed in
[17].

We propose a solution involving algebraic specification for dealing with the
rewrite-by-lemma steps, which encapsulates the complete knowledge of alge-
braic properties of a data-structure into a finite set of axioms. These steps
are carried out through term-rewriting techniques, and we propose two dif-
ferent interpretational approches of them in AProlog. Moreover the execution
of folding steps is performed through rewriting techniques in the setting of
recursive program schemes.

Keywords: higher-order logic programming, program transformation,
term-rewriting techniques, algebraic specifications.

1 Introduction

Several program transformation methods based on rewriting techniques have been
proposed in the literature. One of the most famous is due to Burstall and Dar-

*This work has been partially supported by MURST 60%.
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lington ([5]), where program transformations are expressed as rewriting systems.
In [7] the connections between program transformations and compiled techniques
are described where, through the application of suitable rewriting-steps (semantic-
preserving) new programs can be derived.

In this context, different programming languages paradigms have been adopted.
In particular, the uselfuness in using higher-order logic programming languages,
such as AProlog [15], to specify and implement program transformation techniques,
has been outlined for example in [9], [13]. The main advantages achieved in using
this language are related to the declarative features of logic programming, to the
higher-order intensional features of A-terms for representing programs and to the
availability of higher-order unification. Through the A-abstraction built into M-
terms it is possible to easily represent quantification in formulas or abstraction in
functional programs, and so many operations on formulas and programs can be
naturally expressed as higher-order rewrite systems, as we will see in this paper.

The main goal of this research is the implementation of rewriting techniques using
AProlog (we have used the MALI implementation of AProlog developed by [4]) for the
automation of a particular program transformation strategy, called “higher- order
generalization strategy” or “A-abstraction strategy ([17]). Higher-order expressions
and higher-order reasoning arise naturally in meta-level manipulation of program
code. Exploiting modularity of AProlog we can symbolically rewrite the object-
level program expressions through a rewrite-rule system originated by an algebraic
specifications.

In this paper, to the extent of supplying the program transformation strategy
with as much uniformity as possible, we decided to use the Recursive Program
Schemes (|6]), which show how splitting a program into its control and its data-
structures represents a powerful method for investigating on the general properties
of programs. To specify these properties of data-types involved in programs, we use
algebraic specifications and so we focus our attention on the way to implement them
in a higher-order context.

Term-rewriting systems represent, an adequate tool for execute algebraic specifi-
cations and a way to implement them is to translate algebraic specifications directly
to AProlog programs. The translation from term-rewriting systems to AProlog pro-
grams benefits from the fact that higher-order unification, in connection with a
decomposition of A-terms is very successfull to describe the mechanism of subterm
rewriting. In particular, through higher-order unification we apply transformation
steps involving symbolic rewriting of different parts of the programs. The precise
mathematical semantics of algebraic specifications can then serve as a basis for a
formal verification of the translation schemes. In this way we describe an interpre-
tational approach to term-rewriting using AProlog. We apply higher-order rewrite
rules techniques for the manipulation of program expressions, where semantically
safe rewrite rules are necessary for passing smoothly from one program to another,
as suggested by [5], through fold/unfold style transformation steps.

How directly implement through AProlog rewriting techniques have been shown
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#y Heering in [10]. These techniques, although appealing for their simplicity of
fmplementation, introduce spurious solutions due to higher-order unification. For
this reason we developed quite a new approach to the implementation of rewriting
wechniques, based on the “context-closure” of a term.

Other related works, in the literature, on the definition and the application of
Figher-order extensions of rewriting techniques, are for example [11], [16], (8], [19].
The paper is organized through the following sections.

In section 2 we introduce algebraic specifications by which we specify the prop-
grties of data-types involved in programs, introducing modularity in the implemen-
mtion of the program transformer. We then briefly introduce the principal features
#f the \-generalization strategy and we show how fold /unfold transformational steps
rould be uniformly dealt as rewritings of program expressions, if such transforma-
Hons are seen in the light of recursive program schemes. In section 3 we describe how
through the interpretational approach of algebraic specifications coupled with the
Zeclarative power of a logic programming language, such as AProlog, it is possible
%o directly implement term-rewriting systems as a modular structure of the archi-
sectural design of the program tranformer, and we show how higher-order rewriting
techniques are useful in automatic execution of folding steps. Two different im-
glementations in AProlog of an algebraic specification of a list of objects are given,
sne exploiting higher- order unification for direct rewriting, and the other obtained
through the transitive closure of a set of rewrite rules. Finally we conclude and
briefly discuss some future research directions.

2 Using Algebraic Specifications and Recursive
Program Schemes in Program Transformation

One of the major problems connected with strategies for program transforma-
tion is enlarging the range of their uniform applicability. Besides, since the software
maintenance and developement of complex systems is greately improved by a mod-
nlar design, it is preferable to have modularity in the architecture of the program
transformer. We then decided to choose two combined theoretical approaches, to
make the transformation strategy as uniform as possible and to reflect the modular
features of AProlog in the modular design of the implementation: Recursive Pro-
gram Schemes and Algebraic Specifications. There are several reasons to introduce
#lgebraic specifications in program transformations. They incapsulate knowledge
gelative to the algebraic properties of data-types in a finite number of axioms, so
i is possible to demand the execution of some particular transformation steps, i.e.
rewrite by lemma steps, to & module implementing the algebraic specification. Fur-
ther algebraic properties could be deduced from the axioms of the specification.
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2.1 Algebraic specifications

In our approach, the data structures instantiating the recursive program schemes,
i.e. the interpretations, are represented by means of algebraic specifications, which
abstract the declarative features of data-types from the implementation details (see
(18] for a complete survey on the subject). An algebraic specification is a couple
(¥, E) where T is a first-order signature (F, S), E is a finite set of equational axioms
on ¥ and F is a sorted signature with set of sorts S. In the following we use
algebraic specifications, expressed in the formalism of ASF of [3], to represent the
data structure list of objects :

module ListofObjects

begin
parameters
Object  begin
sorts OBJECT
end Object
exports
begin
sorts LIST
functions
0 -> LIST
OBJECT # LIST-> LIST
tl: LIST - > LIST '
hd: LIST - > OBJECT
@: LIST # LIST -> LIST
end
variables
xX,y,2z : -> LIST
1 : -> OBJECT
equations
[s1] hd[l: x] = 1
[s2] tll: x] = x
s3] [@x = x
[s4] x@ ] = x
(s8] N:y] @z = [l: (y @2
[s6] x @ (y @ z) = xQy) @z
end ListofObjects °

Algebraic specification can also be used at object-level in program developement,
as part of a prototyping language for input programs, by means of interpretational
implementation of rewriting systems, originated by suitable orientation of equational
axioms. Beside, when the existence of an initial algebra is granted, the semantics of
the algebraic specifications is easily at hand.

249

2.2 A Program Transformation Technique: A-generalization
. strategy

The program transformation strategy given in [17] avoids term mismatch useless for
folding steps by means of A-conversion of A-terms. Basically, this strategy called
A-generalization strategy represents a higher-order variant of the classical general-
ization strategy of Aubin described in [2] and consists of a sequence of applications
of the following elementary transformation steps:

e define a suitable auxiliary function

e instantiate the auxiliary function

¢ unfold the occurrences of left hand side of input program equations
e rewrite program terms according to data-type properties

e fold the occurrences of right hand-side of the equation defining the auxihary
function equation

The A-generalization strategy is used, when in the input program, a mismatch
between an expression Fle] and a subexpression e occurs. In this case the folding
steps are not applicable. In order to circumvent the problem, an auxiliary function
\z. E[z] is defined, linked to E[e] through A-conversion relation Ele| = (Azr £{z]) «,
allowing folding operations which are not otherwise enabled. This auxiliary func-
tion meets the flexibility and the free advantages of A-conversion rules, making
fold/unfold transformation steps easier to obtain. In [1] we applied the stratepy to
transform the naive version of reverse of lists into a less time-consuming iterative
one. The fold/unfold transformational steps could be uniformly dealt as rewrnt
ings of program expressions if we see such trasformations in the light of recursive
program schemes. Given a set of sorts S and two disjoint S-signatures F' and
®, a system of equations over F with set of unknowns @ is an N-tuple of equa-
tions of the form ¥ = (¢i(zi1,...,Zin;) = ti, 1 = l..n), where for each 1 1, N,
t; € M(FU® {(z;1,...,%in}). A recursive applicative program schesne in s paiy
(Z,t),where T is as above and t is a particular term that can be interpreted as an
applicative entry point in the computation of a program. An applicative program
is an instantiation of a recursive program scheme under an interpretation winel is
modelized by an F-algebra M. It is nice keeping M in the category of modsls of
an equational set of axioms F, so we can benefit of the initiality properties of the
associated algebraic specification (F, E). With such an approach an unfulding step

could be seen as a rewrite-rule system ¥ = {¢;(zs1,..., Tin,) — . 0 - | N
while a folding step could be seen as the reverse of such a relation ¥ ' - {f; ——
@i(zi1, ..., Tin;)t = 1...n}. In the higher-order case, we have to join Lo systetns ¥

and 7! the rules of A-conversion. The advantages to use recursive prograt sehiemes
in program transformation are stated in the following points:
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1. the separation of the data structures of the input program from its control
structures allows focusing on the interpretation modelized by an algebraic
specification;

2. the class of input programs, where the program transformation strategies are
uniformly applied, is enlarged (as outlined in [1]).

Hence, as pointed out in this section, the fold/unfold steps in the transformation
of applicative programs have proven to be a particular case of term-rewriting. As
such, in their AProlog implementation, they could be dealt with the same general
rewrite-rule based techniques we elaborated for the algebraic specifications.

3 Term-Rewriting Techniques in the Context of
Program Transformation

We design the program transformer according to a top-down methodology which
allows us to distribute the architecture of the program into several modules. Term-
rewriting is ubiquitous in fold/unfold strategies, expecially in rewrite-by-lemma
steps. Following a modular style of programming, we have written a module in
AProlog containing a specification of a data-type, in our case the data-type list. A-
bounded variables in program expressions need a higher- order extension of rewriting-
rule; for these reasons we embedded the algebraic specification into a higher-order
specification language such as AProlog which gives it for free.

The implementation of algebraic specifications exports a predicate, called reduce,
invoked every time the strayegy must perform rewrite-by-lemma steps. The main
module, containing the program transformer, imports the predicate reduce through
the top-level commands use, import, export of the AProlog compiler.

In the following we give two different implementations of an algebraic specifica-
tion of a lists of objects in AProlog.

3.1 Direct Rewriting Through Higher-Order Unification

According to the interpretational approach, a rewrite rule is described as a di-adic
predicate instantiated with the two sides of the rewrite rule. The main advantage
offered by higher-order AProlog implementation, is that a suitable higher-order vari-
able, namely H, allows the higher-order matching of the extended left hand side
of the equation with the full input term, performing the subterm lookup implic-
itly. The major drawback with this technique is due o the introduction of spurious
bindings for the variable // to A-terms of kind Az.s, originated by the application of

the imitation rule of the higher-order unification algorithm. Consider the following
example:

2
n
=

kind int type.

type 0 int

type plus int — int — int.
type reduce A — A — o.

reduce H (plus X 0) (H X).

By trying the goal 7-reduce (plus 3 0) Xs, higher-order unification will pro-
duce a disagreement set of the kind { { (plus 3 0) , H (plus X 0) ), ( Xs, (H X)
) }. Now, the matching procedure will yield two substitutions for H, {H — z\z}
and {H — z\z plus(H1X)(H2X)}. Only the first substitution will give a corre(':t
answer {Xs — 3}, the other one results in a spurious one. A way to solve this
problem would be turning the rewrite rules expressed in form of facts in AProlog
into rules expressing conditional rewriting. Actually, the body of the rule contains
the specification of the correct binding for H; as for the above example, the program
line would be substituted by the following:

reduce (H (plus X 0)) (H X) :- context(H).
context (x\x).

The definition of higher-order rewriting system given in [19] is consistent with
the implementation technique given above, to the extent that the matching between
a subterm and the left hand side of a rewriting rule is automatically computed
by instantiating the variable H. Of course this implementation technique is not
acceptable from the computational point of view, since many solutions produced by
higher-order unification mechanism would be discarded by the context predicate
definition, producing useless work of AProlog interpreter, but in anyway, for “small”
signatures there are no significative problems.

Another major drawback of these techniques is the unadequacy of dealing with
bounded variables for truly higher-order rewriting rules. To show this, consider this
example:

type [] list A.
type @ 1list A — list A — 1list A.
type : A — list A — list A.

type reduce A — A — o.

reduce (H (Xs @ [])) (H Xs).

When we try the goal, 7- reduce (x\(x @ [])) Xs, the disagreement set is
not able to produce the right substitution since the computed answer will never
bind Xs to a closed term. A partial solution to this problem would be substituting
the above program line with the following line:
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reduce (Xs \ H (Xs @ [1)) (Xs \ (H Xs)).

However such a solution would result in a loss of generality because a kind of
first-order/higher-order switch would be necessary. We adopted this solution in [1]
because only higher-order, bounded variables were used in program expressions.
We present in the following the implementation of the whole 1ist module that is
invoked by the program transformer.

module lists.

kind list type — type.

type [J  1list A.

type : A — (Ist A) — (1st A).

type hd (1st A) — A.

type t1  (Ist A) — (1st A).

type @ (1st A) — (1st A) — (1st A).
type extrule (1lst A) — (lst A) — o.

extrule (Xs\ H (hd [X : Xs])) (H X) 1= context (H). (1)
extrule (Xs\ H (t1 [X : Xs1)) (Xs\ H Xs) :- context (H). (2)
extrule (Xs\ H (Xs e [1)) (H Xs) 1= context (H).(3)
extrule (Xs\ H ([] @ Xs)) (H Xs) 1~ context (H). (4)

extrule (Zs\ H((Xs @ Ys) @ Zs))(H (Xs @ (Ys @ Zs)))

:- context (H). (5)
extrule (2s\ H ( [X : Xs] @ Zs)X H ( [X : (Xs @ Zs)]))

:— context (H). (6)

context  (x\x). ¢p)
context - (x\y\x). (8)
context  (x\y\y). (9
reduce XY :- extrule X Y. 7this is the predicate to be exported

The module list exports to the main module, which manages the program
transformation strategy, the predicate reduce. '

We have also found that higher-order rewriting techniques, are useful in auto-
matic execution of folding steps. To clarify our idea, let us consider the following
recursive applicative version of the program computing the reverse of a list:

rev([]) =[]
rev([hd(l) : t1(1)]) = rev(tl(l))@[hd(1)]

The application of the A-generalization strategy to the above function will first
yield the auxiliary higher-order function g(I) = Az.rev(l)@z. Through the ap-
plication of a sequence of rewrite-by-lemma steps, we get the program expression

iz rev(¢l(1))@[hd(l) : z]. At this point, we exploit the following relation among
-terms:

Az rev(tl(l)) @[hd(1) : 2] =5 Az. [Ay. rev(tl(l)) @y] [hd(l) : ] (1)
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Then we apply a folding step to the A-term Ay. rev(t!(1)) @y which, matched against
the equation g(l) = Az.rev(l) @z, gives the term g(tl(l)). Substituting the latter
term with the left hand side of equation (1) and conmsidering this equation as the
leftmost part of a chain of A-conversions beginning with g([rd(l) : tI(I]) and obtained
through the application of the A-generalization strategy, we have a new recursive
expression of the auxiliary program function g, that will yield a new iterative ver-
sion of the reverse function. In this way the folding process could be seen as a sort
of conditional term-rewriting process, and so logic programming-style implementa-
tion is immediate. Besides, higher-order unification mechanism inherent to AProlog
provides A-term probing for performing folding steps of subterms and for replacing
them in the originary contexts. In our implementation we obtain the folding steps
through the following AProlog lines:
fold X\ (KM (N X)) (X \Y (N X)) :- rewritefun ¥ (X\K M X).

rewritefun (H (g L)) (H (X\ (rev 1) ) @ X).

In these lines the search for foldable expressions is demanded to the instantiation
of variable M, while folding step is up to the body predicate rewritefun (which
is invoked with the first argument uninstantiated) through the instantiation of the
variable Y. Higher-order variables K and N control the context of the program
expression. In the case we studied, higher- order unification, on invocation of the

. following goal:

?7- fold x \ (rev( tl (L)) @ [ hd(L) : x] (x \Y (N x))

produces the bindings K — x \ y\(x @ y), N — x\ [hd(L) : x}, M — rev(tl (L)) and
Y — g(tl (L)), instantiating the second argument of the goal to x\ g(tl (L)) [hd(L) :
x] , 1.e. the left hand side of the new recursive program equation. Now, observe that
the AProlog clause fold, does not depend on the particular input program. Also
rewritefun is a predicate that could be replaced by a set of predicates that depend
only from the recursive program scheme associated to the input program. In this
way the scope of the strategy can be enlarged to the class of programs instantiated
the same recursive program scheme.

3.2 Congruence Closure of a Set of Rewrite Rules

On account of the drawbacks described in the previous section, we have formulated
an alternative version of the list module. In this latter approach, we formulate
a set of predicates specifying the elementary rewriting steps and then we expand
them as respect to the signature. It is a method which grants uniformity as respect
to signature, avoiding the probléms originated by the use of higher-order variables.

module lists

kind 1lst type — type.

type [J 1st A.

type : A — (Ist A) — (Ist A).




type hd (Ist A) — A.
type t1 (Ist A) — (Ist A).
type @ (Ist A) — (Ist A) — (lst A).

rev X @ [J X . 1
rev [] @ X . (2)
rev ( [X : Xs] @ ¥s) ([X : (Xs @ ¥s)]). (3)
rev X@ (Y@Z) (XeyY)oezZ. (4)
rev hd ([X : Xs]) X . (5)
rev tl ([X : Xs]) Xs . (6)
rev (x \ M x) (x\ N x)

t= pi x \[rev x x => rev (M x) (N x)]. )
rev (A1 A2) (Bi B2)

:— rev(Al B1) , rev(A2, B2). (8)
reduce (X1 @ Y2) (X2 @ Y2) 1= reduce X1 X2. (9)
reduce (X1 @ Y1) (X1 @ Y2) :~ reduce Y1 Y2. (10)

reduce (hd [X1 : Xs1]) (hd [X1 : Xs2])

:-reduce Xs1 Xs2.(11)
reduce (tl [X1 : Xsi1]) (t1 [X2 : Xsi])

:— reduce X1 X2 . (12)
reduce X Y :- rev X Y . (13)

The main advantage of this module is that the code lines specifying the congru-
ence closure of the term-rewriting system (lines 9 through 13) are uniform respect
to the signature of the data- structure. Line (7) allows dealing with A-bounded
variables by means of V-bounded variables at propositional level, turning the former
class of variables into a sort of local parameters that could be dynamically reduced
by means of first-order rules. Informally, we can think of line (7) and (8) as an
“higher-order closure” of the first-order term- rewriting system.

4  Conclusions and Future Developments

In this paper we have investigated a particular application of rewriting techniques
in solving program transformation tasks. We have used the higher-order language
AProlog as metalanguage for implementing rewriting techniques, exploiting in this
way the higher-order features of the language and the availability of A-terms to
express different operations on programs.

Beside, our work has pointed out that the use of algebraic specification and
recursive program schemes in program transformation reduces the problem of folding
programs expressions to a problem of term-rewriting, to be solved into the theory
of generalized equational unification. We realized that three kinds of unification
problems have been involved in our research: the higher-order unification of A-
terms, the higher-order equational specification of algebraic specification and the
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Y-unification of recursive program schemes. The study of the decidability problem
in the general theory of unifcation will be the theoretical support for a successful
application of rewrite- by-lemma steps leading to signifcant foldings of object-level

programs.
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Abstract

In the framework of a simply typed higher order A-calculus, we study one
particular possibility of extending the call-by-value semantics from first order to
higher order functions. The basic assumption is to discriminate the undefined
function from the pointwise undefined function. The calculus is elaborated
under two basic aspects, viz. reduction and denotational semantics.

Keywords A-calculus, call-by-value semantics, strictness, higher order functions

1 Introduction

The foundations of functional programming were laid by the A-calculus (for the his-
toric origin see [6] and (8], for recent books [3] and [13]): its comversion rules, viz.
the a-, 8- and 7n-conversion, define the basic equivalence of applicative expressions,
its models like D™ or P“ provide a semantic universe for interpreting them. At a
closer look, however, pure A-calculus does not adequately formalize the semantics of
an applicative language with a call-by-value semantics.

In this paper we investigate one particular aspect of the semantics of a simply typed
higher order A-calculus: How to extend the call-by-value semantics from first order
to higher functions? This can be rephrased in denotational or operational terms as
follows:
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e What is the appropriate semantic domain associated with higher types under a
call-by-value semantics?

e How can the [-conversion and the n-conversion (extensionality) of pure A-
calculus be modified to meet a call-by-value semantics for higher order func-
tions?

For a first order function the call-by-value regimen evaluates the argument before the
function is applied. Hence the evaluation of an application diverges, if the evaluation
of its argument does. In the semantic model this leads to strict functions which yield
undefined whenever their argument is undefined.

This suggests to consider strict functions also for higher types. However, this straight-
forward denotational semantics allows no simple operational rules. The difficulty lies
in checking an argument of higher type whether it is different from the least element.
For first order functions, the argument is of ground type and can be completely eval-
uated. For a higher type, the test could only be performed by evaluating the function
at all its arguments in a fair manner in parallel.

This inadequacy originates from taking the pointwise undefined function as the least
element in the function space in which the functionals are required to be strict. To
overcome this difficulty, we enlarge the function space by the undefined function which
is properly less defined than all genuine functions. The undefined function models non-
termination when computing the function as the result of a higher order function.
The pointwise undefined function models a well-defined functional object which is
undefined at each argument.

In the sequel, we explore the consequences of this design decision to the semantics of
a simply typed higher order A-calculus under two major aspects, viz. reduction and
denotational semantics. In particular, we characterize the notion of extensionality
of higher order expressions under a call-by-value semantics and establish the call-by-
value n-reduction. In summary, the discrimination between the undefined function
and the pointwise undefined function allows a coherent framework for higher order
call-by-value programming.

The reader should be familiar with the foundations of functional programming, in
particular with term rewriting (for overviews see [9] and [14]), denotational semantics

(see, for example, [17] and [20]) and the underlying domain theory (see, for example,
[12] and [22]).

2 Syntax

In this section we introduce the syntax of the language together with the syntactic
functions to manipulate expressions. By incorporating suitable typing rules into the
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inductive definition, we only generate well-typed expressions. Hence we can focus on
the deduction of expressions without having to treat simultaneously the deduction of
types (as in [4] or [11]).

2.1 Basis

We base the language on the fixed signature £ = (§,K,F) of natural numbers
and Boolean values comprising the sorts S = {bool,nat}, the constants JC?°°! =
{true, false} and K™** = {zero}, as well as the operators F™®*2"%t = [succ, pred}
and Frat—bool — [ierer0} .

Types are syntactic attributes that impose a discipline on forming expressions.

1. Definition The set T of types over S is defined inductively:

(1) Ground types SCT.
(2) Higher types Ifr,s € T,then (r —s)eT.

Types will be denoted by the bold face letters r,s,t. In applicative expressions vari-
ables are bound by abstractions and by (recursive) declarations.

2. Definition A T-typed variable family X = (X*)ieT consists of countably infi-
nite, pairwise disjoint sets X* of variables. A basis (3, X) consists of a signature T
and a variable family X disjoint to 2.

2.2 Syntax of Applicative Expressions

The expression language follows the applicative style of functional programming. Ex-
pressions of higher types are built over a first order signature.

3. Definition The family EXPR = (EXPR")icr of (applicative) expressions over
the basis (¥, X) is defined inductively:

JJ,? Aok nden eptlonf

) Constants K* C EXPR® (seS).
) Operators  F*7* C EXPR™™® (r,s € §).
) Variables Xt C EXPR*.
) Conditional If E € EXPRP°® and F,G € EXPR,
then if E then F else G fi € EXPR.
(6) Application If F € EXPR*7*and E € EXPR®, then F(E) € EXPR®.
(6) Abstraction If z € X* and E € EXPR®, then (Az.E) € EXPR™™*.
(7) Recursion Ifz € X*and E € EXPR®, then (uz.E) € EXPRY.

The language supports the explicit typing paradigm (originally introduced in [6]) —
and not the implicit typing paradigm ([7], [8]). The language corresponds to the de-
terministic kernel of CIP-L ([5]) and to the programming language PCF for computable
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functions ([21]).

4. Notation Constants will be denoted by ¢, d, operators by f,g,h, variables by
z,y, 2z, and expressions by E, F, G, H . The syntactic equality of expressions is denoted
by = . In writing expressions parentheses may be dropped with the usual conventions.

5. Examples

a) Natural numbers: succ™(zero) = succ(. .. (succ(zero))...) (n € N)

n
b) Addition of natural numbers (z € XPat=(nat—nat) ;¢ xnaty,
add = pz Ay.Az.if iszero(y) then z else z(pred(y))(succ(z)) fi
c) Syntactic error element representing non-termination: errort = pz.c (z € X*).
In particular, error™*® will represent the “undefined function”.
d) Expression representing the “pointwise undefined function”:
omega™™® = Ay.error® (y € X¥).

e) Constant zero function (z € X*): constzero'=mat =

Az.zero .

Every expression of the language possesses a unique type. The finite type structure
of the language excludes the self application of expressions.

We will not build the consistent renaming of bound variables into the conversion rules

([6]). Rather we identify alphabetically equivalent expressions on the syntactic level

(3], 4], [11]).

6. Definition The family EXP = (EXP")icr of (a-congruent) expressions comprises
the a-congruence classes of EXPR. | . (ot of otvmatn

The free variables of an expression are not changed by a consistent renaming.
7. Definition The set of free variables of an expression £ € EXP is denoted by
free(E). The family CMB = (CMB*)¢et of combinators consists of closed expressions

having no free variables.

The substitution [E]F replaces all free occurrences of the variable « in the expression
E by the expression F of appropriate type.

2.3 Values

To meet the strictness constraints of a call-by-value semantics, we introduce a sub-
family of expressions the syntactic form of which will ensure that they have a defined
interpretation.

8. Definition The family VL = (VL')¢e7 of values is defined inductively:

Constants KsCVLr (se8).

Operators FrsC VL® (r,s €S).

Non-zero Numbers If w € VL™ | then succ(w) € VL™=t .
Abstractions Ifz € X* and E € EXP®, then (Az.E) € VL™ 5.

1
2

—~ o~~~ —
> W
— N
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Values of ground types denote Booleans and natural numbers, values of higher types
are operators and abstractions denoting genuine functions. Values are closed under
substitution.

3 Denotational Semantics

In the denotational semantics we concentrate on the strictness properties of the ex-
pression language.

3.1 Flat Domains

With the underlying data structure we associate flat domains with strict functions.

1. Definition The continuous Z-algebra A consists of the carrier sets bool* =
{LP°°! T, F} and nat* = {17®,0,1,2, ...}, the constants true* = T, false* = F
and zero* = 0, and the operations succ?, pred*: nat4 — nat# and iszero*: nat4 —
bool” with the usual interpretation.

3.2 Domain of Strict and Continuous Functions

With function types one usually associates the domain of continuous functions.

2. Definition For complete partial orders D = (D,CP, 1P) and R = (R,C?, 1B,
([D — R],C,0P7%) denotes the cpo of continuous functions from D to R with
the order f C g iff f(d) C® g(d) for all d € D. The pointwise undefined function
QP~8; D — R with QP~®(d) = L% for all d € D is the least element.

To meet the call-by-value semantics we select the subspace of strict and continu-
ous functions. For complete partial orders D and R, the set [D % R] of strict
and continuous functions forms a subcpo of [D — R]. Moreover, the retraction
strict: [D — R] — [D 5 R)] given by strict(f) = f[LP/L%®] is continuous; here
.[./.] denotes the update operation on functions.

3.3 Lifting the Function Space

The lift attaches a new least element to a domain.

‘3. Definition For a complete partial order D = (D,CP, 1P) the lifted complete

partial order D) consists of the set D, = (D x {0}) U {L} endowed with the order
relation ¢ Ey iff 2 = L or ¢ = (d,0) and y = (e,0) and d CP e.

For a complete partial order D=(D,CP, L P) the lift D, =(D,,LC, 1) is a complete
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partial order. The mappings in: D — D) with in(d) = (d,0) as well as out: D; —
D with out(L) = LP and out(d,0) = d are continuous with out o in =
moout Jidp, .

idp and

4. Definition For cpos D and R, the lifted function space [D -3 R],p-= is the space
of strict and continuous functions extended by the undefined function 1P The
apply operation apply: [D =+ R 0+ X D — R is given by apply(f,d) = (out(f))(d).

The undefined function | P~# is properly less defined than every genuine function, in
particular less defined than the pointwise undefined function QP~® . The undefined
function denotes expressions of functional type with non-terminating computations
whereas the pointwise undefined function denotes abstractions that lead in every
application to a non-terminating computation. The lifted function space integrates
two orders: a function can be applied as an operator to an argument — this leads
to the pointwise order on the space of genuine functions. But a function can also be
the argument of a higher order function — this leads to a flat order on the extended
function space. ’

3.4 Interpretation of Expressions

First we associate complete partial orders with the type system.
5. Definition The interpretation of the types is defined inductively:

(1) [l=s* (s€5)
() [r— sl =[]  [s])r—

Valuations record the binding of variables to semantic elements.

6. Definition A valuation p = (p*: X* — [t])teT i5 2 family of mappings associating
elements to variables. The environment ENV denotes the set of all valuations.

7. Definition The interpretation [.] = ([.]%)¢er of applicative expressions is a
family of mappings [.]% EXP* — [ENV — [t]] defined as follows:

(1) [el*(p) = c*
(@) [FI%(p) = n(57)
(3) [=]%p) = p(=)
_Lt if [[E]]bool(p) — J_booll

[if E then F else G fi]*(p) = ¢ [F](p) if [E]*°°p) =T

[GlH(p) if [E]P°Y(p) = F
[F(E)]*(p) = (out([F](p)))(IE]"(p))
Die. BI+(p) = in(strict(d - [B]"(plz/d))) (d € [<])
[ez.E]*(p) = u(d — [E]*(plz/d])) (d € [t]).

Above p denotes the least fixpoint operator. Two expressions B, F € EXP?! are
called (semantically) equivalent (denoted by E =~* F), if for all p € ENV we have
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(BT (p) = [FT(p) -
We illustrate the interpretation assigned to the expressions denoting the ‘undefined
function’ and the ‘pointwise undefined function’.

8. Example
[error™=*](p) [omega™*](p)
= [rz.z](p) = [My.errort](p)
= p(f = [2l(pl=/f])) = in(strict(d — [error*](ply/d])))
= p(f=71) = in(strict(d — L)
L= = in(strict(QIFI=E))
= in(QE10E)

= (QlsI=E )
Values have a defined meaning in all environments.

9. Proposition For all p € ENV and W € VL' we have [W](p) # L*.

4 Reduction

The reduction aims at simplifying an expression completely to some normal form.
The confluence (termination) of the reduction relation ensures that every expression
has at most (at least) one normal form.

4.1 Basic Reduction

The reduction comprises the execution of basic operators (d-reduction), the simplifica-
tion of the conditional (y-reduction), the application of an abstraction to an argument
(B-reduction), and the unfolding of (recursive) declarations (p-reduction).

1. Definition The one-step r-reduction —,= (—=%)ier with r € {4,7,8, u} is the
least family of compatible relations —¢ on EXP* with |

J-reduction dooke ytuitia g -

pred(zero) —§3¢ zero

pred(succ™!(zero)) —§=* succ™(zero) (n € N)
iszero(zero) —2°°! true

iszero(succ™ ! (zero)) —2°° false (n € N)

if true then F else G fi =% F :

if false then F else G fi ! G

B-reduction (Mz.E)(W) —§ [E]Y " i s avatiee

p-reduction pz.E —% [E]#=¥. e

~-reduction

The r-reduction —», is the reflexive transitive closure of —, ; the r-equivalence =, is
the symmetric transitive closure of —, .
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In a f-reduction the argument W is substituted for the bound variable z into the body
E of the abstraction Az.E . For a call-by-value semantics, it is essential to confine the
argument expression to a value.

2. Notation For R C {4,,8, u} the relation — g denotes U,cg —, ; moreover —» g
is the reflexive transitive closure of —g, =g is the equivalence closure of %5 .

The elementary properties of the reduction are summerized in

3. Proposition
a) (Substitutivity)  If E —, F, then [E]S —, [FIS (r € {6,7,8,u}).
b) (Substitutability) If E —», F, then [G]f —, [G]f (re{8,7,8,u}).
c) (Free Variables) If E —#s,4, F, then free(E) D free(F).
d) (Values) W € VL' and W —#5,4, E, then E € VL*.

The reduction properties of this language, extended by the smash product, multiary
functions and the treatment of the finite error, but without extensionality were stud-

ied in [10]; we cite two relevant results: et oo o0

4. Theorem —;44, is confluent and —)é.,ﬁ is Noetherian.

As an immediate consequence the expression for the undefined function and the point-
wise undefined function are not éySu-convertible.

5. Corollary error™® #;.,5, omega™®.

The reduction relations respect the assignment of meanings to expressions.

6. Theorem (Soundness) If E =4,5, E', then E =~* E'.

4.2 Extensionality

The extensionality states that a function is completely determined by its application
to arguments. In the A-calculus the extensionality can equivalently be characterized
by the n-conversion or the rule (ext).

4.2.1 7n-Reduction

1
1
i

overall reduction relation. Hence we suitably modify the n-reduction rule to meet the
call-by-value semantics for higher order functions.

7. Definition The one-step call-by-value n-reduction —,= (—7)ieT is the least
family of compatible relations —)f, on EXP* with

Ifz ¢ free(W), then Az.W(z) =, 7* W.

The basic reduction properties are summarized in
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8. Proposition

(Substitutivity)  If E —, F, then [E]S =, [FIS.
(Substitutibility) If E —», F, then Gy = GIF.

(Free Variables) If E —», F, then free(E) = free(F).
(Values) W e VLt and W —», E, then E € VL*.
( IfE=,E then Ex E'.

—+, 1s strictly confluent.

soze

[¢]

las)
~—

Soundness)
(Confluence)

4.2.2 6é~vBpun-Confluence

Next we aim at establishing the confluence of the overall reduction relation. To this
end we investigate how the n-reduction cooperates with the other reduction relations.
For pure A-calculus, the B7-confluence was first proved in [8].

9. Definition Let —,,—, be two reduction relations on EXP. The relation —, is
said to commute with —, , if for all E, F,G € EXP with E —», F and E —», G there
isan H € EXP with F —, H and G —», H.

Thus a reduction relation on EXP is confluent iff it commutes with itself.
10. Proposition —;., commutes with —, .
Using the ‘Lemma of Hindley and Rosen’, we obtain the main result of this section:

11. Theorem —sg,, is confluent.

This deduction result shows that the call-by-value n-reduction neatly fits into the
calculus.

4.3 Relating Denotational and Reduction Semantics

The simple results from first order functions over flat cpos (compare, for example,
[15], Section 5.3) do not carry over to higher order functions, since the corresponding
function spaces are non-flat domains. First we note that an expression with an unde-
fined meaning cannot reduce to a value.

12. Proposition If [E](p) = L' and E =} 4, B’ then E' ¢ VL*.
In particular, a closed expression with an undefined meaning has no normal form.

13. Proposition No E € CMB with [E](p) = L for some (and hence for all)
p € ENV has a §y8u(n)-normal form.

On the contrary, if a closed expression with a defined meaning has a normal form,
then it is a value.

14. Proposition If E € CMB* has a §vfp(n)-normal form, then [F](p) # L* for
some (and hence for all) p € ENV .
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A closed expression of higher type with a defined meaning need not have a normal
form.

15. Example The expression constzero®™"2t for the constant zero function has a
$yBp-normal form, since it is in §yBu-normal form. The pointwise undefined function
omega™* has no §yfBu-normal form, since it p-reduces only to itself. Both expressions
are closed and have a defined meaning. The same argument holds for their §vBun-
normal forms.

In summary, we get the following adequacy result for closed expressions of arbitrary
type.

o~

16. Theorem For all E € CMB* with [E](p) # L* for some (and hence for all)
p € ENV there exists U € VL with E —#g,5, U .

For ground types, the adequacy result can be strengthened.

17. Corollary Let E € CMB® with s € S. If [E](p) = [U](p) for some U € VL?
and p € ENV, then E —5,5, U .

Cor. 17 does not hold for higher types since functions can be represented by equivalent,
but non-convertible expressions.

18. Example The expression constzero™ ="t for the constant zero function is a
value and semantically equivalent with (z € Xmat=met g ¢ xnat)

reczero™ 7" = 11z g if iszero(z) then zero else z(pred(z)) fi .

3 nat—nat o :
The expressions constzero™ 7" and reczero™*="2 are not convertible. In particu-
lar, we do not have reczero™@ "8t . o constzeroat—nat

5 Conclusion

The reduction can be narrowed to an operational semantics by endowing it with an

evaluation strategy. The operational semantics is a non-compatible relation usually
defined by structural transition rules.

The evaluation relation == (=')yc7 of expressions comprises the local transitions

pred(zero) =% zero v
pred(succ™(zero)) =22 succ™(.10) (n € N)
iszero(zero) =P°°! true

iszero(succ™! (zero)) =P°°! false (n € N)

if true then Felse Gfi ' F

if false then F else G i = @

D EYW) =° [ETF

pz.E =t [E)r=E
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equipped with the strategy

If E =P°°! F' then if E then F else G fi =" if £ then F else G fi;
If F =% F'| then F(E)=° F'(E);
If E =° E', then F(E) =* F(E').

Thus in a conditional expression, the condition is evaluated first. In an application,
the operator is evaluated and — according to the call-by-value strategy — also the
operand.

The evaluation relation is confluent, since it contracts only disjoint redexes. In con-
trast to reduction, the evaluation simplifies an expression of higher type only partially,
since the body of an abstraction is not evaluated. Therefore an expression may have
an =>-normal form, although is has no éyfBp-normal form.

In particular, the expression omega™* denoting the pointwise undefined function
is in =-normal form, although it has no §yfp-normal form. On the contrary, the
expression error™™® denoting the undefined function has neither a =-normal form nor
a §yfp-normal form. This different evaluation behaviour of the expressions omega™*
and error™® motivated the presented semantic model which carefully discriminates
between the undefined function and the pointwise undefined function.
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Abstract

Object-oriented programining has proven to be appropriate for the construction of complex
software systems. On the other hand, logic programming stands out for its declarative flavor,
built-in inference capabilities and well defined semantics.

We present a language, called LOO, which combines object-oriented programming and
logic programming. We model classes as sets of clauses which represent their methods. An
object is an instance of a class and it is identified by a unique name. We use a set of operators
over theories for handling state changes and for modeling inheritance. A message sent to
an object is translated into a goal which is solved with respect to a dynamic composition of
clauses representing its class and its current state.

The challenge lies in avoiding the superimposition of a complex syntactic and semantic
structure over the simple structure of logic programming. We have tried to extend logic pro-
gramming in a conservative way as much as possible, in order to retain a simple and clear
semantics.

Keywords : Logic programming, Object-Oriented programming, Program composition, Se-
mantics

1 Introduction

Our long term goal is the definition of a unified language aimed at integrating the functionalities
of programming, program specification, databases. knowledge representation and problem solving.
There are at least two reasons for this endeavor: integrating different proposals in a common
setting in order to have a common semantic foundation which allows a deeper comparison, and
having a single language which can be used during the various phases of software production,
from the requirements analysis down to the program solving the initial problem. Nowadays such
a language does not exist, but we believe that the merging of two complementary paradigms, i.e.
Object-Oriented Programming (OOP) and Logic Programming (LP), can yield it.

Logic programming combines clean and simple semantics, ease of use and expressive power.
Its development, however, has showp that the basic formalism of Horn clauses does not suffice
to deal with several computing problems. In this paper, we focus upon the limitation of logic
programming deriving from the lack of abstraction mechanisms for structuring and modularizing
programs. A logic program consists of a flat set of clauses and does not embody abstraction
mechanisms which help in mastering the complexity of realistically sized applications. On the
other hand, the QOOP (see, e.g. [11, 12, 13]) is recognized as an excellent vehicle to simulate
physical worlds, since physical entities and mental concepts can be directly represented as objects.
Interactions among objects are modeled by message exchange. Every object belongs to a class
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specifying the interface of the object with the external world (that is the set of messages accepted
by the objects of the class). Classes also serve as templates for creating objects with the specified
interface and implementation behavior. Inheritance is a mechanism for sharing the code common
to a collection of classes. Inheritance collects shared properties of classes into superclasses and
reuses them in the definition of subclasses. This allows an incremental style of programming. In
fact, it is not necessary to modify the code of existing classes but it is possible to create new classes
by specifying how they differ from those already defined. It is evident that, via inheritance, we
can have forms of non-monotonic reasoning.

The main advantage of extending LP with OOP features is the acquisition of the OOP paradigm
as a guiding principle for writing programs. This offers a simple but powerful model for encoding
applications as computational entities, or objects, which communicate each other via message
passing. An object is encapsulated: a client can access objects only by issuing requests for services.
Clients cannot directly access or manipulate data associated with objects. In this way we increase
LP with a form of abstraction and with the possibility of having information hiding. The class
construct removes one of the weaknesses of LP, namely the lack of structuring mechanisms for
programming in the large.

Nevertheless, most OO programming languages do not have formal semantics. Hopefully, valid
semantics insights can be gained by integrating an 00 programming language with a logic based
language. Moreover, even if OO languages provide good abstraction mechanisms for structuring
software, they do not support a declarative specification of software. If we combine QOP with LP
we can use an OO approach for the representation of the problem domain and we can use logic to
set constraints and rules.

The main obstacle to the integration seems to be that the LP paradigm does not support the
notion of a mutable state which is an essential feature of the OO paradigm since it allows to model
the inherent dynamics of physical entities. A mutable state implies a certain form of non-monotonic
reasoning, since assertions which are provable in a given state may become invalid after a state
change. The standard model theoretic semantics of LP disallows this non-monotonic behavior.

In the literature, many approaches to the integration of logic and object-oriented programming
have been proposed. The survey by Davison [6] 18 a good, general introduction to these languages,
showing how they deal with the representation of objects and classes, message passing and in-
heritance. The first proposal we mention here is McCabe’s objects as theories [9], where objects
and classes are represented by means of a single construct, the class template. A class template is
formed by a set of clauses labeled with a Prolog term and a set of class rules which model inheri-
tance. However, McCabe does not give state changes a logical characterization. On the contrary,
Conery (7] wants just to model objects with changing states. He has adopted objects as afoms.
Classes are defined through object clauses, i.e. clauses containing a conjunction of two atoms in
their head. Roughly, the first head atom represents the object and its state, and the second atom
represents a method. Finally, objects as processes were first proposed by Shapiro and Takeuchi
[10]. An object is represented as a process which calls itself recursively and holds its internal state
in unshared arguments. Objects communicate with each other by instantiating shared variables.
This approach deals with the representation of state in a simple manner, and allows concurrency
at the inter-object level. However, the semantics of languages based on this approach are quite
complex because of the interaction between concurrency and Horn clause logic.

The proposal of this paper builds upon a long stream of research on the use of algebras of logic
programs as a means for implementing common sense reasoning and program structuring (1, 3, 8].
In order to combine OOP and LP, we extend the language presented by Brogi et al. (4], which
already offers basic mechanisms for building object-oriented features into logic programming. The
advantage of our approach with respect to many others which have been proposed [6] is in the firm
rooting of the semantics in a conservative extension of the semantics of pure logic programming.
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2 Program expressions

The starting point of our work is the language of program expressions defined in [1, I?, 8]. Th?s
language 18 a conservative extension of logic programming consisting of moving frqm a al{lgle logic
program to a collection of logic programs (theories), identified by names. Besides it provides a set
of composition operators over such programs.

The language of program expressions Ezp is defined by the following abstract syntax:

FEzp := P | ExzpU Ezp | EzpN Ezp | (Ezp)* | Ezpa Ezp | Ezp =< P
1.\-‘,\) b o ke, » b,
where P is a plain program, i.e. a collection of clauses. '

The semantics of a plain program P is taken to be its immediate consequence operator Tp.
This choice allows one to give the semantics of the operators, U N * ¢ <, in a compositional way
by expressing the meaning of a program expression in terms of the meanings of its componen.t su!J-
expressions. Informally, union (U) and intersection (N) of program expressions lead to beh@vmrs in
which programs either cooperate or constrain each other step by step [1, 3]. Encapsulation (%) is
a unary operation which supports a form of implementation hiding. The. code of an encapsulg.ted
program is hidden to other programs, thus making the program behave differently when combu}ed
with others via binary operators. The import operation (<) allows one to have a fine grained notion
of information hiding/export [1, 3]. Finally, the restriction operator, @ < P, discards the clauses
of a program expression @ which define predicates already defined in the program P.. _ ‘

These operators can be exploited to support notions of module and module compositions which
encompass the essence of conventional modular programming languages, such as Ada [3]. M?reover,
they can support forms of hierarchical reasoning, that is the definitions of inheritagce relations be-
tween programs. For instance, the relation isa, which will be used in our object-oriented lansuage,
can be defined as follows. Let P and @ be logic programs, then P isa ) means that P inherits all
the predicate definitions from (), except for the predicates defined in P. This hierarchical relation
can be modeled by the composition P U (Q < P) (see [1]). ‘

This language of program expressions is employed as a meta-language for composing programs
written in a separate language, namely definite programs. In [4] a single language amalga.mahns the
language in which programs are written (object language) and the language of program expressions
(meta-language) is presented. Namely programs are eztended definite programs in whl.ch clalfse
bodies may contain meta-level calls to program expressions. More precisely, a program is a ﬁnlt.e
set of extended definite clauses of the form A « By,..., B, where each B; is either an atomic
formula or a meta-level formula of the form B in E, where B is an atomic formula and Z is a
program expression.

The in feature can be interpreted as a means of sending messages from a virtual program to
another virtual program. Here, by virtual program we mean the collection of clauses which can be
proved from a program expression.

Therefore, the amalgamated language can model message passing and inheritance. However, it '

is not suited to represent knowledge evolution because programs are still static and the language
does not support any mechanisms to change them. We must extend the amalgamated language
with comstructs to deal with classes and with a notion of state in order to cope with the dynamic
evolution of knowledge bases.

3 Syntax of LOO

The main constructs of the language LOO are:

o class IdeCl(Pred_list) {Clauses}
with Initial_State

to declare a class;
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o new(IdeCl Id0O) to create objects;

e update({X 1) to change the state of an object;
e A in O to model message passing.

IdeClis a constant which identifies the class. A class has three components: a set of fresh state pred-
icate names ( Pred_list), a set of extended clauses ({ Clauses}) and a set of unit clauses (Initial_State).

A state predicate is a predicate that can be modified by the update predicate. It cannot be
defined inside {Clauses}, where, however, it can be used. Indeed state predicates are the only
predicates whose definitions can be changed. They fulfill a role similar to instance variables in
conventional OO programming languages.

{Clauses} is a theory with extended clauses of the form: A «— Bi,..., Bp(n > 0). Ais an atom,
whose predicate name is neither update, nor mew, nor a state predicate, and B; is either:

o an atom p(t,...,ty,) where all ¢; are terms which might include the self keyword and p can
be a state predicate, or

o a meta-level formula B in O where B is an atom and O can be a variable, an object identifier
or the self keyword, or

o a meta-level formula new(IdeCl, IdO) where IdeCl is a class name or a variable and IdO is
an object identifier or a variable, or

o a meta-level formula update({g(t1, ..., tr) —}) where ¢ is a state predicate. We suppose that
if update is the predicate of B; then update is the predicate of every B; (i < j < n), too. As
a shorthand, update({X; —,..., X, —}) stands for update({X1 <}),..., update({ X, <}).

The constraint that requires updates to appear omly at the end of clause bodies, goes in the
direction of keeping method definitions as declarative as possible by compelling assignments to
occur only at the end of the computation of methods.

The self keyword is used to permit self communication. It is a special term which has a value
dependent on the context: it stands for the identifier of the active object. We shall further explore
the role of self in Section 4.3. .

Initial_State is a set of unit clauses which define the state predicates of the class. We can
consider these definitions as default definitions: when an object of the class IdeCl is created its
initial state is just this set of unit clauses.

An object is created by the new predicate. new(IdeCl,Id0) means that an object identified by
IdO and belonging to the class IdeCl is created. IdO, a ground term, is the unique name of the
object: this name models object identity. Indeed an object is an instance of a class: it has the
methods defined in its class and its own state represented by a virtual program of unit clauses
defining the current values of its clase state predicates. In this way the set of clauses modeling
an object is obtained by a meta-levél composition of these two theories. This view of an object is
similar to [5], where, however, there is no notion of class.

It is worth observing that the theory {Clauses} of a class is a sort of parametric theory where
parameters are just the state predicates. The fact that state predicates have no definition in
{Clauses} allows us to modify their values simply by combining { Clauses} with different sets of
unit clauses defining the current values of state predicates. In fact, this is how we implement state
changes. The resolution of update({X «}) modifies only the state theory.

The meta-level formula A in O is used to send the message A to the object 0. Conceptually,
the message is treated as a goal to be solved by using the clauses that model the object O, that is
A must be solved in the composition of the class of O with the current state of O.

In order to relate different classes to each other by means of inheritance, inside { Clauses} we use
unit clauses of the kind: link(Super) — where Super is a class name. Super is a superclass of
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the class IdeCl which identifies { Clauses}. It is worth noting that this language naturally supports
multiple inheritance by allowing more than one link clause in {Clauses}.

The inheritance rules state that a subclass inherits state predicates and methods from its super-
class(es). In addition to the inherited state predicates, a subclass can declare fresh state predicate
names, different from inherited ones. Methods in the subclasses override inherited methods.
According to these rules, we define the function StatePred : Class — Pred as follows:

For each IdCl € Class declared by

class IdCI(Pred_list) {Clauses}

with Initial_State

Pred_list if no link clause belongs to { Clauses}
StatePred(IdCl) = { Pred.list UTL if link(Super) — belongs to { Clauses}
and StatePred(Super) = 11

For each class, this function returns, as its value, the set of all its state predicates, both proper ones
and inherited ones. Class is the set of all class namee and Pred is the powerset of state predicate
names. In the above definition we support only single inheritance, even though it is easy to extend
it in order to deal also with multiple inheritance. In fact, in this case we have more than one link
clause. Therefore, II is the union of all the state predicates of these superclasses.

Finally, a LOO program is a set of class declarations along with a main program. A main
program is an extended program, where the meta-predicate new is used to create objects, and the
meta-predicate in is used to send messages to the newly created objects. In the main program we
cannot use the update predicate and the self keyword because such a program is not an object,
whereas updale and self are only related to object management.

With respect to the amalgamated language of [4] we have a further level of abstraction rep-
resented by objects. Besides, the operators for building program expressions are used here as
implementation means for the realization of the object-oriented features of LOO. On the other
hand, program expressions are not allowed in the in construct where one can refer only to objects.
In the next section we will see how program expressions are used to implement the object-oriented
features of our language.

Example 1 We present the classes stack and stacknum that is @ subclass of stack. In stacknum
we have added a state predicaie storing the number of elements in the stack.

class stack(list)
{push(X) — list(S),
update({list([X | §]) +})
pop(X) « list([X | 5]),
update({list(S) 1)
top(X) — list([X | 5]) }
with {list([]) —}

class stacknum(num)
{push(X) « list(S), num(N),
update({list([X | S]) —, num(s(N)) «})
pop(X) — list([X | 5]), num(s(1V)),
update({list{S) —, num(V) —})
link(stack) —}
with {num(0) —, list([) «}

The main program is:

P r(a) —
go(X) — new(stack, st), push(X) in st
(X, Z) — pop(Y) in X,t0p(Z) in X
9(X) — new(stacknum, X),r(Y), push(Y) in X

In order 1o illusirate the use of StatePred, notice that
State Pred(stack) = {list} and State Pred(stacknum) = {list, num}
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4 Semantics of LOO

We present a semantics for the language by means of a transition system, called S,,,. It has
two types of configurations:

e (£,P,Id0, G) representing that the goal G' has to be solved from the multi-object environ-
ment £ and by using the clauses of P;

e (£,P,IdO) representing a terminal configuration.
Formally, the set of configurations of the S,y  system is:

Toge = {(£,P,1dO,G)| £ € Env, P € PEzp, IdO € Obj U {main}, G € Goal}
U {(£,P,1dO) | £ € Env, P € PEzp, IdO € Obj U {main}}

We now describe the various components of a generic configuration (£, P, IdO, G).

£ is the multi-object environment which represents the set of objects that have been created
up to now. For each object, we are interested in its name, the class it belongs to, and its current
state. This set is denoted by a sequence defined by the following abstract syntax:

Env =01} (IdO,Cl,S) | Env :: Env

where Cl € Class, IdO is an object identifier and S is a program expression formed by theories
defining only state predicates and composed together via the isa operation. {) represents the empty
sequence: no object has yet been created. Via the new predicate we add new tuples, that is objects,
to the environment, whereas via the update predicate we replace tuples of the environment with
new ones where only the third component, that is the state, has changed.

P is a program expression which represents the theory where the goal G is executed. Initially,
P is the main program. Then, when a message is sent to an object O, P becomes a program
expression representing the theory associated with the object O. The set of program expressions
PEzp is defined by the following abstract syntax:

PEzp:= P | PEzpUPEzp| P isa PEzp| PEzp < P | (PEzp)*

where P is a collection of extended clauses as defined in Section 3. When we use a class name in
a program expression, this name stands for the theory {Clauses} of this class. In the following,
program expressions are ranged over by calligraphic capital letters, such as P or Q, while plain
programs are ranged over by plain capital letters such as P or (). We have considered a subset of
the language of program expressions defined in Section 2 because U, <, * and isa suffice to support
the object-oriented features.

IdO is main when P is the main program. Otherwise it is the identifier of the object in which
we solve G. Any change, determined by G provability, affects the state of IdO. Obj is the set of
object identifiers which are ground terms.

G is the goal to solve. G may contain atoms whose predicates are defined in the main program,
or which can create objects by new, or which can send messages to those objects via meta-level
constructs of the form A in 0. Goal is the set of clauses of the form «— By, ..., By, where B; can
be:

- an atom p(t1,...,tn);
- A in O where A is an atom and O can be a variable or an object identifier or the keyword self.

Terminal configurations are characterized by the lack of the Goal component: if we have
(£,P,IdO, ), as initial configuration, and we derive a terminal configuration from it, this deriva-
tion is a refutation for G.

277

Given a generic program with main program P and a general goal G, then the initial configu-

ration of the system S,y is: (§, P, main, G).

A critical issue is the kind of inheritance supported by the language. In fact, in logic program-

ming, the knowledge about a predicate is available at two different levels: the infensional and the

extensional level. The former is represented by the collection of clauses defining the predicate. The

latter is the set of atomic formulae provable for that predicate. For example, consider the following
program (the main program is empty) :

class Cly() class Cly()
{r(a) — {r(®) =
p(X) — r(X)} link(Cl) «}
with {} with {}

and the goal — new(Cly, ob), p(X) in ob.
If we use atomic inheritance (extensional level) the computed answer substitution is {X « a}
because ob inherits the relations p, r from the superclass Cl;. On the other hand, if we adopt
inheritance at an intensional level, ob inherits the definition of p, i.e. the clause p(X) — r(X),
from Cl; and hence computes {X « b} as an answer substitution since the derived goal r(X) is
solved using the definition of r in Cly, which overrides the definition in Cl;.

In the next section we show how the inference rules can accommodate both approaches to the
semantics of inheritance.

4.1 Atomic Inheritance

The definition of the transition relation is given by rules of the form

7—=7

where v — v’ (Conclusion) holds whenever Ci1,C, . ..,Cy (called Premises) hold. Besides we use

the notation ¥y LR ¥’ to indicate tha.t 0 is the computed answer substitution for the varlables of

the goal in v couﬁguramon and 7 N v’ to express that exists a derivation g LEY 71 Y Vi
satisfying 70 = v, 7i = 7' where ¥’ is a terminal configuration, and § = 6, 0...08;.

Let us first present the transition rules ((1)-(5)) to derive new conﬁgurations when P is a
complex expression. The meaning of the operators U, *, < and isa is not modified, but it is simply
adapted to the multi-object environment.

(£,P, 099, 4) 2 (€', P, 049,G)
(E,PUQ,0gg,A) > (£, PUQ,009,G)

1

(£,9,009,4) % (£, 0,044, G) @
(£,PUQ,0g9,A) > (£, PUQ,0g9,G)

These rtules state that either program may be used to derive a new configuration. Since any
subexpression (P or Q) can contain an encapsulated subexpression of the form R*, the overall
environment can be modified, as we are going to explain next.

(£,P,099,4) 5 (£',P,049)
(£,P*,0gg, A) L (€', P*, Ogg, empty)

)
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This rule states that we can derive a new configuration if A is provable in P. The resolution of A
may involve state changes which may modify the overall environment.

(£.9,0g9,4) 2 (£,9,049,G)
pred(A) ¢ defs(P) 4
(£,Q< P,0gg, 4) L (£,Q < P,0gg,G)

Givgn a program expression @ and a plain program P, if we can rewrite A with G in Q, then it is
possible to rewrite A with G in @ < P only if the predicate of 4 is not a predicate defined in P.
defs(P) is the set of predicates defined in P.

(£,PU(Q < P),0gg, A) 2 (£, PU(Q < P),0gg, G)

(€, P isa Q,0gg,4) > (€', P isa Q,0gg,G)

(5)

Recall that P isa @ (see Section 2) means that P inherits all the predicate definitions from Q,
except for the predicates defined in P. Rule (5) states that the ise relation can be modeled by
union and restriction operators.

The following four rules model SLD resolution.

(£, P, X, empty) L (£, P, X) (©)

This rule states that the empty goal is solved in any program expression and it allows us to obtain
a terminal configuration.

Given a set of predicate names 7, let 1, denote the program: {p(X1,..., X,) | p € 7}. We
use this kind of programs in the following rule:

(£,P,009,G1) L (£/P' Ogg) & =By :: (Ogg,Cl,S) :: By
(£,P,009,(G1,G3)) > (€', SU(P < Lsiatepreacn), 099, Ga6)

M

(£, P, main, G1) A (&', P, main)
(£, P,main, (Gy, Ga)) = (£, P, main, G48)

(8)

These rules allow us to solve a conjunction of goals (G1,G3). The leftmost goal is removed from
the current goal statement and the system tries to solve it. Qur system is sensitive to the order

in Yvh.ich methods are called. We lose referential iransparency and independence of selection rule.
¢ This is the price to pay for allowing objects with changing states.

It is worth observing that the environment £ can change, as a side effect of the successful
resolution of Gy. If the third component of the configuration ie an object identifier, it is necessary
to change P, too, because P “contains” the old state of Ogg. Instead G, will have to be solved by
using the current object state S. The new program expression will be SU (P < Lstatepred(cn)): <
is the restriction operator which “retracts” from P the state predicates definitions. This is not the
case if the conjunctive goal is computed with respect to the main program, which has no state, as
it is axiomatized by rule (8).

A—~GeP 8 = mgu(A, A') P is a set of clauses

(€. P,0gg,A) % (£, P, 0gg, G6) ©

Thjs rule states that, to solve an atomic goal A, choose & clause (A’ ~ G) from P whose head is
unifiable with A. Let 6 be the m.g.u. among 4 and A then recursively solve G in P.
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The following rule models atomic inheritance:
£ = E; ::(0gg,Cl,S) :: Ey link(C) —€ P
(£,(CUS) < P,0gg, 4) % (£',(CUS)* < P, Ogg, empty) (10)
(€,P,0g9, A) = (€', P, Ogg, empty)

This rule enriches the set of atoms provable in P with relations inherited from a superclass except
for predicates defined in P. By means of the * operation we import the atomic formula A — from
CUS. Recall that a class C is a sort of parametric theory. Therefore, in order to derive the
class relations, we must join it with S, that contains the current definitions of its parameters. The

inherited relations vary according to the current state of the active object.
We now define the rule dealing with update. :

&= E; ::(0gg,Cl,5) :: Ey
(€,P,0gg, update({X 1)) {—}> (E1 ::(0gg,Cl{X —} isa S) = E,, P, Ogg)

This rule states that solving a goal of the form update({X «—}) leads the system to a terminal
configuration in which £ has changed: the tuple related to Ogg in € is replaced by a new one where
the current state becomes {X —} isa S. The definition of the predicate of X, which belongs to
S, is overridden by X —.

The next rule deals with the creation of objects.

unde fined(0, &) 0 € Obj
(£,P,0gg, new(Cl,0)) 4 ((0,C1, InitState(Cl)) :: £, P, Ogg)

This rule states that solving a goal of the form new(Cl,0) leads the system to the terminal
configuration (0, Cl, InitState(Cl)) : €, P, Ogg) where we have added a tuple, representing the
new object, to the environment. This tuple contains the object identifier (O), the class name C!
and the initial state of every object belonging to C! (InitState(Cl)). The object identifier O must
be ground (O €O0bj) and unique (undefined(0,€)). The predicate undefined(X,Y) is true if no
tuple with the first component X exists in the environment V.

When an object is created, it becomes visible to any other object, to the main program and to the
top-level, because we have a unique multi-object environment.

£=F;:(0,ClS):: E,
(gy(CIU S)* < 1(StateFred(Cl)U{updatc})) OYA) i" ({:’,P’,O,emp‘ty) (13)
(£,P,0gg, A in 0) 5 (&', P, 0gg)

This rule states that a goal of the form A in O is provable in P if the goal A is provable in the
program expression (C1U S)* < L(statePred(Clyu{update}). CIU S is the theory currently associated
with the object O: Cl is the class that O belongs to and S is the current state of 0. We use
the * operator to hide the way A is solved in CIUS. 1t is worth observing that the restriction ‘
< 1(statePred(Cl)u{update}) ENSUTES that the predicate of A is neither a state predicate nor the update
predicate. This ensures that the state is encapsulated: it cannot be directly read or modified. The
sender of a message does not know which definitions are used to solve it. Moreover, notice that in
the proof of A, the current object is O and no longer Obj.

By exploiting unification and non-determinism, we can use the above rule to search for an object
where the goal 4 can be solved. This exploitation of the logical variable offers a mechanism much
more powerful than the ones supported by traditional object-oriented languages.

(11)

(12)

14
(£,P,0gg, A in self) 5 (€,P, 0gg, A in Ogg) (14)

This rule states that the self keyword stands for the active object. The consequences of this
definition are shown by an example in Section 4.3.
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4.2 Inheritance at an intensional level

To model inheritance at an intensional level we must only change the transition rule (10).

link(C) —€ P (£,C < P,0gg, 4) 5 (£/,C < P,0gg,G)
(£,P,0gg, A) = (€', P, 0gg,G)

(15)

Via this rule we inherit the definitions of the superclass except for the predicates defined in P. In

contrast with atomic inheritance, the set of inherited clauses does not depend on the state of the
active object.

It is worth noting that, in particular, rules (10), (11), (13) and (15) show the expressive power of

the operators U, #, < and 4sa. They allow us to model naturally different forms of inheritance
state changes and message passing. ’

4.3 Discussion of inheritance schemes

The main difference between inheritance at the intensional level and atomic inheritance is that
the former puts together clauses belonging to different classes, whereas the latter hides the code
ofbal, clka.s; to other classes, even to its descendants. Therefore we can use the superclass only as
a black box, by querying the relations defined in it without accessing its cla: is 1

talk about delegation [13]. : s, This s why we
‘ A. serious problen‘.l with intensional inheritance is that it can behave incorrectly when multiple
inheritance is u‘sed‘, since classes may start to interact in unexpected ways. For example, consider
the class C which is a subclass of the classes A and B that are not related to each other.

class A() class B() class C()
{r(X) — q(X) {a(t) =} {p(X) = r(X)
_g(a) <} with {} link(A) —
with {} link(B) —}
with {}

The goal — new(C, o), 7(b) in o is solved, although A is unrelated to B.

The draw.'ba.ck' of atomic inheritance is that only atomic consequences of a theory are inherited
However, a judicious use of the self keyword can have the effect of inheriting all the necessar :
consequences. Furthermore this is under programmer control. Consider the following example [‘é)]y

We want to define a class animal with a predicate mode expressing the fact that if an a.nimai
ha.s tv.vo legs then it runs. Otherwise, if it has four legs, it gallops. This rule for mode of travel
is vah.d for all types of animals but it depends on sub-relations which are specific to each class
denoting particular species. To resolve this conflict we use self reference.

Let animal and bird be the following classes:

class animel() class bird()
{mode(run) — n_legs(2) in self {covering(feathers) —
) mode(gallop) «— n_legs(4) in self n_legs(2) —
with { } link(animal) —}
with { }

To find out if the bird tweety runs or gallops, we solve the goal — mode(X) in tweety. Since mode
is not defined in bird, via rule (10), it is delegated to the superclass animel. Here- we can use
the_ clause mode(run) — n_legs(2) in self and by applying the rule (14) we bind self’ with Yweel

Thls fsllows t? “root” us back into the class to which the object belongs, that is at the root of thy'
inheritance hierarchy. Therefore, we can correctly solve the goal n-Iegs(b). e
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Tt is worth noticing that if a class refers to self then it can only have a “complete” meaning in
terms of its various specializations. This is a situation similar to the notion of an abstract class in
conventional OO languages, such as C++.

Moreover, thanks to self, the inheritance at an intensional level can be considered as a particular
case of atomic inheritance,

5 Conclusions

We have presented an integration of logic and object-oriented programming which combines
fundamental features of both, taking the object-oriented view to model the problem domain, and
logic programming to describe the entities and to provide the computation engine.

On the one side, the resulting language provides a logical understanding of object-oriented
features. Typical object-oriented mechanisms, such as inheritance and message passing, can be
understood in terms of deduction processes. On another side, it exemplifies a proper extension of
typical object-oriented formalisms by allowing the logical definition of methods and hierarchical
links. It overcomes the imperative flavor usually associated with messages, and it gives objects a
more “intelligent” appearance. Finally, this language provides logic programming with abstraction
mechanisms and a notion of mutable state. State is given a logical characterization, and this is one
of the most interesting points. In fact, many logic programming-based object-oriented languages
use the extra-logical Prolog primitives assert and retract to deal with state changes or they simply
ignore state changes, thus lacking a vital feature of object-oriented programming.

LOO can be easily extended with a primitive kill for destroying objects. kill(0) destroys the
object O and its semantics is simply obtained by deleting the tuple associated with O from the
multi-object environment. Moreover, thanks to the restriction operator (<), we can allow private
clauses in a class, that is clauses defining a predicate that is kept hidden (this corresponds to
C++ private functions). Another possible extension of LOO consists in having meta-level clauses
of the form A in E where E is a program expression of objects. For example, let O and O3 be
object identifiers, then we can compose them in the expression O1UO; with the intended meaning
of joining the theories modeling these objects. Therefore, on one side classes allow us to create
objects dynamically with a well-defined behavior, and on the other side expressions allow us to
combine them at execution time.

This language has a meta-logical implementation obtained by simply turning the inference
rules of Section 4 into meta-level axioms. The axioms have the form of an extension to the vanilla
metainterpreter. The meta-logic preserves the simple and concise description of the inference rules,
and it provides an “executable specification” of LOO. This implementation is however costly in
terms of efficiency. As a step towards a real system, we are trying to extend the compiler and the
extended WAM proposed in [2] with the object-oriented features.
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Abstract

The notions of computation and state are essential in computer science.

An operational semantics can easily describe the history of state changes
occurring in a computation, while a declarative semantics, which is adequate
and corresponding to the operational one, is much more difficult to obtain.

Linear Logic [10] gives some hints to solve this problem. We can look at a
proof as the witness of a computation, i.e., as describing, in logical terms, the
behavior of a svstem. It is interesting to study object-oriented based systems
from this point of view: in this setting the state of the system consists of the
set of the currently active objects.

In our work we will reconsider some proposals for the integration of object-
oriented and linear logic programming. For this purpose we will exploit Fo-
rum [20], a presentation of Higher-Order Linear Logic, which is endowed
with a characterizing property of logic programming languages, namely the
uniformity of proofs.

In this paper we will outline our proposal by presenting a specialization
of Forum for state-based computations and by showing how to exploit it for
representing objects.

Keywords: Logic programming, object oriented and higher-order linear logic.

i Introduction

Programming languages are based on the intuitive idea of computation. Assigning
an operational semantics to the constructs of a language allows to describe the
hehavior, or the possible behaviors, of a program.

The more powerful is the language, the more complex becomes the operational
description. As a consequence. the operational semantics can be unsuitable for
studying properties of programs and it can be very difficult to find a more abstract
semantics.
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The object-oriented programming paradigm is probably the most important
example of this situation. Here the challenge is to assign a clear meaning to the
notion of object, an individual entity having a complex data structure, and to its
interactions with the external world. ’

In the last years, many efforts have been spent in studying this problem from a
logical point of view; there have been proposals both to give a formal logical meaning
to some features of 0.0. programming and to understand how to integrate them in
a logic programming setting.

In our opinion, this second aspect is very important in order to develop logic
programming tools able t6 deal with large applicative programs, i.e., able to perform

reasoning over powerful data representations. In the following we will address some
general considerations about 0.0. and Lp..

Some basic notions of the o.o. methodology

We list here the basic properties the standard notion of object is endowed with.
First of all, objects have unique individual names. Objects encapsulate both data
and methods. Methods must be the only vehicles to access and modify the data of
an object, i.e., to perform operations over them. Public methods can be invoked
from outside an object, while private ones can be only invoked by the other methods
of the considered object. The set of public methods represent the external interface
of the object. Some o.0. languages also provide shared methods and public data
variables.

An o.o. language provides constructs to create objects according to a given
pattern, to kill them and, possibly, to modify their structure.

Definitely, encapsulation makes the difference among objects and other data
structures. For instance, having methods inside an object allows to dynamically
modify its behavior according to the conditions of the environment. A clear example

’ . is the Object Calculus [1] by Abadi and Cardelli, where objects consist of only method
.. declarations.

Also, objects have been interpreted as perpetual processes communicating via
message passing. See, for instance, [14, 17] where methods are nothing but rewriting
rules transforming a configuration into another one.

A class can be considered as the description of a uniform set of objects. This
notion can be complicated introducing, for instance, inheritance relationships and
declarations of shared instance variables. Notice that inheritance can be considered
as a specialization of the delegation mechanism.

In [26] Peter Wegner suggested the following classification: object-based, lan-

| guages which provide the very basic notion of objects (e.g. the Actors language);

class-based, object-based languages supporting the notion of class; object-oriented,

' class-based languages providing inheritance (e.g. Smalltalk). In this preliminary

work we will focus our attention on class-based languages.
Some of the above aspects have been already studied from the logic programming
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point of view. We will discuss some proposals in the following paragraph, with
particular regard to the representation of the objects.

Integration between o.0. and l.p. 5

The first representation we mention here is objects as variablels, the a‘pproach pre-
sented in [25] by Chen and Warren. They assigned a dynamic meaning to logical
variables, i.e., a function from states to values, focusing on the problem of state
updating. o

The next one is objects as terms. For instance, Ait-Kaci and Nasr pr.oposed the
languages Login andi?ff?ﬁ], where terms have a record-like structure induced by
their types, see also [23).

Objects as atoms is the representation closer to our approach. .It was already
adopted by Conery in [9]. In his approach the evolution of an .object was de.ter-
mined by applying Prolog-like clauses with conjunction of atoms in the conclusion,
in order to simultaneously rewrite the atom representing the object ar.ld Y?he atom
representing the message. The resulting operational mechanism was quite involved.

Linear Logic revealed itself well-suited for such a kind of approac_h, as shown by
Andreoli and Pareschi in [7]. They substituted the classical conjunction in th§ head
of methods with the linear logic multiplicative disjunction, considering an object as
a multiset of atoms. We will return to their approach later. ' .

The final representation that we consider is objects as theories. The original
idea was due to MacCabe [16], which considered objects as named Prolog programs,
without the possibility of changing their state. His approach stimulated the study
of modules and inheritance as shown in Contextual Logic Programming [21]. Other
approaches to modularity exploited connectives like intuitionistic implication and
universal quantification for handling local variables [8].

Linear Logic and Forum

Girard’s Linear Logic [10] allows to study the very basic notion of computation by
different perspectives.

For instance, in the functional interpretation where proofs can be reduced to A- .
terms by the Curry-Howard isomorphism, cut elimination is considered as the basic
computational mechanism (2, 11]. . o

It is also possible to interpret proofs as computations. The main point is to
find the analogies between the structure of the rules of a cut free system and the
operational steps of a computation, see for example [22] for a survey. '

Lin\é;r’ggic sequent calculus does not allow the use of contra‘ctzofz and weak?mng.
Consequently, each formula in a proof can be used only once, yielding tbe notion of
bounded-use resources. Re-usable formulas are re-introduced in the logic by means
of the exponentials, namely ! and ?. .

Another consequence of the elimination of the above mentioned structural rules
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is thal two versions of connectives must be considered, namely additive and multj-
plicative ones.

In the Logic Programming setting, these aspects have been investigated among
the others by Miller and Hodas [13, 20]. In particular Miller’s work results in the
definition of a powerful specification language called Forum. a presentation of ful]
Higher-Order Linear Logic, see also [4], where the cut-elimination theorem holds.
This language is based on the linear connectives 3 (multiplicative disjunction), &
(additive disjunction), o— (linear implication), = (intuitionistic implication), T. L
and V.

The rules of the Forum proof system are designed to reflect the idea of uni-
form proof, i.e., a proof where left introduction rules are applied only after having
decomposed all the formulas in the right hand side of sequents.

Considering simply typed A-terms as elements of the language allows to have a
higher-order theorem prover. This is very important in order to use the language
as meta-level specification for programs and proofs. Using the previous notions we
can briefly explain what is meant for proof as computation.

Let us consider a generic computation starting from a state S; and ending with
state Sy. The idea is to mimic it by a proof for the linear formula SF o— S7%, where
87, S7 are logical representations of Sy and Si. Thus, one or more applications of
Forum rules should mimic a single step in the computation.

Our approach

In our current work we are using Forum as a specification language for state-based
systems, l.e., we have defined a simplified version of Forum. called F&O, in order to
express an explicit notion of state in the sequent and modeling its evolution using a
subset of linear logic formulas.

The fragment of linear logic considered in our language consists of the connectives
V. &, B, o—, T and L, with a further restrictions on the form of the formulas, in
order to have multi-conclusion clause with % of atomic formulas in the head and
allowing the other connectives to occur in the body, see [7].

In the following scheme we show how F&O fits into the context of the integration
between 0.0. and l.p.

Class-Based Language = | Forum & Object | = | Forum

Thus, it is possible to give a logical counterpart to some object-oriented languages
using an adequate embedding in Forum, using F&O as an intermediate stage.
Andreoli and Pareschi, in their basic paper on the language LO [5], represented
an object as a multiset of atoms, ie,, the collection of its attributes, floating in
parallel (%) in the right-hand side of a sequent. Using the additive conjunction (&)
they cloned objects spreading them on different branches of a proof. In order to let
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the objects communicate through messages, a common logical variable, acting as a
blackboard, was added to the sequents [6]. . . '

We are going to reconsider such an approach using a dlfferent_ representation of
objects (objects as atoms), in order to capture features like encapsulation and data
hiding that were not treated there. .

These features can be captured using the higher-order nature of Forum, and
thus of F&O, see, for instance, [18], as we will explain in the final pz.nt c?f the paper.
Furthermore, we will simplify the communication model, representing in a sequent

ion i tem.
the global current state of a computation in an c.o. sys .

’go be fair to them, in their approach inheritance is very natural, while, for the
time being, we have restricted our study to class-based systems. o

In the paper, Section 2 will be devoted to describe the F &Q formulas', while in
Section 3 we will discuss the corresponding proof system. In Section 4 we will pr.esent
the o.0. aspects of F&Q and, finally, Section 5 will be devoted to the conclusions.

2 The language F&O

Our staring point is a formulation of Forum {20] in w.hicl.l the .right hand s.1de oi'
a sequent is a multiset. As previously mentioned, our aim is to isolate a notlon‘ o
state in a linear logic sequent. The simplest approach is to use data constr}lctors (1..e.
predicate symbols) and to embed state values inside them. In the following we w%ll
assume to have a signature Ls containing a given set of state constmfctors. We will
consider simply typed A-calculus as the basis of our langu.age to uniformly handle
terms and formulas. Given a signature ¥ containing 25,.sxmply typed A-terms can
be defined as usual by induction. It is important to notice here that formulas are

ing but A-terms with a particular type o.

DOtl\l;/I;gconsider only the fragment of LL consisting of %, &, V, o—, T and L. The
linear connectives can be represented as constants with an ad hoc type, thus, f(?r
instance, % has type 0 — 0 — o and Y, has type {7 - 0) — o. The set of atomic
formulas, whose top level constant symbol is in Zg, will be referred as IIg,.

F&O Formulas
i i We are interested in a

As mentioned above, formulas are A-terms with type o. :
susbset of Linear Logic formulas, namely the smallest one generated by the following
gommar.

Du=V(Ho-G)| Di&D,

Gu= GG |GLBG,|VG|T|L|Ho—D|A

Hu=Hi13H, | A

where A denotes an atomic formula. A D-formula can be considered as a set of
multi-headed clauses which extend the usual logic programming ones. Under the
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same perspective G-formulas can be considered as extensions of usual goals. with
implication and universal quantification. It is important to observe that D-formulas
cannot contain L and T in their heads, i.e., the consequence of the top level linear
implication.

We are interested in a proof system which reflects the similarities between our

|| language and a logic programming one. Essentially, we will eliminate the decide

rule and all the left introduction rules (except the & ones), see [20], and we will
substitute them with two backchaining rules.

3 The F&O Proof System

In this section, we will try to customize Forum. see [20] for the complete set of
rules. in order to highlight its use as a specification language for state-based svstems.
In the formulation of Forum that we are going to consider the right hand side of a
sequent is a multiset of formulas.

First of all, we slightly modify the structure of sequents:

S:PR =g M

where ¥ is a signature containing all typed constants of the sequent, P is a set of
D-formulas in clausal form, namely V(#H o— G), and using the logical equivalence
(4&B) =!A®!B we can avoid to explicitly express the conjunction between the
clauses. R is a multiset of D-formulas, M is a multiset of G-formulas and S is a
multiset of atoms in Hy,. The intuition is that P corresponds to a set of global
definitions (always usable), R is a set of bounded definitions which can be consumed
only once, S can be considered as the current state of the system that we want to
simulate and, finally, M is the multiset of pending activities in the system, e.g.,
messages. In terms of linear logic the previous sequent can be read as follows:

(@cer ! ¢) @ (Bcerc) = (Bnes m) B (Boes )

In figure 1, we have depicted the set of F&O rules.

The letter M denotes an arbitrary multiset of G-formulas, while the letters A and
Q denote multisets of atomic formulas. In the backchaining rules we also require that
N and Q consist of only non-state atoms, furthermore, {4,[1/z], ..., 4,[f/z]} = NwS
where the left side of the equation is a multiset and & denotes the multiset unjon,
i.e, the merging of the elements of the two multisets.

Besides the two backchaining rules, which clarify the role of a D-clause in a
computation, we have introduced the axiom final to isolate the final state of a
computation.

Such axiom has not a direct Forum counterpart. As explained in the introduc-
tion, the idea is to prove implications of the form S;0—S; in Forum which implies to
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Figure 1: Proof system

guess the final state S at the beginning of the proof. The above mentioned axiom
lays emphasizes on the fact that the final state S is reached after performing the
computation.

4 An Application for F&O

The structure of the F&O proof system can help us to find a natural representa-
tion of the o.0. features discussed in the introduction. Both higher-order and linear
logic aspects are useful for such purpose. For the sake of this brief presentation we
will consider a class-based system, where messages are processed in a completely
asynchronous way, without any order upon the communication channel. With this
simplifications, it is easier to show how encapsulation and date abstraction can be
expressed in F&O. In the sequel, we will define three basic rules to manipulate
objects showing how to derive them in F&O.

We can consider each F&Q. sequent as a logical representation of a snapshot of
a computation in an o.0. system.

The essential choices in our representation are: objects are atomic state formulas
embedding attributes and methods and possibly hiding some of them. Messages, i.e.
method calls and primitive operations, are also atomic formulas, and methods are D-
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formulas. Classes will be represented by universally quantified Jormulas, expressing

the structure of the objects. We also consider auxiliary operations expressed by

atomic formulas, for instance, we assume to have the new, send and kil operations.
According to these ideas, an F&O sequent assumes the following form:

PR 2oy,0n M, Q

where P consists of the set of classes and auxiliary operations definitions; o, ..., 0, is
a multiset of atoms representing all the living objects in the system, i.e., the global
state; T contains the currently fired methods; M is the set of pending messages; (1
is the set of remaining invocations, i.e., auxiliary operations.

The main point to notice here is how we represent every single object. We
consider object constructors, i.e., typed constants, acting as individual names. Let
i be a generic type and id a symbol with type 7 = i — 0 — o, thus, objects will be
represented by atoms having the form id(Atirs, Meth).

It is necessary to have distinguished identifiers for dlstmgulshed objects, for this
reason there must be a demon process in our system able to generate new names: a
message asking for the creation of a new object must send a message to get a new
identifier, too. For the sake of brevity, we will omit this aspect in the rest of the
discussion.

Notice that to have such kind of predicative identifiers it is enough to consider
another constant name with type i — 7 and implement them as name(t) with a
different ¢ for each object, e.g., numerals.

While we assume Attrs to be any term, representing in the proper way the data
of the object, we must fix the form of the methods. Meth is a conjunction of
D-formulas Meth & ...&Meth, where each Meth; has the following form

Vz. id(Attrs, Ms) B (id : Head) o— id(Attrs', Ms') ® Msg, B...% Msg,

where 1d is the identifier of the object that is fixed at the moment of the creation, for
brevity Z denotes all the free variables of the clause and Head is a term expressing
the name of the method and the parameters. We need to consider id, the name of
the object, together with Head in order to avoid that messages with the same name
are delivered to the wrong objects, hence the constant *:’ has type 7 — i — o.

Msg; (i : 1..n) can be a method invocation, send(Id : Msg), a creation message,
new(Class, Id), a killing message, kill(Id) or the invocation of auxiliary operations,
where either /d is variable in 7 or a constant name.

Rules for objects

Let us forget the sequent representation, i.e., hiding & and R and design three
operational rules for our objects.
The first one concerns the creation of an object:

< M;new(classname,id), ;S > — < M; 2 id(as,ms),S > (new)
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provided classname is defined in P, i.e., it is a template for objects having structure
(as,ms), and id(as, ms) is a new instance with unique name id. A unique identifier
id allows us to refer to the object id(as, ms) using its name. We could also consider
id as a structured term containing classname. To be able to mimic such a rule in
F&QO, it is enough to express classes in P by the following D-formula:

V,Id. new(classname,ld) o~ Id(as,ms)

where as and ms are two given patterns for the attributes and the methods. It is
easy to see that the previous rule corresponds to the followmg inferencial figure in

F&O:
¥ P) R _’id(as,ma),‘s M1 Q (a'dd)

Z:P;R =g id(as,ms), M, (backchaining-1)
2 : P; R —s M,new(classname,id),§)
Notice that we use higher-order quantification in order to deal with newly created

identifiers.
The second rule concerns how to handle message passing:

< send(id : m), M;Q;id(as,ms),S > —? < M ¥5id(as',ms"),S > (send)

where a method m;, non-deterministically chosen from m = m& ... &m,, match-
ing with id : m, is executed yielding id(as’,ms"), M’ and ' (i.e. the operations in
the body of m; are added to M and Q). Let us recall that we allow the maximal
degree of concurrency between messages.

In order to handle such a representation we must define a clause governing the
method calls. Let us include the following formula in P:

V. 1dN;Msg, As.N,Ms.
send(Id: Msg) 8 1d(As, Ms) o—
(((Id: Msg) B Id(As,Ms)) o Ms)

This clause is used every time a send has to be processed. It synchronizes the method
invocation with the corresponding object moving its methods into the bounded con-

text on the left (the meaning of o— in the body of the clause), so that a backchaining- |

2 rule can be applied. Notice that we use higher-order quantification to select the
methods. Hence, the send rule has the corresponding F&QO figure:

T : PR —idias'ymet),s M,V (add)
L : P;mi, R —s td(as’,ms'), M', (backchaining-2)
L. p) ms,'R, —)id(aa,ma),s (zd : m)yM) Q (a,dd)
% :P;ms,R —s (id : m),1d(as, ms), M, (par)
Y :P;ms, R —s M, (id : m) Bid(as,ms),§ (impl)

L: PR —=s M, ((1d : m) Bid(as, ms)) o— ms, (backchaining-1)
L Pv e —id(as,ms),S M, send(id : m), Q
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where we suppose that ms = m;& ... &m,. For the sake of brevity, we have omitted
the obvious passages consisting of % and add applications that allow to simplify the
body of the method. There is another important aspect to consider. Since methods
definitions are fired in the bounded context and thus used only once, each recursive
call must be embedded into a send call.

The last rule concerns killing an object:

< M; kill(id), Q; 1d(as,ms),S > —;) <M;Q;8 > (kaill)

This can be achieved specifying the following definition for the kill operator, whose
only goal is to consume the object.

Y, 1d.;AsN,Ms. kill(Id) B Id(As, Ms) o— L

We resort to. anti, the neutral element of %, since it does not influence the other
resources in the right part of a sequent. -

Regarding the objects, so far we have shown how to obtain encapsulation. With-
out modifying the previous rules, but only the formulas defining classes, it is also
possible to obtain data abstraction. The idea is to use a universal quantified
variable on the right hand side of the sequents, whose scope extends over the part
of objects to be hidden:

V.Id. new(classname,Id) o— Vo. Id(as,ms)

This representation is very powerful. For example, let us consider quantifying over
the data constructors. Since the scope is extended over all the object, its methods
can use them, while external operations cannot access that name (because of the
side condition on the constant introduced by a V rule). In the same way, quantifying
over a method name, we create private methods that can be used only by methods
of the same object and quantifying over the name of an object created with new
yields local objects.

We have not shown occurrences of rwith on the right, however, the idea is to
exploit & for having auxiliary branches in the proofs where auxiliary properties can
be proven independently from the main branch representing the state evolution.

5 Conclusions

This work is only a preliminary overview of how to model objects using an
higher-order linear logic language like Forum. For the sake of brevity, we have only
presented some simple aspects of the matter, i.e., how to represent objects and
classes in the context of a specialization of Forum, tha.t we call F&O.

There are many other aspects that have not been treated here, concerning other
applications of F&O. For example, we can also model more complex object-based
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systems with sequential computational models, using continuations to obtain se-
quentiality in linear logic.

Also, we have also sketched a translation of a subset of the object-oriented lan-
guage Pool, which Walker in [24] translated in 7- calculus

Moreover, this kind of ‘application of linear loglc is also connected with many
other topics like sequentiality in linear logic, different degrees of concurrency etc.,
e.g. see the works 12, 15, 19], that we will take into account in the future.

At the moment, a prototype is also being implemented using A-Prolog.
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Abstract

In [4], the semantics of monotonic (i.e. not -free) extended logic programs
(ELPs) has been rephrased in three-valued logic for two purposes: achiev-
ing tractable reasoning with incomplete information and understanding the
relationships between the existing semantics and many-valued logics. In this
paper, we generalize this approach to unrestricted ELPs. We obtain a unifying
view of many formalisms, including the answer set semantics, the well-founded
semantics, generalized stable models (as in [11]), default logic, autoepistemic
logic (AEL) and some of its variants (three-valued AEL and Schwartz’s reflex-
ive AEL) . Our framework highlights surprising similarities between previously
unrelated formalisms, such as TMS’s with dependency directed backtracking,
the WFSX semantics by Alferes and Pereira, and reflexive AEL. Moreover, we
obtain very interesting new semantics, which make it possible to solve many
hard benchmark problems with a substantial gain in elegance and efficiency.

KeYwORDS: Three-valued Logic, Negation as Failure, Incomplete Informa-
tion

1 Introduction

Research on extended logic programs (ELP’S) has been focussed on the semantics of
several sema.ntlcsﬁﬁéve been proposed for not , there is little vanety of meamngs for
the not -free fragment of the language, hereafter called monotonic.

In [4], the semantics of monotonic ELP’s has been rephrased in three-valued
logic, for different purposes. The first goal was improving our understanding of the
relationships between ELP’s and multiple valued logics, which are not completely
clear, despite numerous superficial similarities. The second goal was a purely se-
mantic account of ELP’s, whose meaning is often defined through pervasive syn-
tactic manipulations that transform negative literals into new atoms, both within



prc;gra‘trﬁ's and within ihiefpf’é"tﬂations. The final goal was finding a more powerful
tractable semantics for ELP, capable of expressing and using incomplete knowledge
without resorting to more complex forms of reasoning involving combinatorial search

‘or noncomputable inferences. The approach of [4] tackles all the above problems
wwiland leads to a unifying view of different semantics for monotonic ELP’s. The basic

1dea 1s considering a not-free program rule as a formula

\ )
Lo &

By interpreting « as one of the standard three-valued implications illustrated in
Fig. 1, different semantics can be captured.

It is interesting to see how this approach behaves when we introduce default
negation through standard nonmonotonic constructions. This is the purpose of the
present paper. For the sake of generality we shall model different possible meanings
of not -through a general construction (stable classes) that generalizes stable and
well-founded semantics. By tuning two parameters, that 1s, the truth table of impli-
cation and the program transformation involved in the nonmonotonic construction
(one of which is the familiar Gelfond-Lifschitz transformation), we obtain a unifying
view of many formalisms and highlight surprising similarities between previously un-
related formalisms. We shall prove that Lukasiewicz’s implication induces some very
interesting new semantics, which make it possible to solve many hard benchmark
problems with a substantial gain in elegance and efficiency. Moreover, a well-founded
version of Lukasiewicz’s semantics constitutes a natural semantics for Reason Main-
tenance, more powerful and more efficient than the skeptical belief revision model

of [18].

2 Preliminaries

2.1 Three-Valued Logic

Three-valued interpretations are mappings from the set of ground atoms into the set
{F, U, T}. As usual, three-valued interpretations will be represented as consistent
sets of ground literals, so that Ais T (resp. F)in J iff A € I (resp. ~A € I). In the
literature there 1s general agreement about the meaning of -, while the meaning of
implication is controvertial. Three of the major proposals are recalled in Fig. 1 where
«—x 1s Kleene’s implication, <, is the one proposed by Lukasiewicz, and < is a less
famous but important implication which has been considered by several authors (cf.
[1]) and has been applied to non-monotonic reasoning |[5]. The classical equivalence
AV B = A «k —B holds for Kleene’s implication but not for <. The latter
corresponds to a disjunction, usually denoted by &, defined by A@ B = A «1 —-B.

A|-A —x|F U T <|F U T
FiT F|T U F F|T.T F
Uil U U T U U viT T U
T’F TIT T T T,TTT

Figure 1: Truth tables for negation and various forms of implication
o fosea, noats D

wilt, abd echVan's,

2.2 Default and Autoepistemic Logic

We assume the reader to be familiar with default logic (DL) and autoepistemic logic
(AEL). For an extensive treatment, see [12, 13]. A few variants of DL and AEL are
briefly recalled in this section.

Baral and Subrahmanian [3] generalized default extensions by introducing the
notion of eztension class, that is a family of sets F such that F = {Ta(E) | E € F},
where I'a is Reiter’s operator. This approach is more robust than DL; in fact, every
finite closed default theory has an extension class.

In [17], Schwartz introduced a variant of AEL based on the notion of reflezive
ezpansions, which are the solutions of

E={4|TU(LE=E)U-LEF ¢}, (1)

where LE = E is an abbreviation for { Ly < ¢ |¢ € E} and ~LE = {-Ly | ¢ ¢
E}. Many theories without stable expansions have a reflexive expansion. Moreover,
reflexive expansions contain no weakly-grounded (i.e. self-supporting) beliefs.
Three-valued autoepistemic logic (3AEL) [5] tackles similar problems with a
different technique. The basic idea is that agents may have doubts. For a large and
expressive class of theories, which generalize Konolige’s autoepistemic normal form,
we have that every consistent theory has one minimal generalized stable ezpansion
(GSE), which enjoys a fixpoint construction and contains no weakly grounded beliefs.

2.3 Extended Logic Programs

The set of objective literals, denoted by LIT, consists of all atoms and negated
atoms of the form —A. For all sets of sentences S, LIT(S) denotes S N LIT.
Similarly, AT(S) denotes the set of atoms in S. As usual, we say that A and -4
are complementary, and let L' denote the literal complementary to L. A default
literal is a formula not L where L is an objective literal. We assume the reader to
be familiar with extended logic programs (ELP’s); see [10] for the definition of their
syntax and semantics. Notation: the unique answer set of monotonic programs will
be denoted by ANS(P); the Gelfond-Lifschitz transformation of P w.r.t. 5§ C LIT
will be denoted by P35 .

Giordanoe and Martelli [11] introduced a different transformation, and a notion of
generalized stable model (GSM) for normal logic programs with constraints, which
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captures the dependency directed backtracking (DDB) mechanism of TMS’s. Given
a classical interpretation M, their transformation, hereafter denoted by PM s
obtained from P in three steps. First, all the literals not B such that B & M are
removed. Then the remaining default literals not B are replaced by —B. Finally,
among the resulting rules, select those which are strictly satished by M | i.e. the
rules Ly «— L,,..., L, such that M evaluates n— 1 of the literals L,,T,,...., I to F
and one of them to T'. The GSM’s of P are the classical models of P (when default

literals not B in P are replaced by —B ) that are solutions of the equation
AT(M) = AT(Cn(PM)).

In [4], the semantics of monotonic ELP’s has been rephrased in three-valued
logic. The basic idea is regarding ELP rules as sentences of the form

(c(Lo—=Li)—..) e L,,

where « js one of the standard implications illustrated in Fig. 1. The semantics of
a monotonic ELP P is captured by ANSx(P), which denotes the set of literals that
are logical consequences of P in X-valued logic (X =2,3). It has been shown that
<= yields the answer set semantics, while « g captures classical logic.

Theorem 2.1 ([4]) For all monotonic ELP’s P,

i) If «— is <=, then ANS3(P) = ANS(P).
i) If < ds «x, then ANSy(P) = ANS,(P).

Lukasiewicz’s implication yields a new interesting semantics, whose operational se-
mantics is a restricted form of unit resolution (Fyg), where clauses should be treated
as multisets, rather than sets. A similar restriction of input linear resolution (Fig),

constitutes an equivalent operational semantics, which models top-down, SLD-like
computations.

Theorem 2.2 ([4]) For all monotonic ELP’s P where — is -7,

1) If P 1s consistent, then ANS;(P) s the least model of P .

1) If P is consistent, then its declarative, operational and fizpoint semantics co-
incide. If P is inconsistent, then the three semantics are all inconsistent.

ii1) ANSa.(P) = ANS(CNTp), where CNTp st/ - contrapositive completion of P,
that 18, PU{Lk — Ll,--~;Lk-1; Lo, Lk+1)'<-Ln | LO — L],.,.,Ln S P}

299
3 Three-Valued Semantics for ELP’

In this section, the three-valued semantics for monotonic ELP’s introduced in [4] is
extended to unrestricted ELP’s. Default negation is interpreted through the con-
struction underlying stable classes, which captures well-founded and stable semantics
in a uniform way. In our framework, the meaning of an/ ELP is determined by two
parameters, namely, the program transformation (e.g. GL, GM) and the truth table
of implication (cf. Fig.1). Accordingly, we replace the operator Fp investigated by
Baral and Subrahmanian with Fp7(X) = ANS3(PZ), where TR is a program
transformation and implication is interpreted as «, which should be one of the
connectives illustrated in Fig. 1.

Definition 3.1 A nonempty family of sets F, contained in the powerset of LIT , is
a TR(+)-answer class of an ELP P iff F = {Fp" (X)) | X e F} U F = {5},
ie. if S is a fixpoint of Fp™ | then S is called a TR(«)-answer set of P. If
F={51,5,}, where $; C Sy, Fp™(51) = S, and Fp™(S,) = S1, then we say

that F is an alternating TR(«)-answer set of P, and denote F by (51,.5,).

The major results of [2] can be immediately extended to our framework. First of
all, Fg™ is anti-monotonic when TR is GL or the transformation RE which will
be introduced in Sec.3.2. Secondly, when F5™'" is anti-monotonic, its square power
is monotonic, and every program P has an alternating TR(« )-answer set

= (o (15T 0 (1°7T)). g

which is also the least TR(«)-answer class under Hoare’s ordering. The proofs of
these claims are simple adaptations of the proofs in [2] and are left to the reader.

We say that an objective literal L is derivable from an answer class F iff, for all
S e F,LeS. Wesay that a default literal not L is derivable from an answer class
Fiff,forall S € 7, L € S. In particular, if F consists of an answer set S, then L
is derivable iff L € S, and not L is derivable iff L € 5. When F is an alternating
answer set (S1,5,), L is derivable iff L € S;, and not L is derivable iff L & 5,.
Under this interpretation, the least alternating answer set (2) induces well-founded,
semantics for ELP’s. In the rest of this section we investigate the relations between
the above framework and the semantics proposed so far.

3.1 GL-Answer Claéses

First we study the relationships between GL-answer classes and the existing se-
mantics of ELP’s. In [4], it was proved that <, which behaves much like an
inference rule, preserves the standard meaning of monotonic ELP’s. This result
can easily be extended to unrestricted ELP’s. Actually, we shall prove a more
general result, relating ELP’s with default logic. By following the terminology
in [14], given = program P, we will denote by tri(P) the default theory (0, D)
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where D is the set of defaults Ly A ... A L, : =Lpiy,...,~Ln/ Lo, such that
Lo+~ Lq,...,Lpn,n0t Lyyyy,...,n0t L, isin P.

Theorem 3.2 For all ELP’s P, there is a one to one correspondence between ez-
tension classes of tr1(P) and GL(<=)-answer classes of P .

As a special case of extension classes, we capture various semantics of normal logic
programs (cf. [2,10]). GL(<=)-answer classes capture stable classes; the well-founded
model is captured by the least alternating GL(<=)-answer set of P. Moreover:

Corollary 3.3 For all ELP’s P, every answer set of P is a GL(<)-answer set of
P and vice-versa.

The least alternating GL(<=)-answer sets of ELP’s are a natural generalization of
the well-founded semantics. By Theorem 3.2, they correspond to Baral and Subrah-
manian’s well-founded semantics of default logic [2].

Next we focus on Kleene’s valuation, which yields a semantics whose monotonic
inferences are exactly the ones supported by classical logic (cf. Theorem 2.1). The
corresponding embedding in default logic is try, introduced in [14], which translates
Lo e Ly,..., L, 00t Lpyy,...,not Lyinto: =Ly, ..., =Ly /Lo« LiA...AL,..

Theorem 3.4 For all ELP’s P, there is a one to one correspondence between ez-
tension classes of try(P) and GL(«x)-answer classes of P .

Next we clarify the correspondence with 3AEL, which encompasses AEL as a special
case.

Theorem 3.5 Let P be an ELP and let AE(P) be the autoepistemic translation

of P obtained by replacing not with =L and «— with <. There is a one to one
correspondence between:

1) GSE’s of AE(P) and consistent alternating GL(«— g )-answer sets of P .
i) standard stable ezpansions of AE(P) and G’L(«—K)-ansﬁ;er sets of P .
Finally, we consider Lukasiewicz’s implication. It induces new semantics where

contraposition is allowed. In particular, for a given program P, let CNTp be the
contrapositive completion of P, consisting of P and all the contrapositives

Li« Ly,...,Lisy, Lo, Liva, ..., L, 00t Loy, .. ,not Ly, (3)

of the rules Lo = Ly,..., Lm,n0t Lypya,...,n0t L, in P .The following proposition
1s an easy consequence of Theorem 2.2.(iii).

Proposition 3.6 Forall ELP’s P, the GL(«L)-answer classes of P and the GL(<
)-answer classes of CNTp coincide. Moreover, the GL(«—r)-answer sets of P are
the (standard) answer sets of CNTp .
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1. a(z) — w(z). a(z) « f(z). ... a(z)+ s(z)

2. w(wy). f(f1). b(b1). e(er). s(s1)

3. g(91). p(z) « g(z)

4. sm(z,y) « b(y),¢(=) 8. -l(z,y) « w(z), f(v)
5. sm(z,y) « b(y), (=) 9. ~l(z,y) « w(z),9(¥)
6. sm(z,y) « b(z), f(¥) 10. -l(z,y) « b(z), s(y)
7. sm(z,y) « f(z), w(y) 11. l(z,y) « b(z),c(y)

12. I(z,pa(z)) — c(z). p(p2(2)) — (=)
13. (=, pa(z)) « s(z). p(pa(z)) — s(z)
14. [(z,y) « p(z)] ® [z, 2) — a(2), sm(z, ), p(w), {(2,u)] — (=)

Figure 2: An ELP for Schubert’s steamroller

Contrapositives may not seem a significative extension, at first glance.' On the
contrary, contraposition makes it possible to solve in a natural and efficient way
many difficult benchmark problems for automatic theorem provers. About (%0% of
the benchmarks without equality listed in [15] — including some of the most dlﬂic.ult
ones, according to Pelletier’s rating—can be solved through Lukasieyicz.’s semantics,
and contraposition proves to be essential (cf. [4]). This is an astonishing result for
a monotonic logic programming language. The problems that can be successfully
solved include Schubert’s Steamroller—one of the two most difficult problems of
[15] —and the Dreadsbury Mansion Mistery. Both hav.e 'been recently considered in
[19], where a nonmonotonic version of the Steamroller is introduced a.nd proposed as
a benchmark. In the following example, we show how the non-monotonic Steamroller
can be solved through Lukasiewicz’s semantics. To enhance readability, we shall use
@ as syntactic sugar. Note that every formula in the following example can be
turned into an equivalent ELP rule of the same size. |

Example 3.7 The following is a description of the non-monotonic version of Sch}l-
bert’s Steamroller due to Wagner; numbers refer to the formalization illustra.t'ed in
Fig. 2, where — should be interpreted as «r,. Default rules like “Normally F if G”
are expressed through semi-normal rules F(z) « G(z), not aba(z), not ~F(z).

Wolves, foxes, birds caterpillars and snails are animals, and there are some of
each of them (1-2). Also, there are some grains and grains are plants (3).
Caterpillars and snails are much smaller than birds, which are much smaller
than foxes, which in turn are much smaller than wolves (4-7). Normally,
wolves do not like to eat foxes or grains, while birds like to eat caterpillars




