360

avoid these disadvantages is the demand driven strategy presented in [11]. The idea
1s roughly as follows: instead of naively trying the defining rules in textual order
and restarting the evaluation of argument expressions for each rule, they look for
suitable argument expressions that can be evaluated first and then be used for all
rules.

For this particular strategy and a concrete language, we outline an abstract
machine design. It is based on the narrowing machine presented in [6, 9, 10, 12]. As
a “natural” extension, we have modified and extended the original instruction set in
order to be able to reflect the demand driven strategy. Local determinism is detected,
leading to an early deletion of choice points that increases the space efficiency, in
the line of [12]. An optimization based on ideas from [2] has been incorporated:
instead of having static choice point assignment for rule selection, a choice point is
dynamically created only when an unbound variable is matched, and then it controls
all alternative bindings of that variable. Deterministic computations automatically
avoid unnecessary choice point creation. A classification of the different functional,
logic, and narrowing abstract machines is presented in [8], where it is also established
that mixed paradigms admit efficient implementations.

The rest of this paper is organized as follows: a higher order functional logic
language is presented in Section 2. Section 3 outlines the lazy narrowing abstract
machine design. The demand driven strategy for lazy narrowing is presented in
Section 4: each type of demand is illustrated by means of examples, as well as the
compilation of programs and goals.

2 A Functional Logic Language

For our presentation we use a simple functional logic language (SFL for short) which
is based on conditional rewrite rules and encompasses the expressive power of several
more concrete languages, e.g. K-LEAF [3] and BABEL [13]. It is a higher order
(similar to that presented in [5]), polymorphically typed language and uses lazy
narrowing as evaluation mechanism. We assume expressions to be well typed w.r.t.
types declared for constructors and function symbols. For simplicity, types will not
be mentioned explicitly.

2.1 SFL Syntax

We assume a higher order signature (DC, F'S) with the ranked alphabet DC =
Unew DC™ of constructor symbols and the disjoint ranked alphabet F'S = (e FS™
of function symbols. Given a countably infinite set Var of variables, we distinguish
the syntactic domains given in Figure 1.

As usual, we assume that application associates to the left and omit parenthesis
accordingly. For function symbols f € F'S™ we consider defining rules, which must
be left linear conditional equations of the following form:

\fpl"'p":\e/ ¢11==7'1,...,lm=—_‘7‘m.

lha body optional condition

361

Patterns pi,ps,... € Pat : p == X % X € Var
| cpi-..Pn % c e DC™
Terms tq,%3,... € Term : 1 X % X € Var

| cti...tk %ce DC*0<k<n
| Ffti...te % feFS"0<k<n

Expressions ej,esz,... € Ezp : e == X % X € Var
| ¢ % ce DC*n>0
| f % fe FS*n>0
| (e1 e2) % Application

Figure 1: Syntactic Domains

where p; € Pat (1 <4 < n)and e, l;,r; € Ezp (1 <4 < m). The body e is any
expression such that vars(e) C vars(f p1...pn). Operationally, such equations will
be used as conditional rewrite rules. The sign ‘==’ in conditions stands for strict
equality, meaning that a condition “l;==r;" must be satisfied by narrowing /;, r; into
unifiable terms. The condition may contain extra variables that do not occur on the
left hand side of the rule.

An SFL-program consists of a finite set of defining rules for the function symbols
in F'S, satisfying a non-ambiguity condition to avoid semantic overlapping between
rules (termination is not required). For a complete description of the non-ambiguity
condition, see [4, 13].

Goals for SFL-programs are exactly as rule conditions. They are solved by

" narrowing. The evaluation of an expression e to yield a value can be triggered

by a goal “= e == R”, being R a new variable.

Higher order logic variables are not allowed (presently), i.e. higher order variables
may occur in the left hand side of rules, but are forbidden to occur as extra variables
in conditions, or in goals.

Example 1 Let CS5° = {true, false,0,[|}, CS* = {s}, CS* = {[|]} and F§* =
{member, funor, sum, map}. A legal SFL-program is given by the following defining
rules: e o A

member X | [Y]Vs] true <= X ==Y, (MEMBER;)

member X [V|Ys] = true <= member X Vs ==true. (MEMBER)
map F [] = . (M.AP;) % Lowa o w s d ot
map F [X|Xs] = [(F X)|(map F Xs)]. (M4pR)

sum 0 Yy =Y (SUM;)

sum (s X) Y = (s(sum XY)). (sUM)

. 362
funor true X = true. (FUNORy)
funor false false = false. (FUNORy)
funor X true = true. (FUNORy)

A goal for this example is
<= funor (member X (map (sum X) [0])) false == true.

for which we may expect {X\0} as the first computed answer. In the rest of the
paper we refer to this program as “the running example”.

3 A Lazy Narrowing Abstract Machine

The design is based on that presented by Loogen in [9, 10]. The underlying narrowing
machine is a combination of a particular reduction machine with mechanisms for
unification and backtracking based on the Warren’s Abstract Machine ([1, 15]). The
set of machine instructions has been modified and extended to be able to incorporate
the demand driven strategy for lazy narrowing.

3.1 Components

Basically, the machine architecture is the same described in [9]. Hence, we make a
brief description of its components.

The program store (ps) is a code area where the abstract machine code cor-
responding to a program is stored. Data representation is managed via a graph
or a heap (hp) structure. Rather than using argument registers as it is done in
the WAM, the data stack (ds) allows data manipulation: it stores heap addresses
corresponding to arguments or to results of function calls. The control stack (st)
is the central component of the machine, and it is structured as a double linked list
consisting of environments and choice points. Actual arguments and local variables
for a function call are stored into an environment frame. Also stored are the pre-
vious environment pointer and the return address (to where it will return after a
successful evaluation of the function call). In case of backtracking, the necessary
information to restore the state of the machine is saved into a choice point frame.
A detailed description of these frames structure is given below.

Environment Frame Choice Point Frame
n arity tds top of data stack
Al 1st argument nds nuii:ver of saved data stack entries
sd; 1st saved data stack entry

An n-th argument
k

] number of local variables sdna, nds-th saved data stack entry
1vy 1st local variable tt top of trail

AN shp saved heap pointer
lvy k-th .local variable sbp previous choice point pointer
sep previous environment pointer badr backtrack address

T8 return address

Control Stack Frames

363

The trail (tr) is used to keep note not only of variable heap addresses to undo
bindings, but also to keep note of suspension nodes to undo updatings, in order to
be able to backtrack without loosing information. Some pointers are provided to
facilitate the access to the machine components: IP points to the next instruction
in the program store to be executed, HP points to the next free position in the heap,
EP points to the current environment allocated in the control stack, BP points to the
topmost choice point in the control stack. The control stack length is determined
by maz{EP,BP} = lg(st).

Data are represented by means of heap nodes. We have extended the constructor
nodes representation, in order to admit partial applications. We have also added a
natural specialization of constructor nodes: constant nodes.

Variable nodes <VAR, a> representing a logical variable bound to the heap address
a, while <VAR,?> represents an unbound variable.

Constructor nodes <CONSTR,c,a;:... :ay,n-m> with ¢ € DC™, n > 0, a; (1 <
1 < m) being the heap addresses of the first m arguments and n-m > 0 being the

number of remaining arguments to obtain a totally applied constructor.

Constant nodes <CST,c> with ¢ € DC° represents a constant, i.e. a constructor
of arity zero.

Function nodes <FUN,f,a;:...:a;,0-1,k> with £ € DF™, k € N representing the
number of local variables, a; (1 < 1 < 1) being the heap addresses of the first 1
arguments and n-1 > 1 being the number of missing arguments to obtain a totally
applied function. Function nodes represent function partial applications.

Suspension nodes <SUSP,ca,lv;:...:1vy,rs>. They contain the suspension code
address ca , the environment 1v; (1 < ¢ < k) needed during its code execution, and
the place to keep note of the result heap address rs after a successful evaluation.
They are necessary to represent delayed evaluations.

Hole nodes <HOLE> are used during unification to keep place for the remaining
arguments, and as a flag while evaluating conditions.

The state of the machine will always be given by a tuple of the form:
(IP, hp, HP, ds, st, EP, BP, tr).

The transition to the nezt state is determined by the instruction pointed by IP.

3.2 Machine Instructions

The main modifications performed to the machine reside in the set of machine
instructions (as well as in the compilation schemes). Due to the limited space in
the present paper, their specification has been omitted. Instead, we have chosen to
devote our attention to the place where the strategy is reflected: the compilation of
programs.

364
4 The Demand Driven Strategy

We take here the demand driven strategy (DDS, for short) presented in [11]. The
idea is roughly as follows: instead of trying the defining rules in textual order and
restarting the evaluation of argument expressions for each rule, they search for
suitable argument expressions that can be evaluated first and then be used for

all rules. The authors specified DDS as a Prolog translation, whereas we perform a
translation to machine code.

4.1 Preliminaries

Definition 1 A call pattern is any linear expression of the form J p1-..pn, where
[is a function symbol and p; are patterns. A generic call pattern is any call pattern
of the form f X; ... X,, where X, are n different variables.

Let 7 be a call pattern and let { be the lhs of a defining rule. We say that |
matches 7 iff [is an instance of 7 via some (necessarily linear) pattern-substitution.
Moreover, ! is a variant of 7 iff this pattern-substitution is a variable renaming.

Let vpos(m) and cpos(r) denote the set of variable and constructor positions in
a call pattern =, respectively. Let 7 be a call pattern which is matched by the (hs
of at least one defining rule in a given SFL-program P. Let R be the set of rules
from P whose lhs match 7. Let lhs(R) be the set of all lhs of the rules from R.
Let u belong to vpos(m). We say that:

1. u is demanded by the lhs | iff | has a constructor at position u.
2. u is demanded by R iff u is demanded by some [in [Rs(R).
3. u is uniformly demanded by R iff u is demanded by every [in ths(R).

4. u 1s demanded with priority by R iff u is uniformly demanded and the same
constructor symbol appears at position w in all I in [hs(R) .

We make an additional distinction w.r.t. [11] that is well-suited for our purposes:
the concept of priority demand. It reflects the need of evaluating the expression
appearing at this position to a term headed by the (same) constructor symbol de-
manded by all the rules. With a position wuniformly demanded, we don’t know a
priori which constructor symbol will head the resulting term.

4.2 Program Compilation

In order to handle potentially infinite data structures, the evaluation to head nor-
mal form (hnf for short) is used: only those subexpressions necessary to decide a
unification will be evaluated. When something is demanded by a group of rules, we
need to ensure that the evaluation has been performed in order to proceed with the

unification. As it can be a suspended form, we have to initiate its evaluation to hnf.

member X; Xa =
/@Xz =[X2.1|X22] in

funor X; Xo =

Lor

try) case X of
) (. true
true < X; == X3 true — 3)
O true <= member X; X33 == true 0O false — l_c_t);gl— false in
alse
din?try endlet
= endcase
map-X; X2 = O let X = truein
(case X2 of true
M1 =[] endlet
O [X51]X22] — (X1 X2)(map X, X22)] endor
endcase
sum X; X, =
case Xy of
0 — X,
O (s Xy1) — (s (sum X1 X2))
endcase

Figure 2: Example Intermediate Transformation

Given an SFL-program P, the code generation is done separately for each func.tion
symbol defined by the program. We start observing the kind of demand dete.}rmmed
by the function defining rules, and guided by it we produce the-correspondmg ma-
chine code. The Figure 2 shows an intermediate transforrnatlon. of our running
example that might help to understand the process. The notation used in this
figure reflects the demand imposed by the rules as follows:

DEMAND SYMBOL
v is demanded with priority let Xy=...
w is uniformly demanded case X, ...
w is demanded or...
u is not demanded try ...

Some position is demanded with priority ' . ‘ o

We start initiating evaluation at these positions. The idea is tg give priority to the
evaluation of everything forced to have the same ‘shape’.‘ This is the case for the
second argument of member in our running example. It is clear that regardless of
the goal’s form, both rules will require evaluation of the. second argun':lent to a term
headed by the constructor associated to the non-empty list (or to a variable). Hence,

_ before deciding which rule is to be applied, we initiate the evaluation to hnf of all

those subexpressions appearing at demanded with priority positions.
The first instructions generated for member are:

LOAD 1 POP-ARGS
MATCEVAR 1 LOAD 1
LOAD 2 INITIATE 2

MATCHVAR 2 RESET-ENV(2,3) ...

366

This group of instructions performs the task of leaving an environment frame with
the second argument evaluated to hnf. At this point, code generation will continue.

There are no more demanded positions. We will see later how to manage this situ-
ation.

Some position is uniformly demanded but without priority
As above, we initiate evaluating to hnfthe subexpression appearing at the leftmost
such a position and we perform a case distinction on the result. In our running

example, sum demands uniformly position 1. Let us reproduce its first lines of
code:

LOAD 1 IF-VAR(1, cpy) cpi: TRY-ME-ELSE cp,
MATCEVAR 1 CHECK(1, 0, ;) it code for (sun)

LOAD 2 CHECK(l,s,h) c¢pz © TRUST-ME-ELSE-FAIL
MATCHVAR 2 Iy code for (sums)
POP-ARGS

INITIATE 1

LDAD 2

RESET-ENV(2,2)

The first argument has to be initiated. Afterwards a choice point is dynamically
created only if the result is a variable. Otherwise, we jump to the corresponding
instructions. Observe that function map is exactly in the same situation, with the

only difference that it is the second argument which appears at a wniformly de-
manded position. Hence, similar code will be generated for it.

Some position is demanded, but no one is uniformly demanded

The idea is to split the rules into the ones demanding this position and the rest of
shem. The structure that will be generated is:

TRY-ME-ELSE alt
Demanding rules

alt: TRUST-ME~-ELSE-FAIL
Non-demanding rules

In our running example, funor corresponds to this situation. The first argument is
demanded by the first two rules but not by the third one. A choice point is necessary.
As it can be seen in Figure 2, the splitting yields to consider the first two rules
separately from the third. Now, the first argument appears at a uniformly demanded
position w.r.t. the first group, and the second one has the second argument at a
demanded with priority position. The complete code for funor is:

TRY-ME-ELSE alt cpr -
LOAD 1 I
MATCEVAR 1

LOAD 2

MATCHVAR 2

POP-ARGS

INITIATE 1

LOAD 2

RESET-ENV(2,2) cpa :
IF-VAR(1,cp1) I
CHECK(1,true,ly)
CHECK(1,false,lp)

No position is demanded

367

TRY-ME-ELSE cp;
LOAD 1
MATCHCST true
LOAD 2
MATCEVAR 2
POP-ARGS

CNODE true
RETURN
TRUST-ME-ELSE-FAIL
LOAD 1
MATCHCST false
LOAD 2
MATCHVAR 2
POP-ARGS

LOAD 1
INITIATE 2
RESET-ENV(2,2)
LOAD 1
MATCHCST false
LOAD 2
MATCHCST false
POP-ARGS

CNODE false
RETURN

alt: TRUST-ME-ELSE-FAIL
L0AD 1
MATCHVAR 1
LOAD 2
MATCHVAR 2
POP-ARGS
LOAD 1
INITIATE 2
RESET-ENV(2,2)
LOAD 1
MATCHVAR 1
LOAD 2
MATCHCST true
POP-ARGS
CNODE true
RETURN

o If there is only one rule, one only needs to apply it. Being the code for rule (sun)
easier to generate, we include the instructions for rule (suM,):

LOAD 1 % Left hand side:

HATCHCONSTR (s, 1) % sum (s

MATCHVAR 1.1 % X)

LOAD 2

MATCHVAR 2 % Y =

POP-ARGS % Right hand side:

SUSPEND lab % suspension |

LOAD 2 % Y

LOAD 1.1 % e

FNODE(sum,2,2,0) % sum

APPLY % (sum X)

APPLY % ((sum X)Y)

UPDATE % Susp = ((sum X)Y)
lgb: NODE(s,1,0) % s

APPLY % (s Susp)

RETURN % .

o In case of having at least two rules, their (common) lhs has b'een prqce.ssed .ag Z
common part for all the rules (as we did above for member). This case s identifie

368

in Figure 2 by “try”. Here, the new feature is the way conditions are translated.
We try to satisfy the first rule condition. If we obtain a success, the result is true
(given by the first rule); if not, we try to satisfy the second rule condition and so
on. If both conditions are not satisfiable, the rules are not applicable and a failure
has to be produced.

In our running example, member corresponds to this last situation; the remaining
code for it is:

LOAD 1 % Common left hand side:
MATCHVAR 1

LOAD 2

MATCHCONSTR([-]-1,2)

MATCHVAR 2.1

MATCEVAR 2.2

POP-ARGS % member X1 [X21|Xa0] =

TRY-ME-ELSE rul, % Try first rule condition:
INIT-GVARS(3,0)
INITIATE 1
INITIATE 2.1
CALL-EQ % = X; == X5,
JUMP-TRUE res;
FAIL

res;: CNODE true
RETURN

% First rule result

8y !

81 ¢

end :

CNODE false
SUSPEND sy
SUSPEND s,

CHNODE ©

CNODE []
NODE([-1-1,2,2)
LOAD 1
FNODE(sum,2,2,1)
FNODE (map,2,3,0)
APPLY

APPLY

UPDATE

LOAD 1

FNODE (member,2,3,0)
APPLY

APPLY

UPDATE

FNODE (funor,2,2,0)
APPLY

APPLY
JUMP-TRUE end
FAIL

CNODE true
RETURN

369

% false
% susp;
% susps

% [0]

% X

% sum X

% map

% map (sum X)

% map (sum X) [0]

% susp, := map (sum X) [0]
% X

% member

% member X

% member X susp,

% susp; := member X susp;
% funor

% funor susp;

% funor susp; false

% == true

% Result: true (identifying a success)

% End of the goal’s execution

ruly:

Tesy:

Note: Due to the lack of space in the present paper, it has been impossible to
detail the machine instructions specification as well as other issues. The interested

TRUST-ME-ELSE-FAIL
INIT-GVARS(3,0)
LOAD 2.2

LOAD1

FNODE (member,2,3,0)
APPLY ’
APPLY

JUMP-TRUE resg

FAIL

CNODE true

RETURN

% Try second rule condition:

% <= member X; X,.,
% == true

% Second rule result

reader may find them in [14], which will be sent on request.

4.3 Goal Compilation

The code generated when our goal

<= funor (member X (map (sum X) [0])) false == true.

is compiled is:

The goal execution begins with funor susp; false, which represents a call to funor
with a suspended form as first argument and the constant false as second argu-
ment. The only applicable rule is (FuNOR,). Following its code, we need to initiate
evaluation to hnf of the first argument (susp;). This requires a call to member,
which needs evaluating its second argument (susp;) to hnf. This suspended form
represents a delayed call to map. The only applicable rule is (M4p;). The result is
[(sum X 0)|(map (sum X) [])]. Having initiated this argument, we try to apply the
first rule of member: after evaluating (sum X 0) it binds X to 0 and returns the
result true. Hence, we follow with the application of (FUNOR,), which also returns
true. This is equal to true and goal evaluation has finished with the binding {X\0}
as computed answer. Backtracking would offer other alternative compuied answers.

5 Conclusions and Future Work

In this paper our aim has been to illustrate the incorporation of the demand driven
strategy into the abstract machine design. The new abstract machine supports an
extension of the original language, and its set of instructions has been modified
and extended. The strategy is reflected in the sequence of machine instructions
generated by the compilation of a program.

We are currently engaged in the implementation of this work. The incorporation
of some optimizations in the machine architecture as well as in the code generation
is also planned for the future.

370
6 Acknowledgements

I'am grateful to Mario Rodriguez Artalejo and to Teresa Hortald Gonzélez for many

valuable discussions and for giving me the chance to participate in their research
team.

References

[1] H. Ait Kaci: Warren’s Abstract Machine, A Tutorial Reconstruction, Logic Program-
ming Series, The MIT Press 1991.

[2] M.M.T. Chakravarty, H.C.R. Lock: The implementation of Lazy Narrowing, Pro-
ceedings PLILP’91, LNCS 528, Springer Verlag 1991, 123-134.

(3] E. Giovannetti, G. Levi, C. Moiso, C. Palamidessi: Kernel LEAF: A Logic plus
Functional Language, Journal of Computer and System Sciences, Vol. 42, No. 2,
Academic Press 1991, 139-185.

[4] J.C. Gonzdlez-Moreno, M.T. Hortald-Gonzélez, M. Rodriguez-Artalejo: On the Com-
pleteness of Narrowing as the Operational Semantics of Functional Logic Program-
ming, Proceedings CSL’92, LNCS 702, Springer Verlag 1993, 216-230.

[6] J.C. Gonzélez-Moreno: Programacién Légica de Orden Superior con Combinadores,
PhD Thesis, Dpto. de Informatica vy Automitica, Universidad Complutense de
Madrid (UCM), Spain, 1994.

. F [6] W. Hans, R. Loogen, S. Winkler: On the Interaction of Lazy Evaluation and Back-

tracking, Proceedings PLILP’92, LNCS 631, Springer Verlag 1992, 355-369.

[7] M. Hanus: The Integration of Functions into Logic Programming: A Survey, Journal
of Logic Programming Vols. 19-20, Special Issue: “Ten Years of Logic Programming”,
1994, 583-628.

(8] H.C.R.Lock: The implementation of Functional Logic Programming Languages, PhD
Thesis, Technical University of Berlin, 1992. Also available as GMD Report 208,
Oldenbourg Verlag, Miinchen.

[9] R.Loogen: From reduction machines to narrowing machines, TAPSOFT’91, CCPSD,
LNCS 494, Springer Verlag 1991, 438-457.

[10] R. Loogen: Relating the Implementations Techniques of Functional and Functional
Logic Languages, New Generation Computing, Vol. 11, 1993, 179-215.

(11] R. Loogen, F. J. Lépez-Fraguas, M. Rodrigues-Artalejo: 4 Demand Driven Com-
putation Strategy for Lazy Narrowing, Proceedings PLILP’93, LNCS 714, Springer
Verlag 1993. }

[12] R. Loogen, S. Winkler: Dynamic Detection of Determinism in Functional Logic Lan-
guages, Proceedings PLILP’91, LNCS 528, Springer Verlag 1991, 335-346.

[13] J. J. Moreno-Navarro, M. Rodriguez-Artalejo: Logic Programming with Functions
and Predicates: The Language BABEL, Journal of Logic Programming Vol. 12, North
Holland 1992, 191-223.

[14] E. Ullin-Hernandez: A Lazy Narrowing Abstract Machine, Technical Report DIA 3-
95, Dpto. de Informatica y Automaética, UCM, Spain.

[15] D.H.D. Warren: An Abstract Prolog Instruction Set, Technical Note 309, SRI Inter-
national Artificial Intelligence Center, October 1983.

Exploiting Expression- and Or-Parallelism for a
Functional Logic Language

W. Hans, St. Winkler*

RWTH Aachen, Lehrstuhlr fiir Informatik II, D-52056 Aachen, Germany
e-mail: {hans,winkler}@zeus.informatik.rwth-aachen.de

F. Sdenz*

Universidad Complutense de Madrid, Dept. Informétic.a‘ vy Automdtica
E-28040 Madrid, Spain, e-mail: fernan@eucmvx.sim.ucm.es

Abstract

We discuss a parallel implementation for a functional logic language which ex-
ploits or- and transparent expréssion-parallelism. Or-parallelism is well—kn?wn
from the context of logic programming, whereas the so-called expression-
parallelism is a natural extension of and-parallelism to functior}a] logic lan-
guages. The proposed model aims primarily at distributed architectures but
runs on both shared and distributed memory models. We present some results
for a scalable architecture with up to 64 processor elements with distributed
memory as well as for a bus-based system.

Keywords: Functional Logic Programming, Expression Parallelism, Or-Parallelism

1 Introduction

Declarative programming languages offer a high degree of (imp%icit) parallelisjm‘
Functional logic languages as Babel are instances of the decla¥at1ve programming
paradigm. They extend functional programming languages .w1th pr'mcxples tak.en
from logic programming. Apart from the unification parallehsrr}7 which can be in-
tegrated into a finer layer within the unification process, expression-parallelism a.nfi
or-parallelism seem to be worthwhile to be exploited transparently on parallel arc}.n—
tectures. During the last years numerous approaches have beeI'l proposed for exploit-
ing parallelism in logic programs. Most of them rely on a special hardware platform,
such as shared memory multiprocessors or switch-based machines [1, 3, 7, 18,.19].
It has been shown that almost linear speed-ups can be obtained on these machines,

*This work was supported by the Spanish PRONTIC project TIC92-0793-C02-01 and by the
German DFG-grant In 20/6-1. .

372

and even super-linear speed-ups when failing computations are early detected. But
their efficiency collapse when the shared memory model is simulated at low level in
a distributed environment.

As far as parallel systems with loosely-coupled memories are concerned, often
stack-copying and re-computation models for or-parallelism are cited in the literature
[2, 8]. These models rely on the transfer of the complete machine state, but have
the disadvantage that sophisticated schedulers have to be introduced in order to
minimize the copying and the re-computation costs. In our model we follow a
process model in which each processor can be seen as an interpreter. Each processor
has to execute a certain piece of the overall computation, which has been delegated
by a parent processor.

The process model fits naturally to expression-parallelism, too. The progressive
approach of [7] implementing independent and-parallelism is intended for a shared
memory architecture and adopts the WAM (17] in an efficient way. Later, [16]
proposed an extension of this approach for a distributed machine. But their proposal
lacks in any capabilities of multiprocessing which yield severe restrictions concerning
the abilities for goal scheduling. Our model integrates multiprocessing that seems to
be a crucial feature, when dealing with scalable architectures with many processors.

Furthermore, the functional aspects of Babel offer more opportunities for paral-

lelization. Babel programs are applied with several syntactic restrictions that ensure
some determinative characteristics. The compositional style of programming allows
a natural encoding of the problem and yields a clear data-flow. In contrast, the
predicative style (e.g. of Prolog) demands the introduction of further variables and
artificial flattening to express the data-flow. This hampers the automatic detection
of the intended data-flow. Generally, the functional style allows a better abstract
mimicry of the concrete computation, a better determinism detection, and a more
powerful parallelization.

The organization of the paper is the following. The next section gives a brief
introduction of the functional logic programming language Babel. Section 3 and
4 describe the two kinds of parallelism and explain how expression-parallelism is
derived and exploited. The latter section explains how to reduce the amount of
synchronizing constrains and to increase the process granularity. Section 5 presents
the extensions of a stack-based sequential abstract machine to a parallel one that
also fits for a distributed memory model. The runtime results, which are given in
Section 6, show the behaviour of the abstract machine on a distributed system.

2 Babel

Babel is a functional logic language with a constructor discipline and a polymorphic
type system. It has a functional syntax and uses narrowing for evaluation. For the
sake of clarity, we will consider the first order subset of Babel with the leftmost
innermost narrowing strategy applied.

A Babel program consists of a finite set of function definitions and can be queried

373

i i i i i efining rules, where
with a goal expression. Each function { is a finite sequence of d fining rules, where

each rule has the form:

= B — M
fltr,. o te) { }]\Z{
left hand side (lhs) optional guard POCY

right hand side (rhs) .
with a Boolean expression B, and an arbitrary expression M. Babel functions
represent mathematical functions, i.e. for each tuple of-(groun.d) 'arguments, there
is at most one result. This is ensured by special syntactic restrictions [12].

Terms t and Expressions M are defined as follows: T A
t ==X % variable S e
| e(ty...tn) % data constructor L
M:=X % variable
| o(My,...,M,) % is a n-ary function or constructor symbol

| B — M;{0OM,} % if B then M, else undefined { else M}
The operational semantics of Babel is based on narrowing [14].

3 Expression-Parallelism

Independent expression-parallelism consists of the evalu.ation of expressions in par-
allel if they are independent and improves the eval.uf‘smtlf)n along one computation
path. It is well suited to speed up complex deterministic computations. Inc.lep.en—
dence means the lack of any shared unbound variables that may lead to. binding
conflicts when at least two computations instantiate them in an mC(.)mpatlble m?r,l-
ner. One sufficient condition for the independence of two expressions e and e 1's
var(e) Nvar(e') = () and their lexicographical indépendence, Le. neither is a sul?ex-
pression of the other expression. Though the maximal parallelism under expression-
parallelism could be exploited it is not worth because of the ove.rh.ead due to the
needed dynamic scheduling, being natural to impose several restrictions [7]. o
The independence condition allows the semi-intel%igent search space prunmgblf
one sibling of the parallel evaluation fails. ﬁs thistfallure can not be influenced by
iblings, their computation can be reset. ,

Son\;/?e(l)lt:\?er glevelogpéd an autorrll)atic parallelization tool which gene.rate‘s CGEs (C'on-
ditional Graph Expressions). CGEs are used to express pa@llehza.tlon co.ndltlgns
for independent expression-parallelisth. CGEs involve dyna'mlc tests.a,t runtime t : at
are desirable to reduce. The first stage of the tool covers thlS. dynamlc‘test reduction
by using abstract interpretation techniques to infe.r mformatlon. about. independence,
i.e., the modes of functions and sharing information of the variables in the .rules [6].
'Mo’des describe whether some arguments of functions are used gr01.md as input ar-
guments or unbound as output arguments. Sharing describe potential dependencies
between the variables appearing in the rules. o . 1
A program transformer is eventually Suppl'led ina second stage of t e palr'aJ':C
lelizing tool with the independence information in order to express the implici

o Ve o € Rhy Taye

374

parallelism by special parallel annotations. For instance, the expression e con-
taining two subexpressions e’ and e’ is transformed into the following expression
“letpar X = €'Y = ¢ in e, provided the analyzer determines the independence
of e and ¢”. The evaluation of e is delayed and synchronized with the successful
termination of both parallel computations. We have added annotations for the par-
allel non-strict boolean connectives to Babel, i.e. conjunction and disjunction, with
their own adjusted semantics. The parallel system can execute the operands of these
connectives in parallel, speculatively.

In a final stage, the parallelizing tool translates the annotated program into a
sequence of abstract machine instructions.

Detection of deterministic computations is done both statically and dynamically.
The former when inferring ground instantiations of function calls and the latter
because the so-called dynamic cut [11] is embodied in the parallel system.

4 Or-Parallelism

Or-parallelism consists of the parallel evaluation of the rules whose left hand sides
unify with a given function application. According to the corresponding rules, sev-
eral branches of the search tree can be explored in parallel. Unlike a sequential
execution of the program, the or-parallel execution causes binding conflicts due to
multiple bindings within the different branches of the search tree. This kind of par-
allelism seems to be well suited for that class of functional logic programs which
includes non-deterministic computations.

Process-based Or-Parallelism

In our model we follow a modified approach of the process-hased or-parallelism [5].
Herein, or-processes are generated for each applicable program rule. The process
execution takes place after the set of applicable rules is fixed by a complete indexing
procedure [11]. This guarantees that the unification can be performed at low costs
by the parent process so that each or-process is merely responsible for computing
the rule body and for delivering the solutions with the answer substitution.

Process execution takes place in three phases. First, argument terms are copied
into the initial environment of a new process replacing all global variables by local
copies whose identification is noted in a special import list. Second, during the
evaluation of the rule’s body, the model is not faced with the binding conflicts
since all data accesses occur on local copies. And finally, the execution succeeds
with a backward synchronization with the parent by returning the solution and the
answer substitution which can be derived from the import list and the local variable
bindings.

Communication between processes takes place via messages. After their successful
computation the results are embedded in a success message and sent back to the
parent process. If the parent requests further solutions, it simply sends a backtrack

375
—_
I branch level 0
p X
----------- l: o -E— T i)ranch]eve] 1

X=1 ' :

. X=3
true !

Program: time

p X := X=1-> true.
p X 1= X=3 -> true.

Figure 1: Retroactive parallelism example where the ﬁrst. bra.nch is embeddedfwmltl;n
the parent process: The global variable X is bound to 1 .w1th time stam'p 1. After the
anification within the first branch, the second branch is picked up b-y an 1dlfe processor .
Nevertheless, X is treated as a free variable because the branch originates with level 0.

message to the child. This procedure can be rePeated l‘mtil the search space of the
child is exhausted and the process terminates with a failure message.

This concept with the parallel execution of or-processes on different processor
elements makes the process model well suited for distributed memory machines.
Nevertheless, the process model has several drawbacks:

o There exist synchronization constraints concerning the process scheduling.
Ideally, idle processors run the processes. But if there are not enough proces-
sors available, the processes are executed locally. On the other ha.nd,.the
process model and the binding problem prevent a more flexible control regime.

e Process generation is expensive. Especially the 100&} computation enforces t.oo
much overhead relative to the sequential computa.tlon. At least the exp.ejnsw?
argument copying needs to be avoided by embedding the local' computation o
some branches within the process that created the branch point.

In order to solve the abovementioned problems we have exFendefl the simple process
model by introducing retroactive parallelism and process inheritance.

Retroactive Parallelism o . o)
Time stamps associated with each variable binding avoid the synchronization con

straints. This technique has been borrowed from other models [19] where a spec.ial
counter is incremented with each branch point allocation. In orc'ler to. infer the orig-
inal argument structure, the time stamp of the dereferenced variable is compared to

376

the branch level counter of the corresponding branch point. This mechanism enables
retroactive parallelism and process generation on demand.

With the help of this scheme it is possible to inte
execution of the process w
the other branches is stil]

grate branches directly into the
hich has created the branch point while the computation of
suspended. More importantly, the process generation takes
place only by incoming work requests of other processors on demand. Otherw
original process is allowed to treat the branch
causing additional overhead.

ise the
point like an usual choice point without

Furthermore we are now in the position to renounce on the complete data transfer
to the remote processors. The motivation is that the transfer of the complete data
structures cannot be justified if a certain amount of the structure is not required by
the child processor. [16] shows a detailed analysis of data locality. ‘

Process Inheritance

Whenever a process can be executed locally, the sole computation of the rule body
would be too restrictive. Therefore we allow a process to inherit the context of its
parent process and all other former local ancestors. Now we can omit the backward
synchronization with the parent process. The child shares all relevant data struc-
tures with its ancestors and performs an alternative search concurrently to the local

ancestors. In other words this means a step toward the subtree-based approach of
or-parallelism. The advantages for this modification are:

¢ We can avoid the direct synchronization with the local ancestors. The or-
process is responsible to commit all these steps on its own.

o The process granularity grows when the exploitation of the whole subtree
can be performed. Now remote processors can concentrate on that branches,
which have probably enough work. Furthermore this makes the scheme even

attractive for shared memory architectures where all relevant data are held in
the global memory space.

e All data are accessible by the children and the original argument structure can
be inferred by the use of the time stamp technique avoiding copying costs.

The memory space of a process can be divided into two parts.
represents the local search space of the process.
bindings for each variable originating from that p
protected. The process has to record each insta
own import list. Since each variable of the glob
execution, the import list is implemented as a h
optimized version of a binding list. Clearly,
of its ancestors. Instead of co
the hash window is simply

A private part
The process is allowed to commit
art whereas the global part is write
ntiation of a ’global’ variable in its
al part might be bound during the
ash window which can be seen as an
the process also inherits the bindings
pying all the former bindings in its hash window,
linked into the chain of its forerunners via pointers. As
a consequence, the variable dereferencing operation might become a non-

constant
time operation, but in practice the additional overhead seems to be low.

377

i ork
gggee?;iz:gth?execution of only the right hand side 9f a rule on a remotz protce_s—
sor may have fine granularity. Therefore a processor is allowed tohlsuslpe? ce;nzltz
prograr~n branches with coarse granularity and keep. this work available for rsr ot
processor which resume the corresponding compujca,tlon.later on. So avprlc?clessau o
provide enough work for other processors and might pick up other work locally
some other branch points.

ini i - llelism
Combining Expression- and Or-para ‘ . -
During the evaluation process expression- and or-parallelism might appear. {n prin
ciple the behaviour of both types of processes is equal. Tl]e}f Yvork on loca COEI:S
of the data in case of remote computation. Local expression-children are allowed to

-perform their private variable bindings directly and might bind variables from the

shared part likewise in their own hash windows. On the other hand or-processes are
1 i i < 1 tors.

till allowed to inherit the context of its ances : . . -

) 1VVhen or-parallelism under expression-parallelism comes into play, theré% is the rlslc<1

of recomputing some branches. Therefore a cross product node can be mtrod.uce

that combines all solutions from the lower branches in order to prevent thelrb're-

computation. This is also the common technique of other systems that combine

these two parallelism paradigms. (19, 2].

5 The Parallel System

We have designed a parallel system which exploits 'expression—or—paralfhsemwﬁcﬁ
distributed environment. Each node in the system is an abstract hr'na,c- mketChed
runs the compiled code. The coarse structure o‘f ‘ead.q abstract macl 1n§ is's etched
in figure 2. This figure shows primarily the partltl_on into a communlcatloclll; .
a narrowing unit. The former unit maps the logical comPlete ci){nnict'ecau ypif ey
onto the physical topology. It perlforrn; theiC 1necessarzrt ;gutmg tasks statically
icati cessors are only indirectly conne . '

Coiﬁlzﬁfi’gﬁ zl;:c;i\'ities of the abstract machine are performe%d by the narrowm%
unit. This includes multiprocessing as well as the message passing.

Meshed Stack Architecture

The narrowing unit consists of different memory areas.h Am?cng1 tlzem:C the g]gil:;}li
time stack stores the control structures.

stores the data structures and the run ctures. Bov
tial stack based abstract machine for Ba

structures are known from the sequen ox Dabel

ich i i i ts behind the WAM [17]. The representati

10] which in turn inherits the concep ' >present

‘[che] runtime stack is slightly extended towards a meshed stack orgamzatlon.ln o;r;iier

to support multiprocessing. Several processes may share the sta,ck res<1)urce dl.fe.,h_ ey

i if they do this in an interleaved fashion.
llocate new entries on top of the stack, even i : .
gtorage reclamation is performed by a garbage collector. But immediate storage

378
| Qmput Lhﬂgs

T i

Qutput Communication Buffers

| Input Links

f—
L]

T . ? Input
| 1 .. Comm. |
Communication Unit Buffer

"""""" Namowing Umie 4 processort |

Stack (11711
Pl Graph
Chuice Point — Expr. Store P
A | H H H H
—] [ﬁ
Branch Point >| LocalRef Time Stamp |
= —-LBranch Store =
=< _
Pur Call Frame | 8 Simichre .n 3
& Process Queue g
— ®
Environmeat § cur. Process Urbound E
L {2 GlobalRef | F 3> | 9
. \U, Hash Window 0
Program
Store

Figure 2: The Abstract Machine

re‘clamation Iejmains possible if the topmost structure is the one to be deallocated.
First observations show that this happens really often.

The graph structure was extended from the stack representation towards the more
gen-eral heap representation. This generalization retains the speed of structure allo-
cation but requires a general garbage collector, too.

A§1de from the structures known from sequential implementations, several buffers

- are introduced to manage the local processes, to store separately the subexpres-

sions that can be executed remotely, and to store the or-branches ready for remote
execution.

Multiprocessing

Multlprocessmg is advantageous to minimize computation locks due to communica-
tion delays. Even in a shared memory environment, the single-

imposes severe restrictions to the load distribution when pure st
tures are considered [15].
becomes endangered.

The expression store (LIFO) is intended to hold the expression-parallel siblings
to be distributed, while the branch store (FIFO) holds the or-parallel siblings. The
support of local process execution is an important optimization to reduce the.over-
head of process generation that involves the expensive creation of several structures
for their management. This includes the preparation of a new set of registers, the
e‘xtension of the process queue, and some arrangements in case of exhausted evellua—
tions. The support of local process creation requires the introduction of one further
small control structure in the runtime stack [7] that is mainly used to separate the

processing decision
. ack based architec-
Otherwise, the correctness in the presence of backtracking

379

stack areas of different local (=virtual) processes. Actually, no further process is
generated. During forward computation, necessary context switches are controlled
by the code. Only when backtracking happens, these special choice points enforce
the needed switches.

Our observations have shown that many subexpressions put into the expression
store are locally evaluated.

Parallel evaluation is performed following the forké&;join paradigm where the an-
notated expressions are spawned in parallel (fork). Instead of purely synchronizing,
the spawning process participates in the parallel evaluation and fetches locally some
subexpression yielding nearly sequential speed. In order to control the parallel (vir-
tual) child processes, a so-called parallel call frame is generated.

5.1 Load and Data Distribution

Load distribution is an important topic in order to achieve good speed-ups. But
it should introduce very low overhead. Mainly, we follow a passive, decentralized
strategy in which each idle processor asks several other processors for available work.

As a starting point we chose the sole work request from the neighbours. Here-
after, we enrich these requests with some information about the local Joad which is
determined from the occupancy of the different memory areas. At each processor
this information gives coarse information about the load on its neighbour and drives
the selection order of the requested processors. We extend this set of neighboured
processors and support the routing of work requests in accordance to the noted loads
up to a certain distance accelerating the load distribution. l.e., if a work request
encounters a processor without available work, it determines its best suited neigh-
bour and bypasses the work request. This gives a more intelligent load balancing
strategy without the introduction of a global scheduling mechanism.

As the creation of distributable work introduces some overhead, the engine switch-
es between a parallel and a serial mode [16] which is triggered by the local load and
remote work requests. The spawning of parallel work happens in the parallel mode.

Furthermore, data distribution involves some overhead. Qur experiments con-
firm the observation in [16] that the exchange of small data nodes introduces too
much overhead. Therefore, not only small data nodes but greater data packages are’
communicated on data requests.

5.2 Distributed Garbage Collection

Declarative programs, e.g. functional logic programs, are memory hogs that un-
doubted require garbage collectors. We embodied specific garbage collectors for the
runtime stack and the graph. Both garbage collectors are hybrid applying a proposal
of [9] that distinguishes between local and remote references. Remote references are
managed via weightened reference counting [4] and local references are dealt with a
variant of the Morris algorithm [13].

380
6 Results

The parallel system is mapped both onto a loosely-coupled Transputer network
with up to 64 processor elements and onto the tightly-coupled Sequent Symmetry
with 6 processor elements. The emulating system is implemented in C. We have
investigated the behaviour of the parallel systems for both the expression-parallel
context and the or-parallel one.

In order to test the implementation, we measured the efficiency of the implemen-
tation on one processor. A comparison with [16] which provides a parallel emulator
implementation for Prolog in a similar environment, shows that we get double speed
for equivalent programs. Furthermore, we observed much lower parallelism over-
head following their 2-mode approach. For instance, the slightly modified Fibonacci
function nfib which counts the function calls, and the quick-sort program show a
parallelization overhead below 5% for our emulator. A comparison of our implemen-
tation with a Transputer implementation of K-Leaf [3] shows a similar behaviour
for the Fibonacci function fib(22) and the 8-queens problem.

program 2 4 8 16 32 48

f-queen 11 [1.97[3.93]7.85 | 15.49 | 30.95 | 45.54
nfib 30 1.97 1 3.95 | 7.82 [14.67 | 26.56 | 35.80
Hanoi 22 | 1.99 [3.98]7.94 | 14.62 | 26.66 | 33.94

The first table shows the speed-ups for some typical functional programs. These
programs focus on the expression-parallelism and are well suited to measure the
impacts of the independence restrictions. We considered the following deterministic
programs: a functional version of the classical n-queens problem with 11 queens,

. the slightly modified Fibonacci, and the towers of Hanoj examples. Here we studied

different topologies with up to 48 processors. The queens program which is the most
complex among them shows the best speed-up. Even with 48 processors it reaches

nearly linear speed-up. Roughly 5% of the computational power of the Transputer
system is lost.

program 2 4 8 16 32 G(r}
queensl? 1.98 13.93|7.84 [15.57 | 28.62 | 50.83
naive-sort9 | 1.98 | 3.95 | 7.85 | 15.68 31.36 | 46.95
puzzle 1.9713.93|7.79] 14.41 | 25.71 | 38.08
Lknapsack 1.9513.90(5.00] 6.75 | 9.78 | 14.77

In contrast, the second table shows the speed-ups we got {or some nondeterministic
search problems. These or-parallel programs are the n-queens problem in the logical
version, the naive-sort, the knapsack and a puzzle problem. Again, the results show
that considerable speed-ups are possible. Note that the examples show almost linear
speed-ups concerning topologies with up to 16 processors and often even with 32
processors. Break-ins can be observed when the system is scaled beyond the frontier
of processor elements for nowadays shared memory architectures.

381
Program func-queen8 | quicksort3000 | queens9 | naive-sort8 | knap jack
Sequent 5.57 2.64 5.72 ?7r8) Zé;
Transputer 4.91 2.46 5.41 5.62 .

A comparison in the third table with the gpeed—ups on the Sequen‘_c Sz;mmetrrz/téz;
suming 6 processors) shows that further 1mpr0\fements can bv? gaine _011: s;t) e
with shared memory if expensive argument copying can be avoided (%ulc so(ri :) end
whenever the granularity decreases so that the available work can be better distri

uted in the bus-based system.

7 Conclusion and Future Work

In this paper we have sketched a parallel system for the funct.ional logic progilamn%xhnigsg
language Babel exploiting both expression- and or-paralliehsm tll\:anspaien' E;Oduce
system aims at machines with loosely coupled memory which are .now;l ho in uce
severe communication costs concerning remotfe da!:z% access. In spite of t dese restri .
tions, the result section has shown the applicability ‘of a process ?ase app;otafie
when the load distribution is attached with granularity con.suieratlon, sy’)lie}(l:u ati
data distribution, and slight extensions to promote the afvallab.le W(:lrlg. e ctcl)r;l(;
bined approach of expression-or-parallelism has been only .lnvestlgat.e ly an 21;11
of the intended approach because the cross—produ'ct remains to be 1mpfe£llen .uel

Aside of this extension, our future work deals with the ad]ustn.lents; Te parater
system to other distributed machines. Currently, we are porting the ransg;l;ors
implementation to the Fujitsu AP1000 which ha.s more vp_ow(.erful Spartcl-ll'orcic.e core
at each node. The new runtime results may give new insights for this kin

parallelism.

References

[1] K. A. M. Ali and R. Karlsson. The Muse Or-Parallel Prolqg Model and it_s Perfc;rT-‘
m.anc.e. In North American Conference on Logic Programming, pages 757-776. M

Press, 1990. |
[2] L. Araujo and J.J. Ruz. PDP: Prolog Distributed Processor fc.>r Inde;ejnde;let_
AND/OR. Parallel Execution of Prolog. In Workshop on Parallelism and Imp
mentation Technologies, 1994.
[3] G.P. Balboni, P.G. Bosco, C. Cecchi, R. Melen, C. Moiso, and G. Sofi. Parallel Com-

puters. Object-Oriented, Functional, Logic, chapter T: Implementatiop of a Parallel
Logic 4+ Functional Language. John Wiley & Sons, 1990.

[4] D.I. Bevan. Distributed Garbage Collection Using Reference Counting. In PARLE,
number 259 in LNCS, pages 176-187, 1987.

[5] J. Conery. Parallel Ezecution of Logic Programs. Kluwer Academic Publisher, 1987.

(6]

[7]

(10]

(11]

== [12]

[19]

382

W. Hans and St. Winkler. Abstract Inter i i i
. . pretation of Functional Log ng
Technical Report AIB 92-43, RWTH Aachen, 1992. e Languages.

M.'\’. Hermenegiido. An Abstract Machine based Frecution Model for Computer Ar-
ch-zt"ecture Design and Efficient Implementation of Logic Programs in Parallel. PhD
thesis, The University of Texas at Austin, 1986.

P. }{acsuk. OR-parallel Prolog on Distributed Memory Systems. In PARLE, volume
817 of Lecture Notes in Computer Science, pages 453-463. Springer-Verlag, 1994.

D.R. Lester. An Efficient Distributed Garbage Collection Algorithm. In PARLE
volume 365 of LNCS, pages 207-223. Springer Verlag, 1989. "

R. Loogen. Stack-based Implementation of Narrowin g
' g. In CCPSD, Tapsoft, LN
494. Springer-Verlag, 1991. el ©“

R, Loogen and St. Winkler. Dynamic Detection of Determinism in Functional Log-
ic Languages. In Symposium on Programming Language Implementatio and Logic
Programming (PLILP), Passau, 1991. Springer-Verlag.

JJ Moreno and M. Rodriguez-Artalejo. BABEL: A Functional and Logic Program-
ming La:nguage B:%sed on a Constructor Discipline and Narrowing. In Conference on
Algebraic and Logic Programming, LNCS 343, pages 223-232. Springer-Verlag, 1988.

F. Lockwc.)od Morris. A Time- and Space-Efficient Garbage Compaction Algorithm.
Communications of the ACM, 21(8):662-665, 1978.

U.S. Reddy. N@rrq_xyig_g__gg the Opera‘gioggl VSemantrics of Functional Programs, In

Proceedings of the IEEE International Symﬁosium on Logzc P}é_g};amming pages 138-
151. IEEE Computer Society Press, July 1985, ’

F. Séer?z, J.J. Ruz, W. Hans, and St. Winkler. A Stack-based Machine for Parallel

Execution of Babel Programs. In Hoon Hong, editor, Parallel Symbolic Computation

volume 5 of Lecture Notes Series in Computing, pages 336-345, 1094 7
Yone) \’ :

Armtrdind ey & . o PY AN VA g) ponde) chuiyg £ eerio b
A. Verden and H Glasf;‘ar. An AND-Parallel Distributed Prolog Executor. In P. Kac-
suk and M.J. Wise, editors, Implementations of Distributed Prolog, Series in Parallel

Computing, chapter 7, pages 143-158. Wiley, 1992.

D. H. D. Warren. An Abstract Prolog Instruction set. 309 Technical Note, SRI
International, 1983. ,

]13581;1‘ D. Warren. Or-Parallel Execution Models of Prolog. Datsoft’87, pages 243-257

H. Westphal, P Robert, J. Chassin de Kergommeaux, and J.-C. Syre. The PEPSys
MoSdeI: Combining Backtracking, AND- and OR-parallelism. In The IEEE Comput-
er Society Press, editor, Proceedings - 1987 Symposi] 3

, , posium on Logic P
436-448. IEEE, September 1987. T Rgramng, pages

(‘_/[\r\mr ikt =0 vodaokiig o

5 el

An Effective Algorithm for Compiling
Pattern Matching Keeping Laziness

Pedro Palao and Manuel Nunez
Departalﬁgﬁtb de Informética y Automatica
Universidad Complutense de Madrid
fax: (34-1) 394 4607 ph: (34-1) 394 4468

e-mail: {ecceso,manuelnu}@eucmvx.sim.ucm.es

e)0t

Abstract

In this paper we present an algorithm for compiling functions defined by pattern matching
with side conditions, which can be easily implemented. As previous approaches, this al-
gorithm has a complete set of rules. The generated code has no backtracking and side
conditions are evaluated at most once, which represents an advantage with respect to
most of the previous algorithms. This algorithm is parameterized by a subroutine, which
can be chosen such that the result of the compilation fulfills certain properties. In this
paper we choose a subroutine that keeps the laziness of a list of patterns. But in contrast
with previous algorithms (characterization algorithms), this algorithm does not previously
determine if the pattern is lazy or not; our algorithm works with any kind of patterns,
generating a lazy code if the pattern is lazy and even finding the lazy subpatterns of a non
lazy pattern. A fundamental concept in order to apply this subroutine is the concept of
distinguisher of a pattern, which indicates if a column of a list of patterns must be chosen
to ezpand with it the algorithm.

Keywords: Functional Programming, Pattern Matching, Laziness, Compilation.

1 Introduction

Pattern Matching has been widely studied in the theory of Term Rewriting. This
problem can be stated as: given a list of terms pi,...,p, and a term ¢, find whether
t is an instance of any of the p;. The most straightforward algorithm to solve this
problem is checking ¢ against each p;, but this solution is not acceptable because the
running time depends on the number of terms in the list. Several algorithms have
been developed to solve this problem more efficiently (see [HO82], [Grad1]). :

In this paper we restrict ourselves to the study of pattern matching in the imple-
mentation of functional programming languages. In functional programming, this
problem has some specific features; for example, it is usual to add some strategy
in order to decide which of the possible p; such that ¢ is an instance of p; is cho-
sen (usually the first top-down). There are also specific algorithms (see [Aug85],
[Wad87], [Lav88], [Sch88]) for functional programming.

But previous algorithms usually do not deal with laziness. Intuitively speaking,
laziness means that a value is only computed when it is needed in order to evaluate
an expression. In order to know whether a value matches a pattern, this value must

be evaluated to head normal form. Then, a lazy language must take care about how

384

pattern matching is performed, evaluating arguments as less as possible to determine
if the argument matches the pattern. Nevertheless, almost all the implementations
of recent functional languages do not consider techniques which perform pattern
matching in a lazy way.

In this paper we propose an algorithm with the following features:

o Each of the arguments is parsed at most_once in order to determine which
pattern matches (therefore, there is no backtracking in the compiled code).

e Side conditions, which may be very hard to evaluate, are just tried at most
once, and only when it is not possible to distinguish by patterns. Previous
algorithms usually do not deal with side conditions.

® One expects, that in a lazy language, the order of evaluation over the argument
structure is performed such that the function may diverge (at this point) only
if it diverges with any order of evaluation. Qur algorithm deals with this topic
(laziness), but in contrast with other algorithms ([Lav87, Lav88]), it does not
previously charactérize if the pattern is lazy or not (see definition 4).

The remainder of the paper is organized as follows. Section 2 introduces prelim-
inary definitions. Section 3 gives the bulk of our algorithm for compiling functions
defined by pattern matching. In Section 4 we introduce a subroutine, that combined
with the previous algorithm, keeps laziness. In Section 5 we give some outlines for
the implementation of the algorithm. Finally, Section 6 presents our conclusions.

2 Definitions

Definition 1 Let T be a finite ranked alphabet which is the disjoint union of al-
phabets X, (& = W,enZn). We consider a set of variable symbols £y such that
Yx € . @ € ¥, means that o has arity n. The set of L-terms is defined in-
ductively as the least set such that if o € Zn, and ty,ty,...,t, € T-terms, then
atyty - i, € D-terms. Given a S—term t = oty 8y -+ tn, we will denote ¢; by ¢[i]
(for 1 <i < n), and a by t[0]. Given z € Ty, is denoted by z[0], while =[] (: > 0)
denote fresh variables. Fe

Definition 2 A pattern is a tuple of B-terms. We say that a pattern is linear if
there is no variable which appears twice in the same pattern. An instance of a
pattern is a tuple of terms which can be obtained from the pattern by replacing all
the variables by any values. Let o be a function which maps variables into terms.
We call substitution the extension of ¢ as a morphism from terms to terms. Fet

Note that if a term is an instance of a pattern, then there exists a substitution o
which yields the term as image of the pattern. From now on, when we consider lists
of patterns, we will suppose that all the patterns (tuples) have the same length.

Definition 3 Let [py,...,pn] be a list of patterns. We say that a tuple of terms ¢
matches p;, if p; is the first pattern of the list such that # is an instance of p;. We
say that an algorithm that decides if ¢ matches p; exploring ¢ (starting from the root
of each argument in ¢, and comparing the symbols encountered with the symbols in
the corresponding part of the pattern) is a matching strategy. Note that, with this
definition, there is at most one p; in P such that ¢ matches ;- Fed

385

Definition 4 We say that a matching strategy € for a list of patterns P is lazy if
for any t such that £ diverges exploring ¢, then any other strategy diverges exploring
t. We say that a list of patterns P is lazy if there is a lazy strategy for P. Fed

Example 1 Let f and g be the functions that follow:

I = eap g [1'[1 =emp

Ty =ep, g T yys = e,
There is no lazy strategy for P = [([],[]), (z,y)]. Consider the call f (aj:a;) O
(where Q is a divergent argument). If the evaluation starts with the first argument,
the value ezp, is obtained, while if the evaluation starts with the second argument,
a divergent computation is produced. But f Q (aj:ay) diverges starting with the

first argument, while starting with the second one, returns ezp,.

On the other hand, there is a lazy strategy for @ = [([],[]), (z,y:ys)]: the
second argument is evaluated before the first one. Nevertheless, lazy functional
languages like Gofer or Miranda give a divergent computation in the evaluation of

9 9 (ar:az). Fed

Definition 5 We say that a function is defined by pattern if

o Its definition is a list of triples (pattern, expression, side condition).

e Its value, when applied to an argument t, is obtained finding the triple (p;,
ezp;, con;) such that ¢ matches p; by a substitution o and con; holds for this
substitution, and then evaluating the result of applying o to exp;. If there is
no such a p;, then an error message is produced. Eed

Definition 6 Let P be a list of patterns [py, ..., pn], where p; = (pj1,... ,Djn), and

let ¢ = (g1,...,qx) be a pattern. The next notation will be used:

il = [p1,. -, pn) #Var; = Number of variables in P1:
gi = ¢ #C; = Number of root occurrences
qli = (1, Gic1y Git1y -+ Q) of the constructor C'in Pl
P = (p117,...,pal1) (columm 4)

Pti = [pl1,...,pali] Cons; = {C;|#C; # 0} >
Definition 7 Let P = [(p1,....pin)]je,. We define the constructor selection func-

tion for a comstructor C' in column ¢ (1 < ¢ < n), denoted by «, as the function
which satisfies the following conditions:

o y:I.(#C;, + #Var) — 1.m

e (7)) <G +1), Vi(1 < j < #Ci + # Vary)

o pyi)il0] € Zx U{C}, Vi(1 < j < #C; + # Vary), ie. D~(j)+ is either a variable
oratermt=Cty---t. 2

Lemma 1 Given a list of patterns P, a constructor C and a column 1, the definition
of v for the comstructor C in column i is unique. Fed

386

Intuitively speaking, given a column and a constructor C, 7 considers the terms
which either have the constructor C' in the root or are variables, preserving the
ordering in the list of patterns.

Example 2 Let P = [(z:zs,y:ys), (z:2s,y:ys), (25, []), ([}, ¥s)]. Then, for “:” and the
column 2, we have: :1..3 — 1.4, and v(1) = 1, v(2) = 2, v(3) = 4. For “[]” and
the column 2, we have: 7:1..2 — 1.4, and (1) = 3, 7(2) = 4. Eed

Definition 8 Let P be a list of patterns [(p1,...,pin)]}~,. We define the variable
selection function for a column ¢ (1 <1 < n), denoted by v*, as the function which
satisfies the following conditions:

o yX:1.#Vary = 1.m

o v¥(j) < ¥+ 1), Vi(1 <5 < #Van)

o p.x(;); 1s a variable, Vj(1 < 5 < # Var). el
Lemma 2 Given a list of patterns P and a column i, the definition of 4% for the
column ¢ is unique. o)
Definition 9 Let P = [(pk1, ..., pin)]7; be a list of patterns and ¢ = (ty,...,1,)

1
be a tuple of terms. We define the subpattern of P generated by t, denoted by Sy(P),
as the list of patterns defined as:

1. T Vi(4; € Sy), then S(P) = P.

2. If 3j(t; € Ex), then §(P) = Su(P') where C = t;[0], r is the arity of C,
s = #Varj + #C]', t' = (tl, L ,ij_l,t]‘[l], S ,t]‘[T‘],t]’+1,tn), and
P'=(pywy1s- -3 Pawi=1: Py s [o oy) By gt o P)i g

Lemma 3 Let P be a list of patterns, and ¢ be a term. If S,(P) is not a lazy list
of patterns then P is not a lazy list of patterns. e

3 The Algorithm

In this section we present a formal description of our algorithm. Our algorithm
has a function defined by pattern as argument and returns an expression which,
considered as a tree, has in the internal nodes a case clause over a simple pattern or
an if clause over any of the side conditions. The leaves of the tree are the expressions
that define the function.

Although the algorithm only works with linear patterns, it can be generalized to
non linear patterns in the usual way, changing the repeated variables for new ones
and adding an equality condition to the side condition.

We will specify the algorithm as a function compile which has a function defined
by pattern as argument and returns the tree expression.

387

Definition 10 Let f = [((vk1,-. ., vkn), exps. cony)]je, be a function defined by
pattern. We define the function compile as

compile f = match (uy,...,u,) f

where uy, ..., u, are fresh variables indicating the length of the patterns oy. e

The rest of the section is devoted to define the function match. This function
is inductively defined, with the property that in recursive calls, the ordering of the
triples in the original definition is preserved. We give a complete set of rules; some
of them are similar to those in [Wad87] (Empty Rule, Variable-Column Rule) while
others are specific for our algorithm.

3.1 Base Rules

There are two base cases: when the list of variables is empty (first argument), and
when the list of triples is empty (second argument).

When the list of variables is empty, all the expressions are equally acceptable,
because there are no patterns. We use the side condition in order to know which
of the expressions is chosen. The algorithm must keep the order in the function,
and for this reason this case has to be compiled with a sequence if- - - elsif- - - else,
finishing with a failure clause (used if no condition evaluates to true).

Rule 1 (Empty Rule)

mateh ()[((), ezpy, cony), ((), exp,, cony), - -, ((), ezp,,,, conm)] =

if con; then ezp, elsif con, then ezp, --- elsif con,, then ezxp, else No Match

Another base case appears when the list which defines the function is empty.
That means that the pattern is not exhaustive, and a run-time error must be pro-
duced. This error is not a fault with a backtracking jump like in [Aug85], but indi-
cates that the function argument matches no pattern (considering side conditions)
in the definition of the function.

Rule 2 (Fail Rule) match (uy,...,u,) [] = No Match %

3.2 Inductive Rules

Now we consider the inductive cases. There are two rules which simplify the call to
match, and another rule which is used if none of the previous rules can be applied
(Default Rule).

The first rule can be applied when the first triple has a pattern only with vari-
ables. Then, an if is generated with the condition cony, substituting the variables
appearing in the pattern with the values (uy,.. <yUn), the expression ezp, in the
then part (applying the same substitution) and, in the else part, the result of the
rest of compilation.

388
Rule 3 (Variable-Row Rule) If vq1, ..., vy, are variables, then
match (w1, ..) [((Vk1, - - - Ukn), €2Py, cong)T, =
if conifur/v11, ..., un/v1,) then exp[us/vin, ..., un/v14]
else match (uy, ..., un)[((Vi1,- - Vkn), 2Py, cOng)]Te, 2

The second rule is applied if there exists a column in the list of patterns such
that only variables appears in this column. This can be solved by removing this
variable, and then, performing a renaming both in the expressions and in the side
conditions.

Rule 4 (Variable-Column Rule) If there exists a column ¢ such that all the terms
are variables, then

mateh (uy, .o, W) [((Vkas o Ok - - Ukn), €3D, cOng)T, =
match (Ut, ..., Uis1, Uity - -y Un)
[((Ukl, ey Vkic1, Vkidls - - - Vkn), el'pk[“'i/vki]-, Conk[ui/vki])]Tzl Eed

If none of the previous rules can be applied, then the Default Rule is applied.
This rule expands with a column (the algorithm which chooses this column will be
presented in section 4). Intuitively speaking, if the i-th argument of the function is
evaluated enough to find a constructor in the root, then we can discard most of the
patterns of the ¢-th column. We only have to consider the patterns which have the
previously obtained constructor in the root, and the patterns which are variables.
In the former case, the subexpressions of the argument still have to be compared
with the constructor arguments, but in the latter this comparison is not necessary;
in these triples, new variables are needed (according to the arity of the considered
constructor). This is shown in the following

Example 3 Consider the call to the match function
match (uy,us)

[((z:zs, y:ys), z: merge zs (y:ys), = < y),

((z:zs, y:ys), y: merge (z:as) ys, = > y),

((zs, []), zs, true),

(1 ws), ys, true)]
and suppose that the second column is chosen to expand with. The case expression
has two entries: one for “[]” and another one for “:”. In the first entry, the third
triple (since it has “[]” in the root) and the fourth one (because it is a variable) are

placed. The first, second and fourth ones appear in the second entry. The result is
case u, of

[] = match (uq)
)y zs, true),

[((2s),

(1), w2, true)]

wywy = match (ug, wy, ws)
[((z:2s,y, ys), :mergeas (y:ys), = < y),
((z:zs,y, ys), y:merge (z:zs) ys, = > y),
(([]’ alaO‘Z)a U2, true)]

where wq, wy, ay, ay are fresh variables. Ee

389

Rule 5 (Default rule) If the column 7 is chosen to expand with, then

match (wy, ..oty un) (U, - Okt V), expy, cong), =
case u; of
Clwl = match (ula‘_"vui—laui-#la"':un)"H'u_)l .
(v 10+ (0310, -, Uy i[ma]), e:cp;i, con;i)]izl

ULy ooy Uinl, Uity -« s Un) H Dy

(ol (g il1], - opalne]), eaplyy, conl)i,
ULy ooy Uim g, Uit dy - - o s U

(vyz1, ez [ui/vag], cone [uifvye o])]iey

C™w, = match

(
[
otherwise = maich (
[

Cons; = {C',C*...,C"}, 5° = # Vary, s* = s + #C? (1<a<r)
Y = 7(b), where v is the selection function for C® in column s
7 = y*(b), where ¥ is the variable selection function for column i
n, = arity of the constructor C* (1 < a <)
where . ,
erp| = exp, , if = Var(v;;)
! exp[ui/vi;] , otherwise
con cony ,if ﬁV(m_"(v“)
comy[u;/v;] , otherwise

and for any a,b such that 1 <a <r, 1 <b < s% and such that vwg;[O] € Xx (ie.
Usgi 1s a variable), vyai[1],. .. vyei[na] are fresh variables. With this condition we
ensure that patterns remain linear and that there is no name capture. e

Note that if any vi; is a variable, then there is an occurrence corresponding to
the k-th triple, for every entry C7;, and another one in the otherwise clause. The
otherwise clause is used for the constructors which do not appear explicitly in the
case expression. For this reason, if all the constructors of the type of the column
i are in Cons; (i.e. column 7 is ezhaustive), the otherwise clause may be removed
(as in Example 3). A consequence of the Default Rule is that one expression may,
appear in different places. In Section 5, we show how a code without repetitions can
be generated.

The compilation to a virtual machine of the case expression is usually done using
a table of memory directions, which is indexed by the type constructors.

4 Choosing a good column

In the previous section, we have not given an algorithm which selects a column to
expand with. Now, we give an algorithm that selects these columns keeping laziness.
The idea is to find the columns which must be (necessarily) evaluated to determine
if a term matches a pattern. Next, we introduce the concept of distinguisher.

390

Definition 11 Let P = [p1,...,p,] be a list of patterns. We say that p; with
I <2< m+1 (for convenience p4; will be a pattern only with variables), is a
distinguisher of P, if there is a tuple of terms ¢ which is an instance of p: and such
that it is not an instance of any p; for 1 <5 < 4. We say that p, is a distinguisher
of P for the column j if p;1j is a distinguisher of PTj and pi; is a variable. s

Let us remark that there exists a distinguisher for a column which only has con-
structors in the root iff the rest of the columns are not exhaustive. This distinguisher
would be in the row m 4 1, because there are no variables in that columo.

Lemma 4 Let P be a list of patterns. P has a matching strategy not evaluating ¢;
in a list of arguments t = (¢;,....t,) iff P has a distinguisher for the column j.
Proof: Let ¢ be a list of arguments such that it is not necessary to evaluate ¢;, and
let p; be such that ¢ matches pi. Then, p;; must be a variable; otherwise t; would
have to be evaluated in order to know whether it coincides with the constructor.
Also, the fact that ¢ does not match any p; with & < 4 implies that {1 does not
match any pilj with & < 4. Thus, ¢17 is the instance that makes p; a distinguisher
of P for the column j.

Now, suppose that p; is a distinguisher of P for the column J. Then, p;; is a
variable and there is an instance ¢ of p;T5 which is not an instance of prlj (for any k,
1 <k <1). Then, a strategy which checks if an argument coincides with ¢ in every
column but in the j-th, is a strategy which does not evaluate the J-th column for
the instance t. 2

Lemma 5 Let P be a lazy list of patterns, and j be a column which has a distin-
guisher. Then, a lazy strategy cannot expand with column 7.

Proof: Let t = (t1,...,1,) be a list of terms such that t1j is the instance with whom
pi 1s a distinguisher for the column j. Then, there is a strategy £ that does not
evaluate the column j when is applied to an argument a such that alj = ¢15. Thus,

this strategy does not diverge when the argument a = (t1,...,t;_0, 0 tj41,...,1,)
is applied. Easily follows that a lazy strategy does not diverge when the argument
a is applied, and thus it can not be possible to expand with the column j.)
Definition 12 We define the set of admissible columns for a list of patterns P,
denoted A(P), as the set of columns which have not a distinguisher. e
Corollary 1 Let P be a lazy list of patterns. Then A(P) is not empty. Fed

This corollary gives a necessary condition for a list of patterns to be lazy. The

following example shows that “A(P) # § = P is a lazy list of patterns” (the
reciprocal of Corollary 1) does not hold.

Example 4 Consider P = [([],[]),([], y:ys), (z:zs, (D) (=[], 9:[]), (z:zs,y:ys)]. P is
exhaustive and all the terms have constructors in the root. Then, both columns
are admissible ones (and thus A(P) # 0). But the subpattern corresponding to the
term (a1:by, as:by) is [(z,[],y.[]), (z,2sv,ys)], and (as we saw in function f of
example 1) there is no lazy strategy for matching (b1, ;) with [([],[]), (zs, ys)]. By
Lemma 3, P is not lazy because it has a subpattern which is not lazy. Fed

391

Lemma 6 Let P be a lazy list of patterns and let A = A(P). Then, for any 7 € A,
there is a lazy strategy that expands with the column 1.

Proof: P is lazy implies that there exists a lazy strategy &£ for it. This strategy
must expand with any of the columnsin A (Lemma 5). Suppose that ¢ € A is chosen
to expand with, and consider 7 € A such that j # . We know that £ always has to
evaluate the column j. Then, we consider a strategy which interchanges the points
of evaluation of 7 and j. Obviously, this strategy is also lazy. Fed

Corollary 2 Let P be a lazy list of patterns. A pattern strategy is lazy iff this
strategy expands with a column in A(P). Fed

After corollary 2, we can give our algorithm to choose a column to expand with.

Algorithm (Choose a column to expand with)

Let P be a list of patterns, and let A be the set of admissible columns. If A #) we
choose any one in the set A. If A =0 we choose any column (that means that the
list of patterns is not lazy). Eed

This algorithm chooses a column keeping laziness (Lemma 6), and if the list
of patterns is lazy, this choice gives a lazy strategy (Corollary 2). As we showed
in Example 4, the idea of admissible column represents a characterization of local
laziness over a part of the argument that it is been explored. Thus, our algorithm
can isolate the part of the pattern where the problem (no laziness) appears, and it
can compile the rest of the pattern in a lazy way.

Example 5 We will show that in Example 3 the second column is chosen by our
algorithm. We must show that the second column is an admissible one, while the
first one is not. This fact is because there is a distinguisher for the first column in
the third row: the instance ([]) gives us the result. After third row, the first column
is exhaustive and that is why it can not be any distinguisher for the second one.

)

Theorem 1 Let P be a lazy list of patterns. Then, the algorithm in the previous
section, parameterized with the algorithm above to choose a column, gives a lazy
matching strategy.

Proof: The proof is done by induction over the rules of the algorithm. The base
rules (Empty Rule and Fail Rule) give a lazy strategy because they do not perform
any decision over the list of patterns. The result for the Variable-Row and Variable~
Column rules is immediate by induction, since none of them evaluate any argument.
The proof of laziness for the Default Rule can be done using Lemma 5 and by
induction. 2

5 Implementation

In this section we deal with some details of the implementation of the algorithm.

392
5.1 Calculation of the set of admissible columns

First, Wwe suppose that all the columns are admissible, and for each column, we create
a set of instances (initially empty). We go top-down over the list of patterr;s lookin
for variables and updating the set of instances of each column with the inst’ances 0%'
?;he r_egt of the pattern (for the pattern p; and the column j, the rest of the pattern
is p{I]): If one variable is found in one of the columns, which belongs to the set
of adr.mssible columns, we determine if the rest of the,pa‘ttern is a distinguiéher
foF this column (looking at the associated set). If it is a distinguisher, we remove
thls column from the set of admissible ones and we forget the associatec’i set (Which
will not 1':>e needed any more). We repeat this process until the end of the list of
pat.terns 1s reached or the set of admissible columns is empty. The update of the set
of instances can be done by request instead of doing it for every pattern in the list
of patterns; that is, the update is done only when a variable is }ound, ’

5.2 Improvements to the efficiency of the algorithm

Increasipg the speed of the algorithm can be done when the Default Rule has to
be applied. If there is a column which only has constructors, and the rest of th
’colu.mns are exhaustive, then this column can be chosen keep’ing laziness ‘becausz
it w1Hfbe in the set of admissible columns. This is very effective and it is £>1'esented
;/Ifr[i;)vgirj,gzzg;{fmple, this technique can be applied to all the examples presented
When the set of admissible columns for a list of patterns has been calculated
the problem is which of them is chosen. The next heuristic rule can be a lied7
to locally minimize the number of steps that the algorithm must perform: fhiose
the cqlumn which minimizes the number of constructors multiplied by the.number
of Yarlables. This rule tries to expand as less as possible the patterns which have
variables, leaving the problem as small as possible. In a similar way, this heuristi
ru_le can be applied if there is no admissible column. Another techniél’le is to ex anlc(i
with all the admissible columns, and calculate the set of admissible columns folr) the

new list of patterns. With this technique, we get that some calculations, which
would be done several times, are done only once. ’

5.3 Duplication of code

Obviously, the code duplication is solved, sharing the expression among the dif-
ferent branches in the case tree where the same code appears. Let T bge a tripl
(patt, exp, con), such that one of the terms in patt is a variable z, and let us Sl;l lcl)js:
that the Default Rule is applied, expanding with the column ,where this va,lr)i};ble
appears. T.he expression ezp, after a renaming of = given ezp’, will be in a branch
correspond'mg to each constructor (or otherwise). Also, is7 replaced in‘ patt b
n new vana'bles T1,...,Tn, Where n is the arity of the constructor. But none o);
the new varlables appears in exp’, and that means that any substitution over them
does not modify ezp’. Only the changes over the rest of the pattern may modify it
k)

but always in the same form. Thus, all the leaves in the case tree which have as
associated expression ezp, after doing all the necessary substitutions, will have the
same expression and the sharing will be total.

But it still remains the problem that the number of new variables z; depends
on the constructor in which ezp is placed, and thus there are an amount of useless
bindings for ezp which depends on the branch where the expression ezp was placed.
This can be solved by adding a small code that reorganizes the bindings, or by
compiling the expression in such a way that it can deal with these problems. Anyway,
it depends on the model of machine n which the compilation is done. Also there
exists the same problem for the code duplication for side conditions, but usually
these codes are very small, and duplication can be better than sharing.

Related Work

In the framework of functional programming, the first proposed algorithms are
[Aug85] and [Wad87]. They give a set of rules to compile functions defined by
pattern. Some of our rules in section 3 are similar to those in [Wad87]. The dif-
ference is that we have a default rule while Wadler’s algorithm has several rules to
distinguish different cases. The main advantage of our algorithm (out of laziness)
with respect to [Aug85] and [Wad87] is that ours has not backtracking in the com-
piled code (and thus each argument is parsed at most once). Wadler’s algorithm
has been widely used (for instance in Gofer).

[Grag1] presents a theoretical characterization of an algorithm. The generated
code is equivalent to ours if we would always expand with the first column in the
default rule (i.e. without taking care about laziness).

[Sch88] gives an algorithm that works with restrictions in the types. That means
that it can compile functions defined over subtypes of a given type.

The algorithm proposed in [PB85] performs the match bottom-up. Our algorithm
cannot work in this way, since a bottom-up strategy requires the whole evaluation of
the expression that it is been matched, and this is against our objective of keeping
laziness. Because the match is performed bottom-up, it can not work with infinite
objects. ‘
In [Lav87] a characterization to know whether a list of patterns is lazy or not is
given, but it is very complex and it has a difficult implementation. [Lav88] presents
an algorithm (based on [Lav87]), that simplifies that characterization, but it still
needs to evaluate if a list of patterns is lazy. With our algorithm it is not necessary
to do this characterization previously (which can be very hard to do) because it uses
a set of complete rules which will find a lazy strategy (if there exists one). Even if
there is no lazy strategy, the compiled code will be better than the one generated by
the algorithms in [Gra91] or [Sch88], because we can use the local laziness of some
subpatterns.

[SRR92] shows that there exist patterns which produce an exponential (in size)
tree for any possible strategy. In a recent work, [Mar94] studies lazy algorithms
but using backtracking. This approach have some problems, because there exist
patterns such that the match leads to a sequential checking.

394
6 Conclusion

In this paper we have presented an eflective algorithm for compiling pattern match
Ing in functional programming languages. This algorithm has a complete set of rule
to obtain a code that has no backtracking and that explores the arguments as goo«
as possible in order to preserve laziness. These rules are easy to implement and allov
a great variety of adjustment which can improve the generated code. We think tha
this work method is suitable for this kind of problems and it allows to refine th
quality of an algorithm to contain new characteristics. In fact, our intention is tc
extend the algorithm so it can compile functions that are applied on a subset of it
type (as it is done in [Sch8§]).

Another advantage of working with a sequence of rules, opposite to give charac
terizations (as in [Lav88] and [Grag1]), is that in spite of the fact that the problen
does not fulfill the property we are characterizing, the rules can be applied to piece:
of it. Moreover, it is done without searching these pieces but applying the best pos-
sible rule in any moment. For instance, there are many patterns which are not lazy
because of a small part of the parameters; i.e. there are certain arguments that have
to be evaluated following a fixed ordering and there are others for whom this order-
ing is not necessary. An algorithm of characterization will discard these patterns
whereas an algorithm of rules will be able to find most of this arrangement.

Acknowledgements

We would like to thank A. Gavilanes for his help in the first steps of this research.
References

[Aug85] L. Augutsson. Compiling pattern matching. Functional Programming Languages
and Computer Architecture 85, LNCS 201, pages 368 - 381, 1985.

[Gra91] A. Graf. Left-to-Right tree pattern matching. Rewriting Techniques and Appli-
cations’91, LNCS /88, pages 323 — 334. 1991.

(HO82] C.M. Hoffmann and M.J. O'Donell. Pattern matching in trees. Journal of the
ACM, 29(1):68 - 95, 1982.

[Lav87] A. Laville. Lazy pattern matching in the ML language. FST & TCS’87, LNCS
287, pages 400 — 419, 1987.

[Lav88] A. Laville. Implementation of lazy pattern matching algorithms. ESOP’ 88,
LNCS 300, pages 298 - 316, 1988.

[Mar94] Lu- Maranget. Two techniques for compiling lazy pattern matching. Technical
Report RR-2385, INRIA, 1994.

[PB85] P. W. Purdom and C.A. Brown. Fast many-*1-one matching algorithms. Rewrit-
ing Techniques and Applications ‘85, LNCS 202, pages 407 ~ 416, 1985.

[Sch88] Ph. Schnoebelen. Refined compilation of patiern-matching for functional lan-
guages. Science of Computer Programming, 11:133 — 159, 1988.

[SRR92] R. C. Sekar, R. Ramesh, and I. V. Ramakrishnan. Adaptive pattern matching.
ICALP’92, LNCS 623, 1992.

[Wad87] P. Wadler. Efficient compilation of pattern-matching. In S.L. Peyton Jones,
editor, The Implementation of Functional Programming Languages, chapter 5.
Prentice Hall International, 1987.

A Prolog implementation of KEM

*

Alberto Artosi*, Paola Cattabriga*, Guido Governatori*
- “~CIRFID

*Dipartimento di Filosofia

Universita di Bologna Universita di Bologna
n er. a Q

via Zamboni 38, 40126 Bologna (Italy) via Galliera, 3,40121 Bologna (Italy)
govemnat@cirfid.unibo.it paola@cirfid.unibo.it

Abstract In this paper, we describe a Prolog implementation of a new theorem E.rolv?r
for (normal propositional) modal and multi-modal logics. ‘TheA theorem provler‘ w ich is
called I E M, arises from the combination of a classical refutation sy.stem w?nch mcorv;;O-
rates a restricted (“‘analytic™) version of the cut rule with a label f9m3115n1 whlc’h 131\]/})\?\/5 hoi
a specialised, logic—dependent unification algorithm. An essentlél feature of I £ M is ttz
it yields a rather simple and efficient proof search procedure which offers rgaﬁy compu -
tional advantages over the usual tableau-based proof search §1emods. ThlS. is due pan(yj
10 the use of linear 2—premise [rules in place of the branching ,5’ rules of the stand:ilr
tableau method, and partly to the crucial role played by the analytic cut (thepnly branc 1(;
ing rule) in eliminating redundancy from the search space. It turns ogt thgt I E M metho
ofvproof search is not only computationally more efﬁciem‘ but also mtu?tw.ely more na;xli-
ral than other (e.g. resolution-based) methods leading to simple @d easily 1mplementav e
procedures (two I E' M Theorem Prover-like systems have been 1r‘nplemerllted: an LPA ml-l
terpreter on Macintosh, and a Quintus compiler on Sun-.Sparcstauon) which make it we
suited for efficient automated proof search in modal logics.

1 An overview of KEM

K BM [AGH, Gov95) s a ableau- e modal proof system based on D' Agostino
and Mondadori’s [DNI9ZT-clg§sical refutation syrste‘mwlxm E. The'basuf feature o
K EM is that it uses & E rules in combination Wth a label umﬁcanon schemg
constituted of (1) a label formalism, and (2) a specialised, logic—dependent uni-

fication algorithm. The label formalism arises from two (non empty) sets & =

396

{.wl, wy, -} and @y = {Wy, Wy, - -} respectively of constant and variable world—
simbols through the following definition: a world—label is either (i) an element of
the set @, or (ii) an element of the set @y, or (iii) a path term (k' k) where (iiia)
A’ € ¢ U Py and (ilib) k € §c or k = (m/,m) where (m',m) is a label. Intu-
1.t1ve1y, we may think of a label i € ¢ as denoting a (given) world, and a label
t € @y as denoting a set or worlds (any world) in some Kripke model. A label
it = (k'. k) may be viewed as representing a path from k to a (set of) world(s) &’
gccessible from k (according to the appropriate accessibility relation. For any label
v = (k', k) we shall call k¥’ the head of 1, k the body of i, and denote them by A(7)
and b(z) respectively. Notice that these notions are recursive: if b(i) denotes the
body of 7, then b(b(7)) will denote the body of b(z), b(b(b(7))) will denote the body
of b(b(7)); and so on. We shall call each of b(7),b(b()), etc., asegment of 1. Lets(z)
denote any segment of ¢ (obviously, by definition every segment s(7) of a label iis
a label); then A(s(7)) will denote the head of (7). For any label 4, we shall define
the length of 2, I(4), as the number of world-symbols in 7 (obviously [(s(7)) will
denote the lenght of s(i)). We shall call alabel i restricted if h(i) € ®¢, otherwise
we shall call it unrestricted. ,

. K EM’s label unification scheme involves two kinds of unifications respec-
tllvely “high” and “low” unifications. “High” unifications are meant to rni’rror spe-
cific accessibility constraints. They are used to build “low” unifications which ac-
count for the full range of conditions governing the appropriate accessibility rela-
tion. Lgt $ denote the set of labels. A substitution is defined in the usual way as
a f}mcuor} @V_ — $7 where §~ = $ — ®y. For two labels i, k and a substi-
tution o, if o is a unifier of 7 and &, then we shall say that ; and k are o-unifiable
We shall (somewhat unconventionally) use (z, k)o to denote both that i and & axel
a—un}ﬁgble and the result of their unification. On this basis we can define several
specialised, logic—dependent notions of o “high”(or o-) unification. In particu-
lar, the notion of two labels 7, & being o™ -, oP-, and ¢ -unifiable is defined in the
following way:

(i,k)o = (i,k)o —
(1) atleastone of ¢ and k is restricted, and

(id) forevery s(i), s(k), I(s(1)) = I(s(k)), (8(1), s(k))oX

(i,k)eP = (i,k)o

o

[SY
N

Il

(s(i), k)o <=

I(i) > I(k), and

Vﬁ(S(i)) (s(2)) 2 U(k), (h(s(2)), h(k))o = (h(3), h(k))o o
(i,5(k))o <= '

I(k) > I(), and

Vh(s(k)) : (s(k)) > i(4), (h(3), h(s(k)))o = (h(7), h(k))o.

In what follows we shall concentrate on K EM method for dealing with the B

logics. To deal with these logics we need an appropriate notion of “reduction” of

'~

=
ES
=
[S)
L
Il

397

(intuitively something like the deletion of “irrelevant” steps from the path repre-
sented by) a label 7. Formally, the B-reduction, rg(i), of a label ¢ is defined tc be
a function rp, : & — $ determined as follows:

b(b(1)) i unrestricted and either (7)) < 3 or
rp(i) = b(7) restricted
(h(3),rB(b(%))), 1 restricted

The notion of o “low” (or oz-) unification for the B logics (L = KB,DB, B)
can now be defined as follows:

- (i ko
(i B)oxs = (rp(i. k)X (i,k)ops = (rali,k)e? (i.k)op = { EE%?R;ZT

where r5 (i, k) denotes either rg(z) or rg(k) or both.

The full set of K EM inference rules is constituted of (i) 1-premise o rules
(the familiar linear branch-expansion rules of the tableau method) and the usual
v and 7 rules for the modal operators (see Alpha Elimination, Ni Elimination
and Pi Elimination in the I EM Algorithm Representation below); (ii) 2—-premise
(linear) A rules (see Beta Elimination below); and (iii) a 0—premise branching rule
called P B (for Principle of Bivalence) which plays the role of the cut rule of the
sequent calculus (see PB1 and PB2 below). Labels are manipulated, according
to these rules, in such a way that (1) in all inferences via an « rule the label of
the premise carries over unchanged to the conclusion; (2) in all inferences viaav
and 7 rule the label of premises is “updated” to an extended new (unrestricted or
restricted) label; (3) in all inferences via a 3 rule the labels of the premises must
be or-unifiable, so that the conclusion inherits their unification; and (4) for the K
logics, PB is applied only to already existing restricted labels. Closure of abranch
follows from the occurrence of a pair of complementary formulas whose labels are
oz -unifiable (let us call them of-complementary).

2 Implementation

In this section we will briefly consider two main problems arising from the Pro-
log implementation of K EM. These problems are: (1) K EM’s label unifica-
tion scheme has some idiosyncratic features; for example it does not allow a vari-
able to be substituted to another variable; and (2) K EM rules are essentially non—
deterministic; in particular, PB is not an analytic rule.

The well-known difficulty to handle variables in lists and terms in Prolog, on
one hand, and the unification theory and the necessity of recursively generating
new costants and variables, on the other, have made necessary to define constants
and variables as functions of the form w(N) and vw(N). Thus X EM Interpreter has
o = {w(1), w(2), w(3),...} and ®v = {vw(1), vw(2), vw(3),...}. The labels are
defined as binary terms. Let us consider a K EM label (wy, (Wa, (ws, (Wa, w1)))).

398

Its A" E M Interpreter equivalent is i(w(4),i(vw(3),i(w(3),i(vw(2),i(w(1),w(1)))))). The
unification theory is completely redefined without using the built in Prolog pred-
icate “unify”. Labels are treated as binary terms and (i,k)o, (1,k)oL, (¢,k)or and
ri(1) are defined, using functor and arg. as ternary predicates, where the first and
the second argument are 4,k and the third is their unification, (For a complete de-
scritpion of A’ E'M Prolog implementation see [Cat95]. The Interpreter is ftp avail-
able at ftp.cirfid.unibo.it.).

The K EM~Prolog Interpreter has been based on the notion of a canonical (de-
terministic) A" E' M -tree, see [AG94, Gov95]). A K EM-tree is said to be canoni-
calif it is generated by applying the rules of K EM in the following fixed order:
first the 1-premise rules, then the 2-premises rules, and finally the O-premises rule
(PB). As proved in [AG94, Gov95] a & EM-tree is closed iff the corresponding
canonical A’ EM-tree is closed, and canonical X EM -trees always terminate. No-
tice thatin a canonical K F M -treee PB is applied only to unanalysed or unfulfilled
B formulas (see Beta Elimination below). This allows much of the characteris-
tic redundancy generated by the standard tableau branching rules to be eliminated
from the search space.

The basic data structures ([DP94, PC94]) are provided by two sets A, A of un-
analysed and analyzed formulas respectively. In Prolog A and A are lists. The
Interpreter starts with the list A of input formulas and A = {, and simulates the
rules of A EM by analysing and moving formulas from A to A. Each rule applica-
tion produces subformulas which are added to A. The rules of N EM are applied
until an application of the branch—closure rule (see Closure below) succeeds or A
isempty. In the first case I is closed and unsatisfiable, in the second I' is completed
and satisfiable. The K EM algorithm runs as follows.

KEM Algorithm Representation

A 1s the list of the unanalysed formulas, A is the list of the analyzed formulas,
“Labeltree” is a list of the generated labels, x denotes a closed branch

Analyse Literal: TpeA = A-pAUp

Closure: ?X.iand XC ke A
? (i, k)op =
X
Ni Elimination: Tvi € A =

generate a new unrestricted label (17,)
add (4',4) to Labeltree
A—pd
A U Vo, (i/’ Z)
AU,
Pi Elimination: TT1e A =

generate a new restricted label (¢/, 7)
add (7', 1) to Labeltree

399
AN
AU, (7,4)
AUTm,z

Alpha Elimination: ? a,i1 € A =

A—a.l
AUay,iUag,t
AUa,1

Beta Elimination: 7 f,2 € A

288 kor 85, k€ AUA

i, ko =
A-3,i
AUBS, (i, kYo or S, (i, k)or
AUB,i

PBI:? §,1 €A

? not (BC,k : (i,k)oL) € AUA

2(i,m)or,
(m is a restricted label in Labeltree)==
branch1 and branch2 ‘
A—Bi A= B, |
AUﬂ;.m AU,Blc’,mUﬁ,z
AUSB,1
PB2:? B, € A

7 not (ﬂg tky(i,k)op) EAUA
Ni,m)or
(m is a.restricted label in Labeltree)=—=

branchl and branchl.

A -2 A=, -
AU/.?g,.m AUBY mUpB,i
AU,

Modal Closure: ? X,iand X, k€ A
? not (z, k)or,
7 m € Labeltree, (m is a restricted label)
? (i,m)or
? (k,m)op, =
X

Modal Closure is an “hidden” application of PB to the the label which unifies

] ‘ rmulas.
ith both the labels of the o —complementary formu o
WltlﬂiNé:O conelude by showing the K EM Prolog output of the characteristic axi0m

of B ie. p— OCp.

v— kem(h, [T (p-> $ (@ p))])

[E(w(l), w(l)): ~ (p-> $ (€@ p))]

alpha elimination -

[E(w(D), w(I)):p, i(w(l), w(l)): (s (@ p))]

400

literal
[1(w(l), w(l)): ~ (S (€ p))]
pi elimination
(L(w(2), i{w(l), w(l))): ~ (@ p)]
ni elimination
[ivw (1), 1(w(2), i(w(l), w(1)))): ~ p]
literal
i(vw(l),i(w(Q),i(w(l),w(l)))):”p, i{w(l) , w(l)):p unify in b
unsatisfiable in b in 10 msecs
N 1 ves
References
[ACGY4] A. Artosi, P. Cattabriga and G. Governatori. An Automated Ap-
proach to Deontic Reasoning. In J. Breuker (ed.), Artificial Norma-
tive Reasoning, Workshop ECAI 1994; 132-145.
[AGY4] A. Artosi and G. Governatori. Labelled Model Modal Logic. In Pro-
ceedings of the CADE-12 Workshop on Automated Model Building,
1994: 11-17.
[Cat95] P. Cattabriga. Sistemi algoritmici indicizzari per il ragionamento
giuridico, PhD. Thesis, University of Bologna, 1995.
[DM94] M. D’ Agostino and M. Mondadori. The Taming of the Cut. Journal
of Logic and Computation, 4, 1994: 285-319.
[DP94] M. D’Agostino and J. Pitt. Private Communication, 1994,
[Fit83] M. Fitting. Proof Methods for Modal and ntuitionistic Logic, D. Rei-
del Publishing Company, Dordrecht, 1983.
[Govo3] G. Governatori. Labelled Tableaux for Multi-Modal Lo gics. In Peter
Baumgartner, Reiner Hahnle and Joachim Posegga (eds.), 4th Work-
Shop on Theorem Proving with Analytic Tableaux and Related M. eth-
ods, Berlin, Springer Verlag, LNAI, 1995, 79-94.
[PC94] J. Pitt and J. Cunningham. Theorem Proving and Model Building

with the Calculus KE. In MEDLAR 7, Esprit Basic research Project
6471, Deliverable D IV.1.2-5P: 538-553,

s

EXPLICIT IMPLEMENTATION OF A CONSTRAINT SOLVING
MECHANISM IN A RELATIONAL PROGRAMMING SYSTEM
Patrick BELLOT, Olivier CAMP, Christophe MATIACHOFF
Ecole Nationale Supérieure des Télécommunications
46 rue Barrault, 75634 Paris Cedex 13, France.
e-mail : bellot@inf.enst.fr

Alfbstract. The integration of logic and functional programming leads to new concepts
such as relational programming and unknowns. Relational calculus can be considered as a
gemeralization of functional calculus. A relational expression evaluates to several results
imstead of a single one as it is the case with a functional expression. The results are
produced in a stream-like manner : when a result is computed, it is immediately passed to
the continuation and the next result is computed only when the continuation is completed.
Thus, a relation can virtually have an infinity of results. The unknowns are basically logic
programming variables. They are used to denote objects which values are not known at
the beginning of a computation. We have designed an implementation of logic
programming with SLDNF semantic based on a translation from logic programs to
relational programs with unknowns. In this framework, it appeared natural to try to
“andle constraint programming in our system. We show that the unification of two
objects containing unknowns can be regarded as a constraint on these unknowns and that
@ solving mechanism can be coupled with the unification mechanism to allow the
resolution of constraints in a very natural way. Therefore, we obtain a relational system
which is as powerful as a constraint logic programming systern. Moreover, the constraint
solving mechanism is written in the relational language itself in order to bypass all the
problems resulting from an external solver in a non-deterministic environment. This
allows efficiency and flexibility. Any customized solving algorithm can be programmed
this way. The real novelty of this article is the way the algorithms are implemented.
Keywords. logic programming, functional programming, constraints.

0 - Imtroduction

We give a brief and intuitive presentation of the concepts involved in this article: relations
as a generalization of functions, how to compute relations, unknowns and constraints.
Relations. Computing using relations instead of functions is not entirely new, it has
been introduced in [1,4,5,9,10,17,19,22,24,25]. A very efficient implementation was
given [18] in the framework of the variableless functional programmiing language
Graal [2,3]. [4,21) ported the concepts and the implementation in a Lisp environment
named Miles. The idea was to provide some kind of oriented logic programming. If we
comsider a unary function f, it can be described by its graph F={(x,y) / y=f(x)}. It has the
property that if (x,y)e F and (x,z)e F then y=z. If such a set of pairs R does not have this
property, it defines a binary relation r(x,y) by r(x,y)< (x,y)e R. Through a
computational view, we have four possible processes: given some x(and y(, check
whether r(xQ,yQ) holds ; given some x(, find all the y such that r(x(,y) holds ; given
some y(, find all the x such that r(x,yQ) holds ; find all the x and y such that r(x,y)
holds. If the set R is not finite, these processes may give rise to infinite computations.

402

Computing relations. Relational programming's aim is to describe and compute such
processes. The basic idea is to give tools to specify functions that may have any number
of results, even an enumerable infinity. This is done by introducing a new functional
form (results A B). This form splits the evaluation into two processes. The results of this
expression are the results of the evaluation of A followed by those of the evaluation of B.
The joint use of this form and recursion may yield an infinity of results. The results are
computed one at a time and immediately given to the continuation in a stream-like manner.
Unknowns. This sentence is true for all N whatever the truth of “N is even” is. But K
denotes a hypothetic value that exists only if “N is even” is true. This sentence could be
more formally rewritten in a logic syntax as: VN, “N is even” < 3K / N=2.K.
Proving “214 is even” means finding K such that 214=2.K. From a computational point
of view, the variable K exists at the beginning of the computation and continues to exist
until the computation finds its value. Such a place-holder has been added to our relational
programming system under the name of unknown. An unknown is the denotation of an
object that is not known. It exists until the value of the object is determined.
Unification. Unknowns are the relational counterpart of variables in logic
programming. Our system has a unification algorithm designed as a function
(unify A B) that tries to unify A and B by giving values to the unknowns they contain. If
it succeeds, the unknowns are valued to make A and B syntactically identical. If it fails,
the evaluation process in which the unification appears is simply aborted and produces no
result. The unification algorithm is classical [23], it is the only way to valuate an
unknown.

Frozen expressions. One of the most obvious problems of our system is that
functions can be applied to non-ground arguments, i.e. arguments which contain
unknowns. Many cases occur but an interesting one is (+ *u 1) where *u is an unvalued
unknown. This cannot lead to an error because the unknown may be valued later with a
numerical value. Thus we decide that the result is a frozen expression denoted as
#F(+ *u 1). The frozen expression will be computed as soon as the unknown is valued.
Constraints. If we unify a frozen expression such as #F(+ *u 1) with the value 9, we
generate a constraint on *u, namely that *u can only be valued with 8 to preserve
coherence. The system should be able to deduce. Further, we could imagine that a frozen
expression #F(+ *x *y) is unified with 12 and that #P(* *x *y) is unified with 6. This
cannot be handled by the unification since the solution can only be found by a global
solving technique. That is where we need to introduce constraint solving methods.

1 - The relational system Miles

Miles is based on Common Lisp [26]. It is extended by the concept of relation. A
relation is a function that can deliver zero, one or more results. These multiple results
should not be confused with the multiple value results of Common Lisp. A result may be
the collection of a finite number of values but a relation can have any number of results,
even an infinity.

The form results. The form (results A B) allows to specify multiple results. The
evaluation of this forms returns the results of the evaluation of A followed by those of the
evaluation of B. Of course, if A has an infinity of results, the results of B will never be
computed and delivered. Example : ? (results 1 2) = 1 — 2. The form results can have any

403

number of parameters. If it has no parameter, then it has literally speaking no result. We
say that the computation branch fails. Example: ? (results 'a (results) 'b) — a - b. .
Oixerational semantics. The results of a relation are‘computed in a stre_am-l?ke
manner. That is to say that as soon as a result is computed, it is given to_{he continuation
and the next result will be computed only after the completion of the continuation. .
Infinity of results. Combining the form results and recurgion may prqduce relations
with an infinity of results. For instance, the relation from delivers all the integers greater
than its argument : ? (defun from (N) (results N (from (1+ N)))) — from

2 (*2 (from 20)) - 40 - 42 — 44 — ...

3 - Introducing constraints .
The unification of two objects can be seen as an equality constraint on these objgcts. For
instance, (letl (*x *y) (unify (list 1 2 *x 4) (cons *y (2 3 4))) specifigs that the lists (1 .2
*x 4) and (*y 2 3 4) must be identical. This type of syntactic constraint on structgres is
called an active constraint because it can be actively solved instead of being memorized.
Passive constraints. The unification of two numerical frozen expressigns cannot.be
solved by the unification algorithm. This kind of constraint is calleq a passive constraint.
For instance, (letl (*x) (unify *x (+ *x 1))) is a passive constraint that can never be
satisfied. If we consider the passive constraint (letl (*x *y) (unify *x (+ *x *y))), the
unification has no way to know that *y must be unified with O for the constraint to hold.
The problem solver. It would be nice if passive constraints were proc?essed the same
way active constraints are. The unification algorithm is not abl.e to do '[hl.S because it has
no semantical knowledge. That is why we provide a user defined function to be called
when the unification is unable to process a constraint. This function is named problem-
solver and is called with the two members of the unification. _ N .
When to call problem-solver? It must be recalled that whgnever an mdeﬁqﬁe objegt
is used, the evaluator replaces it by its representative. A definite object is an object that is
not indefinite but may contain indefinite objects. When the two memjbers of the
unification are definite objects, the problem solver is not called on these objects. Let us
examine the other cases through some examples :
Unification of two unknowns *x and *y :
= If none of them freeze an expression : a link is created from one of the unknown to the
other. The problem solver is not called. o . ,
¢ If only one of the unknown freezes an expression : the link is created-as explained.
Thus, it is assimilated to the renaming of a variable. The problem solver is not called.
= If both unknowns freeze expressions : if we assume that #F(* 2 *z) agd #E(+ *x fy)
have been previously unified. If *x and *y are now unified, tll‘xe‘prewous constraint
must be written (* 2 *z)=(* 2 *x), hence *x=*y=*z. Thus, it is a case where the
problem solver should be called.
Unification of an unknown *x and a definite value V :
o If the unknown does not freeze an expression : a link is created from the unknown to
the value. The problem solver is not called. o B
e If the unknown freezes an expression : the value of the frozen expression is modified
by the new value of *x. For instance, let *x freeze the expression #F(+ *x #F(+ *y 4))

404

that has previously been unified with 12. The unification of *x with 2 must also unify
*y with 6. Thus, the problem solver should be called.
Unification of an unknown *x with a frozen expression F :
° If the unknown does not freeze an expression: only a link is created from the unknown
to the frozen expression. The problem solver is not called.
If the unknown freezes an expression : if we assume that F is #E(* -3 *y) and that *x
freezes the expression #F(+ *x *y) that has previously been unified with 10, then the
global solving of the two equalities (* -3 *y)=*x and (+ *x *y)=10 must unify *x with
15 and *y with -5. Typically, the problem solver should be called.
Unification of a frozen expression F with another frozen expression G :
* If we unify #F(+ *x *y) and #F(+ *z *x), the system must be able to deduce the
unification of *y and *z. The problem solver should be called.
Unification of a frozen expression F and a definite object V :
° Let us assume we unify #F(+ *x 3) and 7, the system must be able to deduce the
unification of *x and 4. The problem solver should be called.
Sequencing the operations. When the problem solver has to be called, the
unification has three actions to perform: to create the directed links,to compute frozen
expressions that have to be unfrozen, to process the new constraint with the problem
solver. If we do the three points in this order, strange things may occur since the
unfreezing of frozen expressions may produce constraints that would be processed before
the one currently being processed. Therefore, we have chosen the order 3-1-2 to preserve
the chronology of constraints settings.
Principles of the problem solver. The solver is designed to handle equality
constraints on numerical expressions. It maintains all the currently defined constraints
into a canonical form that will be described. It must respect some principles [14].
Incrementality. The constraints are added one by one. Given a system of constraints S
and a new constraint C, the problem solver must be able to determine the solvability of
the extended system S U {C}. Valuation of newly known unknowns. If the constraints
allow to determine the values of some of the unknowns, they must be valued. Since these
values are consequences of the current set of constraints, the problem solver should not
be called in this case. Compatibility with backtracking. A constraint can be set by a
unification. But if the system backtracks before the unification, the constraint must be
unset and all the actions of the problem solver relative to this constraint must be undone.

4 - The problem solver for numerical equality constraints
In this section, we describe a problem solver for the linear numerical equality constraints.
We will show how the non-linear numerical equality constraints are integrated in our
problem solver. In our solver, we just process the numerical equality constraints, thus we
assume that there is a first-level dispatcher which takes the arguments of the unifications

that cannot be handled by the unification algorithm and dispatchs them to the appropriate
solver. For instance:

(defun problem-solver (A B)
(cond ((and (is-numerical A) (is-numerical B))
(numerical-problem-solver A B))

(oo ;; other cases
4

405

The resolution algorithm. The resolution algorithm is designed for linear equalities.
It comes from the Gauss-Jordan algorithm for solving linear systems. Gauss-Jordan has
been modified to be incremental, i.e. it receives the linear equations one by one and
pfbcééses them immediately. Gauss-Jordan algorithm has been preferred to‘Gauss
angcHHﬁ"fBééﬁﬁée Gauss-Jordan allows the value of the unknowns to be V,Qetcrmlned,?s
soon as possible whereas Gauss computes them only when the system is completely
determined. Knowing the value of an unknown sooner may help the system to abort a
rong co tation branch. ‘
;’Jlr-?)?:iscs?:?gp ua non-linear constraint. If we get a non-linear equation, the Gau;s-
Jordan algorithm we use is unable to process it. Ther.efore, we must keep the constraint
elsewhere and delay its processing until it becomes linear. This can only oceur when its
variables are unified with numbers. In this case, we use the following function:
(defun process-non-linear-constraint (E)
(letl (*flag)
(let ((L (list-of-the-unknowns E)))
(mapc (lambda (u) (freeze (list u) ‘unify (list *flag 1)) L))
(freeze (liste *flag) ‘process-constraint (list E)))) . ' .
When this code is executed, the expression (process-constraint E) is frozen by the
unknown *flag. A code (unify *flag t) is froz'en by each of the' ugknowgs in]é
Therefore, if an unknown in E is valued, the function process-constraint is apphed. to d
This function just checks whether the valuation of the 'unknown has hneapzed E.Ifit l}a
become linear, it is integrated in the system of equations as any other linear constraint.
Otherwise, it remains delayed.

- nclusions '
We hafe no?gal measure of efficiency. The results of some trials mfike us think that we
are between 3 and 10 times slower than CLP(R). One order of magpltude is not .amaglng
since we are comparing two versions of (roughly!? the same algor}thm, one Wntteq in zi
compiled procedural language whereas the othe.:r is Yvnttep in an 1nt§rpreted iungtlgna
language. The implementation of a solving algorithm is straight. That is to say that it does
not care about backtracking. Backtracking is automatically handled by the system. Mgre
precisely, when receiving a new constraint, the solver processes 1F without worrying
about undoing the processing. The implementation of a solver is flexible. The faq that it
does not have to care about backtracking makes it easy to qu1fy, to adapt or to improve
by an ordinary Lisp programmer who does not know anythmg about the sul?tlenes of aalx
Prolog implementation. The implementatiqn is open. In order to implement an m.crgmipt
Simplex algorithm for numerical inequality constraints, we just had to write it in 1sp11
modify the problem-solver function (see the beginning of sectlonA4) to recognize 151710
constraints and hand them over to the Simplex solver. T he coo;ieratxon of the two solvers
is a ically provided since they share the same environment.
}Z?cfgcrzlllstslicon,yl\%les is a Lisp-based programming _langgage that takes advaqtage of .the
flexibility, simplicity and freedom of Lisp" M_lles is a powerful and. mtlerestx?g
programming language standing by itself: The initial goal of M}les was to imp eﬁneg a
Prolog interpreter. This has been done 1p [4,5]. Qur. constraint solvmg mic arglsm
appears as a constraint solver for our implementation of Prolog. Miles has been

406

implemented [21] at Paris Scientific Centre on the IBM 370 family of computers under

VM/CMS. The Lisp Interpreter is classical. Lisp programs are not penalized by the
extension. The efficiency of the Prolog implementation compares to the best interpreters

of Prolog we know on this type of hardware and OS,

(1]
(2]
(3]
(41
| (5]
(6]

(7]

—>[8]
(9]

[10]
[11]

[12]
[13]

[14]
[15]

1
| [16]
[17]

(18]

[21]

[23]
[24]

[25]
[26]

|
l [22]

6 - References

M. BELLIA, P. DEGANO — The call-by-name semantics of a clause language with functions —in
Logic Programming, K.L. Clark & S.A. Tarnlud eds, Academic Press, 1982.

P. BELLOT — Sur les sentiers du Graal - Etude, conception et réalisation d'un langage de programmation
sans variable — Thesis. LITP report 86-62, University P. & M. Curie, Paris 6, 1986.

P. BELLOT — Graal, a functional programming system with uncurryfied combinators and its reduction
machine — ESOP'86, LNCS 213, pp. 82-98, B. Robinet ed, Saarbriicken, 1988.

P. BELLOT et al.. — Miles, a new step toward the integration of logic and functions —JFLA'90, C.
Queinnec ed., La Rochelle, 1990.

P. BELLOT, R. LEGRAND — From logic to relational calculus — ILPS’93, Global Compilation
Workshop, S. Michayov & W. Winsborough eds, Vancouver, 1993,

O. CAMP — Les contraintes en programmation logico-fonctionnelle : application au langage Miles —
Thése de doctorat de 1'Université Pierre et Marie Curie (Paris 6), France, octobre 1994,

L.I. CHUMIN — Integration of passive constraints into G-Logis — Research report, Université de
Technologie de Compizgne, France, 1989.

V. CHVATAL — Linear programming — W.H. Freeman & Co, 1986

K.L. CLARK, S. GREGORY — A relational language for parallel programming — FPLCA'81, pp. 171-
178, Arvind & Dennis eds, Portsmouth, 1981.

D. DEGROOT, G. LINDSTROM — Logic programming, functions, relations and equations —Prentice
Hall, 1986.

D. FRIEDMAN, C.T. HAYNES — Constraining control — Report 170, Indiana Unjv., 1985.

P. VAN HENTENRICK — Constraint satisfaction in Logic Programming — MIT Press, 1989,

C. HOLZBAUR — Extensible unification as basis for the implementation of CLP languages —
Proceedings of the 6th International Workshop on Unification, pp56-60, Boston University,
Massachussets, 1993

J. JAFFAR, S. MICHAYLOV — Methodology and implementation of a CLP system — 4th ICLP, 1987.
1. JAFFAR, J-L. LASSEZ — From unification to constraints — Séminaire de Programmation en
Logique du CNET-Lannion, 1988.

R. LALEMENT—Logique, réduction, résolution — Masson ed, Paris, 1990.

R. LEGRAND — Calcul relationne] et Programmation en Logique — Thesis, LITP report 88-72,
University P. & M. Curie, Paris 6, 1987.

R. LEGRAND — Extending functional programming towards relations — ESOP'88, LNCS 300, pp.
206-220, H. Ganzinger ed, Nancy, 1988.

B.J. MACLENNAN — Introduction to relational programming — FPLCA'81, pp. 213-220, Arvind &
J. Dennis eds, Portsmouth, 1981.

C. MATIACHOFF — Une rationalisation sémantique de la programmation logico-fonctionnelle.
Application 2 la traduction de programmes logiques — These de doctorat de 1'Université Pierre et Marie
Curie (Paris 6), France, décembre 1994,

E. PEROTTET — Miles, fonction et logique : un langage nouveau pour une algorithmique étendue —
Thesis, University P.& M. Curie, Paris 6, 1990.

R.J. POPLESTONE — Relational programming — in Machine Intelligence 9, J.E. Hayes &
D. Michie & L.1. Mikulich eds, 1979.

J.A. ROBINSON — A Machine based on the Resolution Principle — in JACM 12, pp. 23-44, 1965.
J.G. SANDERSON — A relational theory of computing — in LNCS 82, G. Goos & J. Hartmaniseds
eds, Springer Verlag, 1980.

G. SMOLKA — Fresh : a higher-order language based on unification — in 9],

G.L. STEELE Jr — Common Lisp : the language — Digital Press, 1984.

LINEAR LOGIC

1

Wimen e

A Linear Logic Programming Language with Parallel
and Sequential Conjunction

Paola Bruscoli

Umiversitad di Ancona, Istituto di Informatica, via Brecce Bianche, 60131 Ancona, Italy
e-rmail: pacla@di.unipi.it web: http://www.diunipi.it/"paola fax: +39 (71) 220 4474
Alessio Guglielmi

Umiversita di Pisa, Dipartimento di Informatica, Corso Italia 40, 56125 Pisa, Italy

e-mzil: guglielm@di.unipi.it web: http://www.diunipi.it/ guglielm fax: 439 (50) 887 226

slstract In this paper we address the issue of understanding sequential and parallel composition of agents
From a logical viewpoint. We use the methodology of absiract logic programmang wn linear logic, where comn-
putations are proof searches in a suitable fragment of linear logic. While parallel composition has a straight-
faruard treatment in this setting, sequential composition is much more difficult to be obtained. We de-
fine and study a logic programming language, SMR, in which the causality relation among agents forms
z szries-parallel order; top agents are recursively rewritten by series-parallel structures of new agents.
We show a declarative and sumple treatment of sequentialization, which smoothly integrates with paral-
lizihzation, by translating SMR into linear logic in a complete way. This means that we obtain a full two
wags correspondence between proofs in linear logic and computations in SMR; thus we have full correspon-
denre between the two formalisms. Our case study is very general per se, but it 1s clear that the methodology
adopted should be extensible to other languages and orderings more general than the series-parallel ones.

Keywords Concurrency, abstract logic programmang, linear logic.

1 Introduction

Linear logic [4] is a powerful and elegant framework in which many aspects of concurrency,
parallelism and synchronization find a natural interpretation. The difficulties of dealing
with these issues within classical logic are overcome by the linear logic approach, mainly
thanks to the “resource-orientation” of its multiplicative fragment. This roughly amounts
to 2 good treatment of logical formulas as processes, or agents, in a distributed environ-
ment [2, 7]. The richness of the calculus and the deep symmetries of its proof theory
mazke it an ideal instrument for purposes such as language design and specification, oper-
ational semantics, and it is certainly an interesting starting point for denotational seman-
tics investigations. We are interested here in the “(cut-free) proof search as computation”
paradigm, as opposed to the “cut-elimination as computation” one.

While the parallel execution of two agents A|A’ finds a natural understanding as 4% A’
{or A® A’ in a symmetrical interpretation), the same cannot be said for their sequential
composition A;A4’. Yet sequential composition is a very important expressive tool and theo-
retical concept. We can naively achieve sequential composition in an indirect way, through
backchaining. This is not satisfactory for at least two reasons: because it is an unnatural
form of encoding, and because backchaining is most naturally thought of, and dealt with, as
a non-deterministic tool, while sequential composition is deterministic. A major problem
ome encounters when trying to express sequentialization is having to make use of “contin-
uwations,” which are, in our opinion, a concept too distant from a clean, declarative, logical
understanding of the subject. :

In this paper we offer a methodology, through a simple and natural case study, which
deals with sequentiality in a way which certainly does not have the flavor of continuations.

tion of linear logic from an abstract logic programming perspective [9]

410
Sequentialization is achieved in linear logic by a controlled form of backchaining, whose
non-determinism is eliminated by the linearity of the calculus (linear implication) and
a declarative way of producing unique identifiers (universal quantification). In our case

study these two mechanisms, together with the usual %» one, are embodied in a translation
with a clear declarative meaning.

We introduce the language SMR (Sequential‘Mgltﬂingt Rewriting) and give a translation
of it into linear logic which is both correct and complete, thus fully relating the two for-
malisms. Computing in SMR is in the logic programming style: a goal of first order atoms
(agents) has to be reduced to empty through backchaining by clauses, thus producing
a binding for variables. Goals are obtained from agents by freely composing with the two
connectives o (parallel) and < (sequential). Bvery top agent, i.e. every agent not preceded
by other agents, can give birth to a new subgoal. The declarative meaning of 4¢ A’ is that
we want to solve problems (to prove) 4 and A’; the meaning of A < A’ is that we want
to solve A and then A’. The simplest way to introduce synchronization in this framework
is having clauses of the form Ay VAR — Gy, .., Gy, They state the simultaneous re-
placement of top agents A, <o, Ap with goals Gy, ..., Gy, respectively. This framework

has been studied by Monteiro in a more complex formal system called “distributed logic”
[10, 11].

It is natural to associate hypergraphs to goals: nodes are agents and hyperarcs ex-
press the immediate sequentiality relationship among agents. Thus the hypergraph rel-
ative to G = (4 o 43) 9 A3 a (A; 0 As) has the two hyperarcs ({A1, 42}, {A3}) and
({As},{As, As}). Let us associate to every agent A; the empty agent o;, whose declarative
meaning is “agent in position ¢ has been solved.” A natural description in linear logic
of the goal G is given by the formula ((A3 —(c17902)) ® ((Ae’® As) —o 03) ® (04 ?05)) —o
(A1 9 A3). Here indices of agents have to be thought of as unique identifiers of the posi-
tion of the agent in the goal. Now we need something more: since subgoals appear during
the computation as an effect of resolutions, we need a mechanism to “localize” goal descrip-
tions in linear logic, so as to it them to the contingent goal dynamically. Again, a natural

way to do that is describing G as Vi, 1543145 : <((Ai3 — (05 ®04,)) ® (4, ® Aig) =005,) ® (05, %

oi5)> —o(AilgAl-2)> - We do not really need ® since (A1® - ®Ap)—oA = A —o-. —0A,—oA.
It turns out that this very simple-minded idea actually works. Moreover, the o goal behaves
as a unity for o and <, as true does for and in classical logic. Since syntax (and operational
semantics) may make somewhat opaque the declarativeness of hypergraphs, which consists
essentially of the precedence relations, we shall establish strong bindings between a very
declarative notion of normalization for goals and the computations as they are actually
performed by the linear logic engine, showing their equivalence under suitable hypotheses.

SMR is a plain generalization of Horn clauses logic programming,
of A. As a matter of fact, considering clauses of the form A « Ay a-
PROLOG’s left-to-right selection rule, and of course many more selection
greater control over the order of execution of goals are possible.

using ¢ instead
- Ap, we grasp
rules and much

In order to link SMR to linear logic we use a fragment of FORUM [8], which is a presenta-

. Its choice is reward-
ing because FORUM puts under control a large amount of the non-determinism of linear

logic, which is something in the direction we are pursuing. We refer the reader to the con-
clusions for a discussion of what we feel is the meaning of this contribution. This paper is

411

rzther picky and technical. As a matter of fact, the technique presented works 1fn prlic;;;lzs,
Taut the details turned out to be more important t_han expected. The cgnferegce OII}I;la ooe
1wt help, so, at least to have some more feeling w1thrtl'16 language apd its basic tmedc fim anci
thre reader is referred to [5] for a more relaxed exposition of an earlier attempt Ot ;1\21; i
specify SMR. Sect. 2 is devoted to preliminaries ?\nd»FORUM, 1n'sectA 3 we }.art?en : ec{ :
o‘msrational semantics and a study of the normalization properties of goals; :nt, lél sect. 4,
*:»e translation into FORUM is shown and correctness and completeness are stated.

2 Basic Notions and Preliminaries

The first subsection fixes the notation for some usual prehmi‘na}'ies: In the second one
& ‘trief exposition of the fragment of FORUM we are interested in is given.

21 Notation and Basic Syntax

: ir difference {s € S| s ¢ S’ }; P(S)
Let S and S’ be sets: Then S\ S’ stands for their ‘ P
stznds E}for the set of subsets of S and P.(S) stands for the set of finite subsets of S; if A

. i : ', let do = S;if
iz z positive integer, S* stands for the set M Given f:§ — S, let dom f

[

h
8" S define f(S") as the set { f(s)|se S"}. o .

& is the set o(f the natural numbers {0,1,2,... }. Given & € N, 1nd1§ate Wltfl NRJ tﬁehsez
{lh,k+1,h+2,...}; given k € N, indicate with Nﬁk the set !:Ih\l\lkﬂ. Gl;ren h,]; Eob‘,elct <
ke then e|f stands for “en, ..., ex”; if b > k then e[}, apd (e|h‘) stand for the eilp N 1J h .

Given a set S, indicate with ST the set [J;.y, S* and with S* tl}e set STU {.Egjf Wt erce1
€5 ¢ ST. g is the empty sequence (of S) and at fcimes we shall erte' € or notéung 1nsc§:e—
@;’fs If s € S then (s) and s denote the same ob)e.ct. Qn sequences is deﬁne_ a(xsca;m :
mation operator ||, with unity e. Given the (possibly infinite) sequence Q = (s1, 52, ...
and given f: S — S, if 51, 5,,... € S define f(Q) as (f(sl),f(sz'),..‘). . .

In the rest of the paper, we shall frequently adopt the folloyvmg convention: Ela;k oilrd
letters (as P, the set of programs) denote sets Whose generic elements shall ; lisr;oftzn
Ty the corresponding italic letter (as P, a generic progrgm). Therefore VK;E sha open
consider implicit such statements as P € P. Ever. gewly introduced syn_tatc 1((::1 syn:1 -
cliass of symbols shall be considered differentdor disjoint from the already introduce ,
zzcept where the contrary is explicitly stated.
m.Ltjzpzleno’ces the set of 3ariables, p the set of predicates and A denotes Fhe set. of ﬁrft
order atoms. Given a syntactical object F, [F] denotes the set of free variables in F.

For substitutions the usual notation and conventions apply. Let ¢ Fienot_e the set ;thsAub—
stitutions, p the set of renaming substitutions and let [] denote the identity substitution.

2.2 The ForuM® ™" Presentation of a Fragment of Linear Logic

The reader can find in [8] the details r‘nissing here. Methods are called this waly after [1].
The set of methods M is the least set such that: 1) A C M. 2) If M, M’ € M then

(Mo M)eMand (M —oM')eM 3)If M €Mand z €z then (Vz: M) eM.

h '® associates to the left and —o associates to the right. Instead of (Yzlz(. (Vo M) .))

wie shall write (Vay ...z, : M). Outermost parenthes}es shall be omitted Whenever‘ possi-

ble. If A < k and f: NF — 1, the notation @iENif(z) stands for f(h) ® - -® f(k); given

412

Structural rules

| .t A A E v, ' M+ A M, &, I'M*& A
FilAr AL CWTEALAZE U EMTRA S M eI
Left rules Right rules
ViDiIMEA DM A . I A MM E
BL i

VMo M - Ay Al
. It AL M MR A
—or —0
‘I/;F,F’IM—OM’!—AW‘A';
DI Mt/z) - A;
v, I'ive : M+ A;

" rrAMeM =
UM T A M E
"ViTFA4M oM. S
\I’;FI-A;M[:D/:B’],E*
U, FF Ave M, =

VL VR

*where z ¢ f_I/;P’-A;Vm’:M,E].

Fig. 1—The FORUMT ™Y fragment of FOoRUM.

g:N¥ — », the notation vl‘eN: 9(4) : M stands for V9(R)...g(k): M. If M = (M") € m+

then *9 I/ stands for Mg 9 My. If T = (z|}) € 2* then \/ Z:M stands for Va, ...z, M
when A > 0, and for M when h = 0.

We adopt a special kind of sequents, made up from collections of methods with differ-
ent structures imposed on them: sets, multisets and sequences. Sets are used to Tepresent
information as in classical logic: this is information which does not change during the com-
putation; a program is represented as a set of methods. Multisets are used to represent
the state of the computation, which, of course, changes as the computation goes ahead; here
is where linear logic has its main usefulness. Sequences of atoms appear in our sequents
as a way to limit the choice in the use of right inference rules; this ordering does not affect
correctness and completeness. From the proof theory point of view, sets are places where
weakening and contraction rules are allowed, while on multisets and sequences these rules

are forbidden. In these sequents there is place for one method (which we call “focused”)
which drives the choice of left inference rules.

The set of sequents ¥ contains elements of the form (¥; ' M + 4; Z), where ¥
P:(M) (the classical contest), I' is a finite multiset of methods (the left linear context),
M € MU {en} (the focused method), A € A (the atomic contezt) and = € p* (the right
linear context). Instead of (¥; I'ley + A; =) we shall write (¥; ' - A; Z). In the following

¥, I', = and 4 shall stand for, respectively, sets, multisets and sequences of methods and
sequences of atoms.

We outline a sequent presentation of a fragment of the FORUM inference system. FORUM

imposes a discipline (wrt full linear logic) on the non-deterministic bottom-up construc-
tion of proofs, thereby drastically reducing their search space. It turns out that Forum is
equivalent to linear logic, but proofs in FORUM are uniform (see [9]). Since FORUM is much
closer to the computations we are interested in, it greatly helped us in finding the way
to relate them to linear logic.
The inference system we shall use as an intermediate step from SMR to linear logic is
Forum® ™Y meaning that >, —o and V are the only logical connectives this subsystem
of ForRuM deals with. Forum?™Y is presented in fig. 1. There, with A v A', we rep-
resent any sequence of atoms obtained by an ordered merge of A and A’. For example,
(.Al, Az) Y (A3,A4) may stand for (Al,A3,A2, .A4) or (Ag,Al, .Ag, A4) or

413

The link between FORUM?_-OV and linear logic is established by the following proposi-
tion, which follows from the result in (8] and the cut-elimination th;or:m. |

) - g - e L
2.2.1 Theorem A sequent (M|%; = ;M) has a proof in FORUM i (1M —o

IMy — M) has a proof in linear logic.

3 Syntax and Operational Semantics of SMR

The first subsection deals with the syntax of goals, the secor}d with their. “precgdinc)cgllrc«eelz-
i?on” semantics. In the third subsection SMR and its operational semantics are intr .

.1 Goals, Contexts and Goal Graphs

Ve build up the language of goals starting from the empty goTa.Il1 o and th:ijee: c})lfa;i;oir;s é&e,
: i i tives ¢ and <. e connec
:nd freely composing with the two connec : :
zgug;t gf as asiociative and non-idempotent operators; MOTEOVET, © dls co?ﬂ%?g;:s?:ai
E ity for o and «, like true does for
not. The empty goal o behaves as a uni ‘ . ue
Q:ic connective and. In the translation from SMR into linear logic it shall be mapped to
in atom of a special class. . o
Suppose, from now on, that a special O-arity predicate o is in A. We shall call o
the empty goal. Given o, define oo = o. e
The set of goals G is the least set such that: 1) A C (It} 21) Iftﬁ €N, E}?S fﬁé ;g}ﬁgﬁml
e para
t G|*) € G and <«(G|") € G. o and « are, respective g .
clrlyenr;:gtiile') goals of the forlm o(G| and <(G|¥) are, respectively, parallel a.nd sz\quegzzsl
goals. A ge’neric element of {o, <} shall be denoted by a. Given o, define o: G\ A—
(G20 = a(o(GIE)). |
(Ltt us extend the syntax of goals by allowing one or more hole§ _to appear in pla;; ;1)§
atoms and of o. Then we have the set K of contezts. An alternative notation for a(K|y
is (Kya - aKy). .
Coordinates uniquely identify occurrences of atoms, empty goals and holes in a conte}lctt.
Let x = N* be the set of coordinates. Let ¢ = A x x be .the set of agen.ts zind erellc
== {_} x x be the set of places. Instead of (_, k) we shall write _,. A generic elem
of @ U_EJ shall be denoted by a.
As defined below, to every context is associated a hypergraph whose nodes are agents
or places. . ' \
A directed hypergraph is a couple (N, H), where N is a finite set of nodes and
H C (P(N)\ {2})? is a set of hyperarcs. t
A contezt graph is a directed hypergraph (N, H), Where‘N C oLlJ\:u. L;t Y be the se
of context graphs. A context graph (N, H) such that N C e 1‘s a goal graph. 5
The “top” and “bottom” of a context graph are, respectively, the sets of agents an
i i i d no outgoing hyperarc.
places which have no incoming an . . ;
Define top,bot: Y — P(o U=) as top(N,H) ={a € N | V(N,Nz2) € H:a ¢ N2} an
: N}
bot(N,H)={a e N |V(N,,N;) e H:a ¢ Ny 4 ' -
'(We now want to associate to every context a context graph Whlch1 represents it. C%I;
j i i texts in two possible ways: as a para
re objects recursively made up from inner con ' .
t)erX:: z seunential composition. In the same way a context graph representing a context is

414

made up from the context graphs representing inner contexts. Parallel composition leads
to the simple union of the context graphs; sequential composition introduces a hyperarc
for every binary sequential composition. The coordinate mechanism, which is embedded
in the following tricky definition, provides for a constructive way
nodes from distinct occurrences of the same atom, empty goal or ho
dinates are assigned to atoms (or empty goals or holes) in the following way: the coordinate
of the atom in the context is a string which records, from left to right, the positions of the
contexts which contain the atom, from the outer to the inner.

For every « define [].: K — V as
({(K,k)}, 2) fKehU{)
(K] _ (UieN’; Ni:UieNQ Hi) K= O(KI?) al}d [thlh : (NlnHi) ‘
s (Usens N, Us e He U UigN;{(bOt(lelxn(l-u,tOP{Ki]nui)})
if K =a(K|?) and [(Kilus = (N2, Hy)
We shall write [K] instead of [K],. If (K]« = (N, H), let [K]Y = N and (Kl =H.
The context K = ((A, °o_oo)a((o a_)odg)<A

of generating distinct
le, in a context. Coor-

7)o (_<(Ago Ap)), for example, yields

](Al,(l,l,l)) —(1.1,2) (0,(1,1,3)) —(2,1) .
](o,(l,Q,l,l)) .
(K] = | (4g, (1,2,2))
—(1,2,1,2)
(A7v<173)) (Ag,(?,Q,l)) (A10>(2!2:2))

Sometimes coordinates shall not be shown.
We write a < K or _
graph [K].

How well do context graphs represent contexts? The fo
proved.

« < K to say that agent a or place _, appears in the context

llowing proposition can be easily

3.1.1 Proposition For every x the function [K = [K]. is bijective.

Given K and K', K[K'] stands for X if —« % K and for the context obtained

by K replacing _, with K’ if _« <€ K. We shall write K[ﬁﬁ,..‘,ﬁnh] instead
of KK]... [Kn].

Bay,
For example ((4; o _o0)a ((ea_)eo Ag) 2 Aq) [ﬂ(1,2)13(2,1,2)j =(A10Ay00)4q (o<
O) OAG) 4.A7.

3.2 Normalization of Goals

Somewhat orthogonal to the expansion of agents is a notion of normalization
minology refer, for example, to [6]). We introduce a red
(semantically) the reduction conserves the
by their underlying directed hyperarcs. Sin
they are discarded.

(for the ter-
uction system for goals; intuitively
precedence relations among agents represented
ce empty goals do not yield further expansions,

Actually there are two conceptually distinct subreductions we consider:

1) Empty goals are discarded while conserving precedence relations among other agents,

asin (0o A1) a((oad,q Asz)oo) 9 Ay » (4;) < ((Az < A3)) 9 A4. This corresponds to
© being a unity for o and <. A reduction of this kind shall be written as G ». @'

415

CED) A L2 SN
(o,(2.|1.1)) (Az,(Z!,l,l)) (_42‘,2)
(AQ,(Q‘,l,E)) (0,(2,2)) | » (Aa’(gl,l,Q)) " (Aai,a)]
(43,(2,1,3) (A4 3) (As,4)]

(Aq,3)

Fig. 2—Elimination of empty goals and of redundant syntax.

2) Redundant syntax is eliminated, as in (A;) < ((A2 < Az)) <44 > Aia “;? qlﬁggéﬁéﬁt;z
simply a statement of the associativity of o and <. A reduction of this kin
wiitten as G G'.

The > reduction prevents syntax to go too far away from our szmarétictll'equirexzfgess,
ekt are lotice that the second reduction con.
which are better expressed by goal graphs. Notice .
the shape of the hypergraphs, as could be shown formally. Fig. 2 represents the examples
given zbove. N '
Define > = > U and let » be the transitive reflexive closure of ». It can bai
‘ - s - . -
shown Wi'chG stan(i]ard techniques that » is terminating and confluent. So the norm

form of a goal G under » is unique, and shall be indicated with nf G.

3.3 Clauses and Operational Semantics of SMR

SH{R consists of three components: a set of programs,.tl?e get of goals we a.lree;dy dl:ﬁ;ii
zmd z transition relation which models the nondeterministic 'transformatlin o) g:arewrit-
goals. A program is a finite set of clauses. Each clause specifies the slyncRroan;lin e
ing of some atoms in the top of a goal into the sameAnumber of goa s.'d e'»;m agmulti_
place in the context of a larger goal, in which the rewnttgn atoms, consl ‘eret ;sh it
set, ere uniflable with the head of the clause, again conmderedv as a multlshe . t eS ause
spu;a:';ﬁes also which goal takes the place of which atom' (match1ng one (;lffhe a (')flir s
head), and the usual logic programming mechanism of 1nstant1.atlon Wlt e uni o s
place. We do not insist on the unifiers being mgu's, though this special case can easily

accommodated in our setting. o

Let D= {(A|} «— GI?) | h € Ny, Ay,...,An € &\ {o}}hbe the se)fls of (distributed)
clauses. Given o, define o:D — D as o(A|F « G|}) = (o (4]}) «— o(GI})). ,

Let P = P(D) be the set of programs.)

The following definition needs some explanation. We want to Qeﬁne ;che se;cls pftszlz;:;
tioms.” Remember that the top of a context goal, and, by extension, of a %o , 1s e ot
of agents in that goal which are preceded by no other agent. EAve.ryl seles1 101; a:z(sjocmte
2 umique index in Nf to a subset of cardinality h of the top.A This is mc;)r er tgn pociate
to ewery atom in the head of a clause A|? « G|} a corresponding, selected agent i g

ritten. S
N Egi’fr:j 1C—' and A € N'ltc’p[G“, let sgp=1{s|&sT — NA T C top[G], s is bijective }
and let s = Ugee UheN’;“P'G” sg n be the set of selections.

We now define the mechanism by which goals evolve by the action of clauses, in reso-
lutions. It can be informally explained this way, given a goal G and a clause D:

416

!n(g(f(»\))) AU] p)

B pa(z2) psizs) | Do ’ \/Pﬁ(is)
| pa(z2) ps(z3) ’

ipl(ml)\ _pa(e1) pa(f(z2))
! —

—

{((P2($1): (1,1,2)) = 2, (pa(f(22)), (2,1)) = 1} o = [9(f(22))/ 21, f(x2) /4]
P4

D = (pa(2a), pa(9(2s)) = pr(2s) © pr(zs), pa(24) < ps(zs)) p = lzg /23]

Fig. 3—Example of resolution (coordinates are not shown).

) Let s be a selection of & agents in the top of G.
Rename apart the variables in D.

Let o be a unifier between selected atoms and atoms in the head of D (corresponding
to selected atoms through s). ‘

4) Substitute, in G, the selected atoms with the goals in the body of D which correspond

to them through s and the correspondence implied by their order in D. Then apply o
to the goal obtained, and have G,

Fig. 3 shows an example. Here is the formal definition.

The relation —o C G x s x D x p x ¢ is defined as follows: (G,G',s,D,p,0) € —o
where D = (A|} — G|}), iff: ’
1) s €sg.

W I
— —

2) [Dp]lN[G] =w.
3) V(A k) €doms: Ao = As(ar)po.
/
4) Let K be such that G = K{ﬁxl,...,ﬂzﬁ}, where dom s = { (4}, ;) | 1 € N?}; then
_ Gar Goia
G' = a(K{ (AL k)P U (Awh)p,h]); goals Gi(a1 «,)p are called replacing goals.

Given P define the relation = C G® xo as w = {(G,G,0) |3s:3D € P:3p:
(G,G" s,D,p,0) €~ }. Instead of (G,G",s,D,p,0) € —~ and (G, G, 0) € =0 we shall
write G =" G’ and G o G'. i
D.p P

.A goal may evolve either because of a resolution or because of a reduction. The re-
lation »; is not suitable to be translated into Foruwm, in particular the problem is with
the ;ubreduction %. Then, in place of >, we introduce the less declarative reduction
relation >, where > is replaced by ». The » reduction allows collapsing empty goals
appearing in the top only. This mechanism can be faithfully represented in Forum®—°Y
Whgreag with > this is not possible. With “successful” computations (7.e. computations)
ending in an empty goal) this only has the effect of delaying reduction of non-top empty
goals until they eventually reach the top.

The relation », C G2 is the least set such that:

h

———,
2 IfG:K[O(O’”"O)} hoe Ny < K and {(o,k | 4) | 4 n
————b o , eNEY C
G Ko {(l4) |4 11 ¢ top[G] then

—K.]'
h
2) ¥ G=K[AGl)], heN;, _, <K and (o,x 1) € top[G] then G », K [3(GI}) 1.

Let » = 5 Ux. For f € {o,ns,c T} let the relation » 2
H, S, 6, C G® x ¢ be defined as
{(G.G"[1)] G G'}. Clealy » C ». .

417
For every P and for § € {G, T}, define the relation % C G? x ¢ as 5 = Umge.

Instead of (G, G', 7o) € 9 we shall write G %ﬁ G'. Clearly w0, C 2.

Let SMR be the triple (P, G, { 5o | P € P}).

Let § € {6, T} and h € N: an object Gy %oﬁ %ﬁ Gy is a (f-) computation (by P),
2 G = o it 1s a successful G-computation of Gy yielding oy - - on; let Cf, be the set
.f B-computations by P. A generic element of C'f, shall be denoted by C. Let h € N;
and C = (Go %oﬁ %oﬁ Gy): for k € N’f every object Gy_; %oﬁ Gk is the kth step
n C;if Ge—:1 > Gk 1t Is a reduction step (>b-step), if Geoa »1—:<> Gk it is a resolution

step (—o-step). Define |-|o: €% — N so that |C|s is the number of ~—o-steps in C. Define

‘he relation 5o, C G? x ¢ as o = {(Go, Gh,o1---0n) | (Go %oﬁ %oﬁ Gh) € Cf,i; }.
‘nstead of (G, G',0) € 595 we shall write G %@ﬁ G'.

The following two theorems are crucial to show, respectively, the correctness and
the completeness of the translation from SMR into ForuM. The first is proved by trans-
forming a successful c-computation into an equivalent T-computation, moving to the right
i1.e. delaying) until possible all occurrences of > -steps and, recursively, all »-steps which
depend on each other. The second amounts to an inductive construction of the desired
computation.

3.3.1 Theorem If C 1s a successful G-computation of G yielding o there exists a suc-
cessful T-computation C' of G yielding o such that |Cly = |C'|x.
3.3.2 Theorem IfG %@G o then for every G' € { G |nf G” = nf G} 1t holds G’ %@G o.

4 SMR and Linear Logic

We first present the translation of SMR into ForuM® ™", then we prove that it is correct
and complete wrt linear logic.

4.1 Translation of SMR into Forum® ™Y

Let us augment the set of variables by a denumerable set w of process variables, which
are not allowed to appear in SMR atoms. Agents, 1.e. atoms decorated by a coordinate,

are translated into atoms. The terms inside are left untouched, and the relative posi- 1

tion in the goal (coordinate) yields a process variable, which is appended to the resulting
atom. Since atoms in SMR do not contain process variables, name clashes are avoided.
The empty goal translates into a special atom of the kind o(7).

Let o be a distinguished predicate of arity 1. The function [-]: p — p is chosen such
that it is one-one, it holds ar[[p] = arp + 1 and [o] = o.

While 7 stands for a generic process.variable, object process variables are g, ¥,
Given a coordinate k, with k we shall indicate the unique natural number associated to
by some bijective function between coordinates and naturals. Given a denumerable set S,
we shall indicate with (S) the sequence obtained by S by ordering its elements according
to a total order of choice. This is alternative to using equivalence classes in the definitions
to come, when order of elements is of no importance.

Define []:0 — A as [p(t[}), k] = [p](t|}, ¥)- We shall write Ay instead of [4, &].

418

We shall call atoms obtained by the translation agents, too. In particular, we shall
refer to atoms o7 as success agents.

Let us call elementary method a method of the form (A4, % -- B AR)—(Alw-- R AL
To every hyperarc in a goal graph corresponds an elementary method in the translation
of the goal relative to the hypergraph. Two auxiliary functions are helpful.

Define sa:o — A as sa(4,k) = oy and hm: (P(0) \ {&})2 — M as hm(Ny, Np) =
(& ([NV2]) —o 7% (sa NV1)).

Given G and k, the translation [G], is a method M; —o- - —o My — M, where M, .. .,
M}, are the elementary methods obtained by the hyperarcs in [Glk, and M is the trans-
lation of top[G].. The structure of the hypergraph is kept by process variables (identity

of agents), by the %® connective (parallelism among agents) and by the —o connectives
which appear in M, ..., M, (directionality of hyperarcs). The outer —o’s do not play
a role wrt the structure of the hypergraph. They are used to “load” the left linear context
with the structure. Notice that the order M, ..., My is not important.

For every « define [].:G — M as
HGH& = (Ml —0 - —o M) —o ?([[top[G]K]]>)l
where (M%) = (hm[G]").
Define [-]: D — M as
[Al} = GIt] = V([AIf = GITT): Wiens o (U ien: [Gili = 78 cny Aits),
where, for every &, [-],.: G — M is defined as
HGH,:{Gwﬁ fGean
“ UV Y (A R) € [GIL D) 1 ((o%he — P (sabot(Gle)) = [Gl) G gA

4.2 Correctness and Completeness of the Translation

v, ' A M
DM —o"@(MIP) - Ay My vy - v My:
called resolution, defined as a shorthand of the following (scheme of) derivation:

Let R be (the scheme of) an inference rule,

[
¥ i My F M,
. f—
't A M QLMY My vy My,
UIM— QM) Ay My y v My;
Given P, let (G)p = {([P];’®(sabot[C]),hm[G]" - Al};)p | p € poy (A}

[top[G]] }, where p, is the set of renaming substitutions on the set of process variables.
An element of (G)p is a representation of G.

The following correctness theorem establishes a first connection between SMR and
Forum.

42.1 Theorem If G —;3<<>G o then for every I € (Go)p there ezists a proof IT of
Forum® ™Y with conclusion 5.

Sketch of proof Let C be a successful G-computation of G yielding 0. By theorem 3.3.1 there exists
a successful T-computation C’ of G yielding o. The proof is by induction on |C’|g = |C|s. From C' we
shall build /7 from bottom to top.

L

—o,

419

1 If{C'lr =0then C' = (G » -+ » o). To every »-step corresponds a renaming of some process vari-
ables. To every »,-step corresponds a sequence, from bottom to top, of a D rule (the focused method is
one of the methods corresponding to a “top” hyperarc in {G]") and of a resolution rule followed by some
applications of '®r and L. This reduces the problem to finding a proof for Z’ € (G')p, if G >, G'. Pro-
ceed inductively. The final step consists in finding a proof of ([PJ; 7 (sabot[G"]) i (sabot[G"]);)p,
which is made up of %, and | rules, as the right branch in R is; here p is a renaming substitution
on process variables.

2 Ifi{C'|s >0then C' = (G » - » G’ 5)50 G" o - % ©). The first »-steps are dealt with as
in point 1, without the final step. We have to prove that for every £/ € (G’ o) p there exists a proof 17’
of ForuME ™Y such that its conclusion is &', A derivation A such that its conclusion is &' € (G'ohp,
relative to the step G’ %—a—po G'', can be built bottom-up as a sequence of the following rules: D¢
([D] is focused), a sequenlce of Vi (D is instantiated by po’), R (the right linear context contains
a representation of the replacing goals), then, by means of P&, Vg, —or and L rules, the right linear
context is unloaded and the left linear context is loaded with the representations of the replacing goals.
In these representations process variables are either unified with previous “top” process variables (re-
placing goals are joined to the goal) or created unique by Vg (they are relative to inner coordinates
in the replacing goals). This guarantees the correspondence between the representation of the new
goal and its goal graph.

We have that the only premise of A is &' € (G'')p and G'"" » G"'. Since G'"" » G" %,@c o, there is,
by the induction hypothesis, a proof JT' such that its conclusion is £/ o'/, and the theorem is proved.

The other direction of the connection between SMR and ForuwM is stated by the fol-
lowing completeness theorem.

122 Theorem If for Z € (Go)p there is a proof II of FORUMT ™ such that its
onclusion 15 X then G %@G o.

wetch of proof Observe that the application of rules L, *9g, —or and Vx is deterministic, in the sense that
= a bottom-up construction of a proof every step is uniquely determined. The only choice left is that
“ a new variable in Vg: since we build up the proof modulo renaming of process variables, this is not
aportant. We shall show that every possible choice of rules Dy, D¢, 9., —o. and V. leads to a proof only
.7 they yield applications of the R rule.

f the D¢ rule is chosen, the focused method becomes the translation [D] of a clause D. Then some
rplications of V. are compulsory. After that, the R scheme is the only possible: it can only be part
fa proof if the variables chosen in the V, inferences correspond to a —o-step, i.e. to a resolution in SMR.
loreover, the clause must be applicable to the top of the goal, represented in the atomic context, then
ne Dy inference should have been wise. After R, all inferences are deterministic again. In this way we have

derivation A such that its conclusion is £’ € (Go')p and its only premise is 5 € (G')p. Now it is
o p

) 1
asy to show that G' » G' and G “so G''. Notice that, by theorem 3.3.2, if G/ 5<% © then G" ‘%@G o.
 the Dy rule is chosen, the focused method becomes an elementary method relative to a hyperarc. The R
scheme must immediately follow: it can only lead to a proof if the elementary method is applicable
‘o the top, i.e. the atomic context. This is only possible if, in the top, one or more empty goals appear
uitable for a >-step. The exact matching of process variables, 1.e. coordinates in the goal graph, is en-
ured both by the translation and the Vg rule. Then we obtain a derivation A such that its conclusion

Z' € (G)p and its only premise is 5", where &' € (G')p and G > G'.
:y considering proofs modulo renaming of process variables, the proof of the theorem is easily obtained
'y induction on the number of the R rule applications in IT.

Then we can prove the result which tightly links SMR and linear logic:

-.2.3 Theorem G Zo_o iff there is a proof for (IMy —o -+ —o | My —o 7 (sabot[G]) —o
M —o - —o M} —o 7@ ([top[G]])) in linear logic, where (M[%) = ([P]) and (M'|¥) =
nm[GJ").

L

5 Conclusions

We obtained both a declarative and operational understanding of sequencing by associating
to every task a couple of statements: 1) that the task ¢ has to be performed by an agent

420

(say A;) and 2) that when the task is accomplished a signal (0;) is issued. The above
treatment of sequentiality clearly encompasses paradigms more general than SMR. SMR
by itself is a powerful language, as many examples show [10, 5]. We think also that SMR
and its methodology are worthy as specification tools, and we are currently investigating
their use for the specification of GamMa [3] and other formalisms.

The translation makes use of the full '®—oV fragment of linear logic, thus making full
logical use of these connectives. This is opposed to, for example, classical logic program-
ming, in which = and V are only used in left rules. An important point is that all structural
information in SMR goes into the logic, with no need to resort to trickeries with terms.
We are also pleased by the correspondence between parts in the sequences of FORUM and
our framework: the program in the classical context, the structure of the goal in the left
linear context and the top of the goal in the atomic context. The translation is Very conser-
vative wrt computational complexity, and FORUM guarantees good operational properties.

If we are satisfied with the translation of SMR, we certainly are not with its loguc.
We think that to fully bring sequentiality to the rank of logic some new logic with a non-
commutative connective, together with commutative ones, has to be studied. At least one
attempt in this direction exists, pomset logic [12], but until now this logic lacks either
a cut-elimination theorem or, equivalently, a sequentialization theorem for its proof nets.
Our future work shall go in the direction of investigating that logic with the aim to bring
the concept of abstract logic programming [9] in a non-commutative setting, too.

I

References
[1] J.-M. Andreoli. Logic programming with focusing proofs in linear logic. Journal of Logic and Com-
putation, 2(3):297-347, 1992.

2] J.-M. Andreoli and R. Pareschi. Linear Objects: Logical processes with built-in inheritance. New
Generation Computing, 9:445-473, 1991.

[3] J.-P. Banatre and D. Le Métayer. The Gamma model and its discipline of programming. Science of
Computer Programmang, 15(1):55-77, Nov.1990. i

[4] J.-Y. Girard. Linear logic. Theoretical Computer Science, 50:1-102, 1987.

- [5] A. Guglielmi. Concurrency and plan generation in a logic programming language with a sequen-

tial operator. In P. Van Hentenryck, editor, Logic Programming, 11th International Conference,
S. Margherita Ligure, Italy, pages 240-254. The MIT Press, 1994.

6

J. W. Klop. Term rewriting systems. In S. Abramsky, D. Gabbay, and T. Maibaum, editors, Handbook
of Logic in Computer Science, volume 2, pages 1-116. Oxford University Press, 1992.

[7] D. Miller. The m-calculus as a theory in linear logic: Preliminary results. In E. Lamma and P. Mello,
editors, 1992 Workshop on Extensions to Logic Programmang, volume 660 of Lecture Notes in Com-
puter Science, pages 242-265. Springer-Verlag, 1993.

: (8] D. Miller. A multiple-conclusion meta-logic. In S. Abramsky, editor, Ninth Annual IEEE Symposium

on Logic in Computer Science, pages 272281, Paris, July 1994.

[9] D. Miller, G. Nadathur, F. Pfenning, and A. Scedrov. Uniform proofs as a foundation for logic
programming. Annals of Pure and Applied Logic, 51:125-157, 1991.

[10] L. Monteiro. Distributed logic: A logical system for specifying concurrency. Technical Report CIUNL-
5/81, Departamento de Informatica, Universidade Nova de Lisboa, 1981.

[11} L. Monteiro. Distributed logic: A theory of distributed programming in logic. Technical report,
Departamento de Informatica, Universidade Nova de Lisboa, 1986.

[12] C. Retoré. Pomset logic. Available by anonymous ftp from cma.cma.fr, Dec. 1993.

A Structural (Meta-Logical) Semantics
for Linear Objects

Giuseppe Manco
 CNUCE-CNR
Via S. Maria 36, 56125 Pisa, Iialy
Ph: +89 (0) 50 593348

e-mail manco@orione.cnuce.cnr.it

Franco Turini

Dipartimento di Informatica
Universitd di Pisa
Corso Italia 40, 56125 Pisa, Iialy
Ph: 439 (0) 50 887253

e-mail turini@di.unipi.it

Abstract
We propose a meta-logical reconstruction of the linear logic programming |
language Linear bbjects. The meta-logic is based on a CLP schema, that
can handle multisets of formulas. The meta-logic provides a useful semantics
for studying the structure of LO programs, and for comparing LO with other
proposals in the field of computational logic.

Keywords: Constraint Logic Programming, Linear Logic, Metaprogram-
ming.

1 Introduction
1.1 Motivations

In recent years a great amount of research has been devoted to model state-change
in logic programming. In particular, the problem has been addressed within the re-
search activities on concurrent logic programming. J. M. Andreoli and R. Pareschi
[AP91b, AP91a] have defined a new language, Linear Objects (LO), that i:s well-
suited for expressing state-change, object-identity and object-to-class inheritance,

!
\
]
|
\
\

422

proper of the object-oriented programming languages. LO finds its theoretical basis
in Linear Logic, a new constructive logic investigated by Girard [Gir87, Gal92, Sce94]
and mainly used in modeling typed lambda-calculus and concurrency. Further-
more, linear logic has proved useful to address state-change related problems, like
planning problems, by allowing the use of consumable-reusable resources [BG94,
KY93, MTV93, ACP92]. Such an approach, however, at a first sight, seems to
be hardly usable to express state-change and concurrency in a logic programming
framework, because of the gap between the semantics proposed for LO (and related
languages) and the traditional semantics of logic programming, as originally pro-
posed [VK76, AV82]. As an example, LO lacks a fixpoint semantics based on the
definition of an immediate consequence operator [CC94]. The concurrent semantics,
on the other hand, has been fully investigated [ACP92, ALPT93), because this is the
computational aspect mostly stressed by the authors: “computation is performed
by concurrent agents that are themselves characterized by multiple internal threads
of computation” [ALPT93].

It has been argued that concurrency semantics helps in characterizing a parallel
implementation of the language, which covers all its features, and that phase seman-
tics allows a declarative formalization of the language. We find, however, that these
semantics are incomplete for at least two reasons. First, concurrent semantics like
CHAM [ALPT93] or IAM [ACP92] are too abstract to provide a real support for im-
plementation, expecially in relation with the problem of selecting object properties
via pattern matching (pattern-matching object selection). Secondly, phase seman-
tics, though very elegant, is too far from the semantics of logic programming to
provide a good way of expressing the “logic programming” features of the language.
It has been showed [Bro93, BMPT94] that a fixpoint semantics can be a good basis
for providing programming-in-the-large features to logic programming. In general,
providing LO with a semantics related to the classical logic programming semantics
can help in reusing in this new context a wealth of existing results. In particular the
problem of structuring LO programs more in the spirit of object oriented languages
could be solved in this way.

In this paper we attempt a meta-logical reconstruction of LO. The result is
a meta-interpreter written in a meta-constraint-logic programming language, that
allows us to handle LO programs as object programs, and to solve the pattern-
matching object-selection problem by means of constraint solving. This kind of
implementation allows us to provide a formal and conservative method for exploring
the logic programming features of the language, and, at the same time, the use
of an instance of the CLP scheme helps us to provide a formal framework for the
object-oriented based features of the language, i.e. communication and inheritance
via associativity.

The structure of the paper is as follows. Subsection 1.2 introduces the language
LO and its formal semantics, according to [AP91b]. A formal (and brief) introduc-
tion to the CLP schema of programming is also provided. In sect. 2 we provide the
definition of the metainterpreter. Section 3 contains the correctness result for the

Ay pidlomieand W, Crasaian B

423

proposed meta-logic. Finally, in sect. 4 we will discuss the main results of the paper.

1.2 Preliminary Notions

We will adopt the following conventions. u,v,w,z,y,z will denote'ob ject-term-varl'a-
bles, C,C’, C; will denote multiset-variables, s,t will denote ob']ect—terms, pq will
denote predicate symbols, f,g will denote function symbols, CWlH dfenote multlsejts.
According to [JM94], where a general introduction to Constraint Lo‘glc Programr.nmg
is given, a (possibly many-sorted) signature defines a sc'at of .functlon and predicate
symbols and associate an arity with each symbol. If ¥ is a s1gnat?re, a X-structure
D consists of a set D and an assignment of functions and relations on D to the
symbols of ¥ which respects the arietes of the symbols. A first order X-formule is
defined as usually. A Z-theory is a collection of closed E-formulas, and a model of
a S-theory T is a U-structure D such that all formulas of T evaluate to true under
the interpretation provided by D. A primitive constraint has the form p(t,, .,.tn),
where 11,...,t, are terms and p € L is a predicate symbol. Every constraint is a
formula built from primitive constraints. .

As we noted previously, the LO language wiews the compgtatlon as perfor.rned by
concurrent agents that are themselves characterized by ml.}ltlple conc‘urrejnt internal
threads of computation. Agents can self-replicate, and their communications can be
performed either via context-sharing or variable-sharing. LQ’s operators (?orresp0n.d
to Linear Logic connectives [Gir87]. Hence, LO can be wiewed as a “linear logic

programming language”. In Particular, LO is defined by the following abstract

syntax:
Method ::= Head o- Body.
Head := A | A 3 Head
Body = T| A | Body & Body |
Body ® Body

An LO program can be defined as a collection of method formulas (program
formulas), and a goal can be defined as a body formula (resource formulas); a
context is a finite multiset of resource formulas.

EXAMPLE 1 In the following we show a three-clauses LO program and a context
made up by resource-formulas. *

pRaoc-T&(¢7% a).

gwa®bo-T.

rebo-T.

pEa,q&t

424

An LO sequent is a pair written as P F C, where P is a program and C is a context.
The linear interpretation for an LO sequent is the formula & (P)— % (C). A proof
is a tree structure whose nodes are labeled with LO sequents. We say that there
exists a proof for a sequent P+ C if there is a proof tree whose leaves are labeled
by empty sequents, the root is labeled by the sequent itself and the branches are
obtained as instances of the following inference figures.

¢ Decomposition

PrC,Ry, R, P+C,R, P+C,R,

PFC Rk, (20 preT T PFC R g R, L&
¢ Progression
PHC.R

PFC A, A, o) g wA R eP

Notice that, by definition, the elements of a multiset are not ordered. Therefore,
the order of the atoms in the left-hand side of a program formula is not relevant.

The central point of our discussion concerns the way of modeling dynamics in
Object-Oriented Logic Programming provided by LO. A computation can be iden-
tified with a proof-search, and a proof tree, when read bottom-up, can be seen as
a trace of a computation. Each branch of a proof represents the evolution of an
object: the nodes represent a snapshot of the object state, while the edges represent
the object state-transition.

EXAMPLE 2 The following proof-tree shows a computation for the sequent
PFp,a’®b, where P represents the program of ezample 1.

= T]
PET

x PET L Brogal”]
: Prer) Prigeal
Prbr&(gea)
“Prpap O]
Prpast ¥

Computation begins within the context p,a’9 b. After having enriched the context
via application of the [’®] inference figure, a state iransition is performed and,
subsequently, a fork operation splits the proof-tree in two branches, which represent
now two independent concurrently evolving agents. O

A method can be triggered by the object if its state contains all the resources
in the head of the method (inference figure [o-]). In this case, the object may

425

perform a transition to a new state obtained by replacing the resources of the head
in the old state. The sequentiality of the operation is guaranteed in this context by
the application of the linear implication operator. The with operator allows object
clonation and instance creation, while the par operator simply adds new components
in the context of the object.

EXAMPLE 3 We give some ezplanation of ex. 1. The first clause lets us perform a
state-transition from a context containing formulas p,a to a new context where the
formulas are repalced by the formular & (¢°% a). The formula brings to the clonation
of the new contezx for the & connective and by way of inference figure []); once
cloned, an instance of the conterl is enriched with the subcontezt g, a.

The second and third clauses allow process-termination for agents containing the
matching subcontezts.

The contezt shown allows process clonation and context enrichment. o

Notice that there are mainly two kinds of nondeterminism related to the system.
The don’t know nondeterminism, which is due to the search-rule, and the nonde-
terminism due to the context selection: given two (or more) methods and a context
which contains information available for both, either one method can be applied
{competitive nondeterminism).

Describing operational semantics of the language by means of inference figures
can help to define a meta-program which explains the behaviour of such a lan-
guage. In fact, inference figures can be shown to have a correspondance with the
kernel clauses of the metainterpreter. So we can use the meta-interpreter to seman-
tically characterize the object-language. In a more precise way, once established a
“proof-theoretic” semantics for the object language £, we can express the provabil-
ity relation of such language with a metaprogram written in the metalanguage M.
The model of such a program can be used as a semantics for £:

e given a function p mapping a program P in £ to is meta-representation Vp in

M;

o given a set of clauses K, kernel of the metainterpreter, defining the predicate
demo(g) representing the provability relation of g in £

we reach a correct and complete formalization of the object language £ if we can
prove that, given a goal g and its metarepresentation G,

Plrg e demo(G) € Ty,ux Tw

Such a result proposes K as a real formal semantics for £, because in K we
can establish the properties of £. Moreover, metalogical axioms show that the
logic language £ can be expressed within logic programming itself, and that Logic
Programming is a formalism with an expressive power at least similar to that of L.

426

To conclude this brief introduction of the background material, we recall the
semantics definitions for CLP(X) (X stands for a 4-tuple (2,D,L,T), where T is
a signature, D is a I-structure, £ is a class of S-formulas representing the class of
constraints, and 7 is a first-order £-theory representing an axiomatization of the
properties of D).

Let the pair (D, L) be the constraint domain. Assume that the binary predicate
symbol = is contained in £ and is interpreted as identity in D. A valuation is a
mapping from terms to D and formulas to closed L-formulas. A D-interpretation
of a formula is an interpretation of the formula with the same domain as D and the
same interpretation for the symbols in ¥ as D.

We present a fixed-point semantics by defining the usual consequence operator
over D-interpretations:

p(t) € T}?(I) iff 3p(s) « pi(s1), .- o Pu(8n) € P,
{P1(t1). . pa(t2)} ST A
3 a valuation v in (D, £) such that
DiEo(s)=tAv(s) =t A... Av(s,) =ty

2 The Meta Definition

The CLP scheme defines a class of logic programming languages, each of which is
obtained by specifying the constraint system. In general, a CLP scheme is obtained
by replacing the unification algorithm, which solves constraints over finite trees in
Ts(V), with a more general (or more specialistic) method of constraint resolution.
In our case, the problem is to deal with object selection via pattern-matching, i.e.
multiple selection in a multiset of formulas. It is the case of the [o-] inference
rule. A CLP instance can help us in such a problem. By defining a new unification
algorithm, which can deal with multiset-union and complex-context unification, we
can define a metainterpreter with the main properties of LO. The new constraint
solver must now deal with multisets of finite trees over Ty (V).

EXAMPLE 4 Consider the following constraints over multisets of formulas:

C ={a,p(t)} ¥ {q(z), a}
{a,b,c} =Cw{c}
{p(z),a(z,y)} W C = C1¥ {a(c, 2), 4(s)}

The instance of CLP we want to consider is defined over a constraint solver which
can solve such constraints. the solver has to produce the following answers to these

427

constraints:

a

Let © contain the function symbols and constants §§ (emptly multiset), {} (multiset
constructor) and ¥ (multiset union). Let D be the set of multisets over finite trees,
where each node of each tree is labelled by a constant or a function symbol, and the
number of children of each node is the arity of the label of the node. Let D interpret
the function symbols §,{},& as their usual meaning over finite trees, and the other
function symbols of £ as tree constructors, where each / € ¥ of arity n maps n
trees to a tree whose root is labelled by f and whose subtrees are the arguments of
the mapping. The primitive constraints are equations between terms of the same
sort, and let £ be the constraints generated by these primitive constraints. So our
constraint domain is (D, L).

We now define the kernel of the metainterpreter and the function p of interpre-
tation for the object programs.

Definition 2.1 The following rules define the kernel K of the metainterpreter of
LO.

agent(C W T). (1)

agent(C W {z &y}) « agent(CW¥ {z}), (2)
agent(C W {y}).

agent(C W {z9y}) «— agent(CW {z,y}). (3)

agent(CWC') — method(C' o z), (4)
agent(C W {z}).
Moreover, given an LO program P, we define the function p, as follows:

e £(R o- B) = method(||R|| o- B), where
”Al ’9 R ’9 An“ = {Al, .. An}

