
566

8.1 A Parallel Execution Model

The lncrementality Lemma 7.1 for :F suggests a possible parallel exccution mode! of clp's, based
on a network of processors:

Network Let N be the set of pp 's of P For l E N. a processar P1 is associateci with l.

Communica.tion among processors is realized by means of channels, as follows:

Communication Processors are connected by the following channels: (i) from the envi­
ronment w to Pentry(G) and from Pcx>t(G) to the environment: (ii) cj from j to i for every
i. j such that there is an are from j to i in dg(P).

A channel cj is c al! ed an input channel of P; a.nd an ouipui charme/ of Pj. Ea.ch channel is
supposed to have a rnemory that contains a queue of states whosc policy is fair (e.g. first in first
out).

The execution mode! allows the proc.essors to run in parallel and asynchronously:

Execution Model Processors in the network execute asynchronously the following algoriihms:

- Pentry(G) takes an Q from c~mry(G) and sends it to al! its output channels.

P l . h f . h . f f . . h j entry(C) d .
- wtry(C) se ects Wl t azr c ozce rom one o Jts mput c anne s, say c cali(A) • an Q. an 1t

computes !3 = (push(Q) (\51 = 7°), where A= p(s) an d p(l) is the head of H; then Pentry(C) sends
i3 to every its output channel.
- P,ucce,(A), w h ere A is not a constraint an d is contained in the clause C, selects with fair choice

from one of its input channels. say C:~~;t"~'1IA), an o:: then i t computes f3 = pop(o:); if f3 E ~free(x~)
then P,ucces,(A) sends f3 to every its output channel.
- Psucce,(A)• where A is a constraint, takes an o: from its input channel and computes f3 = (o:/\A 0),

then Psuccess(A) sends f3 to every its outpnt channel.

This mode] describes a sound and complete implementation of O, as stated in the following
theorem.

Theorem 8.1 (Adequacy of .M) Jf ihe inpui channel c~ of M is feed with the sei of slaies

q, s.i. dJ <; ~free(x~), and dJ <; free(x~) for every non goal, non-v.nitary clause C, then

U~Epath(l) psp. 1r.dJ is ihe set of 8iaies !hai P1 in .M sends o n its outpui channels.

Remark 8.2 Our execution mode! assigns one processar to each program point. However. because
the processors work asynchronously, in case there are less processors than program points, then a
single processar can be assigned to a number of p p 's, which can be encoded as distinct tasks to be
executed with a fair schedule discipline. This will still yield a complete and asynchronous mode!.

8.2 Burstall's Intermittent Assertions Method

We show how the intermittent assertions method of Burstall [Bur74] can be adapted to clp's.
The advantages of the Intermittent Assertion Methocl, an d of Tempora.l Logic (TL) in genera!, for
instance to prove liveness properties, termination, iotal correctness etc. are well known (see for
instance [CC93]). So far, finding a suitable presentation of the intermittent assertion method for
logic programming was stili an open problem ([CC93]). In this section a solution to this problem
for clp's is given, by means of the intermedia te semantics O.

For lack of space, we shall be rather sketchy an d we refer the interested rea der to the full version
of the p a per.

For simplicity assertions are denoted by q,, 7(;, thus identifying an assertion with the set of states
it denotes. Implication is interpreted as set inclusion. i.e. q, * 7(J iff dJ <; 'lj•. Also. conjunction and
disjunction are interpreted set-theoretically as intersection and union, respectively. The assertion
pu.sh(q,) is obtained by replacing each i-variable xi in r/J by the i-variable xi+l; an d pop(q,) is

567

obtainecl by first rena.ming with fresh variables all the i-variables of leve! O a.nd then replac.ing
each remaining i-variable xi with xi-l.

H ere, an 'intermittent rule' is a formula in temporallogic of the form D (<P/lat.(i) *O(1/•Aat(j))).
where D and O are the 'always' and 'sometime' operators, ancl at(l:) indicates that exec.ution is
a(. program point i. The set of proof rules we consider contains a formalization of the induction
principle (Burstall's "little induction"), a suitable axiomatization of TL (cf. [Sti92, CC93]), plus
the following path rule, which formalizes the "hand simulation" part of the method:

(1r E path(i, j) /\ psp. 1r.<f; #false) * D (q, /\ a t(i)=> O(psp. 1r.dJ fl at(j)))

A sound and relatively complete proof system w.r.t. :F can be defined using these tools.

VVe illustrate by means of an example how the method can be applyed to prove total correctness
of a clp. The following composition rule will be used:

D (~Aat(i) =>O(,UMt(j))) D (V'Aat(j) => O(xAat(k)))

D(fMt(•) => O(x-'at(k)))
(l)

It enables us to compose intermittent assertions (note this is a particular case of the 'chain rule'
which is one of the basic tools in the proof system presented in [MP83]).

Example 8.3 Consider again the program Prad. Let the initial assertion be q,= u.0 = [To, rk]/\

-,free(x~)/\ free(x~ 1) /\ at(l).
Suppose we want to prove that Prad satisfies the following asscrtion:

D(cp * O(v 0 = r·o * ... * rk /\ at(2))) (2)

which sa.vs that for every state o: of q,, at least one exec.ution of ,__ prod(u, v) starting in o: terminates
(i.e. reacÌ1es the pp 2) and its fina! state binds v to ro * ... *"k. Below we use A, B as a shorthand for
'A(\ B' (i.e. comma stands for conjunction). Using the path rule we get the following (simplified)
assertions:

o(~=> O(v'=z'=ro•w',y'=[r,, ... ,r,]),at(4J)) (with path (1, 3, 4))

D(v'+'=z'=ro*···*">*W 0 ,y 0 =[],at(4) => O(v'+'=z'=ro•·· •r,,y 0 =[],at(5l)) (with path (4, 6, 5))

D (v'=z'=ro•···*"• ,at(5) => O(v 0 =ro•···*"k ,at(2))) (with path (5, 2))

The following assertions can be proven by straightforward induction:
O (v m+ I =z "'=ro>~< ... *rm*W 0 ,y 0 =[rm+l , ... ,rk},m<k,at(4) => O(vk+I =zk=ro>~< ... *r'k >~<W 0 1Y0=[],at(4)))
(using as path 1r = (4, 3, 4)), a.nd
o(v'+'=z'=ro*·· •r,,y'=[J.at(5)=> O(v'=z'=ra• ... •r,,at(5J)) (using as path 7f = (5, 5))

Then, the repeated application of rule (l) to compose the above assertions yields (2).

9 Discussion

In this paper an alternative operational mode! for clp's was proposed, where a program is viewed
as a dataflow gra.ph and a predicate transformer semantics transforms a set of sta.tes associated
with a fixed n ode of the graph (corresponding to the entry-point of the program) into a tuple of set
of states, one for each node of the graph. To the best of our knowledge, this is the first predicate
transformer semantics for clp's based on dataf!ow graphs. The dataf!ow gra.ph provides a static
description of the f!ow of contro! of a program, where sets of constraints 'travel' through its arcs.
The relevance of this approach was substantiated in the Applications section.

W e would like to conclude this paper by giving an extension of its results to more genera! CLP
systems. W e h ave considered 'ideai' CLP systems. With slight modifications, the dataflow semantics

568

F (a,nd all its appiìcations) can be a.dapted to dea] also wtth 'quick-check' and 'progressive' syst.ems
(cf. l.HI'19·1]), which are those more widely implemented. This can be dane as follows. St.a.l.ee are
considered to be pairs (cl, c2) of constraints. instead t han constraints, w h ere c1 dcnotes the active
part and c2 the passive part.

Siates ={(c~, c2) l c1 and c, are constraints s. t. cons·tsie7lt(cl)},

where the test consisieni(cJ) checks for (an approximation of) the consistency of c1 . Then rules R
an d C of Table l h ave r.o be changed as illustrated below, w h ere a state a = (c1 , c2) is also denoted
by (al, a,):

R (\p(s)) ·A. a)- (Ii· (pop) ·A. infer(a;, o; A s1 = 1°)),

with n 1 = push(n), if C= p(t)~ Ii is in P.

C ((d)· A, o)- (A. infer(al, G2 ;\i')),

if d is a constraint.. Finally, the definition of sp has to be changed in:

sp.c.tp = {G1 E Staies l 0: 1 = infer(o 1, n~ A c) and cr E dJ},

The operator znfer computes from the current state (c1 , c2) a new active constraint c~ and passive
constraint c;, with tbe requirement that c1 Ac2 and c~ Ac2 are equivalent constraint.s. The im.uition
lS that. c1 lS used to obtain from c2 more active constraims; then c2 is simplified t o c:,. For instance.

~in the example of Section 5, in the state of wJ the constraint z 0 = x 0 "'w 0 would be p-assive, beca.use

the equation is no t lmear (cf [J!VISY~2]). Then, in w!{ t bis constraint is transformed by applying
first p-ush t.o 1t and tben mfe,·, So z = x 1 * -u• 1 becomes act1ve, because w 1 is bound to l and
hence the equation becomes linear.

Acknowledgments: VVe would like t.o thank J an Rutt.en an d t be anonymous referees far t.heir
useful comments.

References

[BGLM94] A. Bossi, lVL Gabbrielli, G. Levi, and M. Martelli. The s-sernantics approach: t.heorl' and ap­
plicatwns. The lournal of Log1c Progmmming, 19,29: 149-197,]994.

[Bur74]

[CC93J

R. M. BurstalL Program proving as hand simulation with a little induction. Injormaiwn. Pro­
cessing, 74:308~312, 1974.

P Co uso t and R. Cousot. "A la Burstall" Interrnittent Assertions lnduction Principles far Prov­
ing lnevitability Properties of Prograrns. Theoret.ical Computer Science, 120:123-155, 1993.

[C.MJV195] L. Colussi, E. Marchiori and M. Marchiori, On Terrnination of Constraint Logic Programs. In
Proc. First lnternational Conference on Principles and Practice oj Constraint Programminq.
LNCS. Springer-Verlag, 1995. To appear. ,

[.fMSY92J J. Jaffar, S. Micliaylov, P.J. Stuckey and R.H.C. Yap, The CLP(R) Language and Systern.
ACM TOPLAS, 14(3):339-395. 1992.

[JM94]
[Mel87J

[MP83J

[Nil90]

[St.i92]

[YI94]

J. Jaffar and M.J. Maher Const.raint Logic Prograrnming: A Survey. JLP 19,20: 503-581, 1994.
C. Mellish. Abstract interpretation of Prolog prograrns. In S, Ahramsky and C. Hankin, edi­
t.ors, Abstract lnterpretation of declaratzve languages, pp. 181-198. Ellis Horwood, 1987.
Z, Manna and A, Pnueli. How t.o cook a proof systern for your pet langùage. In Pmceedings
10th ACM Sympos111m on Princ1ples of Programming Languagcs (POPL), pp. 141-154, 1983.
U. Nilsson, Systematic semantics approximations of logic prograrns. In Proc. PLILP, pp. 293-
306. Eds, P. Deransart and J. Maluszyriski, Springer Verlag, 1990,

C. Stirling.· Modal and Ternporal Logics, In ·S. Abrarnsky, Dov M. Gabba:y, and
T.S.E. Maibaurn, edit.ors, !Iandbook of Logic in Computer Science, voL 2, pp. 4ìi-.563, 1992.
S. Yarnasaki and 1\. !ida. Transformation of Logic Prograrns to FP. Prograrns B~sed an
Dataflows. lournal of Symbolic Computation, 17-18:157-182, 1994,

[WA84] W.W, Wadge and E.k Ashcroft. LUCID, tlie dataflow programming language. Acadernic
Press, London, 1985.

Labeling in CLP(FD) "vith
evolutionary programming.

Alvaro Ruiz-Andino Illera, José l Ruz Ortiz

Dpto. Informatica y Automatica
Fac, CC Matematicas, Universidad Complutense de Madrid

A v. Complutense sin. Madrid 28040 SPr'\IN
Tel: 34- 1-39444 68- Fax: 34 -l- 394 46 07

e-mail: { arai,ijruz} @dia,ucm.es

A bstract: Constraint logic programrning aver firìite integer domains allows a dee l arati ve
and flexible Jlatement of ~combinatori al optirnization problems. The paradigm used is
"constraint and generate". Constraints prune in advance the search space, and then, a
enumeration phase, also called labeling, and a search strategy are needed to find the optirnal
solution. In this paper we introduce the integration of evolutionary algorithrns, a well known
cornputing paradigm, and the CLP(FD) paradìgm. W e have designed a system that enhances
CLP with techniques · based in evolutionary ptogramming, allowing to sol ve a constrained
optirnization problerns without the need of programming an explicit · and exhaustive
enumeration and specifying a strategy to find the optimal solution. The paper describes the
algorithms used to irnplement the evolutionary program, and al so the design details' of the
genetic operators. Finally, we present an example of the operation of the prototype of the
systern, which has been implernented in ECLiPSe,

Keywords: CLP(FD), constrained optirnlzation problems, evolutionary prograrnming.

1 Intmduction,
The main advantages of applying the CLP(FD) approach (Con:;;traint Logic Prograrmning
over finite i11teger domairts) [VH89] to cost optimization problems are its flexìbility and
ease ofp~:Ogrammillg [DiÌ:i90,Wal94l Combinatmial optimizatiòn probleìns over natural
numbers are defmed as follows: given a set of variables ranging over natural numbers, a
set of constraints between these variables, and an objective function; the problern is to fmd
an assignrnent of values to the variables that satisfles the constraints and optirnizes (i,e,,
rninimizes or rnaxirnizes) the objective function.

The basic paradigrn used to sol ve this kind of problerns in CLP. is "constraint and
generate", but in rnany cases after the constraint phase the rernaiiùng search space c an be
qui te large, so the way labeling is performed plays an irnportant role. CLP supports search
over a solution space structured into a tree, some of whose leaves are feasible solutions,
The constraints allow to prune in àdvance during the search some of the branches whose
leaves include no feasible solutions, Optimization problems require not just a feasible
solution but an optimal one, assuming some function associating a cost with each solution.
Finding the optimurn requires some kind of enurneration of the feasible solutions. The
enumeration efficiency can be improved using problern specific heuristics ancl/or general
rnethods like branch and bound. But the size of many constrained search problems prevent
the problem from being tack:led by any complete search technique, even when the search
space may be pruned by constraint handling. For such approximation algorithms

570

are a good alternative. These kinds of algorithms do not guarantee to fmd an optimal
solution, but offer a high probability of frnding a go od solution by exploring only a part of
the solution space. In this paper we introduce the integration of an approximation
technique called evolutionary programming into CLP(FD) to solve constrained
optimization problems. This extension allows the programmer to be freed from specifying
the labeling and optimization strategies.

1.1 Background on evolutio:nary programming.
An evolutionary program ìs a stochastic computational device, based on principles of
evolution and hereditary, that allow an effective search in very large search space.
Evolutionary programming comes from the refinement of genetic algorithms. As hold in
[Mic94], "genetic algorithms + data structures = evolution programs". For many hard
search problems, such as the traveling salesman problem, assembly-line sequencing and
scheduling, evolutionary algorithms have been used very successfully [Gol89]. The
skeleton of an evolutionary program in shown in Figure L

procedure evolutionary prograrn
begin

t : = o;
initialize P(t)

evaluate P(t)

while not termination-condition do begin
t := t+l;
select P(t) from P(t-1)
alter P(t)
evaluate P(t)

end;
end.

Figure l.

An evolutionary program maintains a population of "chromosomes", P(t)= {X/, ... , Xntl
for ìteration t. Each chromosome represents a potential solution to the problem at band,
implemented as some. possibly complex, data structure S. The initial population P(o) is
generated randomly or by any other method (initialize step). Then the population is
evaluated (evaluate step), computing a "fitness" value for each chromosome X/ that
indicates a measure of the goodness of the chromosome as a solution to the optirnization
problem. The objective function to be optimized is the basis for the computation of this
fitness value. Then a new population, P(t+l), is formed by selecting some chromosdmes
(select step) from P(t). Best fitted solutions are more likely to be chosen for survìval.
Some members of the new population undergo transformations by means of "genetic"
operators to form new solutions (alter step). There are unary transformatìons mi
(mutation type), which create new solutions by a small change in a single chromosome
(mi: S -7 S), and transformations Cj (crossover type), which create new solutions by
combining two (or more) randomly selected chromosomes (cF S x S-7 S). Best fitted
solutìons are more likely to be chosen for crossing-over. After some number of
generations (iterations) the program converges .:_ it is hoped that the best chromosome
represents a near-optìmum solution. There is a theoretical foundation for this kind of
algorithms based in the schemata theorem [Hol75], which is beyond the scope of this
introduction.

571

Section 2 introduces the details of the of the evolutionary algorithm designed for its
integration in CLP(FD) in order to solve constrained optìmization problems. Section 3
presents an example and some empirica] results. Finally we discuss the conclusions and
future work.

2 · Labeling with evoiutionacy p:rogramming.
A constrained optimization problem within the framework of CLP(FD) may be stated in
the following way: given a tuple <V, D, C,f>, where:

V= {VI, ... , V n} : finite set of domain variables.
e D= {D 1, ... ,D n} : fmite set of integer domains associated to the variables Vi.

C= {Cl, ... , Cm} :finite set of constraints between the variables in V.
• f: objective function rangìng over V.

fmd an assignment of values from D to the variables in V that satìsfies the constraints in C
and optimizes (maximizes or minimìzes) the objective function f. First, constraints Ci are
stated leading a reduction of the original domains, an d then a labeling strategy is needed to
perform the search for the optimal assignment Our aim is to enhance CLP(FD) with an
optimization technique that, given a list of domain variables and a cost expression, returns
a near optimal solution with respect to the cost expression. Searching will be pe1formed
using a evolutionary constrained algorithm, using constraints to guide the genetic
operators to a feasible solution. In this section we introduce the rnain points of the design
of the evolutionary program.

2.1 Representation of solutions.
In highly constrained problems, a rninimal change to a feasible solution ìs very likely to
generate an unfeasible one, but unfeasible solutions cannot simply be dropped from the
solution space because doing so would prevent certain good solutions from being
generated. Classical approaches overcome this problem using one or more tricks like
penalty functions, the avoidance of generating illegal solutions, repair algorithms, linear
recombination [Min92,Mic93]. The integration of evolutìonary algorithms with the
constraint propagation and local consistency techniques embedded in CLP over finite
integer domains offer a new approach to salve this problem. We introduce an approach
where chromosomes do not represent a "ground" solution, but an "area" of the search
space, that is, variables are not labeled with an integer value, but a integer dornain, so a
chromosome may include none or many solutions. Local consìstency [VH92] and
constraint propagation does not guarantee that a not completely ground chromosome
includes a solution, but it may contain many, both good and bad, covering an area of the
search space. Genetic operators have been designed in order to both guarantee the
convergence to a "ground" solution while exploring as much as possible the search space.
During generation and recombination of chromosomes local consistency and constraint
propagation is triggered, keeping chromosomes within the feasible solution space as much
as possible.

A chromosome Xi, which represents a set of potential solutions, is formed by the list
[d1, .. ,dn1 where each di is an abstract data type representing the integer domain
associated with the variable i of the list of dornilln variables to be labeled. Each

572

chromosome, a potential solution. has an associated cost dc, which is also the integer
domain associated to the cost expression to optimize.

Besides the lists of d(s, we will also keep some extra informatiop about each
chromosome for the implementation of the evolutionary mechanisms: its fitness value
(fit), its accumulated relative fitness (arf), used in the select_<:hramasame step, and a
boolean flag to indicate if it will survive to the next generation.

2,2 The algorithm,

Figure 2 shows the main algorithm implemented in our system. It clearly follows the
skeleton shown in Figure l. The following subsections will describe each step in detail,
giving the algorithm used for each underlined step.

procedure evalutionary_labeling_in_CLP (Vars : list af fd_vars;

begin
t : = o.
initialize P(t):

for i:=l to pop_size do
X i : = random l abel ing (Vars) ;

evaluate P{t):
for i:=l to pop_size do

Xi.fit := fitness(f,Xi)
total_fitness := I xi.tit

f : objective functian);

xi.art :=I ij :=1 to i) xj.tit ; total_fitness
while not terminatian-conditian do

select P(t) fram P(t-1):
for i:=l to pop_size * prop_surv do begin

X-i := select chramosame(P(t})
mark xj to survive

end;
alter P(t):

for i:=l to pop_size do
if not Xi marked for survival then begin

Xl := select_chromasome(P(t))
x2 := select_chromosame(P(t))
replace Xi with crossaver(Vars,x1 X 0)

end; ' -
for i:=l to pop_size do

Xi := mutat:lan(Vars,Xi)
evaluate P(t)

end;
final solutian .- best solutian(Vars,P(t))

end ..

Figure 2,

The initialize step is a loop that generates pop_size chromosomes by means of a
randam_labeling procedure. Evaluate step computes the fitness value of each
chromosome of the population, an d also its accumulated relative fitness. In the select step,
some randornly chosen chromosomes are rnarked as survivors, so they won't be replaced
by the new chromosomes generated by crossover. Best fitted chrornosornes are more
likely to be selected. as select chramasame procedure mal(e a randorn selection bàsed in
the accumulated relative fitness. The alter step has been divided in the two genetic

573

operators, crassaver and mutatian. New chromosomes generated by crossover take the
place in the population of those chromosomes that were not chosen for survival. New
chrornosornes generated by means of rnutation replace the chromosome used to produce
the mutation.

2"3 Generating the initial popwation.
The frrst step in any evolutionary program is the generation of an initial population. Each
chromosome x/ = [d1, .. ,d11] of this initial population is generated by means of a
randam labeling procedure as shown in figure 3 and described below:

6 Variable (Vi) selection: next variable to be labeled is randomly selected.
Value (domain di) selection: from the dornain of the variable Vi, which ranges from
Min to Max, two values LDw and Up are randomly chosen (Min <= LDw <= Up <=
Max). Then Vi is constrained to a dornain dz. which is a reduction of the originai
dornain. This reduction rnay be perforrned in two different ways: one reduces the
domain removing values from the top ancllor bottom, and the other tries to reduce the
domain towards one of its boundaries. For each variable we randornly select one of
this two ways, using a randorn rea! number between 0.0 and 1.0, and a parameter,
called boundmy__prob, that specifies the probability that the "boundary" domain
reduction is chosen.
li the first way of dornain reduction is chosen, the new domain di is chosen randornly,
in a non deterrninistic way, frorn the following dornain.s:

LDw .. Up
G LDw .. Max
Q Min .. Up
If boundary reduction is chosen, the new domain di is chosen randornly, in a non
deterministic way, from the following domains:

Min .. LDw
~ Up .. Max

function randam_labeling (Vars : list ?f fd_vars)
begin

randamly select a variable vi fram Vars
fdvar_range(Vi,Min,Max);
chaase_randamly(Law,Up) fram [Min ta Max];
if randam_nurnber < barder_prab then begin

try secuencialy in any arder:
vi .. Law .. Up
Vi :: Law .. Max
vi :: Min .. up

end
else begin

try secuencialy in any arder:

end ·

Vi :: Min .. Law
vi :: Up .. Max

if all fail then Vi :: Min .. Max
fdvar_damain (Vi, di)

return di u randam_labeling(Vars l Vi);
end.

chramasame;

'----------·---------------····-----

574

2.4 Evaluation of fu e popul.ation.

The population is evaluated every generation, computing a fitness value for each
chromosome. Fitness indicates how good a chromosome is as a potential solution to the
problem, so the domain associated to the cost expression to optimize is the basis for the
computation of this fitness value. The probability of survival and reproduction of a
chromosome is directly proportional to its fitness value.

Figure 4 shows the main steps of the computation of the fitness value. The fitness of
each chromosome is computed asf(d0 [d1, .. ,dnl), a function of dc, the domain of the cost
function for that particular solution, and the list of dj'S, the remaining domains of the
variables. The values Ldc and V dc, the lower and upper bounds of d re;pectively, are the
main contribution to the fitness function (basic_fitness), but the~e is also two penalty
components, o ne (pena l ty _cast) depending on Sdc, the size of the domain dc, an d other
(penalty _ vars) depending o n the sum of the sizes of d(s. The introduction of these
penalty factors favors those chrornosomes closer to be ground, so that the .algorithm tends
to converge to a ground solutions.

Parameters pena!_cost and penal_vars may take any real value from 0.0 to 1.0. They
weights the penalty introduced to those chromosomes not completely ground. Then, as
shown in Figure 2, the total_fitness value is computed as the sum of ali fitness values,
and fmally, we compute the relative fitness (Xi.fit l total_fitness) for each
chromosome, and its accumulated relative fitness value, used for the random selection of a
chromosome with a probability proportìonal to its fitness.

function fitness(Cost: function; [d 1 , ••• ,anl: list of domains) : real;
begin ~

cost_range_size(Cost,Ldc,Udc,Sd0);

Fit1:= basic_fitness(Ld0 ,Ud0);

Pc : = pena l ty _cast (Sd0) ; 1 * O. O t o 1. o * 1

Pv := penalty_vars(L size(di)); l* 0.0 to 1.0 */

Fit2 := (1-Pc*penal_cost) * Fitl;
Fit3 := (1-Pv*penal_vars) * Fit2;
return Fit3

end.

Figure4.

2.5 Selection of chromosomes to survive.
Some chromosomes from population P(t-1) will be present in population P(t). This set of
chromosomes is randomly chosen, but as we want the population to converge to a good
~olution, chromo~omes with a higher fitness value are more likely to be chosen. Selecting
m a random fashion allows some "no good" chromosomes to be selected for survival and
crossover. This is an important point of the evolutionary mechanism: bad solutions cannot
be simply dropped becanse they may eventually lead to a good solution. Figure 5 shows
the algorithm that randomly chooses a chromosome of the population with a probability
proportional to its relative fitness. This algorithm is also used to select parent
chromosomes for the crossover operator.

575

function select_chromosome (P : population)
begin

R := random number between 0.0 and 1.0.
i : = l;
while R > Xi.arf do i:=i+1;
return Xi

end.

Figure5.

2.6 Genetic operators.

chromosome;

Genetic operators generate the new chromosomes that will be added to population P(t)
from chromosomes from population P(t-1). The design of these operators is a crucial
point, as they must guarantee that new individuals "inherits" the good properties of their
parents, an d also must allow the exploration of new areas of the search space.

In simple evolutionary programs, like classical genetic algorithms, chromosomes are
coded as bit strings. Binary mutation just inverts some randomly selected bits, and binary
crossover concatenates two substrings obtained from splitting the parents. However. in
evolutionary programs chromosomes are complex data structures, and genetic operators
are much elaborated. The operators used in our system are quite more complex than the
classical ones, not just because they work over a complex data structure (a list of fmite
integer domains), but mainly because they trigger the local consistency and constraint
propagation techniques embedded in CLP(FD)_ Anyway, because of intuitive similarities,
we cluster the operators in the standard two classes, mutation and crossover. We have
included two mutation operators, which create new solutions by a small change in a single
chromosome, and a crossover operator, which create a new solution by combining two
chromosomes.

2.6.1 Crossover.
"Dead" chromosomes (those not selected for survival) are replaced by new chromosomes
generated by means of the crossover operator. Dead chromosomes are not actually
replaced until ali new chromosomes are generated, so dead chromosomes may also be
selected to generate a new ones by crossover. As shown in Figure 2, parent chromosomes
are chosen using the select_chromosome procedure (described in subsection 2.5), which
randomly selects a chromosome with a probability proportional to its fitness.

Figure 6 shows the algorithm used for crossover. Given two chromosomes the
crossover operator generates a new solution which is an approximate mixture of the two
parent~. From two chosen parents, Xi = fdi, ·-Ah and Xj = fd./ .. ,dniJ, a new
chromosome X= [dJ, .. ,dnl is generated by means of a crossover labeling procedure as
follows: (Keep in mind that whenever a domain variable is forced to modify its domain,
local consistency and constraint propagation is triggered)

l. Variable (Vk) selection: next variable to be labeled is randomly selected, being Dk its
associated domain.

2. Value (domain) selection: Value (domain dk) selection: if dki n d,j * 0 then dk is
randomly assigned the domain intersection or the domain union between dki and d,j,
with a probabili t)' xov _inter _prob in fa v or of the intersection. If dki n d,j = 0 then
we try to assign to dk, in random order, dki or di If ali ttials fail, dk is assigned Dk

576
function crassaver(Vars:list af fd_vars;Xi,Xj :chramasame) :chramasame;
begin

randamly select a variable Vk fram Vars;
fdvar_damain (Vk, Dk)
dk~ := k_th(Xi)
dk] := k_th(Xj)

if dki n dkj 7= 0 then begin
R := randam number between 0.0 and 1.0
if R > xov_inter_prob then dk àki n dkj

else dk : = dki u dkj
end
else begin

try secuencialy in random arder:
dk . - dki
dk := dk]

end
if all fa il then dk : = Dk;
l,Tk :: dk /* may fa il and backtrack *l
return dk U crossaver(Vars l Vk, Xj l dki, Xj l dkj)

end;

Figure 6.

2.6.2 Mutation.

Mutation is the unary genetic operator that transforms a single chromosome in a new
chromosome. It plays the role of "jumping" to unexplored areas of the search space. We
have included two mutation operators, which may be applied to any chromosome in the
population with a probability of mut_probl and mut_prob2, respectively. Operator l
intends to expand the domain of the chosen variable, whereas operator 2 intends to
"mòve" the domain of a variable to new values. Figure 7 shows the algorithms for the
mutation operators.

l. Operator l:

Given a chromosome X= [d1, .. ,d11}, we generate a new mutated chromosome X' =
[di····· dr/, .. , d11], assigning to each variable Vi the domain_ di, except a randomly
chosen variable Vk, which is constrained to a new domain dk', computed from its
associated domain Dk, ranging from Min to Max. and dk, ranging from I.ow to Up
(Min <= I.ow <= Up <= Max). dk' is chosen, randomly, in a non deterministic way,
from:

Up .. Max
Min .. Low

If both trials fail, the domain of \lk is left unchanged.
2. Operator 2:

Given a chromosome X= [d1, .. ,d11], we generate a mutated new chromosome X'=
[d1, ... , dk', .. , d11], assigning to each variable Vi the domain dj, except a randomly
chosen variable \lk, which is constrained to a new domain dk', computed from its
associated domain Dk, ranging from Min to Max. and dk, ranging from Low to Up
(Min <= Low <= Up <= dk'is chosen, randomly, in a non detenninistic way,
from:

Min .. Up
Low .. Max

577

function mutatian(Vars : list of fd_vars; x
begin

R := randam number between 0.0 and 1.0

chromosame) :chromasame;

if R > mut_probl then X' := mutation1(Vars,X)
else X' := X

R := randarn number between 0.0 and 1.0
if R > mut_prab2 then X' ' : = rnutatian2 (Vars, X')

else X'' := X'
return X''

end;

function mutatianl(Vars : list af fd_vars; X chramasame) :chrornasorne;
begin

randamly select a variable Vk tram Vars
for i:=1 to 1ength(Vars) do

if i<> k then vi :: di
fdvar_damain(Vk,dk')
return (X with dk rep1aced by dk')

end;

function mutatian2(Vars : list af fd_vars; X
be gin

random1y se1ect a variable Vk frorn Vars
for i:=l to length(Vars) do

if i<> k then Vi :: di
dk := k_th(X);
fdvar_range(Vk,Min,Max)
damain_range(dk,Law,Up);
try in any arder:

dk' := Min .. Low
dk' := Up .. Max

vk ': dk'
if both fail then dk' := Min .. Max
return (X with dk replaced by dk')

end;

F.igure7.

2. 7 Termination conditllon.

chramasame) :chrarnasome;

The terminati o n condition is the disjunction of the following factors:
., reaching the maximum number of iterations specified by the pararneter max_iter.
0 reaching a user specified time-out.
" obtaining a chromosome with a user specified cost.
@ reaching a hopelessly invariant population.

2.8 Extracting the best solution.
Once the termination condition is met, we must extract the best chromosome from the
population. Some or even ali chromosomes in the population may not be completely
ground solutions, so we must use a heuristic to extract the best ground solution present in
the population. Figure 8 shows the algorithm used to perform this search in the
population.

578

First we look in the population for the best "ground" chromosome, that is, the best
fitted chromosome X 1 = [d1, .. ,dnl such that for ali i, di is a singleton domain, and also
for the chromosome ing that, not being completely ground, offers a higher fitness. Fr~m
chromosome Xng• we generate a ground solution Xg2 by means of a classlCal labeling
procedure, and a pool of chromosomes by means of a random labeling procedure. From
this pool, we extract the best ground solution Xg3 and the best non ground chromosome.
The latter gives place to a ground solution Xg4 by means of a classicallabeling procedure.
The solution offered as the fmal near-optimal labeling for the input variables will be the
one which offers a better value for the objective function to optimize among the four
ground so1utions Xg1, Xg2, Xg3 and Xg4·

function best_solution (Vars : list of fd_variables;
P : population) list of integers;

be gin
Xgl := best fitted ground solution in P
Xng := best fitted non completely ground chromosome in P

Xg2 := labeling(Xngl
Vars' := Vars updated with Xng
P' := generated by random_labeling(Vars');
XgJ := best fitted ground solution in P'

X'ng := best_fitted non completely ground chromosome in P'

Xg4 := labellng(X'ngl;
return max_fitness(Xg1 ,Xg2 ,Xg3•Xg4)

end;

Figure 8.

2.9 Par:ameters.
As seen throughout this section. an evolutionary algorithm uses some global parameters
indicating the population size (pop_size), proporlion of chromosomes to survive from one
generation to the next one (prop_surv), the maximum numbers of generations to run
(m.ax_iter), two penalty percentages (penal_cost and penal_vars), and four different
probabilìties that tune the behavior of the genetic operators (boundary_prob,
xov _inter _prob, m.ut_probl, m.ut_prob2). The values of these parameters affects
dramatically the perfo1mance of the evolutionary algorithm, and there are no generai
values that performs optimally for every benchmark. Table l shows the usual range for
each of the parameters.

pop_size
boundary _prob
penal_vars
xov _inter _prob
mut_prob2

10- 100
0.20-0.70
0.20- 0.90
0.30- 0.70
0.01 - 0.15

Table 1.

max_iter
penal_cost
prop_surv
mut_probl

50- 1000
0.05- 0.40
0.30- 0.80
0.01 - 0.15

Parameters should be ìnìtialìzed every time the evolutionary algorithm is invoked in
accordance to the initial domains of the variables to be 1abeled and the function co st. Also,
parameters tuning the behavior of the genetic operators should be tuned every fixed
number of iterations depending on the evolution of the population. It is stili under
development a heuristic-guìded self adaptive parameter tuning feature, which is essential
to achieve our goal, a self contained optimization predicate for constraint logic
progranuning over fmite integer domains.

579

3 Exampie.

A prototype of the system has been implememed in Prolog using the logìc programming
environment ECLiPSe, which offers several facilities for the integration of extensìons in
logic programming [Ecli94]. The constraint handling itself is provided as an extension by
means of a library. W e pretend that the fmal version of our system will also be deliverab1e
as a library for the ECLiPSe system.

In this section we describe a simple example of the system solving a transportation
problem. It seeks the determination of a mìnìmum cost transportation plan for a single
commodity from n sources to k destinations. The amount of supply at source i ìs sour(i),
and the demand a t destination j is dest(j). The uni t transportation cost between source i
and destinationj is cost(i,j). The amount transported from source i to destinationj is Xij.
The constraints and the objective function are:

L~=l Xij = sour(i) for i=l, ... ,n

I.ni=l xij = dest(j) for }=l, ... , k

f= I, Xij * cost(i,j)

Test data correspond to a n=7, k=7 problem taken from [Mic94]. Figure 9 shows the
evolution of the cost of best chromosome in the population vs. the number of generations.

o

400

Number of generations.

Figure8.

The shape of the curve is characteristic of evolution programs. Chromosomes in the
randomly generated ìnìtial population ha ve very poor fitness values, but in a few iterations
good solutions are generated. Then, ne\\f_b~tt~r solutions take more generationstoappear,
aDQ_<Jlso aJlCllf()illOSOmes in the population SÌÒwly te n d t o COnverge t o the same near­
optimal solution.

We are currently working on a set of benchmarks of combinatoria] optimization
problems: job-shop scheduling, traveling salesman, graph partitioning, assemb1y line
sequencing, and time tabling. First results lead us to expect that a fmal version of the
system will be competitive with classica] optimization strategies like branch and bound.

4 Condusions and future wor.k.

We have introduced a model to integrate evolutionary algorithms in constraint logic
programming over finite integer domains in order to perform the optimallabeling phase of
combinatoria! search optimization problems. Chromosomes represent not completely
ground solutions to the problem to guarantee a wider covering of the search space. A set

580

of genetic operators have been designed in accordance to the particular characteristics of
constraint logic prograrnming. We have developed a prototype using the facilities
provided by the logic prograrnming environment ECLiPSe and performed some
experiments that allow us to expect that a final version of the system will be competitive
with other optimization methods, lik:e branch and bound, when applied to problems with a
vast search space.

This work is stili in its frrst stage. W e believe that the integration of the evolutionary
prograrnming paradigm in constraint logic prograrnming for optimization purposes has a
promising future. The implemented prototype has many drawbacks to be flxed, more
investigation is to be done to design better genetic operators and a self adaptive pararneter
tuning is stili missing. Besides this problems, future work will emphasize in exploiting the
great possibilities of parallelism that the integration evolutionary algorithms and CLP
offers.

References

[Din90]

[Gol89]

[Hol75]

[Mic93]

[Mic94]

[Min92]

[VH89]

[VH92]

[Wal94]

[Ecli94]

Dincbas, M., Simonis H., and Van Hentenryck. "Solving Large Combinatoria!
Problems in Logic Programming". Journal ofLogic Programming 8. 1990
Goldberg, D.E., "Genetic algorithms in search, Optimization and Machine Leaming".
Addison-Wesley, Reading, MA, 1989.
Holland, J.H., "Adaptation in Natura! and Artificial Systems". University of Michigan
Press, Ann Arbor, 1975.
Michalewicz, Z., and Attia, N., "Evolutionary optimization of Constrained Problems".
Proc. of the 3rd Ann. Conf. on Evolutionary Programming, La Jolla, CA, 1993.
Michalewicz, Z., "Genetic algorithms + Data Structures = Evolution Programs".
Second Edition, Springer-Verlag.1994.
Minton, S., Johnston M.D., Philips A.B., and Laird, P., "Minimizing conflicts: a
Heuristic Repair Method for constraint satisfaction and scheduling problems".
Artificial Intelligence 58. 1992.
Van Hentenryck, P. "Constraint Satisjaction in Constraint Logic Programming". The

MIT Press. 1989.
V an Hentenryck, P., Deville, Y., and Teng C.M., "A generic Arc-consistency Algorithm
and its Specializations". Artificial Intelligence 57. 1992~- · ·· · · · -~
wàiiaèe''lvC' ·;;Constraints in Planing, Scheduling and Placement Problems", In

Constraint Programming,. Springer-Verlag, 1994.
"ECLiPSe Extensions User Manual". ECRC GmbH. July 1994.

Constraint Systems for Pattern Analysis
of Constraint Logic-Based Languages

Roberto Bagnara
Dipartimento di Informatica

Università di Pisa
Corso Italia 40, 56125 Pisa

bagnara©di.unipi.it
Phone: 050/887267 Fax: 050/887226

Abst:ract

Pat.tern analysis consists in determining the shape of the.set of s0lu~jDI1L9i ijl.e.~onst.rçjnt
store at some program points: · Our bàsic clalffi is th~tpatte~n ·a~alys~s c an .alÌ be described
;;tlùn .a ·;;,~ifled f;,;~~,;,o~k ~i 'constra.int domains. W e show the basic blocks of such a frame­
work as well as construction t~·chniques which. mduce a hierarchy of douiains. In particular,
we propose a general methodology far domain combination with asynchronous interaction.
The interaction among doma.ins is asynchronous in that it can occur at any time: before,
during, and after the product operation in a completely homogeneous way. That is achieved
by regarding semantic doma.ins as particular kinds of (ask-and-tell) constra.int systems. These
constraint systems allow to express communication among domains in a very simple way.
The techniques we propose allow far smooth integration within an appropriate framework for
the definition of non-standard semantics of constraint logic-based Janguages. The effective­
ness of this methodology is being demonstrated by a prototype irnplementation of CHINA, a
CLP(?i, N) analyzer we have developed.

Keywords: Constraint Systems, Constra.int-based Languages, Data-flow Analysis, Abstract
Interpretation.

l Introduction

Pattern analysis for constraint logic-based languages consists in determining the shape of the set
of solutions of the constraint stare at some program point. For usual applications (most promi­
nently, program specialization) the interesting program points are procedure calls and procedure
(successful) exits.

In the case of Prolog, pattern analysis has been extensively studied (see [9] for a summary of
thìs work). In the case of CLP, besides the generalization to CLP('H) of the ideas and techniques
used for Prolog, not much has been clone. A key observation h ere is that the shape of solutions can
be conveniently described by constraints. Thus the CLP framework is generai enough to encompass
(some of) its own data-flow analyses. Intuitively, this is clone by replacing the standard constraint
domain with one suitable for expressing the desired information. This fundamental aspect was
brought to light in [5] and elaborated in [12].

For languages of the kind of CLP(N), where N is some numerica! domains, the first steps
towards pattern analysis were moved in~. 4]. [2] describes some ofthe more important applications
of such analyses. The work clone in this field is being generalized to CLP('H, N) languages,
integrating numerica] and symbolic pattern analysis. This is clone with a variety of techniques,

582

including depth-k abstraction. A more restricted kind of integration has recently been described

in [17]. Here, the numerica! part is essentially the one proposed in [3].
Now, instead of directly describing the techniques employed in [3, 4, 2, 17], we concentrate on

what is missing from them: a genera! notion of constraint domain which allows one to adequately

describe both the "logica! p art" of concrete computations (e.g. answer constraints) an d as much

pattern analyses (e.g. the shape of those answer constraints) we can think about.

We believe that ìt is possible to describe every pattern analysis within a unified framework of

constraint domains. In particular we wish the framework being able to accommodate approximate

inference techniques whose importance relies on very practical considerations, such as representing

good compromises between precision and computational efficiency. Some of these techniques will

be sketched in the sequel.
Then, what will be needed is a generalized algebraic semantics for constraint logic programs,

parameterized with respect to an underlying constraint domain. The main advantages of this

approach [12] are that: (1) different instances ofCLP can be used to define non-standard semantics

for constraint logic programs; and (2) the abstract interpretation of CLP programs can be thus

formalized inside the CLP paradigm.
Let us concentrate on constraint domains for pattern analysis. They are algebraic structures

of the kind • •2 · ·~··'' 1:.

15 = (D,:S,0,~,{3l,:,},O,l,{dxy}), (l)

where1 D is the set of constraints expressing the properties of interest. D is partially ordered with

respect to :S which, intuitively, relates the informatìon content of constraints: C1 :S C2 means that

"C1 is more precise t han C2". 0 an d E!l are binary operators modeling conjunction an d (weak)

disjunction. {31,:,} is a family of unary operators, indexed over finite subsets of variables, modeling

projection of constraints onto designated sets of variables. O an d l represent, intuitively, the class

of unsatisfiable constraints and the class of non-constraints (i.e. those which do not provide any

information), respectively. The family of distinguished elements { dxy }, indexed on pairs of n-tu pie

of variables, allows to mode! parameter passing.
In this setting, data-flow analysis is then performed (or a t least justified) through abstract

interpretation [8, 9], i.e., "mimicking" the program run-time behavior by "executing" it, in a finite

way, on an approximated (abstract) constraìnt domain. W e will thus ha ve two constraint domaìns

ofthe form (1): the "concrete" and the "abstract" one. Followìng a generalized semantic approach,

the concrete an d abstract semantics are more easìly related, beìng instances (over two different

constraìnt systems) of the same generalized semantics, which is entirely parametric on a constraìnt

domain. Thus, to ensure correctness, it will be sufficient to exhibit an "abstraction function" a

which is a semimorphism between the constraìnt domaìns [10].
In thìs paper we descrìbe a hierarchy of constraint systems which capture ali the pattern

analyses we know of, as well as the "concrete" collecting semantìcs they abstract. The basis ìs

constituted by a set offinite constraints, each expressing some partial information about a program

execution's state. Once this ìs given (simple constraìnt systems, Section 2), we provide standard

ways of representìng an d composing finite constraints (determinate constraint systems, Section 3).

Then we can have the notion of dependency built into the constraint system (ask-and-tell constraint

systems Section 4). Another construction is the one which allows us to treat disjunction (powerset

constraint systems, Section 5) .. Finally, in Section 6 we sketch how to achieve combination of

domains by considering dependencies within produci constraint systems. W e feel that, indeed, this

is one of more important contributions of this paper.
For the sake of simplicity we will present constraint systems omitting the distinguished elements

modeling parameter passing. For most applications d Xl' is simply a constraint expressing some

sort of equivalence between X and Y. VITe disregard them also because, differently from [12], we

do not require them to satisfy any interesting algebraic property.

1 For space reasons we om.it many details.

583

2 Simple constraint systems

The basic blocks of our construction are simple consiraint systems (or s.c.s.), very similar to those

of [19], but with a tota/ly uninformative token (T) as in [20].

Definition 2.1 (Simple constraint system.) A simple constraint svstem is a struciure (C 1- j_ T)

where C is a set of (noi better specìfied) constraints, j_ E C, T E C, an d 1- ç fPJ (C) x C is a co'm;ac; '

entailment re]ation such that, for each C, C'E rp1 (C) and c, c' E C:

E1. cEC =>Cl-c,
E2. C 1- T,

E3. (CI-c)A(Vc'EC:C'I-c') =>C'l-c,
E4. {J.}I-c

W e considera/so the extension 1- ç p(C) x p(C) such that, for each C, C'E p(C),

C 1- C' ? V c' E C' : 3C" çf C . C" 1- c'.

It is clear that condition E1 implies reflexivity of 1-, while condition E3 amounts to transitivity. E 2

qualifies T as the least informative token: it will be needed just as a "marker" when the produci

of simple constraint systems will be considered (see Section 6). E4 ensures that C is a finite]y
generable element.

In generai, describing the "standard" semantics of a CLP(X) language is an easy matter. Let

T be the theory which corresponds to the domain X [15]. Let D be an appropriate set offormulas

in the vocabulary of T closed under conjnnction and existential quantification. Define r 1- c iff

f entails c in the logic, with non-logica! axioms T. Then (D, 1-) is the requìred simple constraint

system. For CLP(7i) (i.e. pure Prolog) one takes the Clark's theory of equality. For CLP(JH'.) the

theory RCF of rea! closed fields will do the job.

However, describing "standard" constraint domains is not the reason which motìvated our work.
Here are the origina] motivations.

2.1 Pattern analysis for numeric domains

The analysis described in [3, 4, 2] is based on constraint inference (a vari an t of constraint prop­

agation) [11]. This technique, developed in the field of artificial intelligence, has been applied to

temporal and spatial reasoning [1, 21].
Let us focus our attention to arithmetic domains, where the constraints are binary relations

over expressions. Let E be the set of arithmetic expressions of interest an d l the set of intervals over

some computable set of numbers (e.g. rational or floating point numbers). Then our constraints
are given by

The meaning of the constraint e <l I is the obvious one: any value the expression e can take is

contained in I. Thus C provides a mixture of qualitative (relationships) and quantitative (bounds)
knowledge.

Now, the approximate inference techniques we are interested in can be encoded into a conse­

quence relation 1- over C. Let us see some of them. The most trivial one is symmetric closure:

{el !Xl e2} 1- e2 !Xl-l e1, where !Xl-l is the inverse of !Xl (e.g., < is the inverse of >, 2: of::; and so

on). A more interesting qualitative technique is transitive closure, allowing inferences like A< C

from A ::; B and B < C. It is formalized by axioms of the form { e1 ::; e2 , e2 < e3 } 1- e1 < e3 •

A classica! quantitative technique is· interval arithmetic which allows to infer the variation in­

terval of an expression from the intervals of its sub-expressions. Let f(e 1, ... , ek) be any arith-

metic expression having e1, ... , ek as subexpressions. Then {f(e1 , ... , e~c) <l I, e 1 <l h, ... , ek <l

h} 1- f(eJ, ... ,ek) <l f(h, ... ,h), where j:Jk __,l is such that for each x 1 E h, ... , xk E h,
/(xl, ... , x ~c) E i(h, ... , h). An example inference is: A <l [3, 6) AB <l [-1, 5]1- A+ B <l [2, 11).

Another technique is numeric constraint propagatìon, which consists in determining the relation­
ship between two expressions when their associateci intervals do not overlap, except possibly at
their endpoints. The associateci family of axioms is {e1 <1 I,, e2 <1 h} f- e1 tx1 ez, with the side
conditi an \ix 1 E h, x 2 E I 2 : x1 tx1 Xz. Far example, ifA E (-oo, 2], B E [2, +oo), an d C E [5, 10],
we can infer that A ::; B and A< C. lt is also possible to go the other way around, i.e., knowing
that U < V may allow to refine the intervals associateci to U and V so tbat they do not overlap.
We cali this weak interval refinement: {e1 tx1 e2 , e1 <1 I 1 , e2 <1 h} f- e1 <1 I;, where I; is obtained
by shrinking Il so to ensure that Xl E I; iff xl E Il 1\ 3x2 E h . Xl (Xl X2.

In summary, by considering tbe transitive closure of f- and with some minor technical additions
we end up with a simple constraint system which characterizes precisely the combination of the
above (an d possibly other) techniques.

3 Determinate constraint systems

By axioms E 1 and E3 of Definition 2.1 the entailment relation of a simple constraint system is a
preorder. Now, instead of considering the quotient poset with respect to the induced equivalence
relation, a particular choice of the equivalence classes' representatives is made: closed sets with
respect to entailment. This representation is a very convenient domain-independent strong norma!

form for constraints.

Definition 3.1 (Elements.) [19] The elements of an s.c.s. (C, f-, .l, T) are the entailment-closed
subsets of C, that is, those C ç C such that 3C' çf C . C' f- c ìmplìes c E C. The set of elements

of (C, f-) is denoted by ICI.

The poset of elements is thus given by (ICI, 2Ì- Notice that we deviate from [19] in that we order
our constraint systems in the dual way.

Definition 3.2 (Inference ma p, finite elements.) Gìven a sìmple constraìnt system (C, f-, J., T),
the inference map of (C, f-, .l, T) ìs the function P: p(C) --+ p(C) given, for each C ç C, by
P(C) = { c l 3C' ç1 C . C' f- c}. It is w eli known that P is a kernel operator, over the com­
plete lattice (r(C),2Ì, whose image is ICI. The ìmage ofthe restrìction ofp onto !JJ(C) ìs denoted
by ICI o- Eiements of ICio are ca/led finitely generateci constraints or sìmply finite constraints.

From here on we will only work with finitely generateci constraints, since we are not concerned
with infinite behavior of CLP programs. The next step in our construction is about determinate

constmint systems (or d.c.s.).

Definition 3.3 (Determinate constraint system.) Lei S = (C, f-, .l, T) be a simple constraìnt
system. Lei O, l E ICio, 0: !Cio x !Cio--+ ICio, and f- <; !Cio x !Cio be given, for each C1, Cz E ICio,
by

o
l

C,
P(0),

P(Cl U Cz),
<=> C1 0 Cz = C1.

The projection operators 3la: !Cio--+ !Cio are given, for each b.. <;f Vars and each C E p(C), by

3la C= P({ c E C [FV(c) ç b..}).

Finally, /et EB: ICio x !Cio --+ ICI o be an operator enjoying the fol/owìng properties:

}j. (ICJ 0 , EB, O) ìs a commutative and idempotent monoid;

585

W e will referto the structure (!Cio, f-, 0, EB, {31.o.}, O, l) as the determinate constraint system over
S an d EB- The relation ç induced by EB over !Cio is given, for each C1 , C 2 E ICI o, by C1 ç C2 iff
C 1 EB Cz = C2. The relations f- and ç are referred io, respectively, as ihe approximation ordering
an d the computational ordering of the determinate constraint system.

Observe that the required conditions on EB are quite reasonable. The purpose of EB is tha.t of
"merging" the information originating from different paths in the semantic construction. In this
view, axiom J1 is very natura!: associativity and commutativìty amount to say that we can merge
paths in any order, idempotence means tha.t we do no t loose precision blindly, a.nd O being the
monoid unit accounts for the ability of discarding fa.iled computation paths. Condition J2 sta.tes
the correctness of the merge operation, chara.cterizing i t as a (no t necessarily least) upper bound
operator with respect to the approximation ordering.

Notice that the distinction between approxìmation ordering and computational ordering is
important. Vlfe assume tha.t our semantics are defined as (approximations of) least fixpoints of some
operator2 rj;. So, while the approxima.tion ordering, in genera.! abstract interpretation, specifìes the
relative precision of program properties (e.g. entailment of constraints in our particular case), the
computational ordering holds among the iterates rf;k(J.) during the fixpoint computation. The
case where the two orderings coincide (e.g. in [12]) is thus to be considered a special one. In out

treatment, keeping them distinct a.llows for more freedom in the choice of the merge operator.
Sin ce the set of finite computation pa.ths is, in genera!, denumerably infinite, we consider also

the following strengthening of Definitìon 3.3.

Definition 3A (Closed d.c. s.) A d. c.s. (JCio, 1-, 0, EB, {3lt>}, O, lÌ is sai d closed ìff it satzsfies

h. far each family {ci E ICI o} i E N' EBiEN ci = cl EB c2 EB ... exists an d is unìque in ICI o,
moreover, assocìatìvity, commutativity, and idempotence of EB apply io denum.erable as we/i
as to finite families of operands.

So, the operation of merging together the information coming from al! the computation pa.ths
always makes sense in a. closed determinate constraint system. Notice however that property la 1s

only necessary when the semantic construction requires it. This will never happen when considering
"abstract" semantic constructions formalizing da.ta-flow ana.lyses (which are finite in nature). In
these cases the idea of merging infinitely many pieces of information is a nonsense in itself.

Determinate constraint systems enjoy severa! properties. Here are some elementary ones: C is
a partial arder and cl ç c2 implies cl f- Cz; 0 and EB are componentwise monotone with reSPeCt
to f- and ç, respectively; O is an annihilator for 0, while 1 is a unit for 0 and an annihilator for
EB- Finally, far absorption laws we have Cz = (C1 EB Cz) 0 C2 an d C2 f- (C1 0 C2) EB C2 . A t a highe1
leve!, here is the situa.tion.

Theorern. 3,1 Let 'D = (!Cio, f-, 0, EB, {31Ll.}, O, lÌ be a determinate constraint system. Then thc

structure (ICio; f-, O, l, 0Ì is a bounded meet-semilattice and (ICio; t;;:, O, 1, EBÌ is a join-semilatiice.

Moreover, if'D is complete, ihen (ICio; ç, O, 1, EBÌ is a (join-) complete lattice.

Notice that (ICio, 0, EB, O, lÌ, in generai, is nota lattice. Both 0 and EB are associative, com­
mutative, and idempotent. But, as stated above, while one of the absorption laws holds, only one
direction of the dual law is generally valid. In particular 0 is not required to be componentwise
monotone with respect to ç, and EB might be not componentwise monotone with respect to f-.
Observe also that. EB does not distribute, in genera!, over 0, as this would imply the equivalence of
the two absorption laws. ·

2For exam.ple, lf we choose a bottom-up (backwa.rd) sernantic construdion far CLP, this will be an innnedJate
c::onsequence operator T p parametedzed on the underlying constr.ajnt system [12). We disrega.:rd this issues h.ere 1 a.s
we concentrate on the construction of constraint domains.

586

4 Ask-and-tell constraint systems

We now consìder constraint systems havìng addìtional structure. This addìtional structure allows

to express, at the constraint system leve!, that the ìmpositìon of certaìn constraìnts must be

delayed unti! some other constraìnts are imposed. IJ1.(18]sìmilar constructions are called ask­

and-tell CaJ2§{raint. s.ystems. In our constructìon, ask-and-tell constraìntsystems ;;,!"e l:lu!H froin
det~r.iilJ.J;"~te constraint systems by regarding some kernel operators as constraints. We follow [18]

in considering cc as the language framework for expressing and computing with kernel operators.

For this reason we will present kernel operators as cc agents. For our current purposes we on!y

need a very simple fragment of the determinate cc language: the one of finite cc agents. This

fragment is described in [19] by means of a declarative semantics. Here we give an operational
characterization which is better suited to our needs.

Definition 4.1 (Finite cc agents: syntax.) A finite cc agent aver a simple canstraint system
S = (C, 1-, l_, T) is any string generated by the fallowing grammar:

Agent ::= teli(C) l ask(C) __, Agent l Agent Il Agent

where C E ICio· We wil/ denote by A(S) the language of such strings. The following explicit
definition is a/so given:

ask(Cr; ... ; Cn) __, Agent = (ask(c,) __, Agent) Il .. ·Il (ask(Cn) ~ Agent).

V\1hen this will not cause confusion we will freely drop the syntactic sugar, writing C and C 1 -+ Cz
where teii(C) and ask(C1) __, teii(Cz) are intended.

The introduction of a syntactic norma! form for finite cc agents allows to simplify to subsequent
semantic treatment.

Definition 4.2 (Finite cc agents: syntactic normal form.) The transformatian 1] aver A(S)
is defined, far each ca, Cf, C2, C' E ICI o an d A, A1 , A2 E A(S), as follows:

'7(C"-+ C')

'7(C')

'7(Cf-+ (C~-+ A))

'7(ca -+ (Ar Il Az))

'7(Ar Il Az)

The following fact is easily proved.

{ l-+ l
C"__, (ca 0 C')

l-+ C',

if C" 1- C',
otherwise,

'7((Cf 0 C~)-+ A),
'7((Ca-+ Ar) Il (C"-+ Az)),

'7(Ar) 11'7(Az).

Proposition 4.1 The transformation '7 of Definition 4.2 is well defined. Furthermore, ifA E
A(S) then '7(A) is ofthe form (Cf-+ Ci) Il·· ·Il (C~-+ C~).

Thus, by considering on]y agents of the form 117=1 Cf -+ Cf we do notloose any generality. We
will cali elernentary agents of the kind ca -+ C' ask-te/1 pairs.

Now we express the operational semantics of finite cc agents by means of rewrite rules. An

agent in norma! form is rewritten by applying the logica! rules of the calculus modulo a structural

congruence. This congruence states, intuitively, that we can regard an agent as a set of (concurrent)
ask-tell pairs.

Definition 4.3 (A calculus offinite cc agents.) Lei lA= 1-+ l. The structural congruence

ofthe calculus is the smal/est congruence relation o=, such that (A(S), Il, lA)/=, is a commutative

an d idempotent monoid. The reduction rules of the calculus are given in Figure l. W e a/so de fine
the relation PA ç; A(S) x A(S) given, for each A, A' E A(S), by

A PA A' {::? 3n E N. A= A1 1\ A, =A' 1\ Ar >--+Az>-+ ···>-+A,., ft

Structure

Reduction

587

A 1 o=, A~ A~ ,__.A~ A; o=, Az

A1 >------ A2

(Cf-+ Ci) Il (C2-+ Ci),__. (Cf__, Ci)

Cii- C2
Deduction

Absorption

(CJ' ~ Cilll (C2-+ cD,__. (C]'-+ (Ci 0 cm Il (q-+ cD
CJ' 1- C2

(Cf-+ ci) 11 (C2- cD,__. ((Cf 0 Ci)_, (Ci 0 cD) Il (C2 __,cD

Figure l: Reduction rules for finite cc agents.

In the following we wìll systematically abuse the notation denoting A(S);=, simply by .A(S).
Consequently, every assertion concerning A(S) is to be intended modulo structural congruence.

Proposition 4.2 The term-rewriting system depicted ìn Figure 1 is strongly normalizing. Thus

the relation PA is indeed a function p A: A(S)-+ A(S).

The situation here is almost identica! to the one of Definition 3.2, in that we have a domain­

independent strong norma! form also for the present class of constraints (i.e. agents) incorporating
the notìon of dependency.

Definition 4.4 (Eierrrents.) The elements of .A(S) are those which are closed under (:re the
fixed points of) the inference mapPA· The sei ofelements of .A(S) wzl/ be denoted by IA(o)J.

The strict analogy with determinate constraint systems continues with the following.

Definition 4.5 (Ask-and-tell constraint system.) Given a simple constraint system S =

(C, 1-, ..L, T), /et A= l A(S)I. Then /et OA, lA E A, @A: A x A-+ A, an d 1- A ç; A x A be gz11en, far

eachA1,A2EA, by

1-+ o,
1-+ 1,

pA(A1 Il Az),
{::? Ar0AA2=Ar.

The projection operators The projection operators 3!~: A -+ A a-re given, far each Ll ç;f Vars an d

A E A, by

w h ere

}·
Finally, /et E!JA: A x A -+A be an operai or satisfying, for each Ar, A2 E A, the following a,;ioms:

Jf. (A, E!JA, OA) is a commutative and idempotent monoid;

J1. for each Ar, A2 E A, Ar 1- A A, EllA A2 an d A2 1-A Al EllA Az.

Aga in, we wi/1 denote by !;A the relation induced by E& A aver A: Ar l; A. Az iff ArE& A A2 ::;= A2; W e

"Il Fer to (A 1- "" '"' {3!A} O l) as the ask-and-tell constramt system aver v ana E& A. 'WZ TfJ' 1 Al '<YA, WA1 ~ J A1 A

W e wi/1 ca/l it closed ijJ ii satisfies

J!j. far eachfamily {A; E A},EN' EB:ENA; = A1EBAA2 EBA· · · exists and is unique in A; moreover,
assoczatzvzty, commutatzvity, an d idempotence of EBA apply t o denumerable as w el/ as t o finite
families of operands. •

Once you have a determinate constraint system, you also have an ask-and-tell constraint system,
whose merge operator is induced as follows.

Definition 4.6 Lei S = (C, 1-, l_, T) be an s.e. s., and /et 1J = (ICio, 1-, 0, EB, {31c,.}, O, 1) a d.c. s.
aver S. Let a/so A= l A(S)j, an d /et ffiA: A x A--+ A be given by

ulA;) <:BA CTil Bj) = PA uljTil(A; <:BA Bj)).
wherc, far any two ask-tell pairs Cf _, Ci and C2 _, c;, we define

ifC" 1- C',
otherwise,

being ca = C]'0 C!j an d C' =Cl EB C~. W e will referto ffiA as the merge operator over A induced
by 1J.

Proposition4.3 (A,I-A,®A,ffiA,{31~},0A,lA) is an ask-and-tell constraint system. Further­
more, it is closed iff 1J is so.

Notice that ask-and-tell constraint systems subsume the determinate ones, where only "tells"
were considered. In fact we have 1J(C1) 0A 1J(C2) = 1J(C1 0 C2) and 1J(C1) ffiA 1J(C2) = 1J(C1 EB C2).

It lS t1me to start showmg why we are interested in this kind of constraint systems, even though
for the more exciting things we ha veto w ai t unti! the next section, where combination of constraint
dornains are introduced. Ask-and-tell constraint system are needed to mode! approxìmate inference
techniques which can be very useful for pattern analysis.

4ol More pattern analysis for numeric domains

Following Section 2.1, there is another technique which is used for the analysis described in [3, 4, 2]:
relatwnal arithmetic [21]. This technique allows to infer constraints on the qualitative relationship
of an expression to its arguments. If we take the ask-and-tell constraint system over the simple
one of Section 2.1, we can describe it by a number of (concurrent) agents. Here are some of them
(where [Xl ranges in{=,#,::;<,~.>}):

ask(x [Xl O)

ask(x > 01\y > 01\x lXI l)

ask(x [Xl y)

tell((x + y) [Xl y)

tell((x * y) lXI y)
tell(ex [Xl eY)

An example of inference is deducing X+ l ::; Y + 2X + l from X> O 1\ Y > O. Notice that there
is no restriction to linear constraints. - -

5 Powerset constraint systems

For the purpose of pattern analysis it is not necessary to represent the "rea! disjunction" of c.on­
straints collected through different computation paths, since we are interested in the common
information only. To this end, a weaker notion of disjunction suffices. We define powerset con­
straint syst~ms, which are instances of a well known construction, i.e., disjunctive completion3 [IO].
When th1s 1s apphed to a s1mple constraint system S it yields the following.

3 Given a poset (L,J.,$), the relation ::<: ç p(L) X p(L) induced by$ is given, for each M1 ,M2 E p(L) by
(M, ::<: M2) * (Vm, E M1 :3m2 E M2 . m, $ m2). A subset M E p(L) is sa.id non-redundant iff j_ rt M and
Vm1, m2 E M : m.1 :5. m2 => m1 = m2 The se t of non-redundant subsets of L is denoted by Pn (L). ThP. f1, '1•m
D: p(L)--> Pn(L) IS pven, for each M E p(L), by fl(M) =M\ {m E M l m= j_ V 3m1 E M. m< m'}.

589

Dclìnition 5.1 (Powerset constraint systern.) Given an s.c.s. (C, 1-, l_, T), the powerset con­
straìnt system aver (C, l-) is gìven by Ù'n(ICio),l-p,@p,Eflp,{31:;.},0P,lP), where

31:;, s
S, l-p Sz
s1 0p s2

n ({ 31c, c 1 c E s}),
.ç:> VC1 E S1 : :IC2 E 52 . C, 1- C2,

rl({C1®C2I C1 E S1,C2 E 52}).

V\'ith these definitions (rn (ICio); l-p, O p, lp, @p, EBP), is a join-complete, distributive bounded
lattice. W e can of course apply the powerset construction also to ask-and-tell constraint systems.

6 Combination of domains

It is well known that different data-flow analyses can be combined together. In the framework of
abstract interpretation this can be achieved by means of standard constructions such as reduced
product and down-set completion [8, 9]. The key point is that the combined analysis can be more
precise than each of the component ones for they can mutually improve each other. However, the
degree of cross-fertilization is highly dependent on the degree and quality of interaction taking

piace among the component domains.
W e now propose a generai methodology for domain combination with asynchronous interaction.

The interaction among domains is asynchronous in that it can occur at any time: before, during,
and after the "meet operation" in a completely homogeneous way.

This is achieved by considering ask-and-tell constraint systems built over praduct simple con­
straint systems. These constraint systems allow to express communication among domains in a
very simple way. They also inherit all the semantic elegance of concurrent constraint programming
languages, which provide the basis for their construction. Recently, a methodology for the combi­
nation of abstract domains has been proposed in [7], which is directly based onto low leve! actions
such as tests and queries. V\Thile the approach in [7] is immediately applicable to an apparently
wider range of analyses (this is one subject for further study), the approach we follow here for
pattern analysis has the meri t of being much more elegant.

W e star t with a se t of simple constraint systems { (C;, 1-;, l_;, T i) l i = l, ... , n } , each expressing
some properties of interest, an d we wish to combine them so t o: (l) perform ali the analyses at the
same time; and (2) have the domains cooperate to the intent of mutually improving each other.
The first goal is achieved by considering the product of the simple constraint systems.

Definition 6.1 (Produci of sirnple constraint systems.) Given a finite family of simple
constraint systems S; = (C;, 1-;, l_;, T;) far i= 1, ... , n, the product af the family is the structure

given by IT7=l S; = (C x, l-x, j_x, T x), where the produci takens are

the product entaì/m.ent is defined, for each C E PJ (C x), by

C 1-x (Tl, ... ,Tn-l,cn) Il,.(C) 1-n Cn,

where, far each i= l, ... , n, Il;: p(Cx)--+ C; is the abviaus prajection mapping a sei af n-tuples
Mlio the set af i-th companents. Finally, j_x = (j_l, ... , l_,.) an d T x = (T 1, o. o, T 71).

If you h ad a family of determinate constraint systems 1J; bui! ton top of the S; 's, you can easily
"recycle" the merge qperators EB; to obtain a merge operator EBx: ICx lo x ICx lo --> ICx lo which
allows you to build a product d.c.s.

590

So, taking tbe product of constraint systems, we bave realized tbe simplest form of domain
combination. It corresponds to tbe direct product construction of [8], allowing for different analyses
to be carried out at tbe same time. Notice that there is no communication at ali among t be domains.

However, as soon a.s we consider tbe ask-and-tell constraint system built over tbe product, we
can express asynchronous communìcation among the domaìns in complete freedom. At the very
least we would like to have the smash product among the component domains. This ìs realized by
tbe agent 117=1 Di-+ D x. To say it operationally, the smash agent globalizes tbe (Jocal) failure on
any component domain. This is the only domain-independent agent we bave.

Things become mucb more interesting when instantiated over particular constraint domains. In
the CLP(R.) system [16] non-linear constraints (e. g. X= Y * Z) are delayed (i.e. not treated by tbe
constraint solver) unti! tbey become linear (e.g. unti! eitber Y or Z are constrained to take a single
value). In standard semantic treatments this is modeled in tbe operational semantics by carrying
over, besides tbe sequence of goals yet to be solved, a set of delayed constraints. Constraints are
taken out from this set (and incorporated into the constraint store) a.s soon a.s tbey become linear.

We believe tbat tbis can be viewed in an alternative way which is more elegant, as it easily
allows for taking into account tbe delay mechanism also in the fixpoint semantics, and makes
sense from an implementation point of view. The basic claim is the following: CLP(R) bas three
computation domains: Herbrand, lR (well, an approximation of i t), and definiteness.

In otber words, it also manipulates, besides tbe usual ones, constraints of the kind X = gnd'
which is interpreted as the variable X being definitive]y bound to a unique va.lue. We can express
the semantics of CLP(R.) (at a certain leve] of abstraction) witb delay of non-linear constraints
by considering the ask-and-tell constraint system over tbe product of tbe above three domains. In
tbis view, a constraint of tbe form X= Y * Z in a program actually corresponds to the agent

ask(Y = gnd'; Z = gnd') -+ tell(X = Y * Z).

In fact, any CLP(R.) user must know that X= Y * Z is just a sbortband for that agenti A similar
treatment could be clone for logic programs with delay declarations.

Obviously, tbis cannot be forgotten in abstract constraint systems intended to formalize correct
data-fiow analyses of CLP(R.). Referring back to sections 2.1 an d 4.1, when the abstract constraint
system extracts information from non-linear constraints, i.e. ask(Y > O /1 Z > O 1\ Y txJ l) -+
teii((Y * Z) txJ Z) by relational arithmetic, you cannot simply !et X = Y * Z stand by itself. By
doing this you would incur the risk of overshooting the concrete constraìnt system (thus loosing
soundness), wbicb is unable to deduce anything from non-linear constraints. Tbe rigbt thing to do
is to combine your abstract wnstraint system with one for definiteness (by the product and the
ask-and--t.ell construction) a.nd considering, for example, the following agent:

ask(Y = gnd~: Z = gnd~) ask(Y > O 1\ Z > O 1\ Y 1><1 l)

tell ((Y * Z) txJ Z)

Beware not to confuse X = gnd' with X =cc gnd 11 . The first is the concrete one: X is definite if
and only if X = gnd' is entailed ìn the cunent store. In contra.st, baving X = gndU entailed in the
current abstract constraint store mea,ns thBt X is certainly bound to a unique value in the concrete
computation, but tbis is only a sufficient condition, not a necessary one.

Let us see another example. The analysis described in [13] aims at the eompile-time detection
of those non-linear constraints that will become linear at run time. This analysis is important
for remedying tbe lìmitation of CLP(R) to linear constraints by incorporating powerful (an d com­
putationally complex) methods from computer algebra as tbe ones employed in RISC-CLP(Real)
[14]. Witb tbe results of the above analysis this extension can be don e in a smootb·way: non-linear
constraints wbicb are guaranteed to become linear will be simply delayed, wbile only tbe other
non-linear constraints will be treated with the special solving tecbniques. Thus, programs not
requiring tbe extra power of these techniques wìll be bopefully recognized as sucb, and will not
pay any penalties. Tbe analysis of [13] is a kind of definiteness. One of its difficulties shows up

591

when considering the simplest non-linear constraint: X= Y * Z. Clearly X is definite if Y and Z
are sucb. But we cannot conclude that the definiteness of Y follows from the o":e ~f X _an~ Z, as
we need also the condition Z =F O. Similarly, we would like to conclude that X IS aefimte 1f Y or
z bave a zero value. Thus we need approximations of the concrete values of variah!'"' (i. e. patte~n
analysis), sometbing wbicb is not captured by common definiteness ~nalyses wh1le bemg cru~Ja!
when dealing witb non-linear constraints. Tben, JUSt take tbe combmatwn to obtam somethmg
liké

ask(Y = gndU 1\ Z = gndH)-> tell(X = gndH)

ask(Y =O; Z =O) -+ tell(X = gndH)

ask(X = gndH 1\ Z = gndU 1\ Z f. O) -+ tell(Y = gnd~)
ask(X = gndH 1\ Y = gndH 1\ Y =F O)-+ tell(Z = gndU)

7 Conclusion and future work
YVe bave sbown a bierarcby of constraint systems whicb, botb theoretically and experiment.ally,
have severa! nice features. One feature we did not mention before is tbat proving two members of
the bierarchy being one a correct approximation of the otber is oft.en qui te easy.

Almost ali oftbe ideas in tbis paper bave been satisfactorily implemented in the CHINA analyzer
[2]. The eJ,.--perimental results obtained witb tbe implementation represent a strong encouragement
to proceed along these lines.

In particular, we bave proposed a generai metbodology for doma1_n comb_matwn w1tb asyn­
chronous interaction. Tbe interaction among domains is asyncbronous m tbat 1t can occur at _any
tìme: before, during, and after tbe domains' operations in a completely bomogeneous ;vay. Tb1s 1s
achìeved by regarding semantic domains as particular kinds of (ask-and~tell) constrau~t systems.
Tbese constraint systems allow to express communication among domams m a very s1mple way.
Tbey also inberit al! tbe semantic elegance of concurrent constramt pro!\rammmg languages, ":b1cb
provide tbe basis for tbeìr construction. Future w~rk inc!udes answen":g th: followmg ques;,wns:
are tbere variation of tbese ideas whicb are apphcable also to analys1s onented towa.rds non­
logica!" properties? Tbat is, properties wbicb are not pre~erv~d as the _c~mputati_on progresses?
Can we turn thìs constructions capturing dependence, combmatwn, and dlSJUnctwn mto an algebra
of constraint domains?

References
[l] J. F. Allen. Maintaining Knowledge About Temporal Intervals. CACM, 26(11):832-843, 1983.

[2] R. Bagnara. On tbe detection ofimplicit an d redundant numeri c constraints in CLP programs.
In Proc. GULP-PRODE'94, 1994.

[3] R. Bagnara, R. Giacobazzi, and G. Levi. Static Analysis of CLP Programs over Numeric
Domains. In M. Billaud et al., editors, A et es WSA '92, volume 81-82 of Bzgre, pages 43-50,
1992.

[4] R. Bagnara, R. Giacobazzi, and G. Levi. An Applìcation of Constraint Propagation to Data­
Flow Analysis. In Proc. IEEE GAIA '93, pages 270-276, 1993. IEEE Press.

[5] P. Codognet and G. Filè. Computations, Abstractìons and Constraints. In Proc. Fourth IEEE
Int'l Conference on Computer Languages. IEEE Press, 1992.

4Notice that this is much more precise than the Prop formula X~ Y 1\ Z [6].

592

[6] A. Cortesi, G. Fil è, an d W. Winsborough. Pro p revisited: Proposi tiana! Formula as Abstract
Domain for Groundness Analysis. In Proc. LICS'91, pages 322-327. IEEE Press, 1991.

[7] A. Cortesi, B. Le Charlier, and P. Van Hentenryck. Combinations of abstract domains for
logic programming. In Proc. POP L '94, pages 227-239, 1994.

[8] P. Cousot and R. Cousot. Systematic Design of Program Analysis Frameworks. In Proc.
POPL'79, pages 269-282, 1979.

[9] P. Cousot and R. Cousot. Abst.ract Interpretation and Applications t.o Logic Programs. Jour­
nal of Logic Programming, 13(2 & 3):103-179, 1992.

[10] P. Cousot and R. Cousot. Abstraet Interpreta.tion Frameworks. Journal of Logic and Com­
putation, 2(4):511-549, 1992.

[11] E. Davis. Constraint Propagation with Interval Labels. Artijicia/ lnlciligence, 32:281-331
1987 '

[12] R. Giacobazzi, S. K. Debray, and G. Levi. A Generalized Semantics for Constraint Logic
Programs. In Proc. FGCS'92, pages 581-591, 1992.

[13] M. Hanus. Analysis of nonlinear constraints in CLP(1?). In D. S. Warren, editor, Proc.
ICLP'93, pages 83-99. The MIT Press, 1993.

[14] H. Hong. RISC-CLP(R.eal): Logic Programming with Non-linear Constraints aver the R.e­
als. In F. Benhamou and A. Colmerauer, editors, Constmint Logic Programming: Selected
Research. The MIT Press, 1993.

(15] J. J affar aud J .-L. Lassez. Constraint Logic Programming. In Proc. POPL '81, pages 111-119.
ACM, 1987.

[16] J. Jaffar, S. Michaylov, P. Stuckey, and R. Yap. The CLP(1?) Language and System. ACM
TOPLAS'92, 14(3):339-395, 1992.

[17] G. Jan~sens, M. Bruynooghe, an~ V. En~lebert. Abstracting numerica! values in CLP(H, N).
In M. Hermeneg1ldo and J. Pen.Jam, ed1tors, Proc. PLILP'9J,, volume 844 of LNCS, pages
400-414. Springer-Verlag, 1994.

V. A. Saraswat. Concurrent Constmint Programming. The MIT Press, 199:'!:.

[19] V. A. Saraswat., M. Rìnard, and P. P'<na.ngaden. Semantic Foundation of Concurrent Con­
straìn! Programming In Proc. POPL '9.1, pug;es ;] .. ~:i-3.53. A.CM, 1991.

(20] D. Scott. Domains fm- D"''ctatic,ual S,3mc.I>ticc. In M. Nielsen and E. M. Schmidt, editors,
Proc. ICALP:82, volume 140 of L.PICS. i)<Jg(':s b:"f'.~·613. Sp.tii.Jger-Ver!ag, 1982.

[21] R. Simmons. Commonsense Arithn .•. t.ii i:ca.S<'Ping. In Proc. AAAJ-85, pages 118--124, 1986.

1

,, l ,-\\

J'

Tu p le Inheritance~ A N e w Kind of
Inheritance for (Constraint) Logic

Programming*

Juan José Moreno-Navarro Julio Garda-Martin Andrés del Pozo-Prieto
--,~--. -' ··-- - ·- .

LSllS, Facultad de Informatica, Universidad Politécnica de Madrid

Campus de Montegancedo, Boadilla del Monte, 28660 Madrid, Spain

fax: +:34 l 336 74 12. ema.il: {jjmoreno,jgarcia,andres}l!lls.fi.upm.es

URL: http: Il gedeon .ls. fi . upm. es/{" j jmoreno, - j garda, - andres}

Abstrad

In this pa.per, we present a new form of inheritance for (constraint) logic
programming. This inheritance is informally defined in the following terms:
a module inherits frorn the other one the consequences tha.t are not covered
by itself (with respect to a fixed tuple of arguments). A computable approx­
imation to this definition is studied, based on finite failure. In particular, we
define the dedarative semantics (based on Kunen's 3-valued semantics) and
the operational semantics (based on constructive negation). Severa! examples,
showing the l!sefulness of the proposal are presented, as well as some hints for
its implementation.
Keywords: Module Inheritance, Object Orienl:ation, Constructive Negatior~o

From the software engineering poi n t of view i t is dear that modular facilities a.re abso-
important in a programming language. Modularity is a key feature to support

a programming-in-the-large discipline of programming, including data abstraction,
reusability support and separate compilation. Nowadays, it is widely accepted that
object oriented concepts are a good basis for modularity. The di:fferent notions of
inherita.nce provide various module composition mechanisms.

In the context of logic programming, modularity comes from severa! approaches.
In particular, we will follow O'Keefe's approach [O'K85]: logìc programs are elements
of an algebra and their composition is modeled in terms of operators of the algebra.

Ivlodule composition is treated as a meta-linguistic mechanism using various op­
erators to compose set of dauses: union, deletion, closure an overriding-union (see

'This research was supported in part by the spanish project TIC/93-0737-C02-02.

594
[O'KS.5, MPSS, BLM92, BLM94]). Ali these operators have been used to model
inheritance in logic programming. In object oriented programming there are two
possible ways of inheriting an operation (or a state) from a module: by replacing the
operation definition by a new one (overriding) o by extending its behaviour. Follow­
ing the terminology of [BLM94], extension is modeled by program union (P U Q),
and overriding by the operator with the same name (P <l Q), in which clauses from
Q are not imported for any predicate yet defined in P.

However, in a logic program we can combine both modes of inherìtance due to the
nondeterministic-natured of the language. Multiple definitions for a predicate are
allowed with clauses that superpose in some arguments. This is the basis for our tuple
inheritance concept, t ha t we denote P « Q. Instead of giving a syntactic definition
of inheritance, we provide a more semantical one: for each predicate, we can inherit
the part of Q that is not covered by the new definition in P. In other words, Q
computations are overridden by P computations, and for those computations that
are not in P we use Q computations instead, e:ttending P behaviour.

We formalize this concept giving the decla.rative semantics of the new operator.
In order to use a computable approximation of that "is not computed in P" we
use the notion of finite failure ("it is proved that it cannot be proved"), basing our
declarative semantics on Kunen's 3-valued semantics.

At a first sight, it is not very interesting because it does not matter whether an
atom is true in P or in Q. It is not the case. because: i) clauses can have side effects,
what supposes a different behaviour of ali atom in P or Q, and ii) P definitions
can provi de more efficient algorithms t han Q for some specific (refined) arguments.
Furthermore, we define our new inheritance concept on a subset of the argument
tuple for each predicate. This is specia!ly interesting when a predicate is used to
simulate a function. Although the function a.rguments do not change, P can define
a different result. Some motivating and practical examples are given.

For the operational semantics, we a.lso need mechanisms to decide the finite failure
of a goal. Con.structive n.egation [Ch88, Ch89, St91] is a good candidate. We provide
a computational mechanism based on constructive negation, proving soundness and
completeness results. The operational mechanism is "constructive" in the solutions
of a goal that can be and cannot be overridden. The answer can provide some
constraints that allow to use Q computations.

From this poi n t of view, we think that Constraint Logic Programming (CLP) is
a more nalural framework to study tu pie inheritance. Additionally, we provide some
background for the (less developed) theory of modularity in CLP languages. Both
declarative and operational semantics are developed for (modular) CLP programs.

A prototype implementa.tion is sketched. A PROLOG implementation with con­
structive negation (like SEPIA-ECLIP$E from ECRC) ca.n be used as a target lan­
guage for a program transformation.

595

2 Motivation

In this section, we motivate the usefulness of the proposed inheritance operator. We
also provi de some syntax an d, more briefly, recall some concepts from CLP.

A constraint logic programming language CLP(A) [JL87] depends on a structure
A which defines the meaning of functions and constraints relation symbols of some
language L. A basic constraint is a relation r(t1 , ... , tn) upon terms t;'s of the
structure domai n (that, by abuse of notation, we stili cali A), while a constraìnt
(formula) is any formula involving other constraints and propositional connectives
and quantifiers.

Giving a set of (programmed) predicate symbols O"(P), an atom is p (t11 ... , tn),
where p E O"(P) and i;'s are terms. A constraint logic program P is a finite set of
rules: p (t1, ... , tn) : -c, B1 , .•. , Bn where cis a constraint and B 1 , ••• Bn(n ~O)
are atoms, clefining the symbols p in cr(P).

The logical reading of a rule right hand side is the conjunction of the constraint
and the atoms: c 1\ B1 1\ ... 1\ Bn.

The tuple inheritance operator « is clefined between two programs P and Q.
For every symbol in O"(P) U O'(Q), we specify the subsets of tuples to perform the
inheritance. Without loss of generality, we can suppose that they are the first ar­
guments in textual order. Let M = { mp, .. . } be a set of natura! numbers
l :::; rnp :::; arity (p), one for each predicate symbol p E a(P) U a(Q). The intended
semantics for p in P «M Q can be informally defined in the following way: The
a.torn p (t 1 , •.. , tn) is true if

w p (t1, ... , tn) is true in P, or
® p (ti, ... , t n) is true in Q but for all .Smv+h ... , Sn, p (t1, ... , tmp' Smp+l' ... , sn)

"is not true" in P.

Before we give the formai definition of <<. Jet us study some examples.
Example 1: The first example is a very simple program that we will use as a running
example, as well a.s to compare different inheritance mechanisms.

P : p (X, l) :- q (X).
q (X) :-X> O.

Q: P (Z,
r (Y)

:- r (V).
:-V> O.

Let mp be l in M. If we query P «.u Q with the goal p (X, Y) we expect the
following two answers: yes, X > O, Y = l; yes.)(:::; O, V > O

The semantics of P U Q contains the atoms p (X, l) for X > O, and p (Z, Y)
for any Z. and Y >O. The overriding operator P <l Q has the following semantìcs:
p (X, l) for X> O. Our new operator P «M Q has the atoms p (X, l) for X> O
and p (X, 'V) for X:::; O, Y >O as semantics (see Section 3).

Now we proceed with three more elaborated examples, paradigms of useful ap­
plications of the new inheritance operator.
Example :2: The second example comes from typical object oriented programming
textbooks. Vehicles are the elements of the program and we implement the function

596

wheels defining the number of wheels of a vehicle. Program Q establishes that aH ve­

hicles have four wheels. However, P introduces t.he vehicle motorcyde, as a exception
to the previous function, because it has two wheels.

P : wheels (motorcycle, 2). Q : wheels (X, 4).

A goal wheels (car, W) should answer yes, W= 4, and a goal wheels (motorcyde,

W) should answer yes, W = 2. Consequently, a goal wheeis (V, W) must have the

following answers: yes, V = motorcyde, W = 2, and yes, V =f. motorcyde, W = 4.
This behaviour cannot be obtained neither with union nor overriding. The union

says that a motorcycle has two and four wheels. The overriding operator cannot find
a definition for wheels (car, W).

Tuple inheritance is made in the argument of the function, i.e. in the first argu­
ment of the relation wheels. This is absolutely coherent, because when we define a

function, the new function definition can override the result and not the arguments.

The simulation of functions as predicates is a natura! application of tuple inheritance.

Example S: For the third example, we apply the inheritance operator to all the

arguments. One ca.n believe tha..t it is not useful at all because there is no difference

if an atom is true in P or Q. But i t is no t the case if the program contains side
e:ffects. Consider, for instance, the problem of drawing a rectangle on the screen. We

h ave a standard procedure, using basic character output encapsulated in module Q.
However, in the presence of a special screen driver we can use a specific operation to
plot the rectangle. The new definition is located in program P.

P: draw_rectangle (8, H) :-driver (Driver), plot_rectangle {Driver, B, H).

Q: draw_rectangle (B, H) :- write_horizontal ('-', 8),
write_vertical ('J', B, H),
write_horizontal ('-',B).

Notice that the desired effect is not obtained by pure overriding, because we still
want to draw a rectangle with Q code when the driver is not installed.

Example 4: The fourth exa.mple has some similarities with the previous one. Again
we apply the inheritance operator to a.ll the arguments. The difference is that, in

program P, we provide a more efficient algorithm for some instances of the data that
are generally ma.naged by Q. Q computes the area of any polygon by dividing it
into triangles, and them adding the a.reas of such these tria.ngles. However, when P
detects that the polygon is a rectangle, we apply the well known formula, what is

more efficient than the generai algorithm. \Ve choose !11 to contain rnpoligon_area = 2.

P : polygon_are<J (P, A) :- A = 8 * H, rectang!e (P),

Q : polygon_area (P, A)

sum_area ([], 0).
sum_;nea ([T l R], A)

base (P, B), high (P, H).

:- triangleJist (P, l), sum_area (l, A).

:-A = AT + A~. triangle_area (T, AT),
sum_area (R, AR).

5CJ7

Noti ce that the intended behaviour ca.nnot be modeled by the overriding operator

p <.1 Q. Program unìon P U Q has a. similar behaviour t han P «M Q but a call

with a recta.ngle will provide two (equiva.lent) answers, the second one more costly

to compute than the first one. Obviously P «M Q and P U Q are not operationally

equivalent, and the first operator should be more efficient than the second one.

Furthermore, if we execute this program in CLP (R), we can loose some precision

when Q is used a.nd the result of P ca.n be more accurate. Note that polygon_area is

again a function definition simulated as a. predicate.

3 Dedarative Semantics

Following [Re88, Bu92] we believe that the meaning of any composition operator

must be defined in terms of the dedara.tive semantics. Every program operator has
an associateci opera.tor between program sema.ntics. vVe use the standard notion

for ·(constra.int) logic progra.mming: An A-interpreta.tion I can be represented as a

subset of BA, i.e. I E P(l3A), where BA= {p (dl, ... ,dn)IP E a(P),d, E A}. We

wiH omit the subscript A whenever it does not cause ambiguity.
In [MPSS] it is established that, for program composition purposes, the correct

choice for the meaning of a progra.m is the associateci interpretation transformer Tp,
as shown in the following example: consider P : p {l) :- q (2). and Q : q (2). The

mini mal mode! for P is (/) and the mini mal model for Q is {q (2)}. Any composition

of bot h sets cannot give the intended sema.ntics {p (l), q (2)} for any inheritance
operator. The main reason is that the classica! minima! mode! semantics is not valid

since it is not OR-compositional.
We define the mea.ning of a program P, noted [PD, as ìts associated interpretation

transformer Tp. The semantics of our inherita.nce operator will be defined as the

composition of two interpretation tra.nsformers:

TP«MQ = [P «M Q~ = [PB (~; .. [[Qn = TP i.?IJI.; Tq

where (?JM is an operator in P(i3) -+ P(B). By abuse of notation we will also use

0M to denote an opera.tor between interpreta.tions. Now, the transformer associateci

to fP«MQ is defined by:

TP«Mq(I) =lp(!) c::.1M Tq(J)

so, we onl:r neecl to define ~)M in P(B).
Du<> to our clefinition of inheritance, we cannot provìcle a syntactic characteri­

zation of the composition of two programs (unless we use some kind of universal

quantification construct into the programs, hard to be efficiently implemented). We

will recall this point in the conclusion.
Let us discuss how to define this composition operator. From the informai clefi­

nition of section 2 (elements in P plus those elements in Q that are no t defined in

P, with respect to M), a first attempt yielcls to the followìng formai definition:

S1 8u S2 = S1 U {p (ti, .. , tn) E S2 l V Smp+l, .. , Sn p (t!, .. , tmp' Smp+l' .. , Sn) 'f. S'I}

598

Unfortunately, this definition is not computable, because the decision p (t) rf. S is
only computable when S is finite. The previous problem is overcome with a decidable
notion of "elements in Q tha.t are not in P". A suitable definition for this concept is
the set of "elements in Q that can be proved that they cannot be proved in P" (i.e.
they finitely fai! in P).

The usual semantics are not valid to represent this knowledge. We need to use an
appropriate semantics with failure information. The same idea underlines the formai
meaning of negation as failure, where the meaning of a program is given by logica!
consequences of its completion in a 3-va.lued logic [F85] a.nd can be denotationally
formalized in terms of 3-valued interpreta.tions [Ku87]. For this reason, we extend
Kunen's 3-valued semantics to CLP. The basic ideas are taken from [FBJ88] (even
thought it is not directly referred to constraint logic programming) and [St91]. We
reformulate them in a set-based framework. This allows us to give a definition of the
semantics of «111 in a set-based fashion as similar it is done for <l in [Bu92]. The
simila.rity of the definitions facilitates the comparison.

First of ali, we need a different notion of interpretation.
Definition: A :3-valued interpreta.tion is a pa.ir < T, F >, where T, F E P(B) are
disjoint sets. lnterpretations can be ordered in the following way:

< T, F > j < T', F' > iff T ç T', and F ç F'
Intuitively, an atom belongs to T ifit is true (t), and it fails (f) ifit belongs to F.

Otherwise, it is undefined (u). Notice tha.t a classic interpretation is, in particular,
a 3-va.lued interpretation where there is no undefined atom.

Interpretations I =< T, F > can be extended to arbitrary formulas in a natura!
manner, giving a result in {t, f, u}: I(A) =tifA E T (A atom), I(.4) =fifA E F,
I(A) = u ifA rf. TU F, I(c) ::::: t ifA l= c, I(c) = f ifA l= -.c, and for the
propositional connectives strong :3-valued interpretations are used.

The next step is to define the interpretation transformer T/': P(B)-+ P(B) (or,
simply, Jp).
Definition: /p(I) =<T', F' >, where:

• p (t) E T' if there exists a ground instance of a clause in P, p (l) : -G, such
that I(G) =t.

• p (t) E F' if for each ground instance of a clause in P, p (t) : -G, then
I(G) =f.

E:mmple: Remember example l from Section 2. The operators for P and Q are:
Tp(<T,F>)=< {z>(X,l)lq(X)ET}u, {p(X.Y)IY;/=l}u

{q (X) l X> O} {p (X, l) l q (X) E F}u
{q (X) l X;::; O}U{r (X)}>

1Q(<T,F>)=< {p(Z,Y)I,·(Y)ET}u, {p(Z,Y)i,·(Y)EF}u
{t· (Y) l Y >O} {r· (Y) l Y ;::; O} U {q(X)} >

As usual, the semantics of a program P is defined as the least fixpoint of /p.
Unfortunately, the ·operator Jp is not a.lways continuous and hence its least fixpoint

599
may occur a.t any recursive ordinai, see [FB.JSS]. lt is continuous for logic program­
ming (i.e. A is the Herbrand universe) as established in (Ku87]. In any case, the
natura! cut off point for computability is after w steps, and Fitting and Ben-Jacobs
[FBJSS] claim tha.t /p t w (noted M p =< Tp, Fp >) is a natura! definition of the
true and failing things we can compute from a program P.

Now, we can define the semantics of (:).u in P(B) x P(B).

<Ti> F1 >(DM< T2 , F2 >=< Tt U (T2 nu Ft), F2 nM Ft >
where St nM 5'2 = {p (t l, ... ' t n) E S'd

V Smp+l, ... ,Sn p (tt, ... ,tmp>Smp+l•· .. ,Sn) E S2}

Example: Having computed /p a.nd TQ for exa.mple l, we ca.n compute lP<.Q·
JP<t;.Q(< T.F>) =

< {p(Z, Y)l1· (Y) E T 1\ 'V W
p (Z, W) E {p (X', Y')i .
Y' # l v (Y' = 1/\ q (X') E F} }u

{p (X, l)iq (X) E T}U
{q (X)IX > O}U
{t·(Y)IY >O}

< {p (Z, Y)ir (Y) E T 1\ q (Z) E F}u
{p (X, l)iq (X) E T}u
{q (X)IX > O}u
{r (Y)IY >O}

lP<.Q has a finite fixpoint that is
MP<.Q =< {p (X, l)IX > O}U

, {p (Z, Y)ir (Y) E F 1\ 'V W
p (Z, W) E {p (X', Y')i
}"'i= l V (Y' = 1/\ q (X') E F}}U

{q (X)IX;::; O}U
{t· (Y)IY ;::; O}U
{q (X)IY;::; O}

, {p (Z, YJir· (Y) E F 1\ q (Z) E F}u
{t· (Y)IY s O}U
.{q(X)IX sO}

{p (Z, Y)il" >O, Z;::; O}u
, {p (Z, Y)IY S O,Z;::; O}U

{r (Y)IY;::; O}u
{q(X)IX;::; O}> {q (X)IX > O}U

{r· (Y)IY > O}

The operator (~)tv! ès well clefined. as sta.ted by the following theorem:

Theorem:
The operator C:>M is continuous in both arguments in P(B) for any M.

>=

>

P.roof: .
Let I=< T, F >,l'=< T', F' >,l"=< T 11 , F" >. For the continuity on the first
argument we need to prove tha.t (I i?Ju I") j (I' i?JM I") if I j I'. It yields to prove
that: TU (T" nu F) ç T' U (T" nM F') a.ncl F nM F" ç F' nM F", what is obvious
from set theory. The continuity on the seconcl argument is analogous.

The result proves that ,?JM preserves some properties. In particular, 8M is con­
tinuous in the doma.in of continuous ma.ppings from P(B) -+P(B).

600

4 Operational Semantics

Before we give the operational semantics of tuple inheritance, we reformulate CLP
operational semantics specifying the concrete program P where we look for dauses.
The rule to compute a goal G is:

G=c,D1 , ••• ,Dj, ... ,D,. f-~ é,D~, ... ,B~>····B~, ... ,D,
if Dj = p (t 1 , ••• , tn), there exists a (standardized apart) clause in P:
p (s,, ... , sn): -c". Br , Bt. and A p c A c" A 1\(s, =ti) --l· c'.

c', D1o ... , B11 ... , B,, ... , D,. Ìs called a chi/d of G. Al! the children for G forms its
derivation tree. We will omit the superscript with the constraint domain.

A very important notion for our purpose is the concept of fmntier of (a derivation
tree for) G: a finite set of nodes in the tree such that every path from G to the leaves
either contains a failure or passes through exa.ctly one node in the set (Ch89, St91].

In order to compute when G 1-P-t:.."Q G', we introduce a new operator for
goals: V X op(G), the definitionless operator, in the vein of [MN94]. Intuitively,
V X Jp(c9 ,G) is true when P finitely fails for G for any value of X. More formally,
if Y are the free va.riables in c9 , G:

V X op(c9 , G) H Mp(3Yc9 A G8) = f for all ground substitutions (} for X
W e allow now to write a o-goal \:f x o(Cg, G) in (intermediate) goals. Before we

explain how a o-goal is computed, we c an defìne the rules for f- P<t:.MQ As usual, we
use the notation O to denote the empty goal formula. Let rnp be the associateci
inheritance arity of p in lv!.

1-P-t:.MQ c", D 1, ... , G, ... , D,. if c,Dj l-p c',G,
Al=cAc'-tc"

c,D1, ... ,D;, ... , f-p«MQ c"',D~, ... ,G, ... ,D,

if oV , ... ,XnJ(p(t 1 , tmp•XmpH' ... ,Xn)) l-p c',o,
11 c', Di l-q c", G'
~' A F c i\ c' A c" -+ c'"

A J-goa.l can be computed by adapting the technique of constructive negation.
Constructive negation can be understood in a more genera! context than negation.
It is useful to decide when a goal fi.nitely fails (i.e. a comput.able approximation
to undefined). The techni.qt~e has been used in severa! frameworks: Negatìon in
Logic Programming [Ch88, Ch89], negation in Constraint Logic Programming [St91],
membership into a intensional defined set, Constra.int Logic Programming with op­
timization, default mles for functional-logic languages [rviN94], and computation of
disequalities in equationallogic progra.mming.

We have only space to recai! brief!y the t.echnique of constructive nega.tion and
how we a.pply i t to Oli!' context. A v x o(Cy, G) goal is computed in the following
way. Let c be the accumulateci constraint when the J-goal is computed. Let F =
{(c A c1 , Br), ... , (c A c"' B,)} be a frontier of the goal c A c9 , Gin P.

c,Dx, ... , V X o(c9 ,G), ... , D,. l-p c. D1 , •..• Di-r, Dj+l· ... ,Dr if F = 0

c,D1 ,VX G), 1-p cAc:, , Dj- 1 , ,Di+1, ... ,D,-

001

where c;, Ni are obtained by finding a formula (c~ A Nr) V ... V (c; A N1) equivalent

to the formula 't/ X, Y1 J(ch BI) A ... 1\ V X, Y 8(c,., B,.), where yk are the variables
in CkJ Bk which do not appear in c, c9 , G.

For each i (l::;:: i::;:: l) we have a different child in the de1:ivation tree.

There are severa.! concrete methods to obta.in the formula V(c/, A Nk):

o Chan's method [Ch88, Ch89] only applies for logic programming (CLP over
~qualities and disequalities in the Herbrancl universe) and uses this property:

\:f X, Yo(Z = s, G) H 't/X(Z =/= s) V 3X(Z =sA \:f Y o(G))
where X are the non-free variables in s.

No completeness result is provicled.

t~ Stuckey's method [St91] applies to constraint logic programming in general.
C~·aint information is got from the frontier in the following way:

\:f x o(c,G) H (V x c) v (V x o(c,G))
A completeness theorem is proved.

® The method of (MN94] is quite similar to the previous ones although it is
adapted to a different problem. The ma.in difference is the use of a very com­
pact constraint representation (conjunctions of disjunctions of disequalities) to
minimize the number of ci, N; generateci.

0 Drabent [Dr93] presents a different a.pproach. Many frontiers of the derivation
treemay be selected and only the constraints of such frontiers are used to
compute answers. In the previous methods only one frontier is selected but
whole goal bodies of the frontier are used. This yields to subgoals that may
contain 6-subgoals to be resolved by further derivation steps. [Dr93] claims
that the new method may be more efficient than the previous one. There are
also soundness and completeness results.

Example: The computation of the goal p (X,}·") in our running example is got in the
following steps:
It is clearthat (l) p (X, Y) l-p Y =l, q (X) l-p y· =l, X> O
what supposes p (X, Y) f- P <t:. MQ Y = l, X > O
For the other derivation in p «M Q we need to compute the o-goal
V Y S(p (X, Y)) in P. Derivation (l) also gives us a frontier for p (X, Y), {Y =
l, X > O} which complements to the formula }- =/= l V X $ O. If we choose the
second part of the formula as c, N we ha.ve:

VYo(p(X,Y)) l-p X$0
As we can derive X::;:: O, p (X, Y) f-q X$ O, Y >O
we can conclude p (X.}'-) f-P«uQ X$ O, Y >O
and we compute all the solutions in MP-t:..11 q.

602

Now, we are in a position to establish soundness and completeness results. We
assume that the rules for f- are applied in a fairly consistent way in the sense of
[St91]. We have only space to include an informai sketch of the proofs.

Theo1·em: Soundness

If c,G f-p<t:MQ c',G' then MP«.uQ(c/\ G)= MP«MQ(c' 1\ G').
Proof sketch: We proceed by induction on the structure of the goal G. The most
interesting c~e is the base case, w h ere G is an atom A. The rule c, A f- p c', A'
implies c, A f-p«MQ c', A' is obviously correct, because corresponds to "Tp U ... "
in the definition of 0 111 • The second rule imposes (i) c", .4 f-q c', A', what implies
that (a ground instance of) A E Tq,. and (ii) c, V X J(A.) l-p c", O, what implies
A E Fp by soundness of constructive negation [St91].

Theorem: Completeness

Let c; G be a goal with free variables X. If :lfP«,uQ(3 X cl\ G)= t then there exists
a constraint answer c' such that c, G f- P«MQ c', O an d A l= c --+ c'. .

Proof sketch: Double induction on the structure of G and the step n on the inter­
preta.tion transformer T? <t: MQ t n w h ere we fin d the elements of (a ground instance
of) G. The proof combines the completeness of constructive negation (St91] with a
case analysis of the definition of OM·

5 Implementation

A prototype implementation has been constructed by tra.nslating modules to SEPIA­
ECLIPSE Prolog. As far as w e know, this Prolog versi o n provi cles the only existing
implementation of constructive negation. The transformation is carried out in the
following way. For each p E a(P) U a(Q) we define:

p (Xt X,.) :- PP (X1 , Xn)·
p (X1, ... , Xn) :- not (pp (X1 , Xm"' Vmp+l· ... , V n)). PQ (X1 Xn)·

where pp, PQ rename p in P and Q respectively, a.nd the li's are new fresh variables.
However, it is clear that a direct implementation should be more efficient. For

instance, if al! p-calls are ground, a sound a.nd complete implementation will be the
following:

p (X):- PP (X), !. p (X) :- pq (X).
A specific implementation, like a WAM modification, can use this technìque when

the a.rguments are ground.

6 Condusion

We ha.ve introcluced and formalized a. new inheritance operator which combines ex­
tension and overriding for goals wit.h varia.bles in a natura[way. This new operator

603

allows for a fully treatment of inheritance in a logic framework. However, tuple in­
herita.nce does no t replace the other inheritance operators (union an d overriding)
but complements them.

The CLP formulation also provides a background for the study of modularity in
CLP programs. A new use of the technìque of constructive negation is found, what
enforces our believe that the technique goes beyond negation in logic programming.

The rneaning of our proposal is given in terrns of the declarative semantics, instead
of the syntactic characterization of other modular operations. The syntactic char­
acterizatìon is possible ìf J-goals are allowed in clause bodies. We assume that the
programs are in norma! form, i.e. al! the clause heacls are written as p (X1 , ... , Xn),
where the X;'s are distinct varìa.bles and the constraint of the clause contains the
equa[ities of)(/s with the origina.! heacl's tenns. Suppose we have the following
programs:

P: p (X):- Gt. Q : p (X) :- G '1 .

p (X) :- G', ..

We can joint P with the moclified Q clauses:
p (X):- v t. v op (G!), ... , VT,Y Jp (Gk). G';.

where Y = Y mp+l, ... , V n are new fresh vari ab l es that replace the corresponding X's
in each G;, and T are the free variables in G';. In our running example, the unique
rule for predicate p will be:

p (Z, V):- V W Jp (q (Z)), r (V).
It can be proved that the semantics of this program coincides with the sernantics

we have developed.
This transformation also gives us a hint to treat some simpler cases. If the G;'s

have no free variables we can replace the ò-goa.ls by adequate constraints. Inforrnally,
the complement of head terms of P cla.uses are computed and they are used later in
the constraint of the modified Q predicate. The same idea is used into the trans­
formational approach to negation from [BMPT90]. We can modify our example by
replacing Q rule for p by the rules:

p (Z, Y) :- q' (Z), r (Y). q' (Z) :- Z ::.::; O.

A concrete implementation can use this transformation technique whenever pos­
sible, the cut trick to be executed dynamica.lly and constructive negation on!y when
it is absolutely necessary.

It is worth to mention that our construction Ìs also va.lid for norma! programs
(i. e. logic programs with negation), because the semantics c an handle negative in­
formation by means of finite failures.

As a future work, we pian to experiment further with the implementatìon of
constructive negation a.nd to apply these ideas to functional-logic languages, because
functions are a very natura! framework for t.uple inheritance.

604

References

[BMPT90] R. Barbuti, D. Mancarella, D. Pedreschi, F. Turini. A Transformational Ap­
proach to Nega.tion in Logic Programming .Journal of Logic Programming,
8(3):201-228, 1990.

[BLM90] A. Brogi, E. La.mma., P. Mello. Inheritance and Hypothetical Reasoning in
Logic Programming Proceedings of 9th European Conference on Artificial In­
telligence, Pitnum, 1990, pp. 10.')-110.

[BLM92] A. Brogi, E. Lamma, P. Mello. Compositional lviodel-theoretic Semantics for
Logic Progra.ms. New Generation Computing, 11(1):1-21,1992.

[BLM93] A. Brogi, E. La.mma, P. Mello. Composing Open Logic Programs .Journal of
Logic (md Computation, -!(-!) :4lì-439, 1993.

[BLM94] M. Bugliesi, E. Lamma., P. Mello. Modularity in Logic Programrning Journal
of Logic Programming, vol. 19 & 20, 1994, pp. 443-502.

[Bu92] M. Bngliesi. A Decla.rative View of Inheritance in Logic Programming Proc.
Joint /nternational Conference and Symposium on Logic Progromming, The
MIT Press, 1992, pp. 113-130.

[Ch88] D. Cha.n. Constructive Nega.tion Based on the Complete Database Proc.
ICLP'89, The AI/T Press, 1988, 111-12.5.

[Ch89] D. C han. An Extension of Constructive Negation an d its Application in Corou­
tining Proc. NACLP'89. The M!T Pre.ss, 1989, 477-49:3.

(Dr93] W. Drabent. Wha.t is Failure? An Approa.ch to Constructive Negation to
a.ppear in Acta Informatica.

[F85] M. Fitting. A Kripke/Kleene Semantics for Logic Prograrns Journal of Logic
Programming 2 (4), 1985, pp. 29!)-312.

[FBJ88) M. Fitting, M. Ben-Jacob. Stratified and Three-valued Logic Prograrnming
Semantics Conf. and Symp. on Logic Programming, 1988, pp. 1054-1069.

[JL87] .J. Jaffar, J.L. Lassez. Constraint Logic Programming Procs. 14th ACM
Symp. on Princ. of Prog. Long., 1987, pp. 114-119.

[Ku87] K. Kunen. Negation in Logic Programming Joumal of Logic Programming, 4,
1987, pp. 289-308.

[MP88] P. Mancare1la, D. Pedreschi. An Algebra of Logic Programs Proc. 5th Int.
Conference on Logic Programming, The M!T Press, 1988, pp. 1006-1023.

[MP90) L. Monteiro, A. Porto. A Transformationa.l View of Inheritance in Logic Pro­
gramming Proc. 7th Int. Conference on Logic Programming, The MIT Press,
1990, pp. 481-494.

[MP91] • L. Monteiro, A. Porto. Syntactic and Semantic Inheritance in Logic Prograrn­
ming Workshop on Declamtive Progromming,SzJringer Verlag, 1991.

[MN94] J . .J. Moreno-Na.varro. Default Rules: An Extension of Constructive Negation
for Narrowing-based Langua.ges. ICLP'94, The M/T Press, pp . .535-554.

[O'K8.5] R. O'Keefe. Towards an Algebra for Constructing Logic Programs IEEE
Symposium on Logic Programming.l98.5, pp. 1-52-160.

[Re88) U. Reddy. Objects as Closures: Abstract Semantics of Object Oriented Lan­
guages. AGl'v!- Lisp aml Functiona/ Programming, 1988, pp. 289-297.

[St91] P. Stuckey. Constructive Negation for Constraint Logic Programming Proc.

IEEE 5'ymp. on Logic in Compttftr Science, IEEE Comp. Soc. Press, 1991.

ANALYSIS

'1

Declarative diagnosis revisited

Marco Comini, Giorgio Levi
D1partimento di Infonnatica.

Universltà di Pisa.
Corso Italia 40, 56125 Pisa, Italy

{comini,levi}©di.unipi.it

Giuliana Vitiello
Dipartimento di Informatica ed Applicazioni,

Università di Salerno,
Baronissi (Salerno), Italy

giuvit©udsab.dia.unisa.it

Abstract

vVe extend the declarative diagnosis methods to the diagnosis w.r.t. computed
answers. VVe show tha.t absence of uncovered a.toms implies completeness for
a. large cla.ss of progra.ms. We then defìne a. top-down diagnoser, which uses
one ora.cle only, does not require to determine in a.dva.nce the symptorns and
is driven by a. (fìnite) set of goals. Fina.lly we ta.ckle the problem of effectivity,
by introducing (fìnite) partial specifìca.tions. \Ve obta.in a.n effect.ive diagnosis
method, which is weaker tha.n the generai one in the case of correctness. yet
can efficiently be implemented in both a. top-down a.nd in a bottom-up style.

Keywords: Declarative diagnosis, Verifìca.tion, Semantics, Debugging

l Introduction

The dia.gnosis problem can formally be defined a.s follows. Let P be a. program.

[P] be the beha.vior of P w .r. t. th'e observable property a. an d I be the specification
of the intended behavior of P w.r.t. a. The diagnosis consists of comparing [P] and
I and determining the "errors" and the progra.m components which are sources of
errors, when [P] 'f I. The formulation is parametric w.r.t. the property considered
in the specification I and in the actual behavior [P]. Declar-ative diagnosis [13. 12.
1 O, 8] is concerned with model-theoretic properties. The specification is the intendecl

declarative semantics (the least Herbrand model in [13] and the set of atomic logical
consequences in [8]).

Abstract diagnosis [4, 5] is agener_alization of decl(trativ(; d,iagnosis, wh~re W('O <:<?n­
si de~- op~~aù;;il·,;:rp;operties, Le:,. observ~bi~s- (an-~bservable is any property which
~~n-be extraetéd frorn'a goal computation, ì.e., observables are abstractions of SLD­
trees). An example of a useful observable is computed answers. The diagnosis w.r.t.
computed answers is expected to be more precisé thàn the declarative diagnoses in
[13] an d [8], which can be reconstructed in terms of the observables ground instances
of computed answers and correct answersrespectively [5]. The semantics involved
in the diagnosis w.r.t. computed answers is the s-semantics [6, 7, 2], which models
exactly the process of computing answers.

In this paper we first extend to computed answers the dedarative diagnosis
methods based on the detection of incorreét clauses and uncovered atoms (Section
3). The good news is that absence of uncovered atoms implies completeness, for a
large class of interesting programs (acceptable programs).

We then define in Section 4 a top-down diagnoser, which uses one oracle only,
does not require to determine in advance the symptoms and is driven by a (finite)
se t of goals (most generai atomi c goals).

Finally in Section 5 we tackle the problem of effectivity, by introducing (finite)
partial specifications. We obtain an effective diagnosis method, which is weaker
than the generai one in the case of correctness, yet can efficiently be implemented
in both a top-down and in a bottom-up style.

2 The semantics modeli~g. computed answers
,)_r,,_ l'·' 1 "-,

The s-semantics [6, 7, 2] is defined or{interpretations consisting of sets of possibly
' non-ground atoms. For every program P, the s-semantics can be characterized as
\i the least fixpoint of the operator T p:

Tp(I) ={AB E Bpl 3A :- B1, .. . ,Bn E P,
{B~, ... ,B~} ç I,
30 = mgu((B1 , ..• , B,), (B~, ... , B~))}

where Bp is the set of (possibly non-ground) atoms of Lp modulo variance and I
is a subset of Bp. The s~me denotation can bé Òbtained in a top-down way, by
considering the answers computed for "most generai atomi c goals", as shown by the
following definition.

X1, ... , Xn are distinct variables,

? - p(X1, ... ,Xn) !t D}.
)
'.-1,-·

609

Diagnosis w .r co1nputed answers: basic defi-
nitions and results

Tbe following Definitions 3.1 an d 3.2 extend to ~i_agno_sjs w.r~t. co_n;1puted al]SWer_s
the definitions given in [13, 8, 10] for declarative diagnosis.

In the following I is the sg~~lfi_::~t~QP ~rth~ int~nd;d~,s-semantics gf p.

Definition 3.1

z. P is partially correct w.r.t. I. ifO(P) ç I.

n. P is complete w.T.t. I. ifi ç O(P).

m. P is totally correct w. r.i. I, if O(P)= I.

li P is not totally correct, we are left with the problem of determining the errors.
-..vhich are related to tbe symptoms.

Definition 3.2

1. An incorrectness symptom is an atom A su eh that A E O(P) an d A if_ I.

n. An incompleteness symptom is an atom A such that. A E I and A if_ O(P).

Note that a totally correct program has no incorrectness and no incompleteness
symptoms. Our incompleteness symptoms are related to the insufficiency symptoms
in [8], which are defined by taking gfp (T p) instead of O(P) = lfp (T p l as program
semantics. The two definitions, even if different, turn out to be the same for the
dass of programs we are interested in (see Section 3). Ferrand's choice is motivated
by the fact that gfp (Tp l is rela.ted to finite failures. The approach of using two
different semantics for reasoning about incorrectness and incompleteness bas been
pursued in [9], leading t o an elegant uniform (yet non-effective l characterization of
correctness and completeness.

It is straightforward to realize that an atom may sometimes be an (incorrect­
ness or incompleteness) symptom, just because of another symptom. The diagnosis ·
determines the "basic" symptoms, and, in 'tl-lè--casè of ~~correctness. the relevant
clause in the program. This is captured by the definitions of incorrect cla'1Lse and
unco_!J_e!·ed atom, which are related to incorrectness and incompleteness symptoms,
respectively.

Definition 3.3 lf there exists an aio m A such that A if_ I an d A E T{c}(I), then
the clause c E P is incorrect on A.

Informa.lly, c is incorrect on A, if it derives a wrong answer from the intended
semantics. T{c} is the operator associateci to the program {c}, consisting of the
clause c only.

610

Definitio:n 3.4 An atom A is uncovered ifA E I and A f/. Tp(I).

Informally, A is uncovered if there are no clauses deriving it from the intended
semantics.

I t is worth noting that checking the conditions of Definitions 3.3 an d 3.4 requires
one application of T p to I, while the detection of symptoms according to Definition
3.2 would require the construction of O(P) and therefore a fixpoint computation.
As we will show in the following, the detection of bugs can be based on Definitions
3.3 and 3.4, while this is not the case for Definition 3.2.

The following theorems are instances of the corresponding theorems proved in
[5] for abstract diagnosis, where they are given for a class of properties called s­
observables (computed answers is an s-observable (3]).

The first theorem shows the relation between parti al correctness (Definition 3.1)
and absence of incorrect dauses (Definition 3.3).

Theorem 3.5 lf there are no incorrect clauses in P, then P is partially correct
(hence there are no incorrectness symptoms}. The converse does not hold.

The theorem shows the feasibility of a diagnosis method for incorrectness based
on the comparison between I and Tp(I). Note that the second part of the theo­
rem asserts that there might be incorrect clauses even if there are no incorrectness
symptoms. In other words, if we just look at the semantics of the program, some
incorrectness bugs can be "hidden" (because of an incompleteness bug).

As in the case of dedarative debugging, handling completeness turns out to
be more complex, since some incompletnesses cannot be detected by comparing I
and Tp(I). The following proposition shows that we cannot base the diagnosis of
incompleteness on the detection of uncovered atoms.

Proposition 3.6 There exist a program P and a specification I, such that

z. there are no uncovered atoms in P,

n. P is not complete w.r.t. I (i.e., there exist incompleteness symptoms).

However, the following theorem shows that the diagnosis of incompleteness can
be based on Definition 3.4 if the operator T p has a unique fixpoint.

Theorem 3. 7 /f T p has a unique fixpoint and there are no uncovered atoms, then
P is complete w.r.t. I (there are no incompleteness symptoms). The converse does
not hold.

Note that, if T p has a unique fixpoint, ifp (T p) = gfp (T p). Hence our incom­
pleteness symptoms are exactly the insufficiency symptoms in (8].

The following corollary is a justification of the overall diagnosis method.

CoroHary 3.8 Assume Tp has a unique fixpoint. Then P is totally correct w.r.t.
I, if and only if there are no incorrect clauses and uncovered atoms.

611

The requirement on Tp seems to be very strong. However, this property holds
fora large class of programs, i.e., for acceptable programs as defined in [1). ~ccept­
able programs are the left-terminating programs, i.e., those programs for wh1ch the
SLD-derivations of ground goals (via the leftmost selection rule) are finite. Most
interesting programs are acceptable (all the pure .PROLOG programs in [14] are
reported in [1] to be acceptable). The same property holds for most of the wrong
versions of acceptable programs, since most "natural" errors do not affect the lef~­
termination property. One relevant technical property of acceptable programs 1s

that the ground immediate consequences ope:rator has a unique fixpoint [1]. The
same property holds for the s-semantics operator Tp.

Theo:rem 3.9 (fixpoin.t un.iqueness) Let P be an acceptable program.
Then Tptw is the unique fixpoint ofTp.

The theorem is proved in [4] for aH the "immediate consequences" ope~ator_s corr~­
sponding to s-observables. Note that the same result applies to dedaratJve d1agnos!s
as well.

The overall diagnosis method for acceptable programs is then given by the fol­
lowing corollary.

CoroHary 3.10 Assume P is an acceptable program. Then P is totally correct
w. r. t. I, if and only if there are no incorrect clauses and uncovered atoms.

Example 3.11 Consider the acceptable program P of figure l, which is an "an­
cestor" program with a wrong clause (ancestor(X, Y) :- parent(Y,X). instead of
ancestor(X, Y) :- parent(X, Y).) and missing database tuples.

I= { parent(terach, abraham), Tp(I) = { ancestor(abraham, terach),
parent(abraham, isaac), ancestor(isaac, abraham),
ancestor(terach, abraham), ancestor(terach, isaac) }.
ancestor(terach, isaac),
ancestor(abraham, isaac)}.

The dìagnosis delivers the following result:

1. the clause ancestor(X, Y) :- parent(Y, X). is incorrect on
ancestor(abraham, terach) an d ancestor(isaac, abraham).

11. the atoms parent(terach, abraham), parent(abraham, isaac),
ancestor(terach, abraham) and ancestor(abraham, isaac) are uncovered.

Note that O(P) = {}. Hence there are no incorrectness symptoms, even if
there is an incorrect clause. Note also that the atom ancestor(terach, isaac) is not
uncovered, even if it is an incompleteness symptom. .

The example is intended to show the relation among the various concepts m­
volved in the diagnosis and does not use the features of the s-semantics (which
turns out to be a Herbrand interpretation). "'

612

ancestor(X, Y) :- ancestor(X, Z), parent(Z, Y).
ancestor(X, Y) :- parent(Y, X).

Figure 1: A wrong acceptable program

4 The orade and the "top~down~' diagnosis

The "bottom-up" diagnosis is based on Corollary 3.10 and requires the appli­

cation of Tp to the intended s-semantics I. Hence I has to be specified in an

extensional way. We are not concerned, for the time being, with the problem of

effectivity (i.e., finiteness of I). Rather we are concerned with the problem of spec­

ifying I by means of an oracle, as first suggested in [13]. The oracle is usually

implemented by querying the user. Several oracles have been used in declarative

debugging (see the discussion in [11]). We will use one oracle only, directly related

to the property we are concerned with, namely computed answers.

Definitio:n 4.1 (o rade) Let G be a goal.
A(G) = {GO l G computes e according to the intended s-semantics}.

Once we have the oracle, we can define the oracle simulat·ion, aga.in following [13].

The orade simulation allows us to express in a compact way new top-down diagnosis

conditions. The oracle simulation performs one step of goal rewriting by using the

program clauses and then gets the answers for the resulting goal from the orade.

Definitio:n 4.2 (o:rade simul:ation) Let G be an atomi c goal an d P be a set of
definite clauses.

S(G,P) = {G01Bzl3c= A:- B1, ... ,Bn E P,
381 = mgu(G,A),
3612, (B1, ... , B,)B182 E A((B11 ... , Bn)81)}

Note that the elements of the sets computed by A and S are equivalence classes

w.r.t. variance, as was the case for the doma.in of the s-semantics. The following

two theorems justify the top-down diagnosis.

Theorem 4.3 The clause c E P is incorrect on the atom p(X1 , ... ,Xn)B if and only

if p(X1, ... , Xn)B E S(p(X1, ... , X,), {c}) and p(X1, ... , Xn)B '1. A(p(X1, ... , Xn)).

Theorem 4.4 The atom p(X1 , ..• , X,)O is uncovered if and only if

p(X1, ... ,Xn)B E A(p(XI, ... ,Xn)) and
p(X1, ... ,Xn)(} '1. S(p(X1, ... ,X,), P).

613

incorrect(G :- B) :- userdefined(G),
clause(G, B),
answer(B),
freeze(G,G1),
not(answer(G),G = G1).

uncovered(A) :- userdefined(A),
answer(A),
freeze(A, Ai),
not(clause(A,B), answer(B),A =Ai).

Figure 2: The top-down diagnosis meta-program

The proofs of Theorems 4.3 and 4.4 are based on the properties of the s-semantics,

which relate fixpoint bottom-up computations to top-down refutations for most

general atomic goals. The same properties allow us to de:fine systematic diagnosis

algorithms which do not need symptoms as i:nputs. The PROLOG meta-program

in Figure 2 is an adaptation of the simplest possible declarative debugger in [11].

The oracle answer nondeterministically instantiates its argument. The search

for incorrect clause instances and uncovered atoms is driven by the most general

atomic goals, represented by unit clauses of the form

userdefined(p(Xi, ... , Xn))., for any predicate p occurring in the program P. The

properties of the s-semantics guarantee that we can detect all the incorrect dause

instances and the uncovered atoms (for acceptable programs), by just looking at the

behaviors for a finite number of atomic goals.
The diagnosis meta-program can be extended to achieve a better performance

and to improve the calls to the oracle. Most of the techniques presented in [11] are

applicable. However, performance issues are outside the scope of this paper.

Let us finally note that our formalization of diagnosis based on the s-semantics is

not subject to the theoreticallimitations proved by Ferrand [8] for his construction

based on the atomic logical consequences semantics. The problem is the following.

An incorrect clause instance A :- B may have an instance (A :- B)() which is

not incorrect. This should be re:fl.ected by the fact that incorrect(A :- B) is in

the denotation of the diagnoser, while incorrect((A :- B)O) is not. This is not

possible if the denotation is the non-ground semantics in [8], since i t is closed under

instantiation. On the contrary, if we choose the s-semantics the problem does not

anse.

5 · Diagnosis with partial specifications

The diagnosis cannot effectively be based on the conditions given above, unless

the intended s-semantics is finite. In fact, if this is not the case,

614

® the bottom-up diagnosis is unfeasible, since I is infinite and

., the top-down diagnosis is unfeasible, because the oracle may return infinite
answers to some queries.

This is true also for those diagnosis algorithms which are based on a ground seman­
tics or are driven by the symptoms. As a matter of fact, the assumption in [13]
on the oracle returning a finite number of answers is too strong. The problem can
only be solved if we have the ability to handle :finite approximations of the intended
semantics. One solution can be found within the abstract diagnosis framework in
[4, 5], w h ere we are ab le to cope with abstractions of the observables (according to
abstract interpretation theory).

Here we propose a different solution, where we approximate the intended behav­
ior by a (finite) partial specification. The specification of the intended behavior I
is approximated by a parti al specification, which is a pair (I+, x-), where

® I+ is the (positive) partial specification of the answers computed by P for
most generai atomic goals, i.e., I+ is a finite subset of I,

e I- is the (negative) partial specification of the answers not computed by P
for most generai atomic goals, i.e., x- is a finite subset of f.

We denote by I the complement of I. Note that the relation x+ ç I- must
hold. The following de:finition generalizes partial correctness and completeness to
the case of partial specifications.

Definition 5.1

z. P is partially p-correct w.r.t. (I+,I-), ifO(P) ç I-.

u. P is p-complete w.r.t. (I+,I-), iji+ ç O(P).

The rationale behind Definition 5.1 is clearly related to the fact that the spec­
ification is partial. In a partially p-correct program, for any goal G, there is no
computed answer {), which we know to be wrong (GB E I-). On the other hand, in
a p-complete program all the answers that we know to be correct (GO E I+) h ave
to be computed answers. Note also that definition 5.1 is derived from Definition 3.1
by taking I- an d I+ as specifications to be used for correctness and completeness
respecti vely.

Positive and negative specifications have been used in [9] with the aim of sepa­
rately modeling the behavior w.r.t. incorrectness and incompleteness. x+ and x- are
no t parti al specifications, rather they are specifications of the (complete) intended
lfp (T p) and of the (complete) intended gfp (T p). The derived definitions and results
are completely different from ours. In particular, I- is used for completeness and
I+ is used for correctness.

The following definitions, given in terms of the Tp operator, generalize the defi­
nitions of incorrect clause a.nd uncovered atom to the case of partial specifications.

615

Defi.nition 5.2 Ifthere exists an atom A such that A f/ I- and A E T{c}(I-), then
the clause c E P is p-incorrect on A .

Defini.ti.on 5.3 An atom A is p-uncovered ifA E x+ and A f/ Tp(I+).

The following theorem shows the relation between partial p-correctness and ab­
sence of p-incorrect clauses.

Theorem 5.4 If there are no p-incorrect clauses in P, then P is partially p-correct.
The converse does not hold.

Theorem 5.4 would allow us to check partial p-correctness, by just checking that
there are no p-incorrect clauses. However, we cannot base an effective diagnosis
method on the detection of p-incorrect clauses, since Definition 5.2 is given in terms
of I-, which is not part of the partial specification (and is usually infinite). Some
of the p-incorrect clauses can be determined by choosing x+ as an approximation of
I-, as shown by the following theorem.

Theorem 5.5 lf there exists a clause c in P and an atom A, such that A E
T{c}(I+) n I- 1 then c is p-incorrect on A. The converse does not hold.

Theorem 5.5 leads to a complete diagnosis method for partial p-correctness, only
if the specification is indeed complete, i.e., if I+= I-.

Corollary 5.6 If x+ =I- and there are no clauses c in P and atoms A such that
A E T{c}(I+) n I-, then P is partially p-correct.

Let us consider now the diagnosis of p-completeness. As was the case for the
diagnosis of completeness, the diagnosis can be based on Tp, only if the operator
Tp has a unique fixpoint.

Theorem 5. 7 Assume T p has a unique fixpoint. If there are no p-uncovered atoms,
then P is p-complete w.r.t. (I+,I-). The converse does not hold.

It is worth noting that the existence of a p-uncovered atom does not necessarily
mean that there is sornething missing from the program. In fact, an atom in I+
might not be in Tp(I+) just because I+ is partial, i.e., it cannot be derived by
Tp because some of the correct premises are missing from I+. Hence, the overall
partial diagnosis may return a subset of the incorrect clauses and a superset of the
real uncovered atoms.

Let us now move to the top-down diagnosis with partial specifications. The
definition is given in terms of two oracles, which can be implemented either by
querying the user or by querying the positive and negative specifications, since they
are finite and can be de:fined extensionally.

616

pincorrect(G :-B) :-nanswer(G),
freeze(G,Gi),
clause(G,B),
panswer(B),G = Gi.

puncovered(A) :- panswer(A),
freeze(A,Ai),
no t(clause(A, B), panswer(B), A= Ai).

Figure 3: The top-down diagnosis meta-prograrn for partial specifications

Defini.tion 5.8 (positive or:ade) Lei G be a goal.
A+(G)= {GB l G is intended to compute 8}.

Definition 5.9 (negative ora.de) Let G be a goal.
A- (G) = { GB l G is intended no t to compute 8}.

We only need the positive oracle simulation.

Definition 5.10 (positive orade simulation) Let G be an atomic goal and P be
a set of definite clauses.

s+ (G, P) = { G81 82 l :le = A :- B1, ... , Bn E P,
381 = mgu(G, A),
:lfJ2, (B1, ... , Bn)fMJ2 E A+((Bl, ... , Bn)8I)}

The following two theorems justify the top-down diagnosis.

Theorem 5.11 The clause c E P is p-incorrect on the atom p(X1 , ... , Xn)B if
p(XI> ... , Xn)B E s+(p(Xt, ... ,Xn), {c}) and
p(X1, ... ,)(n)B E A-(p()(i, ... ,)(n)).
The converse does not hold.

Theorem 5.12 The atom p(X1 , •.. , Xn)8 is p-uncovered if and only if
p()(b ... , Xn)B E A+(p(Xl, ... ,Xn)) and
p(X1 , ... ,Xn)8 cj s+(p(Xl, ... ,Xn),P).

The corresponding PROLOG meta-program is shown in Figure 3.
Note that now the search is driven by the elements in the negative and positive

specification, obtained from the corresponding oracles. Both oracles nondetermin­
istically instantiate their argument. An extensional implementation of the orades
requires

i. a uni t clause of the form panswer(A). for any A E I+,

617

appe:nd([A], B, B).
append([AIB], C, [A, D]):- append(B, C, D).

Figure 4: A wrong acceptable program

n. a unit clause of the form nanswer(A). for any A E I-,

m. the clause panswer((A,G)) :- panswer(A),panswer(G)., to get the intended
(positive) answers for conjunctive goals.

Finally, we look at a small example, which shows that it ìs convenient to use
finite subsets of the s-semantics, since their elements rnay stili represent infinite sets
of ground atoms.

lExampìe 5.13 Consider the acceptable program P of figure 4, whose first dause
is wrong. The partial specification is

I+= {append([],X,X), r = {append([A],X,X)}.
append([A], X, [A IX])}

The diagnosis delivers the following result:

6

1. the clause append([A], B, B). is p-incorrect on append([A], X, X).

IL the atom append([J, X, X) is p-uncovered.

Condusions

Our first result is the extension of known diagnosis methods based on the cletec­
tion of incorrect dauses and uncovered atoms to the case of the s-semantics. The
good news is t ha t absence of uncovered atoms implies complèteness, for a class
of interesting programs (acceptable programs).

The second result is the definition of a top-down diagnoser, which has the fol­
lowing features: it uses one orade only, it does not require to determine in advance
the symptoms and is driven by the (finite) set of rnost generai atomic goals, it is not
subject to the incompleteness problem of Ferrand's diagnoser (sìnce the s-semantic~
is not closed under instantiation).

Finally, we have introduced the diagnosis wor.t. partial specifications, which leads
to an effective diagnosis method, which is weaker than the generai one in the case of
correctness, yet can efficiently be implemented in both a top-down and in a bottmrl­
up style.

All the results can naturally be extended to the more generai framework oi
abstract diagnosis.

618

References

[l] K. R. Apt and D. Pedreschi. Reasoning about termination of pure PROLOG pro­

grams. Information and Computation, 106(1):109-157, 1993.

[2] A. Bossi, M. Gabbrielli, G. Levi, and M. Martelli. The s-semantics approach: Theory

and applications. Journal of Logic Programming, 19-20:149-197, 1994.

[3] M. Comini and G. Levi. An algebraic theory of observables. In M. Bruynooghe, editor,

Proceedings of the 1994 Int 'l Symposium on Logic Programming, pages 172-186. The
MIT Press, Cambridge, Mass., 1994.

[4] M. Comini, G. Levi, an d G. Vitiello. Abstract debugging of logic programs. In L. Fri­

bourg an d F. Turini, editors, Proc. Logic Program Synthesis and Transformation and

Metaprogramming in Logic 1994, volume 883 of Lecture Notes in Computer Science,
pages 440-450. Springer-Verlag, Ber !in, 1994.

[5] M. Comini, G. Levi, and G. Vitiello. Efficent detection of incompleteness errors in

the abstract debugging of logic programs. In Proc. 2nd International Workshop on
Automated and Algoritmic Debugging, 1995.

[6] M. Falaschi, G. Levi, M. Martelli, and C. Palamidessi. Dec!arative Modeling of the

Opera.tional Behavìor of Logic Languages. Theoretical Computer Science, 69(3):289-
318, 1989.

[7] M. Falaschi, G. Levi, M. Martelli, an d C. Palamidessi. A Mode!-TheoreticReconstruc­

tionofthe Operational SemanticsofJ:,_ogic P!ograms. InÌormati~~ ~~dComput~-tidn,
iò2(1f:86:_ii3, "ì9!à -.

[8] G. Ferrand. Error Dia.gnosis in Logic Programming, an Adaptation of E. Y. Shapiro's

Method. Jourrw.l of Logic Programming, 4:177-198, 1987.

[9) G. Ferrand. The notions of symptom and error in declarative diagnosis of logic

programs. In P. A. Fritzson, editor, Automated and Algorithmic Debugging, Proc.

AADEBUG '93, volume 749 of Lecture Notes in Computer Science, pages 40-57.

Springer-Verlag, Berlin, 1993.

[10] J. W. Lloyd. Dedarative error diagnosis. New Generation Computing, 5(2):133-154,
1987.

[11] L. Naish. Declarative diagnosis of missing answers. New Generation Computing,
10:255-285, 1991.

[12] L. M. Pereira. Rational debugging in logic programming. In E. Y. Shapiro, editor,

Proceedings of the 3rd Intemational Conference on Logic Programming, volume 225

of Lecture Notes in Computer Science, pages 203-210. Springer-Verlag, Berlin, 1986.

[13] E. Y. Shapiro. Algorithmic program debugging. In Proc. Ninth Annual ACM Symp.

on Principles of Programming Languages, pages 412-531. ACM Press, 1982.

[14] L. Sterling and E. Y. Shapiro. The Art of Prolog. The MIT Press, Cambridge, Mass.,
1986.

"Optimal" Collecting Se1nantics fo:r Analysis 1n a

Hiera:rchy of Logic Prog:ram Semantics

Roberto Giacobazzi*
LIX, Laboratoire d'Informatique

Ecole Polytechnique, 91128 Palaiseau cedex (France)

E-mail: giaco@lix.polytechnique.fr

Abstract

In this paper we define a framework of collecting semantics far analysis of logic programs.

The idea is to use abstract interpretation to systematically derive,. compose and compare se­

rnantics according to their expressive power. A hierarchy of collecting semantics is introduced,

including well known semantics for logic programs and providing a formal basis to extend mode!
theory to collecting and abstract semantics far analysis. We introduce a formal definition of
adequacy for a sernantics with respect to data:ftow analysis, and a constructive characterization

for the "best" collecting semantics for analysis.

1 Introduction
The definition of an appropriate concrete semantics, being able to mode! those program proper­

ties of interest, is a key point in abstract interpretation ([12]) an d semantic-based datafiow analysis.

As shown in [17] the choice of the operational semantics is usually the most appropriate one, as

it is possible to derive more abstract semantics (e.g., the denotational semantics) by abstract in­

terpretation. This leads to a hierarchy of semantics w bere well known semantics at different levels

of abstraction are ali derived by abstract interpretation from the operational o ne [14]. However,

more abstract semantic bases can be suitable to avoid unnecessary details which are useless with

respect to the program properties of interest. This is particularly important to simplìfy proofs

of soundness in semantic-based static analysis. Of course, the best choice for a semantics should

be a semantics which is not too abstract to hide too many details, but also not too concrete to

introduce useless information (usually encoded by too complex semantic structures). A collecting

semantics is somehow an intermediate step in abstraction between an often too concrete operational

semantics an d the standard semantics of the program (e.g., see the step-by-step abstraction in [29]).
These semantics are usually derived by abstraction from an operational semantics of the language,

or derived by a simple concretization process based on a powerset construction, collecting sets of

denotations. Therefore, the relation between collecting semantics and the underlying more abstract

standard semantics for the language becomes purely artificial and it is often meaningless. In logic,

programming for instance, i t is often the case that collecting interpretations are derived by abstract­

ing SLD resolution, without providing any corresponding model-theoretic interpretation, and the

collecting semantics result to be often too far from the intended logica! meaning of the program:

its Herbrand mode/ (e.g., see the operational frameworks in [8, 18], or the denotational semantics in

~~). . .
In this paper we introduce a new approach to collecting semantics design and analys1s, and

.apply it to the case of logic programs. Collecting semantics are bere characterized by maintaining

the underlying structure of a standard semantics (later in the paper called core semantics), which

ìs characterized by the so called "no junk" and "no confusion" conditions, providing a kìnd of

minimality with respect to a given semantic property. Therefore, a collecting semantics is not

merely a sound approximation of a more concrete semantic definition, but has to include a more

'This work has been partly supported by the EEO Human Capitai and Mobility individua! gra.nt: "Serna.ntic

Definitions, Abstract- Interpretation and Constra.int Reasoningn ,. N. ERB4001 GT930817.

l
!
!l

l li

l ,

