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avoid these disadvantages is the demand d'T'iven strategy.presented in [11]. The idea 
is roughly as follows: instead of naively trying the defìning rules in textual order 
and restarting the evaluation of argument expressions for each rule, they look for 
suitable argument expressions that can be evaluated fìrst and then be used for all 
rules. 

For this particular strategy and a concrete language, we outline an abstract 
machine design. It is based on the narrowing machine presented in [6, 9, 10, 12]. As 
a "natura!" extension, we have modifìed and extended the origina! instruction set in 
or der t o be ab le t o reflect the demand d'rive n strategy. Lo c al determinism is detected, 
leading to an early deletion of choice points that increases the space efficiency, in 
the line of [12]. An optimization based on ideas from [2] has been incorporated: 
instead of having static choice point assignment for rule selection, a choice point is 
dynamically createci only when an unbound variable is matched, and then i t controls 
all alternative bindings of that variable. Deterministic computations automatically 
avoid unnecessary choice point creation. A classifìcation of the different functional, 
logic, an d narrowing abstract machines is presented in [8], w h ere i t is also established 
that mixed paradigms admit efficient implementations. 

The rest of this paper is organized as follows: a higher order functional logic 
language is presented in Section 2. Section 3 outlines the lazy narrowing abstract 
machine design. The demand driven strategy far lazy narrowing is presented in 
Section 4: each type of demand is illustrateci by means of examples, as well as the 
compilation of programs and goals. 

2 A Functional Logic Language 

For our presentation we use a §.i~ple functionallogic language (SFL for short) which 
is based on conditional rewrit,;-r~le~-;;_~d ~-;;~o;;p-~ss-e; thè-èxpressive power of several 
more concrete languages, e.g. K-LEAF [3] and BABEL [13]. It is a higher order 
( similar t o that presented in [5]), polymorphically typed language an d uses lazy 
narrowing as evaluation mechanism. We assume expressions to be well typed w.r.t. 
types declared for constructors and function symbols. For simplicity, types will not 
be mentioned explicitly. 

2.1 SFL Syntax 
W e assume a higher order signature (DC, FS) with the ranked alphabet DC = 
UnElN DC"' of constructor symbols and the disjoint ranked alphabet Fs = UnElN F sn 
of function symbols. Given a countably infinite set V ar of variables, we distinguish 
the syntactic domains given in Figure l. 

As usual, we assume that application associates to the left and omit parenthesis 
accordingly. For function symbols f E FS" we consider defining rules, which must 
be left linear conditional equations of the following form: 

f P1 · · ·Pn = e ç= h==r1, ... , lm==r=. 
~ - -----=---:.:.v-_:.__;.:;__ _ _;;;;, 

lhs body optional condition 
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Patterns p1,p2, ... E Pat: p x %X E Var 

cpl .. ·Pn %c E DCn 

Terms t 1 , tz, .. . E Term : t x %X E Var 
c tl ... t/, % c E DCn, O :S k :S n 
f tl ... tk %jEFSn,o::;k<n 

Expressions e1 , e2 , ... E Exp : e x %X E Var 
c %c E DCn,n;::: O 

f % f E FSn,n;::: O 
( e1 e2) % Application 

Figure 1: Syntactic Domains 

where p; E Pat (l ::; i ::; n) and e, li, Ti E Exp (1 :S i ::; m). The body e 1s any 
expression such that vars(e) ç vars(f p1 .. ·Pn)· Operationally, such equations will 
be used as conditional rew'T'ite rules. The sign '==' in conditions stands for st'T'ict 
equality, meaning that a condition "l;==ri'' must be satisfìed by narrowing l;, Ti into 
unifìa.ble terms. The condition may contain extra variables that do not occur on the 
left hand side of the rule. 

An SFL-program consists of a finite set of defìning rules for the function symbols 
in FS, satisfying a non-ambiguity condition t o a voi d semantic overlapping between 
rules ( termination is not required). Fora. complete description of the non-ambiguity 

condition, see [4, 13]. 
Goals for SFL-programs are exactly as rule conditions. They are solved by 

narrowing. The evaluation of a.n expression e to yield a value can be triggered 

by a goal "{== e== R", being R a new varia.ble. 
Higher order logic variables are not allowed (presently ), i.e. higher order va.riables 

may occur in the left hand side of rules, but are forbidden to occur as extra variables 
in conditions, or in goals. 

Example l Let CS0 = {true,false,O, [ ]}, CS1 = {s}, CS2 = {[.J.]} a.nd FS2 =F 

{ member,junor, sum, map }. A legal SFL-program is given by the following defìning 
rules: 

member x ([YIYs] 
member x [YJYs] 

ma p F [] 
ma p F [XJXs] 

su m o y 

su m (s X) y 

true {== X == Y 
true {== member X Ys == true. 

[]. 
[(F X)J(map F Xs)]. 

Y. 
(s (sum X Y)). 

(SUM,) 

(SUM2) 

(MAPl) 

(MAP,) 

: ,, ', ì 

(MEMBER,) 

(MEMBER2) 
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fu n or true x true. (FUNORl) 

fu n or false false false. (FUNOR2) 

fu n or x true true. (FUNOR3 ) 

A goal for this example is 

~ funor (member X (map (sum X) [O])) false== true. 

for which we may expect {X\0} as the first computed answer. In the rest of the 
paper we refer t o this program as "the running example". 

3 A Lazy N arrowing Abstract Machine 

The design is based on that presented by Loogen in [9, 10]. The underlying narrowing 
machine is a combination of a particular reduction machine with mechanisms for 
unifìcation and backtracking based on the Warren's Abstract Machine ([1, 15]). The 
set of machine instructions has been modified and extended t o be ab le t o incorporate 
the demand driven strategy for lazy narrowing. 

3.1 Components 

Basically, the machine architecture is the same described in [9]. Hence, we make a 
brief description of its components. 

The program store (ps) is a code area w h ere the abstract machine code cor­
responding to a program is stored. Data representation is managed via a graph 
or a heap (hp) structure. Rather than using argument registers as i t is don e in 
the WAM, the data stack ( ds) allows data manipulation: i t stores heap addresses 
corresponding t o arguments or to results of function calls. The control stack ( st) 
is the central component of the machine, and it is structured as a double linked list 
consisting of environments and choice points. Actual arguments and local variables 
for a function call are stored into an environment frame. Also stored are the pre­
vious environment pointer an d the return address (t o w h ere i t will return after a 
successful evaluation of the function call). In case of backtracking, the necessary 
information to restore the state of the machine is saved into a choice point frame. 
A detailed description of these frames structure is given below. 

Environment Frame Choice Point .Frame 
n arity tds top of data stack 

Al 1st arguinent nds TIUlJ~~Jer of saved data stack entries 
... sd1 1st saved data stack entry 

An n-th argument ... 
k number of local variables sdnd9 nda-th saved data stack entry 

lv 1 1st loccl variable tt top of trail 
... shp saved heap pointer 

lv h k-th local variable sbp previous choice point pointer 
sep previous envìrorunent pointer badr backtrack address 
ra return address 

Control Stack Frames 
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The trail is used to keep note not only of variable beap addresses to undo 
bindings, but also to keep note of suspension nodes to undo updatings, in order to 
be able to backtrack without loosing information. Some are provided to 
facilitate the access to the ma.chine components: IP points to the next instruction 
in the program store to be executed, HP points to the next free position in the heap, 
EP points to the current environment allocateci in the contro] stack, BP points to the 
topmost choice point in the control stack. The contro] stack length is determined 
by max{EP,BP} = lg(st). 

Data are represented by means of heap nodes. We have extended the constrv.ct07 
nodes representation, in order to admit partial applications. We have also added a 
natural specialization of constructor nodes: constani nodes. 

Variable no d es <VAR, a> representing a logical variable bo un d t o the heap address 
a, while <VAR, ?> represents an unbound variable. 

Constructor nodes <CDNSTR,c,a1 : ... :arn,n-m> with c E DCn, n> O, ai (1:::; 
i :::; m) being the heap addresses of the first m arguments an d n -m :2:: O being the 
number of remaining arguments to obtain a totally applied constructor. 

Constant nodes <CST, c> with c E DC0 represents a constant, i.e. a constructor 
of arity zero. 

Function nodes <FUN,f,a1 : ... :a1,n-l,k>withf E DF", k E Nrepresentingthe 
number of lo c al variables, a; (l :::; i :::; l) being the heap addresses of the first l 
arguments an d n -l :2:: l being the number of missing arguments to obtain a totally 
applied function. Function nodes represent function partial applications. 

Suspension no d es <SUSP, ca, l v1 : ... :l vbrs>. They contain the suspension code 
add:ess ca , the environment l v; (l :::; i :::; k) needed during its code execution, and 
the place to keep note of the result heap address rs after a successful evaluation. 
They are necessary to represent delayed evaluations. 

Hole nodes <HDLE> are used during unifìcation to keep place for the remaining 
arguments, and as a :flag while evaluating condibons. 

The state of the machine will always be given by a tuple of the form: 

(IP, hp, HP, ds, st, EP, BP, tr). 

The transition t o the next state is determined by the instruction pointed by IP. 

3"2 Machine Instructions 

The main modifìcations performed to the machine reside in the set of machine 
instructions ( as well as in the compilation schemes ). Due t o the limi t ed space in 
the present paper, their specifìcation has been omitted. Instead, we have chosen to 
devote our attention to the place where the strategy is re:B.ected: the compilation of 
programs. 
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4 The Demand Driven Strategy 

yYe t~ke here the ~emand ~riven §.trategy (DDS, for short) presented in [ll]. The 
1dea 1s roughly as follows: instead of trying the defining rules in textual arder and 
re~tarting the evaluation of argument expressions for each rule, they search for 
SUJtable argument expressions that can be evaluated first and then be used for 
all rules. The authors specified DDS as a Prolog translation, whereas we perform a 
translation to machine code. 

4.1 Preliminaries 

Definition l A call pattern is any linear expression of the form f p1 ... Pn, where 
f ìs a function symbol and Pi are patterns. A generic call pattern is any cali pattern 
of the form j X1 ... Xn, where X, are n di:fferent variables. 

Let 7r be a call pattern and let l be the lhs of a defining rule. We say that l 
matches 1r i:ff l is an instance of 1r via some (necessarily linear) pattern-substitution. 
Moreover, l is a variant of 1r i:ff this pattern-substitution is a variable renaming. 

Let vpos( 1r) and epos( 1r) denote the set of variable and constructor positions in 
a call pattern 1r, respectively. Let 1r be a call pattern which is matched by the lhs 
of at least one defining rule in a given SFL-program P. Let n be the set of rules 
from P whose lhs match 1r. Let lhs(n) be the set of alllhs of the rules from n. 
Let u belong to vpos( 1r ). W e say that: 

l. u is demanded by the lhs l i:ff l has a constructor at position u. 

2. u is demanded by n i:ff u is demanded by some l in lhs(n). 

3. u is unijormly demanded by n i:ff u is demanded by every l in lhs(n). 

4. u is demanded with priority by n i:ff u is unìforrnly demanded and thè same 
constructor symbol appears at position u in alll in lhs(n) . 

We make an additional distinction w.r.t. [11] that is well-suited for our purposes: 
the concept of priority demand. It re:fiects the need of evaluating the expression 
appearing at this position to a term headed by the (same) constructor symbol de­
manded by ali the rules. With a position uniformly demanded, we don't know a 
priori which constructor symbol will head the resulting term. 

4.2 Program Compilation 

In order to handle potentially infinite. data structures, the evaluation to head nor­
mal form ( hnf for short) is used: only those subexpressions necessary to decide a 
~Jisat~!l be eylÙu<!:t~d. Whe~thi;gi;de~~ded by~e 
need to ensure that the evaluation has been performed in arder to proceed with the 
unification. As it can be a suspended form, we have to irritiate its evaluation to hnf 

m~:_ X, X, -
~ = [X2.1IX,.,] ~ 

w 
true <==X,== X2.1 

365 

o true {::::= Tnember X t X2.2 == true 
endtry 

end! et 

m~~ X2 = 
~X2.2! 

[] -> [] 
o [X,.dX2.2J -> [(X1 X2.1)l(map X, X,_,)] 
~ 

lJUm Xt x2 = 
~Xt.2! 

o x, 
o (• Xu) -. (• (•um Xu X,)) 
endcase 

fun<7r X, X, 

~ 
case X t Q! 

true 
O fal•e 

end case 

true 
let X2 = fal•e ~ 

faC.e 

o let x2 = true!!!. 
true 

endlet 
end or 

Figure 2: Example Intermediate Transformation 

Given an SFL-program P, the code generati an is dane separately for each function 
symbol defined by the program. We start observing the kind of demand determined 
by the function defining rules, and guided by it we produce the corresponding ma­
chine code. The Figure 2 shows an intermediate transformation of our running 
example that might help to understand the process. The notation used in this 
figure re:fl.ects the demand imposed by the rules as follows: 

DEMAND 
u is demanded with priority 

u is uniformly demanded 
u is demanded 

u is not demanded 

SYMBOL 

let Xu- .. . 
case Xu .. . 
or .. . 
try .. . 

Some position is demanded with priority 
We start initiating evaluation at these posìtions. The idea is to give priority to the 
evaluation of everything forced to have the same 'shape'. This is the case for the 
second argument of member in our running example. It is clear that regardless of 
the goal's form, both rules will require evaluation of the second argument to a term 
headed by the constructor assoèiated to the non-empty list (orto a variable). Hence, 
before deciding which rule is to be applied, we irritiate the evaluation to hnf of all 
those subexpressions appearing at demanded with priority positions. 

The first instructions generateci for member are: 

LOAD 1 
MATCHVAR 1 
LOAD 2 
MATCHVAR 2 

POP-ARGS 
LOAD 1 
INITIATE 2 
RESET-EllV(2,3) . ' 
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Thìs group of instructions performs the task of leaving an environment frame with 
the second argument evaluated to hnf. At this point, code generation will continue. 
There are no more demanded positions. We will see later how to manage this situ­
ation. 

Some positio:n is u:niformly demanded but without pri.ority 
As above, we initiate evaluating to hnf the subexpression appearing at the leftmost 
such a position and we perform a case distinction on the result. In our running 
example, .sum demands uniformly position l. Let us reproduce its iì.rst lines of 
code: 

LOAD 1 
HATCHVAR 
LOAD 2 
MTC!IVAR 2 
POP-ARGS 
INITIATE 
LDAD 2 

RESET-ENV(2,2) 

IF-VAR(l, cp1) 
CHECK( l, O, /1) 
CHECK( l, s, l2) 

CPt: 
/1 : 

CP2 : 

/,2 : 

TRY-ME·-ELSE cp2 
code for (SUM,) 

TRUST-l·lE-ELSE-FAIL 
code far (SUM,) 

The iì.rst argument has to be ìnitìated. Afterwards a choice point is dynamically 
createci only ìf the result is a variable. Otherwise, we jump to the corresponding 
instructions. Observe that function map is exactly in the same situation, vvith the 

dì:fference that it is the second argument which appears at a uniformly de­
manded position. Hence, similar code will be generateci for it. 

Some is demanded, but no one is uniformly demanded 
The idea ìs to split the rules into the ones demanding this posìtion and the rest of 
d::cem. The structure that will be generateci is: 

TRY-Jtf.E-ELSE alt 
Dernanding r-1f,les 

ali : TRUST-r1E-ELSE-FAIL 
Non-dema,nding ·rules 

In our ru.nnìng example, funor corresponds to this situation. The :fìrst argument is 
demanded by the iì.rst two rules but no t by the third one. A choìce poìnt is necessary. 
As it can be seen in Figure 2, the splitting yields to consider the iì.rst two rules 
separatel:y from the third. Now, the iì.rst argument appears at a uniformly demanded 
position w.r.t. the fìrst group, and the second one has the second argument at a 
demanded with priority position. The complete code for ]'unor is: 

TRY-ME-ELSE alt 
LOAD 1 
NATCHVAF. 1 
LOAD 2 
nATCHVAF. 2 
POP-ARGS 
INITIATE 1 

LOAD 2 
F.ESET-ENV(2,2) 
IF-VAF.(1, cp1) 
CHECK(i,true,/1) 
CHECK( 1, false, l2) 

cp1: 
/1 : 

CP2: 
12 : 
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TRY-ME-ELSE cp2 
LDAD 1 
MATCHCST true 
LDAD 2 
MATCHVli.R 2 
POP-ARGS 
CNDDE true 
RETURN 
TRUST-ME-ELSE-FAIL 
LOAD 1 
Mli.TCHCST false 
LOAD 2 
MATCHVAR 2 
POP-.1\.RGS 
LOAD 1 
INITIATE 2 
RESET-ENV(2,2) 
LOAD 1 
MATCHCSTfalse 
LOAD 2 
MATCHCST false 
POP-ARGS 
CNODE false 
RETURN 

alt: TRUST-ME-ELSE-FAIL 
LDAD 1 
MATCHVAR 1 
LDAD 2 
MATCHV.I\.R 2 
POP-.1\.RGS 
LDAD 1 
INITIATE 2 
RESET-ENV(2,2) 
LOAD 1 
MATCHVAR 
LOAD 2 
MATCHCST true 
PDP-.1\.RGS 
CNDDE true 
RETURN 

No position is demanded . ~ If there is only one rule, one only needs to apply lt. Being the code for rule (SUM,) 
easier to generate, we include the instrudions for rule (SUM,): 

LOAD 1 % Left haud side: 
!1.1\.TCHCONSTR(s, 1) % sum (s 
!1ATCHVAR 1.1 % X) 
LOAD 2 
MATCHVJ\.R 2 % y 

POP-.1\.RGS % Right hand side: 
SUSPEND lab % suspension 

LDAD 2 % y 

LOAD 1.1 % ]( 

FNDDE(smu, 2, 2, O) % surn 

APPLY % (sum X) 
APPLY % ((surn X) Y) 
UPDATE % Susp := ((sum X) Y) 

l ab: NODE(s,i,O) %s 
.1\.PPLY % (s Susp) 

RETURN %. 

<il In case of having at least two rules, their (common) lhs has b:en pro.ce_s~edt~~ ~ 
common p art for all the rules ( as we di d above for member). Th1s case lS l en l e 
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in Figure 2 by "try". Here, the new feature is the way conditions are translated. 
Vve try to satisfy the first rule condition. If we obtain a success, the result is true 
(given by the first rule); if not, we try to satisfy the second rule condition and so 
on. If both conditions are not sa.tisfiable, the rules are not applicable and a failure 
has to be produced. 

In our running example, member corresponds to this last situation; the remaining 
code for it is: 

LDAD 1 
11ATCHVAR 
LDAD 2 
MATCHCDNSTR( [·l·], 2) 
MATCHVAR 2.1 
MATCHVAR 2.2 
PDP-ARGS 

TRY-ME-ELSE rul2 
INIT-GVARS(3,0) 
INITIATE 1 
INITIATE 2.1 
CALL-EQ 
JUI·!P-TRUE r·es 1 

FAIL 
res1 : CNDDE true 

RETURN 

ru/2: TRUST-ME-ELSE-FAIL 
INIT-GVARS(3,0) 
LOAD 2.2 
LDAD<1 
FNDD~(member,2,3,0) 

APPLY 
APPLY 
JUMP-'TRUE res2 
FAIL 

1•es2: CNODE true 
RETURN 

% Common left hand side: 

% member X1 [X2.1fX2.2J 

% Try first rule condition: 

% First rule result 

% Try second rule condition: 

% -<== member X 1 X 2.2 

% == true 

% Second rule result 

Note: Due to the lack of space in the present paper, it has been impossible to 
detail the machine instructions specificatì,',n as well as other issues. The interested 
reader ma.y fìnd them in [14], which will be sent on request. 

4.3 Goal Compilation 

The code generateci when our goal 

~ funor (member X (map (sum X) [DJ)) false== true. 

is compiled is: 

CNDDE false 
SUSPEND s1 

SUSPEND s2 

CNDDE O 
CNDDE [] 
NDDE([·I·] ,2,2) 

LDAD 1 
FNDDE(sum,2,2,1) 
FNDDE(map,2,3,0) 
APPLY 
APPLY 
UPDATE 
LDAD 1 
FNDDE(member,2,3,0) 
APPLY 
APPLY 
UPDATE 

s1: FNDDE(funor,2,2,0) 
APPLY 
APPLY 
JUMP-TRUE end 
FAIL 

end: CNDDE true 
RETURN 
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%false 
% susp1 
% susp2 

%[O] 
%X 
% sumX 
% map 

% map (sum X) 
% map (sum X) [O] 
% susp2 := rrw,p (sum X) [O] 
%X 
% member 
% member X 
% member X susp2 

% susp1 := member X susp2 
% fun& 
% fun& susp1 

% funor susp1 false 
% == true 

% Result: true (identifying a success) 
% End of the goal's execution 

The goal execution begins with funor susp1 false, which represents a call to funor 
with a suspended form as first argument and the constant false as second argu­
ment. The only applicable rule is (FUNOR,). Following its code, we need to irritiate 
evaluation t o hnf of the fìrst argument ( susp1 ). This requires a cali t o member, 
which needs evaluating its second argument (susp2 ) to hnf. This suspended form 
represents a delayed call to map. The only applicable rule ìs (MAP2 ). The result is 
[(sum X 0)\(map (sum X)[])]. Having initiated this argument, we try to apply the 
fìrst rule of member: after evaluating (sum X O) it binds X to O and returns the 
result true. Hence, we follow with the application of (FUNOR1 ), which also returns 
tr1Le. This is equal to true and goal evalua.tion has fìnished with the binding {X\ O} 
as computed answer. Backtracking would offer other alternative computed answers. 

5 Conclusions and Future '\iVork 

In this paper our aim has been 'to illustrate the incorporation of the dema.nd driven 
strategy into the abstract machine design. The new abstract machine supports an 
extension of the originai language, and its set of instructions has been modi:fied 
and extended. The strategy is reflected in the sequence of rnachine instructions 
generateci by the compilation of a program. 

W e are currently engaged in the implementation of this work. The incorporation 
of some optimizations in the machine architecture as well as in the code generation 
is also planned for the future. 
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Abstract 

VIle discuss a parallel impleme11tation fora functionallogic langua.ge which ex­
ploits or- and transparent exptessìon-parallelism. Or-para1lelism is well-known 
from the context of logic programming, whereas the so-called expression­
parallelism is a natura! extension of and-para11elism to functional logic lan­
gua.ges. The proposed mode] aims prima.rily at distributed architectures but 
runs on both shared and distributed memory models. \Ve present some results 
for a scalable architecture with up to 64 processar elements with distributed 
memory as well a.s for a bus-based system. 

JKeywords: FunctìonaJ Logic Programming, Expression Parallelism, Or-Parallelism 

1 Introduction. 

!Declarative programming languages offer a. high degree of (implicìt) parallelism. 
Functional logic liiillguages as Babel are instances of the declara.tive programming 
pa.radigm. They extend functional programming languages with principles taken 
lfrom logic programming. Apart from the unìfication parallelism, which can be in­
i\egrated into a finer la.yer within the unification process, expression-para.llelism and 
.a,r-parallelism seem to be worthwhile to be exploited transparently on parallel archi­
~ectures. During the last years numerous approaches ha ve been proposed for exploit­
ing parallelism in Iogic programs. Most of them rely on a special hardware platform, 
zmch as shared memory multiprocessors or switch-based machines [1, 3, 7, 18, 19]. 
It has been shown that almost linear speed-ups can be obtained on these machines, 

"Thìs work was supported by the Spanish PRONTIC project TIC92-0793-C02-0l and by the 
Ge.rman DFG-grant In 20/6-1. 



372 

and even super-linear speed-ups when failing computations are early detected. But 
their efficiency collapse wben tbe shared memory model is simulated a.t low leve] in 
a distributed environment. 

As far as pa.rallel systems witb loosely-coupled memories are concerned, often 
stack-copying and re-computa.tion models for or-pa.ra.llelism are cited in the literature 
[2, 8]. These models rely on the transfer of the complete macbìne state, but bave 
the disa.dvanta.ge that sopbistica.ted scbedulers bave to be introduced in order to 
minimize the copying and tbe re-computa.tion costs. In our model we follow a 
process mode] in wbicb eacb processar ca.n be seen a.s an interpreter. Ea.ch processar 
has to execute a. certain piece of the overall computation, wbich bas been delegateci 
by a parent processar. 

The process mode] fits naturally to expression-pa.rallelism, too. The progressive 
approach of [7] implementing independent and-pa.rallelism is intended for a shared 
memory architecture and adopts the WAM [17] in an efficient wa.y. Later, [16] 
proposed an extension of this approa.ch for a. distributed ma.chine. But their proposa.l 
lacks in any capabilitìes of multìprocessing wbich yield severe restrictions concerning 
tbe abilìties for goal schedulìng. Our mode] integra.tes multiprocessing that seems to 
be a. crucia.l fea.ture, when dea.lìng with sca.la.ble a.rchitectures with many processors. 

Furthermore, tbe functiona.l a.spects of Babel offer more opportunitìes for pa.ra.l­
leliza.tion. Babel progra.ms are applied with severa] syntactic restrictions tbat ensure 
some determinative characteristics. The compositional style of programming allows 
a natura] encoding of the problem and yields a clear data-fìow. In contrast, the 
predicative style ( e.g. of Prolog) demands the introduction of further variables and 
artificial fìattening to express the data-fìow. This hampers the automa.tic detection 
of the intended data-fìow. Generally, the functìonal style a.llows a. better abstract 
mimicry of the concrete computation, a better determinism detection, and a more 
powerful parallelìzation. 

The organization of the paper is the following. The next section gives a brief 
introduction of the functional logic programming langua.ge Babel. Section 3 and 
4 describe the two kìnds of parallelism and explain how expression-parallelism is 
derived and exploited. The latter section explains how to reduce the amount of 
synchronizing constrains and to increase the process granularity. Sectìon 5 presents 
the extensions of a stack-based sequential abstract machine to a parallel one that 
also fits for a distributed memory model. The runtime results, which are given in 
Section 6, show the behaviour of the abstract machine on a distributed system. 

2 Babel 

Babel is a functionallogìc language with a constructor discipline and a polymorphic 
type system. It has a functional syntax and uses narrowing for evaluation. For the 
sake of clarity, we will consider the first order subset of Babel with the leftmost 
innermost narrowing strategy applìed. 

A Babel program consists of a finite set of function definìtions an d can be queried 
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with a. goal expression. Ea.ch function f is a finite seq~ence of d~~~·i·~-~ r~l~si .. '.vhere 
ea.ch rule ha.s the form: 

f(tl, .. . ,tn) 
~ 

left band si de ( lhs) 

{B-+} ~· 
~ 

optional guard body 

~ ' ., 

right band si de ( rhs) 
with a Boolean expression B, and an arbitrary expression !Jf. Ba.bel functions 
represent mathema.tical functions, i.e. for eacb tu p le of. (ground) .a.rguments, t h ere 
is a.t most one result. This is ensured by specia.l synta.ct1c restnctwns [12]. 
Terms t and ·E;zp~~ssions M are defined as follows: ,'···· 

t ::= X % va.riable 
1 c( t 1 ... t n) % data constructor 

M ::=X % varia.ble 
1 'P( M 1, ... , J\1n) % 'P is a n-ary functìon or constructor symbol 
1 B-+ M 1 {Dl\12 } % if B tben M 1 else. undefined {else M2} 

Tbe operati<;~?aJ_s~~~n~jcs of Ba.bel is ba.sed on na.rro\'l'}_~g [14]. 

3 Expression-Parallelism 

Independent expression-para.llelism consists of the evalu.ation of expressions in p.ar­
allel if tbey are independent and improves the eva~u~b?n along on: computatwn 
path. It is well suited to speed up complex determm1sbc computatwns. In~ep:n­

dence means the lack of a.ny shared unbound varia.bles t~at m~y lea.d t~ bmdmg 
confìicts when a.t lea.st two computatìons ìnstantiate tbem m an mc?mpa.bble m~~­
ner. One sufficient condition for the independence of two ~xpresswns : and e 1s 
var( e) n var( e') = 0 a.nd their lexicographical independence, L. e. ne1ther 1s a. su~ex­
pression of the other expression. Though the ma.xima.l parallehsm under expresswn-

11 l. m could be exploited it is not worth beca.use of the overhead due to the para e 1s . · · [7] 
needed dvna.mic scheduling, being natura! to 1mpose severa.! restnctwns · . . 

The in"dependence condition allows the semi-intelligent search spa.ce prunmg lf 
one sibling of the pa.ra.llel eva.luation fa.ils. As this failure ca.n not be mfìuenced by 
some other siblings, their computation can be reset. . ' 

We bave developed an automa.tic parallelizatìon tool wh1ch gene~at~s CGEs ~~on­
ditiona.l Gra.ph Expressions). CGEs are used to express pa~a.llehza.twn co.nd1twns 
for ìndependent expressìon-pa.ra.llelisrh. CGEs involve dynam1c tests at runtJme tba.t 
are desira.ble to reduce. The first stage of the tool covers thi~ dynamic .test reductwn 
by using a.bstra.ct interpreta.tion techniques to infer informa.tw~ about_ mdependence, 
· th des of functions a.nd sharing information of the vana.bles m the _rules [6]. 
Le., e mo . d d put a.r 
Modes describe whether some arguments of functwns ar: use gro~n a.s m . -
guments or unbound a.s output arguments. Sharing descnbe potentJa.l dependenCJes 
between tlìe varia.bles a.ppea.ring in the rules. 

A progra.m transformer is eventually supplied in a second sta.ge of th~ pa.~a~­
lelizing tool with the independence information in order to express the 1mphc1t 
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parallelism by special parallel annotations. For instance, the expression e con­taining two subexpressions e' and e11 is transformed into the following expression "letpar X = e', Y = e" in e" 1 provided the analyzer determines the independence of e' and e11 • The evaluation of e is dela.yed and synchronized with the successful termination of both parallel computations. We have a.dded annota.tions for the par­a.llel non-strict boolean connectives to Babel1 i.e. conjunction and disjunction 1 with their own a.djusted semantics. The parallel system can ex ecu te the operands of these connectives in pa.rallel, specula.tively. 

In a final stage, the pa.rallelizing tool translates the annotateci program into a sequence of abstract machine instructions. 
Detection of deterministic computations is clone both statically and dynamically. The former when inferring ground instantiations of function calls and the latter because the so-called dyna.mic cut [11] is embodied in the parallel system. 

4 Or-Parallelism 
Or-parallelism consists of the parallel evaluation of the rules whose left hand sides unify with a given function application. According to the corresponding rules, sev­eral branches of the search tree can be explored in parallel. Unlike a sequential execution of the program, the or-parallel execution causes binding confl.icts due to multiple bindings within the different branches of the search tree. This kind of par­allelism seems to be well suited for that class of functional logic programs which includes non-deterministic computations. 

Process-based Or-Parallelism 
In our model we follow a. modified approach of the process-based or-parallelism [5]. Herein, or-processes are generateci for each applicable program rule. The process execution takes place after the set of a.pplicable rules is fixed by a complete indexing procedure [11]. This guarantees that the unification can be performed at low costs by the parent process so that each or-process is merely responsible for computing the rule body and for delivering the solutions with the answer substitution. Process execution takes pla.ce in three phases. First, argument terms are copied into the initial environment of a new process replacing all global variables by local copies whose identification is noted in a special import list. Second, during the evaluation of the rule's body, the model is not faced with the binding confl.icts since all data accesses occur on local copies. And finally, the execution succeeds with a backward synchronization with the parent by returning the solution and the answer substitution which can be derived from the import list and the local variable bindings. 

Communication between processes takes place via messages. After their successful computation the results are embedded in a success message and sent back to the parent process. If the parent requests further solutions, i t simply sends a backtrack 
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branch leve! O 
p X -----F:: :·::: :._--- branch leve! l 

x= l 

X=3 

true 
------------J.------------

Program: 
p X := X=l -> true. 
p X:= X=3 -> true. 

t ime 

F' ure 1· Retroactive parallelism exa.mple where the first bra.nch is embedded within t~= pare~t process: The global variable X is bound t? l .with time stam_P l. After the 'fi at'Jon within the first branch the second branch 1s p1cked up by an 1dle processar . nm c 1 h · · 'th l l O Nevertheless, X is trea.ted as a free varia.ble beca.use the bra.nc ongmates WI eve · 

message to the child. This procedure can be re~eated ~ntil the search spa.ce of the child is exha.usted and the process termina.tes w1th a. fa.1lure mess~ge. This concept with the pa.ra.llel execution of or-pr~ces.ses on d1fferent proc~ssor elements makes the process model well suited for d1stnbuted memory ma.chmes. ~evertheless, the process model ha.s several dra.wba.cks: 

• There exist synchroniza.tion constraints concerning the process scheduling. Idea.lly idle processors run the processes. But if there are not enough proces­sors a~a.ila.ble, the processes are executed locally. On t~e other ha.nd,. the process model an d the binding problem prevent a. more :flex1ble control regime. 
• Process genera.tion is expensive. Especia.lly the loc~l computation enfo~ces t.oo much overhea.d relative to the sequentia.l computa.twn. At lea.st the exp~ns1ve, argument copying needs to be avoided by embedding the loca.~ computa.twn of some bra.nches within the process tha.t crea.ted the bra.nch pomt. 

In order to sol ve the a.bovementioned problems we ha. ve ex~ende~ the simple process model by introducing retroactive parallelism a.nd process ml1entance. 

Retroactive Parallelism . . . · · t d 'th each va.riable binding a.v01d the synchromzatwn con-Tlme sta.mps associa e Wl 
· l t · t Th1·8 technique has been borrowed from other models [19] where a. spec:a. s rrun s. . d . f th counter is incremented with each bra.nch point allocatwn. In or. er to. m er e ong-inal argument strocture, the time stamp of the dereferenced va.nable 1s compa.red to 
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the branch level counter of the corresponding branch point. This mechanism enables 

retroactive parallelism and process generation on demand. 

With the help of this scheme i t is possible to integrate branches directly into the 

execution of the process which has created the branch point while the computation of 

the other branches is still suspended. More importantly, the process generation takes 

place only by incoming work requests of other processors on demand. Otherwise the 

origina] process is allowed to treat the branch point like an usual eh o ice point without 
causing additional overhead. 

Furthermore we are now in the position to renounce on the complete data transfer 

to the remote processors. The motivation is that the transfer of the complete data 

structures cannot be justified ifa certain amount of the structure is not required by 

the child processar. [16] shows a detailed analysis of data locality. 

Process Inheritance 

ìVhenever a process can be executed locally, the sole computation of the rule body 

would be too restrictive. Therefore we allow a process to inherit the context of its 

parent process and all other former local ancestors. Now we can omit the backward 

synchronization with the parent process. The child shares all relevant data struc­

tures with its ancestors and performs an alternative search concurrently to the local 

ancestors. In other words this means a step toward the subtree-based approach of 

or-parallelism. The advantages for this modification are: 

• We can avoid the direct synchronization with the local ancestors. The or­

process is responsible to commit all these steps on its own. 

• The process granularity grows when the exploitation of the whole subtree 

can be performed. Now remote processors can concentrate on that branches, 

which have probably enough work. Furthermore this makes the scheme even 

attractive for shared memory architectures where all relevant data are held in 
the global memory space. 

• All data are accessible by the children and the origina] argument structure can 

be inferred by the use of the time stamp technique avoiding copying costs. 

The memory space of a process can be divided into two parts. A private part 

represents the local search space of the process. The process is allowed to commit 

bindings for each variable originating from that part whereas the global part is write 

protected. The process has to record each instantiation of a 'global' variable in its 

own import list. Since each variable of the global part might be bound during the 

execution, the import list is implemented as a hash window which can be seen as an 

optimized version of a binding list. Clearly, the process also inherits the bindings 

of its ancestors. Instead of copying all the former bindings in its hash window, 

the hash window is simply linked into the chain of its forerunners via pointers. As 

a consequence, the variable dereferencing operation might become a non-constant 

time operation, but in practice the additional overhead seems to be low. 
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Scheduling Work t 

Sometimes the execution of only the right hand side of a rule on a remo e proce.s­

or ma' have fine granularity. Therefore a processar is allowed to. suspend certam 

sprogra~ branches with coarse granularity and keep this work avaJlable for remote 

h . h esume the correspon mg compu a wn a r . d. t t' l te on So a processar can 
processar w Jc r . . h k 1 11 , t 
provide enough work for other processors and m1ght p1ck up ot er wor oca ) a 

some other branch points. 

Combining Expression- and Or-~arallelism . . r In rin-

During the evaluation process expresswn- and or-parallehsm mlght appea . l p . 

. l the behaviour of both types of processes is equal. They work on ]oca copJes 

~tt~e data in case of remote computati an. Local expression-:hildre~ are allowed !o 

·perform their private variable bindings directly and might bmd vanables from t e 

shared part likewise in their own hash. windows. On the other han d or-processes are 

still allowed to inherit the context of Jts ancestors. . th . k 

When or- arallelism under expression-parallelism comes into play, ther~ IS e ns 

f recom u~n some branches. Therefore a cross product node can be mtro~uced 
~ha t co~inesg all solutions from the lower branches in order t o prev~nt theub ~e-

t t . ThJ's l's also the ccimmon technique of other systems t at com me compu a wn. 
these two parallelism paradigms. [19, 2]. 

5 The Parallel System 

We have desi ned a parallel system which exploits ~xpression-or-parall~lism i~ a 

. 'b d g. t Each node in the system JS an abstract ma.chme which 
dJstn ute env1ronmen · h' · k t h d 
runs the compiled code. The coarse structure of each abstract mac. m~ JS s \c ed 

. fi e 2 This figure shows primarily the partition into a commumcatwn um an 

m gur . . 't The former unit maps the logical complete connected topology 
a narrowmg um · · k t f 11 ' · f two 
onto the physical topology. It performs the necessary routmg tas s s a Jca ) J 

communicating processar~ are only indirectly connected. . 

All the other activities of the abstract machine are perform~d by the narrowm~ 

unit. This includes multiprocessing as, well as the message passmg. 

Meshed Stack Architecture h h 

e narrowin unit consists of different memory areas. Among them, t e grap 

~~res the dat= structures and the runtime stack stores the contro] st~~ctu;es. :~~ 
k from the sequential stack based abstract mac me or a 

structures are nown . WAM [l 7] The re resentation of 
[lO] which in turn inherits the concepts behmd the . .P . . d 

the runtime stack is slightly extended towards a meshed stack orkgamzatwn. m o:h er 

. . Severa] rocesses may share the stac resource Le.' ey 
to support multi~rocesstmg. f the sta~k even if they do this in an interleaved fashion. 
allocate new entnes on op o ' · d' t t 
S l t . nl 's performed by a garbage collector. But lmme Ja e s orage torage ree ama 10 



1 Output Links 
l 1 ! t 

! t j 
Communication Unit 

Narrowing Unit 
~S-!ac-k--~~ (r---e.-----,---_ ,_-----,---_ ""'1 

Cboire Poin< __jl kxrr ~ta.'e r 
Bmm::h Poim 

>-----i~ 
ParCall Fr-ame i;::l 

eli 

I:=En=viro===~:::!t ~ 
Ob 

-{ Branch Stare 

~ 
l-:-~~:~s: __ J 

[ Program 
Store 

378 

InputLinks 

j - -1 
------j 

[
:· lnput --~ 

Comm. 
Buffer 

---------------- j --------1 Processar Id 

Graph 

( 
LocalRef l l l Timo S<amp l 

l 
l Structure l ... 1 l , l 

Unbou~l 
r GlooolRef l 

Figure 2: The Abstract Machine 

reclamation remains possible if the topmost structure is the one to be deallocated. 
First observations show that this happens really often. 

The graph structure was extended from the stack representation towards the more 
genera] heap representation. This generalìzation retains the speed of structure allo­
cation but requires a genera] garbage collector, too. 

Aside from the structures known from sequential implementations, severa! buffers 
are introduced to manage the !oca! processes, to store separately the subexpres­
sions that can be executed remotely, and to store the or-branches ready for remote 
execution. 

Multiprocessing 
Multiprocessing is advantageous to minimize computation locks due to communica­
tion delays. Even in a shared memory environment, the single-processing decision 
imposes severe restrictions to the load distribution when pure stack based architec­
tures are considered [15]. Otherwise, the correctness in the presence of backtracking 
becomes endangered. 

The expression sto re ( LIFO) is intended t o ho l d the expression-para.llel siblings 
to be distributed, while the branch store (FIFO) holds the or-pa.ra.llel siblings. The 
support of local process execution is an importa.nt optimization to reduce the over­
head of process generation that involves the expensive creation of severa.! structures 
for their management. This includes the preparation of a new set of registers, the 
extension of the process queue, and some arrangements in case of exhausted evalua­
tions. The support of local process creation requires the introduction of one further 
small contro! structure in the runtime stack [7] that is mainly used to separate the 
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stack areas of different loca.l (=:virtual) processes. Actually, no further process Ìs 
generateci. During forward computation, necessa.ry context swìtches are controlled 
by the code. Only when backtracking happens, these speCial chmce pomts enforce 
the needed switches. 

Our observa.tions have shown that ma.ny subexpressions put into the expression 
stare are locallv evaluated. 

Pa.ra.llel eval~ation is performed following the fork&join pa.radigm where the an-
notateci expressions are spa.wned in parallel (fork). Instea.d of purely synchronizing, 
the spa.wning process participates in the parallel evaluation and fetches locally so~e 
subexpression yielding nea.rly sequential speed. In or der t o contro! the para!! el ( vu­
tual) child processes, a. so-called parallel call frame is generateci. 

5,1 Load and Data Distribution 
Load distribution is an important topic in order to achieve good speed-ups. But 
it should introduce very ]ow overhead. Iviainly, we folìow a passive, decentralized 
strategy in which each ielle processar asks severa] other processors for available work. 

As a starting point we chose the sole work request irom the ne1ghbours. ~-Ier~­
after, we enrich these requests with some information about the localload wh;ch !S 
determined from the occupancy of the clifferent mernory area.s. At each processar 
this information gives coarse informatìon about the loa.d on its neighbour and drives 
the selection order of the requested processors. \Ve extencl this set of neighboured 

rocessors an d support the routing of work requests in accordance to the noted loads ~p to a certain distance accelerating the load clistribution. I:e., if a w~rk req~est 
encounters a processar without available work, 1t determmes Jts best smted neJ?h­
bour and bypasses the work request. This gives a more intellig:nt load bala.ncmg 
stra.tegy without the introduction of a global schedulmg mechamsm. . . As the creation of distributable work introduces some overhea.d, the engme svntch­
es between a parallel and a seria] mode [16] which is triggered by the localload and 
remote work requests. The spawning of para.llel work happens in the pa.ra.llel mode. 

Furthermore data distribution involves some overhea.d. Our expenments con­
firm the obser~ation in [16] that the exchange of sma.ll data nodes introduces too 
much overhead. Therefore, not only small data nodes but grea.ter data packages are' 
communicated on data. requests. 

5.2 Distributed Garbage Collection 
Declarative progra.ms, e.g. funètional logic programs, are memory hogs that un­
cloubted require ga.rbage collectors. We embodied specific garbage collectors for the 
runtime stack and the graph. Both garbage collectors are hybrid a.pplying a proposal 
of [9] that distinguishes between local and remote references. Remote reference~ are 
managed via weigbtenecl reference counting [4] and local references are dea.lt w1th a 
variant of the Morris algorithm [13]. 
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6 Results 

The pa.rallel system is mapped both onto a loosely-coupled Transputer network with up to 64 processar elements and onto the tightly-coupled Sequent Symmetry with 6 processar elements. The emula.ting system is implemented in C. We ha.ve investigated the behaviour of the pa.rallel systems for both the expression-para.llel context and the or-pa.ra.llel one. 
In order to test the implementati an, we mea.sured the efficiency of the implemen­tation on one processar. A comparison with [16) which provides a. pa.ra.llel emula.tor implementa.tion for Prolog in a. simila.r environment, shows tha.t we get double speed for equivalent programs. Furthermore, we observed much lower para.llelism over­hea.d following their 2-mode approach. For insta.nce, the slightly modified Fibonacci function nfib which counts the function ca.lls, and the quick-sort program show a. parallelization overhead below 5% for our emula.tor. A compa.rison of our implemen­ta.tion with a Transputer implementation of K-Leaf [3) shows a. simila.r behaviour for the Fibonacci function fib(22) and the 8-queens problem. 

l p rogr a.m 2 4 8 16 32 48 
f-queen 11 1.97 3.93 7.85 15.49 30.95 45.54 
nfib 30 1.97 3.95 7.82 14.67 26.56 35.80 
Hanoi 22 1.99 3.98 7.94 14.62 26.66 33.94 

The first table shows the speed-ups for some typica.l functional programs. These programs focus on the expression-parallelism and are well suited to measure the impacts of the independence restrictions. W e considered the following deterministi c programs: a functional version of the classica] n-queens problem with 11 queens, the slightly modified Fibonacci, and the towers of Hanoi examples. Here we studied different topologies with up to 48 processors. The queens program which is the most complex arnong them shows the best speed-up. Even with 48 processors it reaches nearly linear speed-up. Roughly 5% of the computational power of the Transputer system is lost. 

l program 2 4 8 16 32 60 
queens12 1.98 3.93 7.84 15.57 28.62 50.83 
naive-sort9 1.98 3.95 7.85 15.68 31.36 46.95 
puzzle 1.97 3.93 7.79 14.41 25.71 38.08 
knapsack 1.95 3.90 5.00 6.75 9.78 14.77 

In contrast, the second t ab le shows the speed-ups we got for some non deterministi c search problems. These or-parallel programs are the n-queens problem in the logica] version, the naive-sort, the knapsack and a puzzle problem. Again, the results show that considerable speed-ups are possible. Note that the examples show almost linear speed-ups concerning topologies with up to 16 processors and often even with 32 processors. Break-ins can be observed when the system is scaled beyond the frontier of processar elements for nowadays shared memory architectures. 
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Program func-queen8 quicksort3000 queens9 naive-sort8 knapsack 
5.72 5.78 5.77 Sequent 5.57 2.64 

2.46 5.41 5.62 4.69 Transputer 4.91 

A • • the thl'rd table with the speed-ups on the Sequent Symmetry (as-''"'- companson m · d t :.Uming 6 processors) shows that further improvements can b~ game . on sys) em~ with shared memory if expensive argument copying can be avmded ( qmcksor~ a~ whenever the granularity decreases so that the available work can be better dJstnb-
uted in the bus-based system. 

7 Conclusion and Future Work 
In th. we ha ve sketched a parallel system for the functionallogic programmi~g 1s paper ll l' t tly Th1s lan ua e Babel exploiting both expression- and or-para e lSIIl ransparen. · sys~emg aims a t machines with loosely coupled memory which are ~now; ~o mtro~u.ce severe communication costs concerning remote data access. In spite o t ese res nc­tions the result section has shown the a.pplicabiHty .of a pr~cess ?ased appro~ch whe~ the load distribution is atta.ched with granulanty co~s!deratwn, speculatJv~ data distribution and slight extensions to promote the avallable work. The co.m hined approach of expression-or-parallelism has been only ~nvestiga~ed by an ou~lme of the intended approach because the cross-produ~t remam~ to be lmp;e~ente 'n l Asi de of this extension, our future work deals with the adJustn::ents o e para e o:vstem to other distributed machines. Currently, we are portmg the Transputer -,; " 00 h' h h e powerful S~arc-processors im lementation to the FuJitsu APlO w lC as ~-:---:--·--·- -----.----:·-"· at peach node. The new runtime results may give new mslghts for this kmd of 
parn~-
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Abstract 

In this paper we prese11t a.n a.lgorithm far compiling functions defined by pattern matching 

with side conditions, which can be easily implemented. As previous a.pproa.ches, this a.l­

gorithm has a complete set of rules. The genera.ted code ha,s no ba.cktra.cking a.nd side 

conditions are evaluated at most once, which represents an ad,·antage with respect to 

most of the previous algorithms. This algorithm is parameterized by a subroutine, which 

can be chosen such tha.t the result of the compilation fulfills certain properties. In this 

p a per w e choose a su broutine that keeps the laziness of a list of patterns. But in contrast 

with previous a.lgorithms ( cl1aracteriza.tion algorithms), this algorithm does not prevìously 

determine if the pattern is la.zy or not: om algorithm works with any kind of patterns, 

generating a lazy code if the pattern is lazy an d even finding the lazy su bpatterns of a non 

lazy pa.ttern. A fundamental concept in arder to apply this subroutine is the concept of 

distinguisher of a pattern, which indicates ifa column of a list of patterns must be chosen 

to expand with it the algorithm. 

Keywor"ds: Functional Programming, Pattern Ma.tching, La,ziness, Compilation. 

l Introduction 

Pattern Matching ha.s been widely studied in the theory of Term Rewriting. This 

problem can be sta.ted as: given a.list of terms p1 , ... , Pn an d a term t, fin d whether 

t is anj11~ta..nce of any of the p;. The most stra.ightforwa.rd algorithm to solve this 

problem is checking i a.gainst ea.ch p;, but this solution is no t a.ccepta ble because the 

running time depends on the number of terms iD the lìst. Severa] algorithms have 

been developed to solve this prol:_Jle71_1moreeificient]y(see [H082], [Grii.91]). 

In this paper we restrict ourselves to the study of pa.ttern matching in the imple­

menta.tion of functiona.l programming la.nguages. In functiona.l programming, this 

problem has sou;:~-s·p-ecific fea.tures; ·f;r e~a.rnple, i t is usual to add some strategy 

in arder to decide which of the possible p; such tha.t t is an instance of p; is cho­

sen ( usually the first top~down). There are also specific algorithms ( see [Aug85L 

[V\Iad87], [La.vSS], [Sch88]) far functfOD.aT~rogramrning. 
But previous algorithms :;;~a1Ìy do n~t .de~l la:::iT)~es~s. Intuitively speaking, 

laziness means that a value is only computed when it is needed in order to evalua.te 

an expression. ~porger toknow whether a value matches apa.ttern,this must 

b~_e"lfaJ'l1<lcted. ~o head norrnal.for7T!. Then, a lazy langua.ge must takecare a.bout how 
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pa.ttern matching is performed, evaluating arguments as less as possible to determine 
if the argument matches the pattern. Nevertheless, a.lmost all the implementations 
of recent functional languages do not consider techniques which perform pattern 
matching in a lazy wa.y. 

In this paper we propose an algorithm with the following features: 
11> Each of the arguments is parsed at most once in order to determine which 

pattern matches (therefore, there is no ba~ktra.cking in the compiled code). 
® Side conditions, which may be very hard to evaluate, are just tried a.t most 

once, and only when it is not possible to distinguish by patterns. Previous 
algorithms usually do not dea.I with si.de conditions. 

® One expects, tha.t in a.lazy language, the order of evalua.tion over the argument 
structure is performed su eh that the function may diverge ( at this point) only 
if i t diverges with any order of evaluation. Our algorithm deals with this topi c 
(laziness), but in contrast with other algorithms ([Lav87, Lav88]), it does not 
previously characterize if the pattern is lazy or not (see definition 4). 

The remainder of the paper is organized as follows. Section 2 introduces prelim­
inary definitions. Section 3 gives the bulli of our algorithm for compiling functions 
defined by pattern matching. In Section 4 we introduce a subroutine, that combined 
with the previous algorithrn, keeps laziness. In Section 5 we give some outHnes for 
the implementation of the algorithm. Finally, Section 6 presents our condusions. 

2 Definitions 
Definition l Let E be a finite ranked alphabet which is the disjoint union of al­
phabets E, ~ = l:!:l .. eN En)· We consider a set of varia.ble symbols Ex such that 
Ex ç Eo. a E En means that a has arity n. The set of E-terms is defined in­
ductively as the least set such that ifa E E,., and t 1 , t 2 , ... , tn E E-terms, then 
a t1 t2 • · • tn E E-terms. Given a E-term t= a t1 t 2 · · · tn, we will denote t; by t[i] 
(for l ::; i::; n), and a by t[O]. Given x E Ex, x is denoted by x(O], while x[i] (i> O) 
denote fresh variables. $ 
Definition 2 A pattern is a tuple of E-terrns. We say that a pattern is linear if 
there is no variable which appears twice in the sa.me pattem. An instance of a 
pattem is a tuple of te.rms which ca.n be obtained from the pattern by replacing aU 
the variables by any values. Let u be a function which maps variables into terms. 
We call substitution the extension of u as a morphism from terms to terms. ~ 

Note that ifa term is an instance of a pattern, then there exists a substitution O' 
which yields the term as irnage of the pattern. From now on, when we consider lists 
of patterns, we will suppose that all the patterns (tuples) have the same length. 
Definition 3 Let [pt, ... , Pm] be a list of patterns. W e say that a tuple of terms t 
matches p;, if p; is the first pattern of the list su eh that t is an instance of p;. W e 
say that an algorithrn that decides if t matches p; exploring t (sta.rting from the root 
of each argument in t, and comparing the symbols encountered with the symbols in 
the corresponding part of the pattern) is a matching strategy. Note that, with this 
definition, there is at most one p; in P such that t matches p;. ~ 
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Definition 4 We say that a. matchìng strategy E for a list of patterns P is lazy if 
for any t such that E diverges exploring t, then any other strategy diverges exploring 
t. We say that a list of patterns P is lazy if there is a lazy strategy far P. ù 

Example 1 Let f and g be the functions that follow: 
f [ l [ l = expl g [ l [ l = expl 
f x y = exp2 g x y:ys = exp2 

There is no Iazy strategy for P [([],[]), (x,y)l. Consider the cali f (a1:a2) S1 
(where S1 is a divergent argument). If the evaluation starts with the first argument, 
the value exp2 is obtained, while if the evaluation starts with the second argument, 
a divergent computation is produced. But f S1 ( a1 :a2 ) diverges starting with the 
first argument, while starting with the se con d o ne, returns exp2 . 

On the other hand, there is a lazy strategy for Q = [([], []),(x, y:ys)l: the 
second argument is evaluated before the first one. Nevertheless, lazy functional 
languages like Gofer or Miranda give a divergent computation in the evaluation of 
g n (al:a2)· ~ 

Definition 5 VIe say that a. function is defi.ned by pattern if 
® Its definitìon is a list of triples (pattern, expression, side condition). 
"" Its 'i3.lue, when applied to an argument t, is obtained finding the triple (p;, 

expi, con;) such that t rnatches p; by a substitution 17 and con; holds for this 
substitution, and then evalua.ting the result of applying 17 to exp;. If there is 
no such a p;, then an errar rnessage is produced. ~ 

Definition 6 Le t P be a list of patterns [p l, ... , PmL w h ere pj = (Pjl, ... , Pjn ), an d 
let q = (qh ... , qk) be a pattern. The next notation will be used: 

[p;] i= I [pl, · · · 'Pnl # Var; Nun1ber of variables in Pii 
q ti q, #C; Number of root occurrences 
q li (ql, ... l qi-1, qi+l> ... 'qk) of the constructor C in Pii 
Pri (prli, · .. ,pnli) (column i) 
P Iv llhri, ... ,pniil C ansi {C; i #Ci =f O} 

ù 

Definit!on 7 Let P = [(P!:l, ... , Pkn Jl:=l· W e define the constructor selection func­
tion far a constructar C in column i (l :::; i :::; n), denoted by ì, as the function 
which satìsfies the following conditions: 

a. j:L.(#C; + # Var;) -'i l..rn 
a 1U) < ì(j + 1), Vj(l:::; j <#Ci+# Var;) 
"' P-r(j}i[OI E ~x U {C}, Vj(l::; j :'S #C;+# Var;), i.e. P-r(j)i is either a variable 

or a term t = C t1 · · · tk. ù 

Lemma l Given a list of patterns P, a constructor C an d a column i, the definiti un 
of ì for the constructor C in column i is unique. ~ 

---------------~----·- -- --------
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Intuitively speaking, given a column and a constructor C, 7 considers the terms 
which either have the constructor C in the root or are variables, pr~serving the 
ordering in the Est of patterns. 

Example 2 Let P= [(x:xs, y:ys), (x:xs, y:ys), (xs, []), ([], ys)]. Then, for ":" and the 
column 2, we have: 7= 1..3-+ 1..4, and 7(l) =l, 7(2) = 2, 7(3) = 4. For "[]" and 
the column 2, we have: T 1..2-+ 1..4, and 7(l) = 3, 7(2) = 4. ~ 

Definition 8 Let P be a list of patterns [(pk1, ... ,Pkn)];;'=J' We define the variable 
selection function fora column i (l ~i ~n), denoted by 7x, as the function which 
satisfies the following conditions: 

• 7x: 1..# Var; -+ l.. m 
• 7x(j) < 7x(j + 1), Vj(l ~ j < # Var;) 
• p7 x(j)i is a variable, Vj(l ~ j ~ # Var;). ~ 

Lemma 2 Given a list of patterns P and a column i, the defìnition of 7x for the 
column i is unique. ~ 

Definition 9 Let P = [(Pkl, ... ,Pkn)]k'=1 be a list of patterns and t = (ti, ... , in) 
be a tuple of terms. W e defìne the subpattern of P generai ed by t, denoted by St(P), 
as the list of patterns defined as: 

l. Ift/i(t; E l:x), then St(P) =P. 
2. If 3j(tj (j_ l:x), then St(P) = St•(P') where C= tj[O], r is the arity of C, 

s = # Varj + #Cj, t'= (t1, ... , tj-1, ij[l], ... , t5[r], ti+l, tn), and 
P'= [(P-r(k)l, ... ,P-r(k)j-I,P-r(k)j[l], · · · ,P-r(k)j[r],p'Y(k)i+l, · · · ,P-r(k)n)]ie=l ~ 

Lemma 3 Let P be a list of patterns, and t be a term. If St(P) is not a lazy list 
of patterns then P is not a lazy list of patterns. ~ 

3 The Algorithm 
In this section we pres~nt a forma] description of our algorithm. Our algorithm 
has a function defìned by pattern as argument and returns an expression which, 
considered as a tree, has in the interna] nodes a case clause over a simple pattern or 
an if clause over any of the si de conditions. The leaves of the tree are the expressions 
that defìne the function. 

Although the algorithm only works with linear patterns, it can be generalized to 
non linear patterns in the usual way, changing the repeated variables for new ones 
and adding an equality condition to the side condition. 

We will specify the algorithm as a function compile which has a function defìned 
by pattern as argument and returns the tree expression. 
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Definition lO Let f = [( ( Vki, .. . , Vkn) 1 expk, conk )]~1 be a function defined by 
pattern. We defìne the function compile as 

com pile f = mai eh ( UJ, . .. 1 un) f 

w h ere u1 , . •. 1 Un are fresh variables indicating the length of the patterns Vk. ~ 

The rest of the section is devoted to define the function match. This function 
is inductively defined 1 with the property that in recursive calls 1 the ordering of the 
triples in the origina] definition is preserved. We give a complete set of rules; some 
of them are similar to those in [Wad87] (Empty Rule, Variable-Column Rule) while 
others are specifìc for our algorithm. 

3.1 Base Rules 

There are two base cases: when the list of variables is empty (first argument), and 
when the list of triples is empty (second argument). 

When the list of variables is empty1 all the expressions are equally acceptable, 
because there are no patterns. We use the side condition in order to know which 
of the expressions is chosen. Tl1e algorithm must keep the order in the function, 
an d for this reason this case has to be compiled with a sequence if · · · elsif · · · else, 
finishing with a failure clause (used if no condition evaluates to true). 

Rule l (Empty Rule) 

match ( )[(( ), exp1, con1), (( ), exp2, con2), · · ·, (( ), expm, conm)] = 
if con1 then exp1 elsif con2 then exp2 · · · elsif conm then expmelse No Match~ 

Another base case appears when the list which defines the function is empty. 
That means that the pattern is not exhaustive, and a run-time error must be pro­
duced. This error is not a fault with a backtracking jump like in [Aug85], but indi­
cates that the function argument matches no pa.ttern ( considering si de conditions) 
in the definition of the function. 

Rule 2 (Fai] Rule) ma t eh ( u1 , .•. , Un) [] = N o Ma t eh 

3.2 Inductive Rules 

Now we consider the inductive cases. There are two rules which simplìfy the call to 
match, and another rule which is used if none of the previous rules can be applied 
(Default Rule). 

The fìrst rule can be applied when the first triple has a pattern only with vari­
ables. Then1 an if is generateci with the condition con1 , substituting the variables 
appearing in the pattern with the values (u1, ... , un), the expression exp1 in the 
then part (applying the same substitution) and, in the else part, the result of the 
rest of compilation. 
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Rule 3 (Variable-Row Rule) If vn, ... , v1n are variables, then 
match (u1, ... , un)[((vkl,· .. , Vkn), expk: conk)]};'=1 = 
if conl[u1 /vn, ... , un/vln] then expdudvn, ... , un/VJn] 

else ma t eh ( u1 , . .. , un) [( ( Vkl, . .. , Vkn ), expkl conk)]k'=z !j: 

The second rule is applied if there exists a column in the list of patterns such 
that only variables appears in this column. This can be solved by removing this 
variable, and then, performing a renaming both in the expressions and in the side 
conditions. 

Rule 4 (Variable-Column Rule) If there exists a column i such that all the terms 
are variables. then 

ma.tch (uJ, ... , u;, ... ,lln)[((vkJ, ... , Vki, ... , Vkn), expk, conk)]};'=1 = 
ma t eh ( U], . .. 1 Ui-1 1 Ui+l 1 • • • • Un) 

[( ( VkJ, .. . , Vk i-1, Vk i+l, ... , Vkn), e.rpk[u;/vk;], conk[u;/vk;])]};'=1 3j( 

If none of the previous rules ca.n be applied, then the Default Rule is a.pplied. 
This rule expands with a. column (the a.lgorithm which chooses this column will be 
presented in section 4). Intuitively speaking, if the i-th argument of the function is 
eva.luated enough to find a constructor in the root, then we can discard most of the 
patterns of the i-th column. We only ha.ve to consider the patterns which ha.ve the 
previously obta.ined constructor in the root, a.nd the pa.tterns which are variables. 
In the former case, the subexpressions of the argument still ha.ve to be compared 
with the constructor a.rguments, but in the la.tter this comparison is not necessary; 
in these triples, new varia.bles are needed ( according to the arity of the considered 
constructor ). This is shown in the following 

Example 3 Consider the call to the ma.tch function 
match ( u1, 1lz) 

[((x:xs, y:ys), 
((x:xs, y:ys), 
(( xs, [l ), 
(( [], ys ), 

x: merge xs (y:ys), 
y: merge (x:xs) ys, 

.rs, 
ys, 

x:::; y), 
x> y), 
true ), 
true )] 

and suppose that the second column is chosen to expa.nd with. The case expression 
has two entries: one for "[ ]" an d another one for ":". In the first entry, the third 
triple (since it has "[]"in the root) and the fourth one (because it is a variable) are 
placed. The first, second and fourth ones a.ppea.r in the second entry. The result is 

case u 2 of 
[] =? ma.tch (u 1 ) 

[((.rs), .rs, true), 
(([]), v. 2 , true)] 

w1:wz =? ma.tch (u1, wl, Wz) 
[((x:.rs, y, ys), x: merge xs (y:ys), 
((x:xs, y, ys), y: merge (x:xs) ys, 
(( [], O'J,O'z), Uz, 

where w 1 , w 2 , a 1 , a 2 are fresh variables. 

x:::; y), 
x> y), 
true )] 
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Rule 5 (Default rule) If the column i is chosen t o expand with, then 

w h ere 

ma.tch (uh ... , u;, .... un)[((vhl, ... , Vki, ... , Vkn), e.rpkl conk)]~1 = 
case u; of 

Cl­
W] 

crwr =? ma.tch (ul, .... U.i-1, Ui+l, ... l un)* Wr 

[ ( v,.r Ji * ( V-yr 1 [l], ... , v~r i [ nr]), e.rp~r, con~r Jlk':._1 k k 'k 1k 'k -

otherwise =? mai eh ( 1!1 , ... , u;-1, Ui+l, ... , Un) 

Cons; 

·yb' 
Ìb 
n a 

con; = 

[( V-1~ li, e1p'Y[ [u;jv'Y~ ;], C011-,Jdu;/v'Yf ;])]!;:1 

{C\C2 •... ,Cr}, sx=#Yar,, s"=sx+#Ci (l::=;a::=;r) 
!(b), where ì is the selection function forca in column i ,x (b), w h ere ,x is the varia.ble selection function for column i 
a.rity of the constructor ca (l :::; a :::; 1') 

1 
e.rpt , if-,1far(Vti) 

exp1 [ u;j V t i] otherwise 

cont if-,1fa7·(vii) 
cont[u,fvt;] otherwise 

an d for a.ny a, b su eh that l :::; a :::; T, l :::; b :::; s", an d such that v'Yb' i[ O] E I: x (i.e. 
v,;: i is a variable ), v,., i[ l], ... , V-yb' ;[na] are fresh variables. With this condition we 
ensure that patterns remain linear and that there is no name capture. ~ 

Note tha.t if any Vki is a variable, then there is an occurrence corresponding to 
the k-th triple, for every entry Cjwj, and another one ìn the otherwise cla.use. The 
otherwise clause is used for the constructors which do not appear explicitly in the 
case expression. For this reason, if all the constructors of the type of the column 
1: are in Cons; (i.e. column i is e.rhaustive ), the otherwise clause may be removed 
(as in Exa.mple 3). A consequence of the Default Rule is that one expression may, 
appear in different places. In Section 5, we show how a code without repetitions can 
be generateci. 

The compilation to a virtual machine of the case expression is usually clone using 
a table of memory directions, which is indexed by the type constructors. 

4 Choosing a good column 

In the previous section, we have not given an algorithm which selects a column to 
expand with. Now, we give an a.lgorithm that selects these columns keeping laziness. 
The idea. is to find the columns which must be (necessarily) evaluated to determine 
ifa term matches a pattern. Next, we introduce the concept of dist?:nguisher. 
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Definition 11 Let P = [p1, ... ,pm] be a list of patterns. We say that p, with 
l :S: i :S: m + l (for convenience Pm+l will be a pattern only with variables ), is a 
distingU7:sher of P, if t h ere is a tu p le of terms t which is an insta.nce of p, an d su eh 
that it is not. an instance of any Pj for l ::; J < i. We say that p; is a distinguisher 
of P for the column J if p,]J is a distinguisher of PI) and p;j is a variable. :{;: 

Let us remark that there exists a distinguisher for a. column which only has con­
structors in the root iff the rest of the columns are not exhaustive. This distinguisher 
would be in the row m + l, because there are no variables in that column. 

Lemma 4 Let P be a list of pa.tterns. P ha.s a ma.tching strategy not evaluating tj 
in a list of arguments t= (t1, .... in) iff P has a distinguisher for the column J. 
Proof: Let t be a.list of arguments such that it is not necessary to evaluate tj, and 
!et p; be su eh that t matches p;. Then. Pij must be a vari ab le; otherwise tj would 
have to be eva.luatecl in orcler to know whether it coincides with the constructor. 
Also, tbe fact that t cloes not match any Pk with k < i implies that ti) does not 
ma.tch a.ny Pki) with k < i. Thus, t]) is the instance that makes p; a clistinguisher 
of P for the column ). 

Now, suppose tha.t p; is a. clistinguisher of P for the column J. Then, Pij is a 
va.riable and there is an instance t of p;J) which is not an inst.ance of Pki) (for a.ny k, 
l :S: k < i). Then. a strategy which checks if an argument coincides with t in every 
column but in the j-th, is a stra.tegy which cloes not eva.luate the j-th column fo~ 
the insta.nce t. 

Lemma 5 Let P be a la.zy list of pa.tterns, a.nd J be a. column which has a clistin­
guisher. Then, a. lazy stra.tegy cannot expand with column j. 
Proof: Let t = ( tr, . .. , t n) be a list of terms su eh that tij is the instance with whom 
p; is a distinguisher for the column J. Then, there is a. stra.tegy [ that cloes not 
evaluate the column J when is applied to an argument a su eh that ah = tlj. Thus, 
this stra.tegy does no t diverge w ben the a.rgument a = (t 1 , .... tj-l, D, tJ+l, ... , t n) 
is applìed. Easily follows that a la.zy stra.tegy does not diverge when the argument 
a is applied, an d thus i t can no t be possible t o expa.nd with the colnmn J. $ 

Definition 12 We define the set of adm.issible colum.ns for a list of patterns P, 
denoted A(P), as the set of columns which have not a. distinguisher. :{;: 

Corollary l Let P be a lazy list of pa.tterns. Then .A(P) is not empty. .(t; 

This corollary gives a. necessary conclition for a list of patterns to be lazy. The 
following example shows that ''.A(P) i 0 =? P is a lazy list of patterns" (the 
reciproca! of Corolla.ry l) do es no t ho! d. 

Example 4 Consider P= [([],[]),([],y:ys),(:r:xs,[]),(x:[],y:[]),(:r:xs,y:ys)]. p is 
exhaustive and a.ll the terms have constructors in the root. Then, both columns 
are admissible ones (a.nd thus .A(P) i 0). But the subpattern corresponding to the 
term (adr, a2:b2) is [(x, [ ], y, [ ]), (x, :es, y, ys)], ancl (a.s we sa.w in function f of 
example l) t h ere is no lazy strategy for matching ( b1 , b2 ) with [ ([], []), ys) ]. By 
Lemma. 3, P is not la.zy beca.use it ba.s a. subpattern which is not lazy. $ 
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Lemma 6 Let P be a lazy list of patterns a.nd let A= .A(P). Then, for any i E A, 
there is a lazy strategy that expa.nds with the column i. 
Proof: P is lazy implies that there exists a lazy stra.tegy E for it. This stra.tegy 
must expand with any of the columns in A (Lemma 5). Suppos'e that i E A is chosen 
to expand with, and consider j E A such that j i i. We know that [ always has to 
evaluate the column J. Then, we con si der a strategy which inter·changes the points 
of evaluation of i an d j. Obviously, this strategy is al so lazy. :{;: 

Corollary 2 Let P be a lazy list of pa.tterns. A pa.ttern strategy is lazy iff this 
strategy expands with a column in .A(P). :{;: 

After corollary 2, we can give our algorithm to choose a column to expand with. 

Algorithm (Choose a column to expand with) 
Let P be a lisi of patterns, and let A be the sei of admissible colurnns. lf A i 0 we 

ch.oose any one in the set A. lf A = 0 we choose any column (that means that the 
lisi of patterns is noi la::y). (; 

This algorithm chooses a column keeping laziness (Lemma 6), and if the list 
of patterns is lazy, this choice gives a lazy strategy ( Corolla.ry 2). As we showed 
in Example 4, the idea of aclmissible colmnn represents a. characterization of local 
lazìness over a part of the a.rgument tha.t it is been explored. Thus, our algorithm 
can isolate the p art of the pattern w h ere the problem (no laziness) a.ppears, an d i t 
can compile the rest of the pa.ttern in a lazy way. 

Example 5 We will show that in Example 3 the seconcl column is chosen by our 
algorithm. We must show tha.t the second column is an a.dmissible one, while the 
first one is not. This fa.ct is because there is a clistinguisher for the first column in 
the third row: the instance ([]) gives us the result. After third row, the first column 
is exha.ustive a.nd that is why it ca.n not be any distinguisher for the second one . .(t; 

Theorem l Let P be a la.zy list of pa.tterns. Then, the algorithm in the previous 
section, para.meterized with the algorithm above to choose a column, gives a lazy 
matching stra.tegy. 
Proof: The proof is clone by induction over the rules of the algorithm. The base 
rules (Empty Rule an d Fa.il Rule) give a la.zy stra.tegy be cause they do no t perform 
any decision over the list of patterns. The result for the Variable-Row and Variable­
Column rules is immediate by induction, since none of tbem evaluate a.ny argument. 
The proof of lazìness for the Default Rule can be clone using Lemma. 5 and by 
~~~=. (; 

5 Impleinentation 

In this section we dea.! with some details of the implementation of the algorithm. 
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5,1 Calculation of t.he set. of admissible columns 

First, we suppose that all the columns are admissible, and for each column, we create 
a. se t o~ instances ( initially em pty). W e go top-down over the list of patterns, Jooking 
for vanables and updatmg the set of mstances of each column with the instances of 
the r_:_est of the pattern (for the pa.ttern p, a.nd the column J·, the rest of the pattern 
1s p;IJ )._ ~f one vanable 1s found in one of the columns, which belongs to the set 
of adr_mss1ble column_s, we determin~ if the rest of the pa.ttern is a distinguisher 
fo~ th1s column (lookmg a.t the a.ssoc1ated set). If it is a distinguisher, we remove 
t~1s column from the set of admissible ones and we forget the associateci set (which 
WJII not ~e needed any more). We repeat this process until the end of the list of 
pa:terns 1s reached or the set of aclmissible columns is empty. The update of the set 
of mstances can be clone by reqJLest instead of doing it for every pattern in the Jist 
of patterns; that is, the update is clone only when a varia.ble is found. 

5,2 Improvements to t.he efficiency of the algorithm 

Increasing the speed of the algorithm can be clone when the Default Rule has to 
be applied. If there is a column which only has constructors, and the rest of the 
:olumns are exhaustive, then this column can be chosen keeping laziness, because 
1t WJI! be m the set of admissible columns. This is very effective a.nd it is presented 
~ery often; for example, this technique can be applied to all the examples presented 
m [Lav87, Lav88]. 

When the set of admissible columns for a list of patterns has been calculated 
the problem_ i~ ~hich of them is chosen. The next heuristic rule can be applied 
to locally mmnmze ~h~ n_umber of steps that the algorithm must perform: choose 
the co_lumn wh1c_h mm1m1zes the number of constructors multipliecl by the number 
of :anables. Th1s rule tries to expand as less as possible the patterns which bave 
va.nables, leavm_g t~e probl:m as small as possible. In a similar way, this beuristic 
r~le can be apphed lf there 1s no admissible column. Another technique is to expand 
w1th ~]] the admissible columns, and calculate the set of aclmissible columns for the 
new hst of patterns. With this technique, we get that some calculations, which 
would be clone severa] times, are clone only once. 

5,3 Duplication of code 

Obviously, the code duplication is solved, sharing the expression amon"' the dif­
ferent bmnches in the case tree where the same code appears. Let T b~ a. triple 
(patt, exp, con), such tb~.t one ~f the terms_in patt is a variable x, and Jet us suppose 
that the Default Rule JS apphed, expandmg with the column where this variable 
appears. T_he expression exp, after a renaming of x given exp', w i !l be in a branch 
correspon~mg to each constructor (or otherwise ). A Iso, x is replaced in patt by 
n new van~bles x1, · · ·. Xn, where n is the arity of the constructor. But none of 
the new vanables appears in exp', and that means that anv substitution over them 
does not modify exp'- Only the changes over the rest of th~ pattern may modify it, 
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but always in the same form. Thus, a.ll the leaves in the case tree which bave as 
associated expression exp, after doing al! the necessary substitutions, will bave the 
same expression and the sharing will be total. 

But it still remains the problem that the number o{ new variables x; depends 
on the constructor in which exp is placed, a.nd thus there are an amount of useless 
bindings for exp which clepends on the brancl1 where the expression exp was placed. 
This can be solved by adding a small code that reorga.nizes the bindings, or by 
compiling the cxpression in such a way tl1a.t i t can dea] with these problems. Anyway, 
it clepends on the mode] of machine in which the compilation is clone. Also there 
exists the same problem for the code duplication for side conditions, but usually 
these codes are very small, ancl duplication can be better than sharing. 

Related Work 
In the framework of functional programmi.ng, the fìrst proposed algorithms are 
[Aug85] and [ìil/acl87]. They give a. set of rules to compile functions defìnecl by 
pattern. Some of our rules in section 3 are similar to those in [Wacl87]. The dif.· 
ference is that we bave a defa·ult rule while \Va.dler's algorithm has severa! rules to 
distinguish clifferent cases. The mai n advantage of our algorithm ( out of laziness) 
with respect to [Aug85] and [Wad87l is tha.t ours has not backtracking in the com­
piled code (and thus ea.ch argument is parsed at most once). Wadler's algorithm 
has been widely used (for instance in Gofer). 

[Gra91] presents a theoretical characterization of an algorithm. The generateci 
code is equivR.lent to ours if we woulcl always expand with the fìrst column in the 
default rule (i .e. without taking care about laziness). 

[Sch88] gives an algorithm that works with restrictions in the types. That means 
that it can compile functions defìned over subtypes of a given type. 

The algorithm proposed in [PB85] performs the match bottom-up. Our algorithm 
cannot work in this way, since a bottom-·up strategy requires the "\Vhole evaluation of 
the expression that it is been matched, ancl this is against our objective of keepìng 
laziness. Because the match is performed bottom-up, it can not work with infinite 

objects. 
In [Lav87] a characterization to know whether a list of patterns is la.zy or not is 

given, but i t is very complex and it has a difficult implementation. [Lav88] presents 
an algorithm (based on [La.v87]), that simplifìes that characterization, but it stiD 
needs to evalua.te if a list of patterns is lazy. vVith our algorithm i t is not necessary 
to do this characterization previously (which can be very hard to do) because it uses 
a set of complete rules which will fine! a lazy strategy (if there exists one). Even if 
there is no lazy strategy, the' compi led code will be better than the one generateci by 
the algorithms in [Gra9l] or [Sch88], because we can use the local laziness of some 

su bpatterns. 
[SRR92] shows that there exist patterns which produce an exponential (in size) 

tree for any possible strategy. In a recent work, [Mar94] studies lazy algorithms 
but using backtracking. This a.pproach have some problems, because there exist 
patterns such that the ma.tch leads to a sequential checking. 
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6 Conclusion 

In this paper we have presented an effective algorìthm for compìlìng pattern matcb 
ìng in functìonal programming languages. Thìs algorithm has a complete set of rule 
to obtaìn a code that has no backtracking and that explores the arguments as goo< 
as possible in order to preserve lazìness. These rules are easy to implement and allm 
a great variety of adjustment which can improve the generateci code. We think tha 
this work method is suitable for this kind of problems and it allows to refine th 
quality of an algorithm to contain new characteristìcs. In fact, our ìntention is t< 
extend the algorithm so it can compìle functions that are applìed on a subset of it 
type ( as i t is don e in [Sch88]). 

Another advantage of working with a sequence of rules, opposi te to give charac 
terizations (as in [Lav88] and [Gra9l]), is that in spite of the fact that the problen 
does not fulfill the property we are chara.cterizing, the rules can be applied to piece: 
of i t. Moreover, i t is clone wìtbout searching these pieces but applying tbe best pos­
sible rule in any moment. For instance, there are many patterns whìch are not laz} 
because of a small part of the parameters: i.e. there are certain arguments that haw 
to be evaluated following a fixed ordering and there are others for w horn thìs order­
ing is not necessary. An algorithm of characterìzation will discard these patterm 
whereas an algorithm of rules will be able to find most of this arrangement. 
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Abstrad In this paper. we describe a Prolog implementation of a new theorem prover 
for (nom1al propositional) moda! and multi-modallogics. The theorem prover, wl11ch !S 

called A E Af. arises from Ùle combinalion of a classica! refulation system wh1cl~ mcorpo-
t · t d (_"analyt1· r") version ofthe eu t rule with a l abel fonnahsm whJCh allows for rates a res ne e ~ · ~1 · 1 

a specialised. Jogic-Dependcnt unification algorithm. An essenti al fea:ure of J, E J 1 JS t 1~t 
il yields a rather sìrnple and effìcient proof search procedure whJch offers many computa-, 
tional advantages over the usual tablcau-based proof search meili~ds. Thi~- !S due partl;, 
w the use of 1inear 2-premise (3 rules in piace of Ùle branching /J rules or tl1e standard 
table.au meillod. an d partly to the crociai ro!e played by the analytiC eu t (the_ only brar1Cll­
ing rule) in climìnating redundancy from the search space. Ii tums out illat A EJ\1[ meù10d 
of~proof scarch is not only computationally more effìcient but also mtmtrvely more natu­
ra! Ùlan other (e.g. resolution-bascd) metbods leadìng to sm1ple and eas!ly 1mplementable 

, d res (two li' E M Theorem Prover-like systems h ave been 1mplemented: an LPA m-
proce u . 11. 1 k 1 el! 
terpreter on Macintosh, an d a Quintus compiler on Sun-Sparcstauon) w !C 1 ma ·e l Vv 

suited for efficient automated proof search in modallogics. 

1 KEivi 

· bl 1·1, od al proof systern based o n D'Agostino ],- EM [AG94. Gov95lls a ta ea~=--~::tòl!l . , __ , .. , · _, -- -;;; _, .. , ,' ··- · ·· f 
an d Mondadori's [Dl\IJ9tTfc{às.§~ic(l_!_refutatiQn,sy_stc:I11, 1 h e basiC feature o 

]{ É~~![is thatit uses ]{E rules in combination with ~ label umficatlOn schem;~ 
constituted of (l) a l abel formalism •. and (~) a speCl~hsed, loglc-cle\endent un= 
fication algorìthm. The la bel formahsm anses from two (non empty J sets ili c 
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{wl, w2, · · ·} and <:l> v = { W1, vV2, · · ·} respectively of constant and vmiable world­

simbols through the following definition: a world-label is either (i) an element of 

the se t <:l> c, or (ii) an element of the set <:l> v, or (iii) a path term ( k', k) where (iii a) 

~: E <:!>c U <:!>v and (iiib) k E <:!>c or k = (m', m) where (m', m) is a !abel. Intu­

Itlvely, we may think of a !abel i E <lì c as denoting a (given) world, and a ]abel 

z E <lìv as denoting a set or worlds (any world) in some Kripke mode!. A Iabel 

z = ( ~', k) may be viewed as representing a path from k to a (se t of) world(s) k' 

access1ble from k (according to the approp1iate accessibility relation. Por m1y !abel 

i = ( k:, k) we s~all cali k' _the head of i, k the body of i, and denote them by h( n 
and b( z) respectrve~y. Notrce that these notions are recursive: if b( i) denotes the 

body o~ t, then b( b( z)) will denote the body of b(!:), b(b( b( i))) will denote the body 

of b(b( z) ); and so on. We shal~ cali each of b( i),b( b( i)), etc., asegnzent of i. Le t s( i) 

denote any segment of z (obvwusly, by definition every segment s( i) of a la bel i is 

a label); then h(s(i)) will denote the head of s(i). For any Iabel i, we shall define 

the length of i, l( i), as_ the number of world-symbols in i (obviously l(s(i)) will 

denote the Ienght of s( z )). W e shall cali a label i restricted if h( i) E <lì c, othe1wise 

we shall cali it unrestricted. 

. K EA!'s !abel unificarion scheme involves two kinds of unificarions, respec­

u_vely "h1g~" -~d "low" ~nifications. "High" unificarions m·e meant to mirror spe­

cific accessJbihty constr·mnts. They are used to build "low" unificarions which ac­

~ount for ~e full range of conditions governing the appropriate accessibility rela­

twn. L~t ::s denote the set of labels. A subsritution is defined in the usual way as 

a functron <lì v ---+ 8'- where 8'- = 8' - <:l> v. Por two Iabels i, k and a substi­

tution (), if () is a unifìer of i m1d k, then we shall say that i and k m·e ()-unifiable. 

We s~all (somewhat unconventionally) use (i, k )() to denote both that i and /,~ m·e 

()-umfiable and the result of their unification. On this basis we can define severa! 

specialise~, logic--dependent notions of ~"high"( or ()L-) unification. In pm·ticu­

Im·, the notlon of two Iabels i, k being ()1' -,()D-, and ()T -unifiable is defined in the 
following way: 

(i,k)aK (i,k)a ~ 

(i, k)aT 

(i,k)()T 

(i) at least one of i an d k is restricted, an d 

(ii) forevery s('i), s(k), l(s(i)) = l(s(k)), (s(i), s(k))aK 

(i, k )a 

(s(i), k)a ~ 
l(i) > l(k), and 

'<ih(s(i)): l(s(i)) 2: l(k), (h(s(i)), h(k))a = (h(i), h(k))a or 
(i,s(k))a ~ 
l(k) > l(i), and 

'<ih(s(k)): l(s(k)) 2: l(i),(h(i),h(s(k)))a = (h(i),h(k))a. 

In .what follows .we shall concentrate on ]{ EM method for dealing with the B 

log1cs. To deal w1th these logics we need an appropriate notion of "reduction" of 
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(intuitively something like the deletion of "inelevant" steps from the path repre­

sented by) a label i. Formally, the B-reduction, rs(i), of a label i is defined t(~ be 

a function r0 : 8'--+ 8' determined as follows: 

l b(b(i)) 
7's(i) = 

(h( i), rs(b(i))), 

i unrestricted an d either l (i)) ::; 3 or 

b( i) restricted 

i restricted 

The notion of () "lo w" (or ()L-) unification for the B logics (L = K B, D B, B) 

can now be defined as follows: 

. . K . . D c· ) { (rs(i,k))crD 
(z,k)aKB = (rs(z,k))a (z,k)ans = (rs(z,k))a z,k as = (rs(i,k))aT 

where r B (i, k) denotes either 7'B (i) or r s( k) or both. 

The full set of K E M inference rules is constituted of (i) l-premise a rules 

(the farniliar linear branch-expansion rules of the tableau method) and the usual 

v and 1r rules for the moda! operators (see Alpha Elimination, Ni Elimination 

and Pi Elimination in the I< EM Algmithm Representation below); (ii) 2-premise 

(linear) (3 rules (see Beta Eliminati an below); and (iii) a O--premise branching rule 

called P B (for Plinciple of Bivalence) which plays the role of the cut rule of the 

sequent calculus (see PBl and PB2 below). Labels are manipulated, according 

to these rules, in such a way that (l) in ali inferences via an a rule the label of 

the premise carries aver unchanged to the conclusion; (2) in ali inferences via a v 

and 1r rule the label of premises is "updated" to an extended new (unrestricted or 

restricted) label; (3) in ali inferences via a f3 rule the labels of the premises must 

be ()L -unifì.able, so that the conclusion inhe1its their unification; and ( 4) for the K 

Iogics, P B is applied only to already existing restricted Iabels. Closure of a branch 

follows from the occurrence of a pair of complementary formulas w ho se labels m·e 

()L-unifìable (let us cali them aL-complementary). 

2 · Implementation 

In this section we will b1iefty consider two main problems mising from the Pro­

log implementation of K EM. These problems are: (l) I< EM's label unifìca­

tion scheme has some idiosyncratic features; for example it does not allow a vm·i­

able to be substituted to another variable; and (2) I< EM rules are essentially non­

determin!stic; in pm·ticular, P B is not an ana/ytic rule. 

The well-known difficulty to handle vmiables in lists and terms in Prolog, on 

one hand, and the unification theory and the necessity of recursively generating 

new costants and vmiables, on the other, have made necessary to define constants 

and variables as functions ofthe form w( N) and vw(N). Thus K EM Interpreter has 

<lìc = {w(1), w(2), w(3), ... } and <:!>v = {vw(1}, vw(2), vw(3}, ... }. The labels are 

defìned as binary te1ms. Let us considera K .ÉAflabel ( w4, (W3, ( w3, (H!2, w1))) ). 
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Its 11 EM Interpreterequivalentis i(w(4),i(vw(3),i(w(3),i(vw(2),i(w(i ),w(i )))))). The 
unifìcation theory is completely redefìned without using the built in Prolog pred­
icate "unify". Labels aie treated as binaJ)' terms and (i,lc)O", (i,k)O"L, (i,kkL and 
rL(i) 31·e defined, using functor and arg, as ternaJ·y predicates, where the first and 
the second 31·gument are and the third is their unification. (For a complete de­
scritpion of ]{ EM ProJog implementation see [Cat95]. The lnterpreter is ftp avail­
able at ftp.cin'id.unibo.il.). 

The A Eli1-Prolog 1nterpreter has been based on the notion of a canonica] (de­
terministìc) ]{ EM-tree, see [AG94, Gov95]. A Il El1f-tree is said to be canoni­
ca! if it is generated by applying the rules of ]{ EM in the foiiowing fìxed order: 
fìrst the l-premise rules, then the 2-premises rules, and finally the O·premises rule 
(P B). As proved in [AG94, Gov95] a h' EM-tJ:ee is closed iff the conesponding 
canonica! !l Eli1-tree is closed, and canonica! A. E!~f -trees terminate. No­
tice that in a C311onical R.' EM-treee P Bis applied only to unanalysed or unfulfi!!ed 
/3 formulas (see Beta Eliminatim1 below). "n1ìs allows much of the characteris­
tic redundancy generated by the standard tableau branching rules to be elimìnated 
from the search space. 

The basic data structures ([DP94, PC94]) are provided by two sets .6., 1\ of un­
analysed and analyzed formulas respectively, In Prolog .6. and A 31·e lists. The 
Interpreter starts with the list .6. of input formulas and A = 0, and simulates the 
rules of l{ E M by 311alysing an d moving formulas from .6. to A. Each rule applica­
tion produces subformulas which are ad d ed to .6.. The rules of ]{E M are applied 
until 311 application of the branch--dosure rule (see Closure belo w) succeeds or .6. 
is empty. In the first case r is closed an d unsatisfiable, in the second r is completed 
and satisfiable. The ]{ EM algmithm runs as follows. 

KEM 

.6. is the list of the umnalysed formulas, A is the list of the analyzed formulas, 
"Labeltree" is a lisr of the generated labels, x denotes a closed branch 

Ana!yse Utend: '1 p E =c> .6. -- p, J\. U p 

Ciosure: ? X, i an d _yc, k E 1\. 

? (i, k )crL =='? 

Ni Elimination: 

Pi Elimination: 

x 

? 1/, ,; E 2.\ =-~ 

generate a new unrestricted l abel ( 1:', ·~) 
ad d (i', i) to Labeltree 
6 -- )J, i 
.6. U v0 , (i', 1:) 
A u u, i 

? ìi, i E .6. =='? 

generate a new restricted l abel (i', i) 
add (1:', i) to Labeltree 
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.6. -- 'li' 1: 

.6. u Ko, (i', i) 
i\ lj 'li' i 

A!plla Elirnination: ? a. i E .0. ===> 
.6.--a.i 

'"""' lj (l'l' i lj a2' i 
.\ U a. i 

Beta Elimination: ~(3,iE6 

? (Jf, k or af, k E .6. u A 

~(i. k)crL ===> 
'"""' -- ;3' i 
6U i3f,(i.k)crLorf3f,(ì,k)O"L 

AU(3,i 

PBl:? /3,.i E: .6. 
? not(,i3f, k : (i, lc)O"L) E .6. U A 
?(i, m)crL 
(m is a restricted !abel in Labeltree)==> 

branchl and branch2 

.6.- ;],i .6.- l 

.6. U (31, m 
AUf],i 

PB2.:? (3,.i E .6. 
7 not(f3f: k, (i, k)O"L) E .6.U J\. 

?(i,.m)crL 

.6.U ,n1.U(3,i 

(m is a.restricted !abel in Labeltree)==> 

branchi' 
.6.-iJ,i 

and branch2 

.6.U 62, m 

J\. lj (3' i 

Moda! C!osure: ? X, i and xc, k E A 
7 not (i, k )cr L 

.0.- (3, i 

.0. U ;3f, m U j3, i 

? m E Labeltree, (m is a restricted !abel) 

?(?:,m)O"L 
? (k, m)crL =='? 

x 

. ·· """ · , "]11·dden" application of P B to the the !abel which unìfies JVIodal '~GlLO&w-e 1s an · 
with both the labels of the O"L-complementaJ·y formulas. . . . 

n.r - ~" d b show1·11 a the J{ EM Prolog output of the charactenst1c ax10m v" e conwu e Y , b 

Gl:tB, iocr. p--+ DOp . 

,, kem(b,, c- (p-> $ (@ p)) l) 

[i(w(l_), w:H)); - (p-> $ (@ p) l l 

alpha eiimination 
[i(w.(l),, w(l)) p, i(w(l), w(l))·•- ($(@p))] 
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literal 
[i(w(l), w(l)):- ($(@p))] 

pi elimination 
:i(w(2), i(w(l), w(l))):- (@p)j 

ni elimination 
[i(·vw(l), :'..(w(2), i(w(l), w(l)))):- p] 

literal 

Ì(\'Wil),i(w(2),i(w(l),w(l)))):-p, i(w(l),w(l)):p unify in b 

unsatisfiable in b in 10 rnsecs 
N l yes 
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Albrtract. The integration of logic and functional programming leads to new concepts 
soch as relational programming and unknowns. Relational calculus can be considered as a 
ge:neralization of functional calculus. A relational expression evaluates to several results 
it:ns~ead of a single one as it is the case with a functional expression. The results are 
p.rr?0'AÌuced in a stream-like manner : when a result is computed, i t is immediately passed to 
t!h·e continuation and the next result is computed only when the continuati an is completed. 
Thlls, a relation c an virtually ha ve an infinity of results. The unknowns are basically logic 
pmgramming variables. They are used to denote objects which values are not known at 
the beginning of a computation. We have designed an implementation of logic 
programming with SLDNF semantic based on a translation from Jogic programs to 
rdational programs with unknowns. In this framework, it appeared natura] to try to 
'nndle constraint programming in our system. We show that the unification of two 
.. Jbjects containing unknowns can be regarded as a constraint on these unknowns and that 
rut :solving mechanism can be coupled with the unification mechanism to allow the 
J!1esolution of constraints in a very natural way. Therefore, we obtain a relational system 
'Which is as powerful as a constraint logic programming system. Moreover, the constraìnt 
s«JJlving mechanism is written in the relational language itself in order to bypass ali the 
p::rublems resulting from an extemal solver in a non-deterministic environment. This 
aUows efficiency and flexibility. Any customized solving algorithm can be programmed 
tills way. The real novelty of this artide is the way the algorithms are implemented. 
Kteywords. logic programming, functional programming, constraìnts. 

O - Introduction 
V\te give a brief and intuitive presentation of the concepts involved in this artide: relations 
ac, :Rl generalization of functions, ho w to compute relations, unknowns an d constraìnts. 
Relations. Computing using relations instead of functions is not entirely new, it has 
ibeen introduced in [1,4,5,9,10,17,19,22,24,25]. A very efficient implementation was 
given [18] in the framework of the variableless functional programming language 
Gnal [2,3]. [4,21] ported the concepts and the implementation in a Lisp environment 
n;m~ed Miles. The idea was to provide some kind of oriented logic programming. If we 
considera unary function f, it can be described by its graph F={ (x,y) l y=f(x)}. It has the 
property that if (x,y)EF an d (x,z)E F then y=z. If such a set of pairs R does not ha ve this 
pmperty, it defines a binary relation r(x,y) by r(x,y)<=> (x,y)E R. Through a 
computational view, we have four possible processes: given some xo and yQ, check 
whether r(xo,yo) holds ; given some xo, find all the y such that r(xo,y) holds ; given 
some yQ, fmd all the x such that r(x,yo) holds ; find ali the x and y such that r(x,y) 
hoìds. If the set R is not finite, these processes may give rise to infinite computations. 
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Computing relations. Relational programming's aim is to describe and compute such 
processes. The basrc rdea rs to grve tools to specify functions that may have any number 
of results, even an enumerable infinity. This is done by introducing a new functional 
form (results A B). This form splits the evaluation into two processes. The results of thìs 
expresswn are the results of the evaluation of A followed by those of the evaluation of B 
The joint use of this form and recursion may yield an infinity of results. The results ar~ 
computed one at a time and immediately given to the continuation in a strearn-like manner 
Unknowns. This sentence is true for all N whatever the truth of "N is even" is. But K 
denotes a hypothetic value that exists only if "N is even" is true. This sentence could be 
more formally rewritten in a logìc syntax as: 'v'N, "N is even" <= ::JK 1 N=2.K. 
Provmg "214 iseven" means finding K such that 214=2.K. From a computational point 
of vrew, the varrable K exrsts a t the beginning of the computation an d continues to exist 
untrl the computation finds its value. Such a place-holder has been added to our relational 
programming system under the name of unknown. An unknown is the denotation of an 
object that is no t lrnown. It exists unti] the value of the object ìs determined. 
Unification. Unknowns are the relational counterpart of variables in ]oCTic 
programming. Our system has a unification algorithm desìgned as a functi'on 
(umfy A B) that tries to unìfy A and B by gìving values to the unknowns they contain. If 
rt succeeds .• the unknowns are valued to malce A an d B syntactically identical. If i t fails, 
the evaluatwn pr?cess in which the unification appears is simply aborted and produces no 
result. The umfrcatwn algorithm is classica! [23], it is the only way to valuate an 
unknown. 

Frozen expressions._ One of the most obvious problems of our system is that 
functwns can be apphed to non-ground arguments, i.e. arguments which contain 
unlrnowns. Many cases occur but an interesting one is ( + *u l) where *u is an unvalued 
unknown. This cannot lead to an error because the unknown may be valued Jater with a 
numencal value. Thus we decide that the result is a frozen expression denoted as 
#F( + *u 1). The frozen expression will be computed as soon as the unlrnown is valued 
Consi:raints. If w e unify a frozen expression sue h as #F( + *u 1) with the value 9 v.;e 
generate a constraint on *u, namely that *u can only be valued with g to pres~rve 
coherence. The system should be able to deduce. Further, we could imagine that a frozen 
expressron #F( + *x *y) is unified with 12 and that #F(* *x *y) is unified with 6. This 
cannot be handled by the unification since the solution can only be found by a global 
solvmg techmque. That rs where we need to introduce constraint solving methods. 

l - The rtlational system Miles 
Miles is. based o n Common Lisp [26]. It is extended by the concept of relation. A 
relauon 1s a functwn that can deliver zero, one or more results. These multiple results 
should not_be confused with the multiple value results of Common Lisp. A result may be 
the collectron of a fmrte number of values but a relation can ha ve any number of res~lts, 
even an mfimty. 

The form res~lts. The form (results A B) allows to specify multiple results. The 
evaluatwn of thrs forrns retums the results of the evaluation of A followed by those of the 
evaluatwn of B. Of course, ifA has an infinity of results, the results of B will never be 
computed and delivered. Example : ? (results 1 2) ~ 1 ~ 2. The forrn results can have any 
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number of parameters. If i t has no parametec then i t has literally speaking no result. W e 
say that the computation branch fails. Example:? (results 'a (results) 'b)~ a~ b. 

semantics. The results of a relation are computed in a stream-like 
manner. That is to say that as soon as a result is computed, i t is given to the continuation 
and the next result will be computed only after the completion of the continuation. 
ll111finity of resuUs. Combining the form results and recursion may produce relations 
wjtb an infinity of results. For instance, the relation from delivers all the integers greater 
than its argument: 0 (defun from (N) (results N (from (l+ N))))~ from 

o (* 2 (from 20)) ~ 40 ~ 42 ~ 44 ~ 

3 • Introdudng constraints 
TI1e unification of two objects can be seen as an equality constraint on these objects. Far 
instance, (letl (*x *y) (unify (list l 2 *x 4) ( cons '(2 3 4))) specifies that the lists (l 2 
*x 4) and (*y 2 3 4) must be identical. This type of syntactic constraint on structures is 
called an active constraint because i t c an be actively sol v ed instead of being memorized. 
Passive constraints. The unification of two numerica] frozen expressions cannot be 
so!ved by the unification algorithrn. This k.ind of constraint is called a passive constraint. 
For instance, (Jet] (*x) (unify *x ( + *x l))) is a passive constraint that c an never be 
satisfied. If we consider the passive constraint (letl (*x *y) (unify *x(+ *x *y))), the 
unification has no way to know that *y must be unified with O for the constraint to hold. 

problem solver. lt would be nice if passive constraints were processed the same 
way active constraints are. The unification algorithm is not able to do this because i t has 
nu semantical knowledge. That is why we provide a user defined function to be called 
when the unification is unable to process a constraint. This function is named problem­
~olver an d is called with the two members of the unification. 
'l;~'ll.en to ca!! It must be recalled that whenever an indefinite object 
is used, the eva1uator replaces it by its representative. A definite object is an object that is 

indefinite but may contain indefinite objects. When the two members of the 
unification are definite the problem solver is not called on these objects. Let us 
examine the other cases tr,rough some examples : 
l[.fnification of tvvo unk.nowns *x and *y : 
" If none of them freeze an expression : a link is created from one of the unknown to the 

other. The problem solver is not called. 
If only one of the unknown freezes an expression : the link is created as explained. 
Thus, i t is assimilated to the renaming of a variable. The problem solver is not called. 
If both unlmowns freeze expressions : if w e assume that #F(* 2 *z) an d #F( + *x 
have been previously unified. If *x and *y are now unified, the previous constraint 
rnust be vvritten (* 2 *z)=(* 2 *x), hence *x=*y=*z. Thus, it is a case where the 
problem solver should be called. 

Unification of an unlrnown *x and a definite value V : 
® li the unknown does not freeze an expression : a link is created from the unknown to 

the value. The problem solver is not called. 
o li the unknown freezes an expression : the value of the frozen expression is modified 

by the ne w value of *x. Far instance, l et *x freeze the expression #F(+ *x #F( + *y 4)) 
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that has previously been unified with 12. The unification of *x with 2 must a!so unify 
*y with 6. Thus, the problem solver should be called. 

Unification of an unknown *x with a frozen expression F: 
• If the unknown does not freeze an expression: only a link is created from the unk:nown 

to the frozen expression. The problem solver is not called. 
• If the unknown freezes an expression : if we assume that F is #F(* -3 *y) and that *x 

freezes the expression #F( + *x *y) that has previously been unified with l O, then the 
global solving of the two equalities (* -3 *y)==*x and ( + *x *y)==lO must unify *x with 
15 and *y with -5. Typically, the problem solver should be called. 

Unificati an of a frozen expression F with another frozen expression G : 
• If w e unify #F( + *x *y) and #F( + *z *x), the system must be ab le to deduce the 

unification of *y and *z. The problem solver should be called. 
Unificati an of a frozen expression F and a definite object V : 
• Let us assume we unify #F(+ *x 3) and 7, the system must be able to deduce the 

unification of *x and 4. The problem solver should be called. 
Sequenciug the operations. When the problem solver has to be called, the 
unification has three actions to perform: to create the directed links,to compute frozen 
expressions that have to be unfrozen, to process the new constraint with the problem 
solver. If we do the three points in this arder, strange things may occur since the 
unfreezing of frozen expressions may produce constraints that would be processed before 
the one currently being processed. Therefore, we have chosen the arder 3-1-2 to preserve 
the chronology of constraints settings. 
Principi es of the problem solver. The solver is design ed t o han d! e equality 
constraints on numerica] expressions. It maintains all the currently defined constraints 
into a canonica! form that will be described. It must respect some principles [:1.4]. 
Incrementality. The constraints are added one by one. Given a system of constraints S 
and a new constraint C, the problem solver must be able to deterrnine the solvability of 
the extended system S u {C}. Valuation of newly known unk:nowns. If the constraints 
allo w t o deterrnine the values of some of the unk:nowns, they must be valued. Sin ce these 
values are consequences of the current set of constraints, the problem solver should not 
be called in this case. Compatibility with backtrack:ing. A constraint can be set by a 
unification. But if the system backtracks before the unification, the constraint must be 
unse t and ali the actions of the problem solver relative to this constraint must be un don e. 

4 - The problem solver for numerica! equaHty constraints 
In this section, we describe a problem solver for the linear numerical equality constraints. 
We will show how the non-linear numerical equality constraints are integrated in our 
problem solver. In our solver, we just process the numerica] equality constraints, thus we 
assume that there is a first-level dispatcher which takes the arguments of the unifications 
that cannot be handled by the unification algorithm and dispatchs them to the appropriate 
solver. For instance: 

(defun problem-solver (A B) 
(cond ((and (is-numerical A) (is-numerical B)) 

(numcrical-problem-solver A B)) 
( .... ; ; other cases 

·-··--.---~----·-'' -····-- - ·-- .,--------------
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The resolution algorithm. The resolution algorithm is designed for linear equalities. n comes from the Gauss-Jardan algorithm for solving linear systems. Qa11ss-Jordanhas 
been modifiedto be incrementai, i.e. itreclòiyesthe linear equations one by one an.d p;ocess~sthemirnmediately. Gauss-Jordan algorithm has been preferred toGauss 
algorithm becausé Gauss-Jordan allo_ws the value of the unknownsto be çlete:rril1Qed.as 
sool! as possibl(; whereas Gauss. computes them only when the system IS completely 
determined. Knowing the value of an unknown sooner may help the system to abort a 
wroni~~mputation branch. . . Processing a non-linear constraint. lf we get a non-lmear equatJOn, the Gauss-
Jordan algorithm we use is unable to process it. Therefore, w~ must keep the constramt 
elsewhere and delay its processing unti! it becomes lmear. Th1s can only occur when 1ts 
variables are unified with numbers. In this case, we use the following function: 

(defun process-non-Iinear-constraint (E) 
(Jetl (*flag) 

(Jet ((L (Jist-of-the-unknowns E))) 
(mapc (lambda (u) (freeze (Iist u) 'unify (Iist *flag t))) L)) 
(freeze (liste *flag) 'process-constraint (Jist E)))) 

When this code is executed, the expression (process-constraint E) is frozen by the 
unknown *flag. A code (unify *flag t) is frozen by each of the unknow~s m E. Therefore, jf an unknown in E is valued, the function process-constramt IS apphed_ t o E. 
This function just checks whether the valuation of the unknown has lmeanzed E. If 1t had 
become linear, it is integrated in the system of equations as any other lmear constramt. 
Otherwise, it remains delayed. 

5 - Conclu.sions w e ha ve no real measure of efficiency. The results of some trìals make us think that w e 
are between 3 and 1 O times slower than CLP(R). One arder of magnitude is not amazing 
sìnce we are comparing two versions of (roughly!) the same algorithrn, one writte~ in a 
compiled procedura! language whereas the other is wntten m an mterpreted fun~twnal 
language. The implementation of a solving algonthrn 1s strmght. That JS to say that rt does 
not care about backtracking. Backtracking is automatically handled by the system. M?re 
precisely, when receiving a new constraint, t~e solver processes 1t w1thout worrymg, 
about undoing the processing. The implementatJon of a so!ver IS flex1ble. The fact that 1t 
does not have to care about backtrack:ing makes it easy to modify, to adapt orto 1mprove 
by an ordinary Lisp programmer w ho does not know anythin~ about the su~tleties of a 
Prolog implementati an. The implementati an is open. In arder to 1mplement an mcremental 
Simplex algorithm for numerical inequality constramts, we JUSt had to wnte 1t m Lrsp, 
modify the problem-solver function (-see the begmnmg of sectwn 4) to recogmze such 
constraints an d han d them aver to the Simplex solver. The cooperat1on of the two solvers 
is automatically provìded since they share the sarne environment. 
In conclusi an, Miles is a Lisp-based programming language that takes advan_tage of the 
flexibility, simplicity an d freedom of Lisp. Mi l es is a po:verful an d mterestmg 
programming Ianguage standing by itself The initial goal of M:les wasto 1mplement a 
Prolog interpreter. This has been dane m [ 4,5]. Our constramt solvm~ mechamsm 
appears as a constraint solver for our implementation of Prolog. Mrles has been 
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implemented [21] at Paris Scientific Centre on the IBM 370 farnily of computers under 
V1vVCMS. The Lisp interpreter is classical. Lisp programs are not penalized by the 
extension. The effìciency of the Prolog ìmplementation compares to the best interpreters 
of Prolog we know on thìs type of hardware and OS. 
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i.~l115tract In th1s paper w e address the lSsue of 'llndcrstanding sequeniial and parallel composition of agents 

fjr:r'!Jm a logtcal'l)tewpoint. W e use the methodology of absiract logic programming in linear logic, where com­

::;'t,J..t-.r.tions are proof searches in a sudable fragment of linear logic. VVhile parallel composttion has a straight­

J.:r."''ii.Jlard treatment in this setting, sequeniial composition is much moTe difficult io be obtained. We àe­

fin:t anà sr.uày a logic programming language, Siv1R, ~n which the causality Telation among agents joTms 

Iii. .Y:nes-parallel arder; top agents are Tecursively rewntten by series-parallel structures of new agents. 

WlFE show a declarative and s~mple treatment of sequentialization, which smoothly integrates with paral­

l~éhzation, by translating SMR into linear logic in a complete way. This means that we obtain a full iwo 

'af,a.;:·s corTespondence between proofs ~n linear ~ogic an d computaiions in SMR; th'L!.s w e ha ve full correspon­

demce between the two formalisms. Our case stu.dy is very general per se, bui ii is clear that ihE methodology 

c.;(iiopied should be extensible to other languages and orderings more general ihan the series-parallel ones. 

ìK>.e:rwords ConcuTrency 1 abstract logic progTamming, linear log~c. 

l Introduction 

Lirrear logic [4] is a powerful and elegant framework in which many aspects of concurrency, 
p:arallelism and synchronization find a natura! interpretation. The difficulties of dealing 
with these issues within classica! logic are overcome by the linear logic approach, mainly 

thanks to the "resource-orientation" of its multiplicative fragment. This roughly amounts 
t.(Q .a good treatment of logica! formulas as processes, or agents, in a distributed environ­
m:ent [2, 7]. The richness of the calculus and the deep symmetries of its proof theory 
make it an idea! instrument for purposes such as language design and specification, oper­

iii.ttianal sernantica, and it is certainly an interesting starting point far denotational seman­
hcs investigations. We are interested here in the "(cut-free) proof search as computatiort" 

pandigm, as opposed to the "cut-elimination as computation" one. 

Wliiie the p aralie! execution of two agents A l A' finds a natura! understanding as A '2 A' 

A 0 A' in a symmetrical interpretation), the same cannot be said for their sequential 
oomposition A; A'. Yet sequential composition is a very important expressive tool and theo­
reìical concept. We can naively achieve sequential composition in an indirect way, through 

Tnxackchaining. This is not satisfactory· for a t least two reasons: because i t is an unnatural 
fGJJrnl of encoding, an d because backchaining is most naturally thought of, and dea! t with, as 
;a n.on-deterministic tool, while sequential composition is deterministic. A major problem 
one encounters when trying to express sequentialization is having to make use of "contin­
=tions," which are, in our opinion, a concept too distant from a clean, declarative, logica! 

Ttl..rr:lderstanding of the subject. 

In this paper we o:ffer a methodology, through a simple and natural case study, which 
deals with sequentiality in a way which certainly does not have the fiavor of continuations. 
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Sequentialization is achieved in linear logic by a controlled form of backchaining, whose non-determinism is eliminateci by the linearity of the calculus (linear implication) and a declarative way of producing unique identifiers (universal quantification). In our case study these two mechanisms, together with the usual 'S' one, are embodied in a translation with a clear declarative meaning. 

We introduce the language SMR (Sequential Multiset Rewriting) and give a translation of it into linear logic which is both correct and complete, -thus fully relating the two for­malisms. Computing in SMR is in the logic programming style: a goal of first order atoms ( agents) has t o be reduced t o empty through backchaining by clauses, thus producing a binding for variables. Goals are obtained from agents by freely composing with the two connectives o (parai.kJ) and <li sequentiq,l). Every top agent, i. e. every agent not preceded by other agents, can give birth to a new subgoal. The declarative meaning of A o A' is that we want to solve problems (to prove) A and Al; the meaning of A <1 A' is that we want to solve A and then A'. The simplest way to introduce synchronization in this framework is having clauses of the form A1, ... ,Ah<>--- G1, ... , Gh. They state the simultaneous re­placement of top agents A1, ... , Ah with goals G1, ... , Gh, respectively. This framework has been studied by Monteiro in a more complex formal system called "distributed logic" [10, 11]. 
It is natural to associate hypergraphs to goals: nodes are agents and hyperarcs ex­press the immediate sequentiality relationship among agents. Thus the hypergraph rel­ative to G = (A1 o A 2 ) <1 A3 <1 (A4 o As) has the two hyperarcs ({A1,A2},{A3 }) and ( {A3}, {A4, A5 } ). Let us associate to every agent A the empty agent o;, whose declarative meaning is "agent in position i has been solved." A natural description in linear logic ofthe goal G is given by the formula ( (A3 -o (ol ??o2)) 0 ((A4 ??As)-oo3) 0(o4 ??osJ) -o (A1 'li' A 2 ). Here indices of agents have to be thought of as unique identifiers of the posi­tion of the agent in the goal. Now we need something more: since subgoals appear during the computation as an effect of resolutions, we need a mechanism t o "localize" goal descrip­tions in linear logic, so as to fit them to the contingent goal dynamically. Again, a natural way t o do that is describing Gas \li1 ~i3 ~is: ( ( (A;3 -o( o;, ??o;,)) 0 ( (A;4 'li' A;, )-oo;3 ) 0( o;4 'li' 

o;,)) -o(A;, ??A;,)). We do not really need 0 since (A10· · ·0Ah)-oA = A1-o· · ·-oAh-oA. It turns out that this very simple-minded idea actually works. Moreover, the o goal behaves as a unity foro and <1, as true does for and in classicallogic. Since syntax (and operational semantics) may make somewhat opaque the declarativeness ofhypergraphs, which consists essentially of the precedence relations, we shall establish strong bindings between a very declarative notion of normalization far goals and the computations as they are actually performed by the linear logic engine, showing their equivalence under suitable hypotheses. 
SMR is a plain generalization of Horn clauses logic programming, using o instead of Il. As a matter of fact, considering clauses of the form A <>--- A1 <1 · • • <1 Ah, we grasp PROLOG's left-to-right selection rule, and of course many more selection rules and much greater contro] over the order of execution of goals are possible. 
In order to link SMR to linear logic we use aJEagme~'?! F~~Q_M.Jll], which is a presenta­.!l<:.~.of linear logic from al1.al:J~~JC~ctJogic progra.rnmingJ~;:~,Pectiy~J9]. Its choice is reward­ing because FORUM puts under contro] a large amo un t of the non-determinism of linear logic, which is something in the direction we are p~ing. We;·efe~~th~-;;;ci;; ·t~ the con­clusions for a discussion of what we feel is the meaning of this contribution. This paper is 
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ra:.iher picky and technical. As a matter of fact, the technique presented works in principle, l:J:Ult the details turned out to be more important than expected. The conference for~atdoes ~ hel so, at least t o bave some more feeling with the language and 1ts bas1c mec amsms, ttll!Ye rea~~r is referred to [5] for a more relaxed exposition of an earher attempt to :~:~~t~ · SMR Sect 2 is devoted to preliminaries and FoRUM, m sect. 3 we presen . , spoofyt. l . t·. s and a study of the normalization properties of goals; then, m sect. 4, ap:ra wna seman 1c 

1 t tated llT!!!-e translation into FoRUM is shown and correctness and comp e eness are s · 

2 Basic N otions an d Preliminaries 
l l. · ies In the second one T\lni: first subsection fixes the notation for some usua pre 1mmar : 

<<- ;brief exposition of the fragment of FoRUM we are interested m 1s g1ven. 

~-Jl N otation and Basic Syntax 
L.e;t s d S' be sets· Then s \ S' stands far their difference { s E S l s if:. S'}; P(S) "_ d ~n th et of ~ubsets of s and P,(S) stands for the set of finite subsets of S; 1f ~ ~aon s otr entseg~r Sh stands for the set S x ... x S. Given f: S -t S', let domf = S; lf liS .a pos1 1ve 1 ~. , ~ 

h 
S" c S define f(S") as the set {f(s) l sE S" }. . . . ~ is the set of the natural numbers {0, l, 2, ... }. Given h E N, mdl~ate wlth Nh the s~ 
{/h h+ l h+2 ... }; given k E N, indicate with N~ the set Nh \Nk+l· G1ven h, k E N~ 1f h";: , ·.' •

1
k t 'd f " e , . if h> k; then el~ and (el~) stand for the empty obJeCt · Ji:: me n e , s an s or eh, .. · , k , + { } h Given' a set S, indicate with s+ the set UiEN, Si and with S* the set S U _Es ~ w ere ~ s+ is the empty sequence ( of S) an d a t times we shall wnte_ E or nothmg mstead :: If·/~ S then (s) and s denote the same object. On sequences 1s defined a concate-• <Es· t 11 wl-th unity E Given the (possibly infinite) sequence Q = ( s1, s2, · · ·) 1/Ultwn opera or ,. . . ) =d. given f: S -t S', if s1, s2 , ... E S define f( Q) as (f(s1),f(s2), · · · · . in the rest of the p a per, we shall frequently adopt the following convent1on: blackboar~ ltet•ers ( as lP the set of programs) denote sets whose genenc elements shall be allden~~e '" ' di 'talic letter (as p a generic program). Therefore we sh o en 'bl_y the correspon ng l ' . d d t t' ymbol or =:msider implicit such stater.1.ents as p E lP_ Every newly mtro uce syn. ac 1c s d};ass of symbols shall be considered different or disjoint from the already mtroduced ones, e:Ecept where the contrary is explicitly stated. 

th t f · bles lP the set of predicates and !A denotes the set of first :.: den.otes e se o vana , . · F 1 G. tact1'cal ob]'ect F [Fl denotes the set of free var1ables m . ,·anrler atoms. 1ven a syn , 
For substitutions the usual notation and conventions apply. Let o denote the set ·~f tub­stitutions, lP the set of renaming substitutions and let [] denote the tdenttty substt u wn. 

:z_l The FoRUM~""11 Presentation of a Fragment of Linear Logic 
'· . d fi d · [8] the details ~issing here. Methods are called this way after [1]. ne rea er can n m 

, 111 th The set of methods 111 is the least set such that: l) lA C 111. 2) If M, M E en (H "ii' M') E 111 and (M -o M') E 111. 3) If M E 111 and x E l'l then (\lx:~) E .111. . 
'li' associates t o the left and -o associates t o the nght. lnstead of (~xl.( .... (\fxh .M)··-)) hall -c.~. (\1 x . M). Outermost parentheses shall be om1tted whenever p~ssl-wre s wa•e X1. ·· h· (') d f f(h) 'S' >s>f(k)· g1ven Tnill.te. If h :( k and f: N t -t lt'1, the notation ~ iENt f t stan s or . . . l 
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Structural rules 

L 'P; r l- A, A; E 'P; r 1M 1- A; 
'P; r l- A; A, E Dt -q;--'-,;-M--,r-1-_A.::._; 

Dc M, 'P;riM 1- A; 
M,'P;ri-A; 

'P; lA r- A; 

Lefi rules 

'S't 'l';riM 1- A; 'l';r'IM' !--A'; 
'f/;r,r'IM 'S'M'l- A y A'; 

--ot 'i';r!-A;M 'P;r'IM'I-,1'; 
'i'; r, r' l M --o M' 1- A y A'; 

lit 'i'; r l M[t/x] l- A; 
'f/;rllix: M 1- A; 

Righi rules 

'li'R 1J/jF1-A;M,M1 ,E 
'P; r l- A; M 'S' M', E 

--oR 'P; M, r l- A; M', E 
'f/; r !-- A; M --o M', E 

liR 'P; r 1- A; M[xfx'J, 3* 
'i';r l- A;lix': M,S 

*where x rf_ f'P;r l- A;\fx': M,Sl 

Fig. 1-The FoRuM'll-<>~ fragment cf FoRUM. 

g· Nk ~ th t r w · ·h ·~· enoawn ViEN~g(t):MstandsforVg(h) ... g(k):M. IfM=(M\h)EtJ1+ then~MstandsforM1 ?-··?Mh Ifx-(x\h) * _ 1 when h> O, and far M when h= O. - l E YA then \jx:M stands for Vxl ... xh:M 
We adopt a special kind of t d ent structures imposed on thems~qsuetesn s, mlt~ etup frdom collections of methods with differ-. · , mu Ise s an sequences S t d mformation as in classicallogic- this is inJi t. h' · e s are use to represent putation; a program is represe.nted as a ::tm~ :.~w Ich do es ~ot change during the com­the state of the computation which of h thods. Mulbsets are used to represent is w h ere linear logic has its, main ~sef c~urse, ~ anges as the computation go es ah e ad; h ere ~~r~e:::e!~ ~=te!~ p~!~!~:::. t::o:~~! :~;:~:i!:::~:sr;l~s~t~~: ::e~:gi~o0e~r n~etq:~!: weakening and contraction rules are allo:ed while ! pm~!· oftviewd, sets are places where are forb'dde I th ' mu Ise 5 an sequences these rules which d~ivesn~hencho~~: ~~i~~n~~f:~=~~ei:~~:~e for one method (which we call "focused") 

The set of sequents )l: contains elements of the form ( 1/F· r l . = PF(D1) (the classica/ context), r is a finite multiset of methods (t~ ~ ftA,l-: ), where 1/F E M E D1U{EM} (thejocused method) A E !A* (the t . e e mear context), linear context). Instead of ( 1/F· TI € \- A- =) h allom~c c(ontext) and E: E 1M* (the right '[t, r, E: and A shall stand for, res M . , ~ we s a w:nte 'ft; r 1- A; E:). In the following sequences of atoms. , pectJvely, sets, mulbsets and sequences of methods and 

W e outline a sequent presentation of a fra ment of th F . imposes a discipline (wrt full linear logic) ogn the no ~ t ORUM_m~erence system. FoRUM tion of proofs, thereby drastically reducin th . n~ e ermmistJc bottom-up construc­equivalent to linear logic but proofs in Fo~u:Ir searc: space. It turns aut that FoRUM is closer to the computati~ns we are int t d _are.~mform (see [9)). Since FoRUM is much to relate them to linear logic. eres e m, I greatly helped us in finding the way 
The inference system we hall · . FoRUM'S'-<>11 meaning tha: lO _:eanasd ~ mtetrhmedJate step from SMR to linear logic is • a, v are e only logica! c t' · of FORUM deals with FoRUM'S'-<>11 . . onnec 1ves this subsystem · IS presented m fig 1 Th ·th A 1 resent any sequence of atoms obtained by an ordered ~~r e o~r~ Wld l Y A , we rep­(AI, A2) Y (A3, A4) may stand for (AI A3 A A ) or (A Ag A Aa)n A. For example, , ' 2, 4 3, 1, 2 1 4 or .... 
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The link between FoRUM'S'-<>II and linear lQ.gj,.c is established by the following proposi-

tion, which follows fr~:i~~t ifi_l[~thLS!:!!:~.Ì~l.l~~i.?!:~~~.~E~: 2.2.1 Theorem A sequent (M\~; 1-; M) has a proof in FoRUM'S'-<>II ifj (!M1 -o··· -o !M h -o M) has a proof in linear logic. 

3 Syntax and Operational Semantics of SMR 
The first subsection deals with the syntax of goals, the second with their "precedence rela­ion" semantics. In the third subsection SMR and its operational semantics are introduced. 

.l Goals, Contexts md Goal Graphs 
'le build up the language of goals starting from the empty goal o and the set of atoms lA, ,nd freely composing wìth the two connectives o and <J. The connectives have to be hought of as associative and non-idempotent operators; moreover, o is commutative and is not. The empty goal o behaves as a unity far o and <J, like true does for the classica! .Jgic connective and. In the translation from SMR ìnto linear logic it shall be mapped to 
m atom of a special class. 

Suppose, from now on, that a special 0-arity predicate o is in A. We shall call o 
the empty goal. Given u, de:fì.ne au =o. 

The set of goals IG is the least set such that: l) !A C IG. 2) If h E N1 and G1, ... , Gh E IG then o( G\~) E IG and <l( Gj~) E IG. o and <J are, respectively, the parallel and sequential connective; goals of the form o( Gl~) and <l( G\~) are, respectively, parallel and sequential goals. A generic element of {o, <l} shall be denoted by a. Gìven u, de:fì.ne u: IG \!A--> IG as 
a:(G\~)a = a:(u(Gj~)). 

Let us extend the syntax of goals by allowing one or more holes _ to appear in place of atoms and of o. Then we have the set IK of contexts. An alternative notati an for a:(K\~) 
is (K1 a:··· a: Kh)· 

Coordinates uniquely identify occurrences of atoms, empty goals and holes in a context. Let IK = N1 be the set of coordinates. Let 10 = !A x IK be the set of agents and let CJ = {_} x IK be the set of places. Instead of (_,x;) we shall write -"· A generic element 
of I[J U CJ shall be denoted by a. 

As defined below, to every context is associateci a hypergraph whose nodes are agents 
or places. 

A directed hypergraph is a couple (N, H), where N is a finite set of nodes and 
H ç (P(N) \ {0})2 is a set of hyperarcs. 

A context graph is a directed hypergraph (N, H), where N C I[J U Cl. Let 1( be the set of context graphs. A context graph (N, H) such that N C <D is a goal graph. The "top" and "bottom" of a conte~t graph are, respectively, the sets of agents and places which have no incoming and no outgoing hyperarc. 
Define top, bot: 1J' --> P(10 U CJ) as top( N, H) = {a E N \ V(N1, N2) E H: a 1. N2} and bot(N,H) = {a E N j V(N1,N2) E H: a 1. N1 }. 
We now want to associate to every context a context graph which represents it. Con­texts are objects recursively made up from inner contexts in two possible ways: as a parallel or as a sequentìal compositìon. In the same way a context graph representing a context is 
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made up from the context graphs representing inner contexts. Parallel composition leads 
to the s1mple umon of the context graphs; sequential composition introduces a h . erarc 
for eve? bmary sequentral composition. The coordinate mechanism which · ~pdd d 
m the rollowmg tr.ck d fi t . ' 1s em e e 

, . . l Y e m wn,. prov1des for a constructive way of generating distinct 
nodes !rom d1stmct occurrences o± the same atom emptv goal 0 h 1 · 
d' " . , J r o e, m a context Coor-

maces are ass1gned t o atoms (or empty goals or holes) in the following way: the coo~dinate 
of the. atom m the context 1s a strmg which records, from Jeft t o right, the positwns of the 
conte)"ts wh1ch contam the atom, from the outer to the inner. 

For every K- define [. ],, : Il< -+ ~· as 

({(K, K-)}, 0) if K E A u L} 
!KJ" = (UiEN; Ni, UiEN; H,) if K = o(KI~J and [K;J~<IIi =(N, H;) 

(UiEN; N;, U,EN; H; U U,E'N~ {(bot[Kì-l]"ii(i-l)r top[K;]"iii)}) · 

. . . . if K = <J(Kf~) and [K;J"Iii =(N,, H;) 
We shall wnte [K1 mstead of [K],. If [K]" = (N, H), Jet [K]~ =N and [Kj~ =H. 

The context K = ((Al o- o o) <J ((o <J_) o A6) <A7) o(_ <J (Ago Alo)), far example, yields 

l (Al, (l, l, l)) (1,1,2) (o, (l, 1, 3)) 

j(o,(l,2,l,l))~ 
~KJ = f l (A5,(1,2,2)) 

1 -(1,21,2)~ 
(A7, (l, 3)) 

-[r -l 
//~ l 

(Ag, (2, 2, l)) (AlO, (2, 2, 2))[ 

Sometimes coordinates shall not be shown. 

We write a <E K or -K. <E K to say that 
graph [K]. 

agent a or piace -~< appears in the context 

How well do context graphs represent contexts? The following proposition can bP easily 
proved. • 

3.1.1 Proposition FoT eveTy K, the function [·] · IJ< ~ 'Il<] · b · · t· 
. ~<· ·• l " ~s ~Jec we. 

G1ven K and K' K[K' J s<·a d J' K ·r 
b K 1 . ' . -~ . ' n 8 or 1 -~< iÉ K and for the context obtained 

Y rep acmg _" w1th K 1f -K. <E K. We shall write KrK1 Kh J · t d 
of K[K1 ] .. l'K ] ,_"''···'-"h 1ns ea 

-K1 '___!::_Kh. 

Forexample ((A1 o oo)<J((o<J )oA )<JA )rA ' 
o)oA6 )<1A 7 . - - 6 7 L--..2(1,2Jr."(2,1,2)J =(A1oA2oo)<J((o<J 

3.2 Normalization of Goals 

Som~what orthogonal to the expansion of agents is a notion of normalization (far the ter 
(nno ogy refer, for example, to [6]). We introduce a reduction system for goals- intuitivel; 
semant1cally) the reduction conserves the precedence relations among agents ~e resented 

by the1r underlymg d1rected hyperarcs. Since empty goals do not yield furth p · 
they are ct1scarded. er expanswns, 

Actually there are two conceptually distinct subreductions we consider· 

l) Empty goals are discarded while conserving precedence relations amon.g other a ents 
asm(ooA1 )<J((o<JA2 <JA3 )oo)<JA4 >>-(Ar)<J((A <A ))<JA Th. g ' 
o be· ·t f 2 3 4· 1s corresponds to 

mg a um Y or 0 and <J. A reduction of this kind shall be written as G >o Gl 

(o,(l,l)) (A1,(1,2)) 

~ 
(o, (2,

1
1, I)) ~ 

(A 2 , (2,1, 2)) (o, (2, 2)) 

I (A3,d,l,3)~/ 
(A<, 3) 
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(A,, (1, l)) 
l 

>>-li(A2 , (~,l, l)) >>­
(A3, (2, l, 2)) 

(A~, 3) l 

Fig. 2-Elimination of empty goals and of redundant syntax. 

2) R-edundant syntax is elimina t ed, as in (Ar) <J ( (A 2 < A 3 )) <J A4 >>- A1 <J A2 <J A3 <J A4. !t is 
~ply a statement of the associativity of o and <J. A reduction of this kind shall be 
-=itten as G >s G'. 

~ 
T'!t.e >s reduction prevents syntax to go too far away from our semantic requirements, 

wbici are better expressed by goal graphs. Nobce that the second reduction conserves 
th1:c o:;Jl:tape of the hypergraphs, as could be shown formally. Fig. 2 represents the examples 
gi1Ttam .above. 

D\:J5.ne >o = >;; U >;; an d let >>- be the transitive refl.exive closure of >o. It c an be 
sh.mwn with standard techniques that >>- is terminating and confl.uent. So the normal 
form. crtf a goal G under >>- is unique, and shall be indicated with nf G. 

3.$ Clauses and Operational Semantics of SMR 

:SE:t(R consists of three components: a set of programs, the set of goals we already defined 
a'.IT.'Ii .a transition relation which models the nondeterministic transformation of goals into 
gCJ;lill:.:;;. A program is a finite set of clauses. Each clause specifies the synchronous rewrit­
ing; m some atoms in the top of a goal into the same number of goals. Rewriting takes 
placJDe in the context of a larger goal, in which the rewritten atoms, considered as a multi­
sete, rre unifiable with the head of the clause, again considered as a multiset. The clause 
speclliies also which goal takes the place of which atom (matching one of the atoms in its 
hea!<rllg, and the usual logic programming mechanism of instantiation with the unifier takes 
piau:;e_ We do not insist an the unifiers being mgu's, though this special case can easily be 
ac=odated in our setting. 

L~ ID= {(Al~~ Gf~) i h E N1 , A 1 , ... ,Ah E A\ {o}} be the set of (distTibuted) 
cr.,crr.Lses. Gìven u, de:fine u:ID-+ ID as u(AI~ ~ Gl~) = (u(Ain ~ u(GinJ. 

Let lP= PF(ID) be the set of pTogmms. 

'JI"he following definition needs some explanation. We want to define the set s of "selec­
tìoll!illi .. " Remember that the top of a context goal, and, by extension, of a goal, is the set 
of agents in that goal which are preceded by no other agent. Every selection associates 
a Uillllli.que index in N~ to a subset of cardinality h of the top. This is in order to associate 
to f!EW'ery atom in the head of a clause Al~·~ Gl~ a corresponding, selected agent in the goal 
to h~~: rewritten. 

iGiven G and h E N~top [GJI, Jet sa,h = { s l s: T -+ N~, T ç; top [ GJ, s ìs bijective} 

ru."1.dì ]et 5 = UGE.fo uhE.I\l~tnp[Gff SG,h be the set of selections. 

\ViYTe now: define the mechanism by which goals evolve by the action of clauses, in reso­
lutiia:rms. It can. be informally explained thìs way, given a goal G and a clause D: 
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P4 (! (x, ))l 
Pl(g(f(x,))) p,(f(x,)) 

l ~ l 
~,_..-----P5(xs) l i 

Ps(xo) 1 

P3(x,) 

s = {(p,(x,), (1, l. 2)) >---7 2, (p,(f(x2 )), (2, l)),_; l} 
D= (p,(x, ), p,(g(x,)) ~ P7(x3) o P7(x3), P l (x,) <l PB(xs)) 

u = [g(f(x,))jx,,J(x2)jx4] 
P= [XB/x3] 

Fig. 3-Example of resolution ( coorciinates are not shown) 

l) Let s be a selection of h agents in the top of G. 

2) Renarne apart the variables in D. 

3) L et u be a unifier between selected atorns an d atorns in the head of D ( corresponding 
t o selected atorns through s). 

4) Substitute, in G, the selected atorns with the goals in the body of D which correspond 
to thern through s and the correspondence irnplied by their order in D. Then apply u 
to the goal obtained, and have G'. 

Fig. 3 shows an exarnple. Here is the forma] definition. 

The relation >-O C IG 2 x 5 x ID x lP x o is defined as follows: ( G G' D ) 
h h , ,s,,p,aEf---<), 

w h ere D = (Aj 1 <>-- Gl 1 ), iff: 
l) sE 5G,h· 

2) [Dpl n !Gl = 0. 

3) \i( A,'") E dorn s: Au = As(A,'<)pu. 

4) Let K be such that G = K[A~ ... A~ Jl where doms = {(A' ,..) 1 ·E Nh}· th 
-1\..1 , , -Kh ' i, · "'!. 1.. 1 , e n 

G'=u(K[Gs(A;,",)P Gs(A'")P ])· 1 G · 
--'-"-'---'-'--"'' · · · ' h' h "h , go a s s(A>,, )P are called replanng goals. 

Given P define the relation >-O C 1[) 2 x <IJ as f-c-0 = { ( G G' u) 1 :J . :JD E p . ' . 
( G G' D ) } P P ' ' 5 · · c::JP · , ,s, ,p,u E>--0. lnsteadof(G,G',s,D,p,u)E>-Oand(G,G',u)Efcc<>Weshall 
write G ~ G' and G >-"o G' P 

D,p P . 

. A goal rnay evolve either because of a resolution or because of a reduction. The re­
latwn >;:; JS not smtable to be translated into FoRUM, in particular the problem is with 
the subreductwn >o· . Then, m place of :c;, we introduce the less declarative reduction 
relatwn >r'. where >o JS replaced by r,:,. The >;:, reduction allows collapsing empty goals 
appeanng m the top only. This rnechanism can be faithfully represented in FoRuM'll--o\1 
whereas w1th >o this is no t possible. With "successful" computations (i. e. computation~ 
endmg m an ernpty goal) th1s only has the effect of delaying reduction of non-top empty 
goals untJl they eventually reach the top. 

The relation >;; C G2 is the least set such that: 
h 

l) If G = K[o(~)J, h E N1, _" <E K and {(o, K Il i) l i E N?} ç top[GJ then 
G >;; K[2."]. 

2) If G = K[<l(o, GI?J,_J, h E N1, _,_<E K and (o,K li l) E top[GJ then G,. K[<~(GI?J ] 
L t H --->0 . 

. e >r = >;; U >s· For f3 E {o, H, s, G, T} !et the relation >p c 1[)2 x 0 be defined as 
{ ( G, G', []) l G >p G' }. Clearly >r c :c;. 
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For every P and for f3 E { G, T}, define the relation P"'f3 C 1[32 x <IJ as P"'f3 '73 U Ff'· 

lnstead of (G, G', u) E P"'f3 we shall write G ~{3 G'. Clearly y:>1 C P"'G· 

Let SMR be the triple (lP, G, { y:>G i P E lP}). 

L et f3 E {c, T} an d h E N: an object G0 ~{3 · · · ~{3 Gh is a (!3-) computation (by P), 

Gh = o i t is a successful {3-computation of G0 y2elding u1 · · · uh; !et (~ be the set 
f {3-computations by P. A generic elernent of (~ shall be denoted by C. Let h E N1 
.nd C = (Go ~{3 '!J;of3 Gh): for k E N~ every object Gk-l ~{3 Gk is the k th step 

n C; if Gk-l j3 Gk it is a reduction step (>p-step), if Gk-l io Gk it is a resolution 

.'tep (>--0-step). Define ì.IR:(~ --t N so that !CIR is the number of >--0-steps in C. Define 

'he relation p:ofJ C IG2 x a:r as p:of3 = { (Go, Gh, u1 · · · uh) l (Go ~{3 '!J;of3 Gh) E (~ }. 

~nstead of ( G, G', u) E p:of3 we shall write G ~ofJ Gl 

The following two theorerns are crucial to show, respectively, the correctness and 
the completeness of the translation frorn SMR into FORUM. The first is proved by trans­
;"orming a successful c-cornputation into an equivalent T-computation, rnoving to the right 
··i. e. delaying) unti! possible ali occurrences of >;,-steps and, recursively, ali :s-steps which 
:iepend on each other. The second arnounts to an inductive construction of the desired 
computation. 

3.3.1 Theorem If Cis a successful G-computation of G yielding u there exists a suc­
cessful T-computation C' of G yielding Cl such that ICI"= IC'IR· 

3.3.2 Theorem If G ~oG o then for every G' E { G" l nf G" = nf G} it holds G' ~oG o. 

4 SMR and Linear Logic 

We first present the translation of SMR into FoRUM'S-o\1, then we prove that it is correct 
and complete wrt linear logic. 

4.1 Translation of SMR into FORUM'll-o\1 

Let us augment the set of variables by a denumerable set m of process variables, which 
are not allowed to appear in SMR atoms. Agents, L e. atoms decorateci by a coordinate, 
are translated into atoms. The terms inside are left untouched, and the relative posi­
tion in the goal (coordinate) yields a process variable, which is appended to the resulting 
atom. Since atorns in SMR do not contain process variables, name clashes are avoided. 
The ernpty goal translates into a special atom of the kind o(1r). 

Let o be a distinguished predicate of arity l. The function [·]:lP --t lP is chosen such 
that it is one-one, it holds ar[p] = arp +l and [o]= o. 

While 1r stands fora generic process.variable, object process variables are 1j!0 , 1j!1, .... 
Given a coordinate K,, with 15. we shall indicate the unique natura] nurnber associateci to K 

by some bijective function between coordinates and naturals. Given a denumerable set S, 
we shall indicate with (S) the sequence obtained by S by ordering its elements according 
t o a total order of choice. This is alternative to using equivalence classes in the definitions 
to come, when arder of elements is of no irnportance. 

Define H 10-+ lAas [p( ti~), K] =[p]( ti?, 'lj!'"-). We shall write A'lj!'"- instead of [A, K]. 
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We shall cali atoms obtained by the translation agents, too. In particular, we shall 
refer to atoms o7r as success agents. 

Let us cali elementary methad a method of the form (A1 'S'· .. 'S'Ah) -D (A~ 'S' ... 'S'A~.). 
To every hyperarc in a goal graph corresponds an elementary method in the translation 
of the goal relative to the hypergraph. Two auxiliary functions are helpful. 

Defi.ne sa:lil __,/A as sa(A,K) = c1.(Jt5c and hm:(P,(Iil) \ {0}) 2 __,1M as hm(N1,N2 ) 

('i? ([N2]) -o 'i? (sa N1 ) ). 

Given G an d K, the translation [ G],.. is a method M1 -D. ·-D M h -o M, where M1, ... , 
M h are the elementary methods obtained by the hyperarcs in r G]"', an d M is the trans­
lation of top[ GJ"'. The structure of the hypergraph is kept by process variables (identity 
of agents), by the 'S' connective (parallelism among agents) and by the -o connectives 
which appear in M1, ... , Mh (directionality of hyperarcs). The outer -o's do not play 
a role wrt the structure of the hypergraph. They are used to "load" the left linear context 
with the structure. N o ti ce that the or der M1, ... , M h is not important. 

For every K defi.ne [-]": G __, 1M as 

[G]" = (M1 -o··· -o Mh -o 'i?([top[GJd)), 
where (MI~)= (hm[G]~). 

Defi.ne [·]: [) __, 1M as 

[Al~.,___ Gl~] = \i(IAI~ .,___ Gl~l): ViEN~ 1/Ji: ('i?iEN~[G;]: -o 'i?iEN; A.;'I/Ji), 
where, for every K, [·]~: G __, 1M is defi.ned as 

[G]' -{G'I/J!Se. 
' "- \7({ 1/J!Se.l (A, K) E [G]~ }) : ((o'I/J!Se. -o 'i?(sa bot[GJ")) -o [G],J 

if G E /A 
ifG~/A· 

4.2 Correctness and Completeness of the Translation 

'l'· r r-A-M 
L t R ' ' ( e 'l'; r 1 M -o 'i?(MI~) f-il Y M1 Y .. Y Mh; be the scheme of) an inference 

called resalutian, defi.ned as a shorthand of the following (scheme of) derivation: 

'l'; IMh 1- Mh; 
'S'c~~~~~~~----------~ 

'l'; r 1- il; M 'l'; l 'i?(MI~) f- M1 Y Y Mh; 
-o, ----~~~~~--~~--~~~~~----~--------~~ 

'l';T!M -D 'i?(MI~) f-il Y M1 Y ·· · Y Mh; 

rule, 

Given P, !et ~G~p = {([P];'i?(sabot[G]),hm[GJ" f- A[~;)p! p E IPm, {A[~}= 
[top[ G]] }, w h ere IPm is the set of renaming substitutions on the set of process variables. 
An element of ~G~p is a representatian of G. 

The following correctness theorem establishes a fi.rst connection between SMR and 
FoRUM. 

4.2.1 Theorem If G i<oG o then far every E E 1Gu~p there exists a proaf II af 
FORUM>&-o\1 with canclusian E. 
Sketch of proof Let C be a successful G-computation of G yielding J. By theorem 3.3.1 there exists 
a successful T-cornputation C' of G yielding u. 'I1he proof is by induction on IC'IR = !CIR· From C' we 
shall build n from bottom to top. 
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If jC'IR =O then C'= (G :,- · · ;...1 o). To every :.;-step corresponds a renaming of some process vari­
ables. To every ~-step corresponds a sequence, from bottom to top, of a DL rule (the focused method is 
one of the rn.ethods corresponding to a "top" hyperarc in [ G]H) an d of a resolution rule followed by son1e 
applications of 'S'R and L. This reduces the problem to finding a proof for E' E ~G'~p, if G 'R G' Pro­
ceed inductively. The fina] step consists in finding a proof of ([P]; '/?(sa bot[ G"]) i- (sa bot[ G"]); )p, 
which is made up of ~L and l rules, as the right branch in R is; here p Ìs a renaming substitution 
on process variables . 

. 2 lf i C' IR > O then C' = ( G '"t >-T G' ~ G" P"r poT o). The first >-r-steps are dea! t w1th as 
in point l, without the final step. VVe bave to prove that far every E' E QG' O'~ p there ex:ists a proof II' 
of FORUM >;Si-ali such that its conclusion is E' A derivation ~ such that its conclusion is E' E ~Gr uDp, 
relative to the step G' ~ G 11 , can be built bottom-up as a sequence of the following rules: Dc D,p 
([D] is focused), a sequence of Ile (D is instantiated by P"'), R (the right linear context contains 
a representation of the replacing goals), then, by means of ~R, ìiR, -oR and L rules, the right linear 
context is unloaded and the left linear context is loaded with the representations of the replacìng goals. 
In these representations process variables are either unified wìth previous 11top 11 process variables (re­
placing goals are joined to the goal) or createci unique by VR (they are relative to inner coordinates 
in the replacing goals) This guarantees the correspondence between the representation of the new 
goal and its goal graph. 

We have that the only premise of LJ is E" E ~G 111 ~p and G"' »- G" Since G'" »- G" ;;.oG 01 there is, 
by the ìnduction hypothesis, a proof II" such that its conclusion is E" a", and the theorem is proved. 

The other direction of the connection between SMR and FoRUM is stated by the fol­
lowing completeness theorem. 
~.2.2 Theorem If far E E 1Guùp there is a praaf II af FoRUM>&-<>II such that its 
anclusian is E then G i<oG o. 
~:et.ch ofproof Observe that the application of rules L, ~R, -oR and VR is deterrninistic, in the sense that 

a bottom-up construction of a proof every step is uniquely deterrnined. The only choice left is that 
-a new variable in ìiR: since we build up the proof modulo renaming of process variables, this is not 
.1.portant. We shall show that every possible choice of rules DL, Dc, ''b\, --oL and VL leads to a proof only 

i they yield applications of the R rule. 
· the Dc rule is chosen, the focused method becomes the translation [D] of a clause D. Then some 
'·'Plications of Ile are compulsory. After that, the R scheme is the only possible: it can only be part 
fa proof if the variables chosen in the VL inferences correspond t o a r-<>-step, i. e. to a resolution in SMR. 
;oreover, the clause must be applicable to the top of the goal, represented in the atomi c context, then 
J1e DL inference should have been wise. After R, all inferences are deterministi c again. In this way we ha ve 
derivation Ll such that its conclusion is E' E ~G"'~p and its only premise is E" E ~G'DP· Now it is 

a.sy to show that G' »- G" and G ~ G". Notice that, by theorem 3.3.2, if G' ;;.oG o then G" ;;.oG o. 
: the DL rule is chosen, the focused method becomes an elementary method relative to a hyperarc. The R 

;.cheme must irnmediately follow: it can only ]ead to a proof if the elementary rnethod is applicab]e 
·o the top, i. e. the atomi c context. This is only possible if, in the top, one or more empty goals appear 
uitable for a ~-step. The exact matching of process variables, i. e. coordina t es in the goal graph, is en­
=ed both by the translation and the IIR rule. Then we obtain a derivation Ll such that its conclusion 

E' E ~GDp and its only premise is E", where E" E ~G'~p and G '"t G'. 
··y considering proofs modulo renarning of process variables, the proof of the theorem is ea.sily obtained 
T inductìon on the number of the R rule applications in II. 

Then we can prove the result which tightly links SMR and linear logic: 
.2.3 Theorem G i<oG o iff there is a praaf far (!M1 -o··· -o 1M h -o 'i? (sa bot[ G]) -o 
cf{ -o·· -o M~ -o 'i?([top[GJ])) in linear lagic, where (MI~)= ([P]) and (Min = 
hm[G]"). 

5 Conclusions 

Vve obtained both a declarative and operational understanding of sequencing by associating 
w every task a couple of statements: l) that the task i has to be performed by an agent 



420 
(say A;) and 2) that when the task is accomplished a signal (o;) is issued. The above 
treatment of sequentiality clearly encompasses paradigms more general than SMR. SMR 
by itself is a powerfullanguage, as many examples show [10, 5]. We think also that SMR 
and its methodology are worthy as specification tools, and we are currently investigating 
their use for the specification of GAMMA [3] and other formalisms. 

The translation makes use of the full 'fS-o V fragment of linear logic, thus making full 
logical use of these connectives. This is opposed to, for example, classica! logic program­
ming, in which :;, and V are only used in left rules. An important point is that ali structural 
information in SMR goes into the logic, with no need to resort to trickeries with terms. 
We are also pleased by the correspondence between parts in the sequences of FORUM and 
our framework: the program in the classica! context, the structure of the goal in the left 
linear context and the top of the goal in the atomic context. The translation is very conser­
vative wrt computational complexity, and FoRUM guarantees good operational properties. 

If we are satisfied with the translation of SMR, we certainly are not with its logic. 
We think that to fully bring sequentiality to the rank of logic some new logic with a non­
commutative connective, together with commutative ones, has to be studied. At least one 
attempt in this direction exists, pomset logic [12], but unti! now this logic lacks either 
a cut-elimination theorem or, equivalently, a sequentialization theorem for its proof nets. 
Our future work shall go in the direction of investigating that logic with the aim to bring 
the concept of abstract logic programming [9] in a non-commutative setting, too. 
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Abstract 

We propose a meta-l~al re~_E!ion of~~~~!~~~ic_R:r:C:&E~!II:i~~,g 
lan&:!!-~~-~f!!.~!!!:-Q~ts. The meta-logic is based o~ a CLP schema, t~at 
can handle multisets of formulas. The meta-logic prov1des a useful semant1cs 
for studying the structure of LO programs, and for comparing LO with other 
proposals in the field of computationallogic. 

Keywords: Constraint Logic Programming, Linear Logic, Metaprogram­
ming. 

l Introd uction 

1.1 Motivations 

In recent years a great amount of research has been devoted to model state-change 
in logic programming. In particular, the problem has been addres~ed within the re~ 
search activities on concurrent logic programming. J. M. Andreoh and R. Paresch1 
[AP91b, AP91a) bave defined a new language, Linear Objects (LO), t~at i~ well­
suited for expressing state-change, object-identity and object-to-class mhentance, 
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proper of the object-oriented programming languages. LO fì.nds its theoretical basis 
in Linear Logic, a new constructive logic investigated by Girard (Gir87, Gal92, Sce94] 
and mainly used in modeling typed lambda-calculus and concurrency. Further­
more, linear logic has proved useful to address state-change related problems, like 
planning problems, by allowing the use of consumable-reusable resources (BG94, 
KY93, MTV93, ACP92]. Such an approach, however, at a fì.rst sight, seems to 
be hardly usable to express state-change and concurrency in a logic programming 
framework, because of the gap between the semantics proposed for LO (and related 
languages) an d the traditional semantics of logic programming, as originally pro­
posed (VK76, AV82]. As an example, LO lacks a fixpoint semantics based on the 
defì.nition of an immediate consequence operator [CC94]. The concurrent semantics, 
on the other band, has been fully investigated [ACP92, ALPT93], because this is the 
computational aspect mostly stressed by the authors: "computation is performed 
by concurrent agents that are themselves characterized by multiple interna] threads 
of computation" [ALPT93]. 

It has been argued that concurrency semantics helps in chara.cterizing a parallel 
implementation of the language, which covers all its features, an d that phase seman­
tics allows a declarative formalization of the language. W e fin d, however, that these 
semantics are incompl~t~f<?r a t le~st tworeasons. First, concurrent semantics like 
CHAM [ALPT93] or IAM [A.è:J'P92] ~~~ too a.b~tract to provi de a rea! support for im­
plementation, expecia.lly in relation with the problem of selecting ob ject properties 
via pattern matching (pattern-matching object selection). Secondly, phase seman­
tics, though very elegant, is too far from the semantics of logic programming to 
provi de a good way of expressing the "logic programming" features of the language. 
It has been showed [Bro93, BMPT94] that a fixpoint semantics can be a good basis 
for providing programming-in-the-large features to logic programming. In generai, 
providing LO with a semantics related to the classicallogic programming semantics 
can help in reusing in this new context a wealth of existing results. In particular the 
problem of structuring LO programs more in the spirit of object oriented languages 
could be solved in this way. 

In this paper we attempt a meta-logica! reconstruction of LO. The result is 
a meta-interpreter written in a meta-constraint-logic programming language, that 
allows us to handle LO programs as object programs, and to solve the pattern­
matching object-selection problem by means of constraint solving. This kind of 
implementation allows us to provide a forma] and conservative method for exploring 
the logic programming features of the language, and, at the same time, the use 
of an instance of the C LP scheme helps us to provi de a forma] framework for the 
object-oriented based features of the language, i.e. communication and inheritance 
via associativity. 

The structure of the paper is as follows. Subsection l .2 introduces the language 
LO an d its forma] semantics, according t o [AP91 b]. A forma] (an d brief) introduc­
tion to the C LP schema of programming is also provided. In sect. 2 we provi de the 
defì.nition of the metainterpreter. Section 3 contains the correctness result for the 
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proposed meta-logìc. Fìnally, in sect. 4 we will discuss the main results of the paper. 

L2 Preliminary Notions 

We will adopt the following conventions. u,v,w,x,y,z will denote.object-term-vari~­
bles. c C' cl will denote multiset-variables, s,t will denote ob]ect-terms, p,q Vl'lll den~te ~r~dicate symbols, j,g will denote function symbols, Cwill d~note multis~ts. 
According to [JM94], where a genera] introduction to Constraint L~g1c Progra~mg 
is given, a (possibly many-sorted) signature defines a set of ~unct10n an d predicate 
symbols and associate an arity with each symbol. I~ I: IS a s1gnat~re, a I:-structure 
'D consists of a set D and an assignment of funcbons and relabons on D to the 
symbols of I: which respects the arietes of the symbols. A first order I:-formula is 
defì.ned as usually. A L:-theory is a collection of closed I:-formulas, and a model of 
a I:-theory T is a I:-structure 'D such that all formulas of T evaluate to true under 
the interpretation provided by 'D. A primitive constraint has the form p(t1, · ... ,~n), 
where tb ... , tn are terms and p E I: is a predicate symbol. Every constraznt JS a 
formula built from primitive constraints. 

As we noted previously, the LO language wiews the computation as performed by 
concurrent agents that are themselves characterized by multiple concurrent internai 
threads of computation. Agents can self-replicate, and their communications can be 
performed either via context-sh~ring or variable-sharing. L~'s operator~, ~orrespon.d 
to Linear Logic connectives [G1r8?]. Hence, LO can be Wiewed as a . lmear log1c 
programming language". In Particular, LO is defined by the followmg abstract 
syntax: 

Method 
Head 
Body 

Head o- Body. 
A\ A ~Head 
T\ A\ Body &Body\ 
Body ~Body 

An LO program can be defì.ned as a collection of method formulas (program 
Jormulas), and a goal can be defined as a body formula ( resource formulas); a 
context is a finite multiset of resource formulas. 

EXAMPLE 1 In the following we show a three-clauses LO program and a context 
made up by resource-formulas. · 

p~ao-r&(q~a). 

q~a~bo-T. 

r~bo-T. 

p~ a, q & t 

D 
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An LO sequent is a pair written as 'P f- C, where 'P is a program an d C is a context. 
!he linear interpretation for an LO sequent is the formula 8, ('P) --D 'S' (C). A proof 
IS a tree structure whose nodes are labeled with LO sequents. ìiVe sa.y that there 
exists a proof for a sequent P f- C if there is a proof tree whose leaves are labeled 
by empty sequents, the root is labeled by the sequent itself and the branches are 
obtained as instances of the following inference figures. 

~> Decomposition 

'P f- C, T [T] 

~ Progression 

'Pf-C,R 
[o- l 'P f- C, A 1, ... , An 

Notice that, by definition, the elements of a multiset are not ordered. Therefore, 
the order of the atoms in the left-hand si de of a program formula is not relevant. 

_The ce~tral poin~ of our discussion concerns the way of modeling dynarnics in 
Object-Onented Log1c Programming provided by LO. A computation can be iden­
tified with a proof-search, and a proof tree, when read bottom-up, can be seen as 
a trace of a. computation. Each branch of a proof represents the evolution of an 
object:_ the nodes represent a snapshot of the object state, while the edges represent 
the ob Ject state-transition. 

EXAMPLE 2 The following proof-tree shows a cornputation for the sequent 
P f- p, a 'S' b, where P represents the progmrn of exarnple 1. 

--[T] 
-- [T] p f- T [o-] 
Pf-T [o-] Pf-b,q,a ['S'] 
P f- b, r P f- b, q 'S' a 

'P f- b, r & (q '1? a) [o- J [ & ] 

P f- p, a, b [ '1? J 
P f- p, a 'S' b 

Cornputation begins within the context p, a 'S' b. After having enriched the context 
via application of the ["i?} inference figure, a state tmnsition is perforrned and, 
subsequently, a fork opemtion splits the proof-tree in two bmnches, which represeni 
now two zndependent concurrently evolving agents. D 

A method can be triggered by the object ìf its state conta.ins ali the resources 
m the head of the method (inference figure [o-]). In this case, the object may 
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perform a transition to a new state obtained by replacing the resources of the head 
in the old state. The sequentiality of the operation is guaranteed in this context by 
the application of the linear implication operator. The with operator allows object 
clonation and instance creation, while the par operator simply adds new components 
in the context of the object. 

EXAMPLE 3 We give some explanation of ex. 1. The first clause lets us perform a 
state-tmnsition from a context containing formulas p, a to a new context where the 
forrnulas are repalced by the formular & (q 'S' a). The formula brings t o the clonation 
of the ne w contex for the & connective an d by way of inference figure ['S']); once 
cloned, an insta.nce of the contexi is enriched with the subconiext q, a.. 

The second and third clauses a.llow process-terrnination for agents containing the 
matching subcontexts. 

The context shown allows process clonation and context enrichment. D 

Notice that there are mainly two kinds of nondeterrninism related to the system. 
The don't know nondeterminism, which is due to the search-rule, and the nonde­
terrninism due t o the context selection: given two (or more) methods an d a context 
which contains information available fcr both, either one method can be applied 
(competitive nondeterrninisrn). 

Describing operational semantics of the language by means of inference figures 
can help to define a meta-program which explains the behaviour of such a lan­
guage. In fact, inference figures can be shown to have a correspondance with the 
kernel clauses of the metainterpreter. So we can use the meta-interpreter to seman­
tically characterize the object-language. In a more precise way, once established a 
"proof-theoretic" semantics for the object language .C, we can express the provabil­
ity relation of such language with a metaprogram written in the metalanguage M. 
The model of such a program can be used as a semantics for [.: 

11 given a function p mapping a program 'P in .C to is meta-representation Vp in 
M· 

' 
"" given a set of clauses JC, kernel of the metainterpreter, defining the predicate' 

demo(g) representing the provability relation of g in [. 

we reach a correct and complete formalization of the object language [. if we can 
prove that, given a goal g and its metarepresentation G, 

P f- .c g <=?demo( G) E TvpuK. j w 

Such a result proposes lC as a real forma] semantics for .C, because in J(. we 
can establish the properties of .C. Moreover, metalogical axioms show that the 
logic language [. can be expressed within logic programming itself, and that Logic 
Programrning is a formalism with an expressive power at least similar to that of L. 
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To conclude this brief introduction of the background materia!, we recall the 
semantics definitions for C LP( X) (X stands fora 4-tuple (I:, D, L, T), where I: is 
a signature, D is a I:-structure, L is a class of I:-formulas representing the class of 
constraints, and T is a first-order I:-theory representing an axiomatization of the 
properties of D). 

Let the pair (D, L) be the constraint domain. Assume that the binary predicate 
symbol = is contained in I: and is interpreted as identity in D. A valuation is a 
mapping from terms to D and formulas to closed L-formulas. A D-interpretation 
of a formula is an interpretation of the formula with the same domain as D an d the 
same interpretation for the symbols in I: as D. 

We present a fixed-point semantics by defining the usual consequence operator 
over D-interpretations: 

p(t) E T'$(1) iff :lp(s) <- P1(s1), .. . ,pn(sn) E P, 

{pl(il). · ·1 Pn(tn)} ç J 1\ 

3 a valuation v in (D, L) such that 

D l= v(s) =t 1\ v(sl) = i1 1\ ... 1\ v(sn) =in 

2 The Meta Definition 

The CLP scheme defines a class of logic programming languages, each of which is 
obtained by specifying the constraint system. In generai, a CLP scheme is obtained 
by replacing the unification algorithm, which solves constraints over finite trees in 
T1:(V), with a more genera! (or more specialisti c) method of constraint resolution. 
In our case, the problem is to deal with object selection via pattern-matching, i.e. 
multiple selection in a multiset of formulas. It is the case of the [ o-] inference 
rule. A CLP instance can help us in such a problem. By defining a new unification 
algorithm, which can deal with multiset-union and complex-context unification, we 
can define a metainterpreter with the main properties of LO. The new constraint 
solver must now dea! with multisets of finite trees over TB(V). 

EXAMPLE 4 Consider the following constraints aver multisets of forrnulas: 

C= {a,p(t)} l±l {q( x), a} 

{a,b,c}=Cl±l{c} 

{p(x),a(x,y)} l±l C= C1 l±l {a(c,z),q(s)} 

The instance of C LP w e want t o consider is de fin ed aver a constmint solver which 

can salve such constraints. the solver has to produce the following answers io these 

rnnslmints: 

C= {a,p(t),q(:r),a) 

C= {a,b} 

c= {q(s)}, cl= {p( c)}, x= c 

D 

Let I: contain the function symbols an d constants 0 ( empty multiset), {} ( multiset 
constructor) an d (±l ( multiset union). Let D be the set of multisets over finite trees, 
where each node of each tree is labelled by a constant or a function symbol, and the 
number of children of each node is the arity of the !abel of the node. Let D interpret 
the function symbols 0,{},l±l as .their usual rneaning ()Ver finite tret;s, and the other 
function symbols of I: as tree constructors, where each f E I: of arity n maps n 
trees to a tree whose root is labelled by f and whose subtrees are the arguments of 
the mapping. The primitive constraints are equations between terms of the sarne 
sort, and Jet L be the constraints generateci by these primitive constraints. So our 
constraint domain is (D,.L). 

We now define the kernel of the metainterpreter and the function p of interpre­
tation for the object programs. 

Definition 2.1 The following rules define the kernel K of the metaù!l.eqrrcleT 

LO. 

agent( C l±l T). 

agent(Cl±l{x&y}) <- agent(Cl±l{x}), 

agent( C l±l {y} ). 

agent(Cl±l{x'l?y}) <- agent(Cl±l{x,y}). 

agent( C l±l C') <- method( C'o- z), 

agent(Cl±l{z}). 

MoTeover, given an LO program P, we define the function p, as follows: 

!j p(R o- B)= method(IIRif o- B), wher-e 

IIA1 'l? · · · 'l? An li= {Al,·· .An} 

(l) 

(2) 

(3)' 

(4) 

lJ 


