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8.1 A Parallel Execution Model 

The lncrementality Lemma 7.1 for :F suggests a possible parallel exccution mode! of clp's, based 
on a network of processors: 

Network Let N be the set of pp 's of P For l E N. a processar P1 is associateci with l. 

Communica.tion among processors is realized by means of channels, as follows: 

Communication Processors are connected by the following channels: (i) from the envi­
ronment w to Pentry(G) and from Pcx>t(G) to the environment: (ii) cj from j to i for every 
i. j such that there is an are from j to i in dg(P). 

A channel cj is c al! ed an input channel of P; a.nd an ouipui charme/ of Pj. Ea.ch channel is 
supposed to have a rnemory that contains a queue of states whosc policy is fair (e.g. first in first 
out). 

The execution mode! allows the proc.essors to run in parallel and asynchronously: 

Execution Model Processors in the network execute asynchronously the following algoriihms: 

- Pentry(G) takes an Q from c~mry(G) and sends it to al! its output channels. 

P l . h f . h . f f . . h j entry( C) d . 
- wtry( C) se ects Wl t azr c ozce rom one o Jts mput c anne s, say c cali( A) • an Q. an 1t 

computes !3 = (push(Q) (\51 = 7°), where A= p(s) an d p(l) is the head of H; then Pentry(C) sends 
i3 to every its output channel. 
- P,ucce,(A), w h ere A is not a constraint an d is contained in the clause C, selects with fair choice 

from one of its input channels. say C:~~;t"~'1IA), an o:: then i t computes f3 = pop( o:); if f3 E ~free( x~) 
then P,ucces,(A) sends f3 to every its output channel. 
- Psucce,(A)• where A is a constraint, takes an o: from its input channel and computes f3 = (o:/\A 0 ), 

then Psuccess( A) sends f3 to every its outpnt channel. 

This mode] describes a sound and complete implementation of O, as stated in the following 
theorem. 

Theorem 8.1 (Adequacy of .M) Jf ihe inpui channel c~ of M is feed with the sei of slaies 

q, s.i. dJ <; ~free(x~), and dJ <; free(x~) for every non goal, non-v.nitary clause C, then 

U~Epath(l) psp. 1r.dJ is ihe set of 8iaies !hai P1 in .M sends o n its outpui channels. 

Remark 8.2 Our execution mode! assigns one processar to each program point. However. because 
the processors work asynchronously, in case there are less processors than program points, then a 
single processar can be assigned to a number of p p 's, which can be encoded as distinct tasks to be 
executed with a fair schedule discipline. This will still yield a complete and asynchronous mode!. 

8.2 Burstall's Intermittent Assertions Method 

We show how the intermittent assertions method of Burstall [Bur74] can be adapted to clp's. 
The advantages of the Intermittent Assertion Methocl, an d of Tempora.l Logic (TL) in genera!, for 
instance to prove liveness properties, termination, iotal correctness etc. are well known (see for 
instance [CC93]). So far, finding a suitable presentation of the intermittent assertion method for 
logic programming was stili an open problem ([CC93]). In this section a solution to this problem 
for clp's is given, by means of the intermedia te semantics O. 

For lack of space, we shall be rather sketchy an d we refer the interested rea der to the full version 
of the p a per. 

For simplicity assertions are denoted by q,, 7(;, thus identifying an assertion with the set of states 
it denotes. Implication is interpreted as set inclusion. i.e. q, * 7(J iff dJ <; 'lj•. Also. conjunction and 
disjunction are interpreted set-theoretically as intersection and union, respectively. The assertion 
pu.sh( q,) is obtained by replacing each i-variable xi in r/J by the i-variable xi+l; an d pop( q,) is 
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obtainecl by first rena.ming with fresh variables all the i-variables of leve! O a.nd then replac.ing 
each remaining i-variable xi with xi-l. 

H ere, an 'intermittent rule' is a formula in temporallogic of the form D (<P/lat.( i) *O( 1/•Aat(j))). 
where D and O are the 'always' and 'sometime' operators, ancl at(l:) indicates that exec.ution is 
a(. program point i. The set of proof rules we consider contains a formalization of the induction 
principle (Burstall's "little induction"), a suitable axiomatization of TL (cf. [Sti92, CC93]), plus 
the following path rule, which formalizes the "hand simulation" part of the method: 

( 1r E path( i, j) /\ psp. 1r.<f; #false) * D (q, /\ a t( i)=> O(psp. 1r.dJ fl at(j))) 

A sound and relatively complete proof system w.r.t. :F can be defined using these tools. 

VVe illustrate by means of an example how the method can be applyed to prove total correctness 
of a clp. The following composition rule will be used: 

D ( ~Aat(i) =>O( ,UMt(j))) D ( V'Aat(j) => O(xAat( k))) 

D(fMt(•) => O(x-'at(k))) 
(l) 

It enables us to compose intermittent assertions (note this is a particular case of the 'chain rule' 
which is one of the basic tools in the proof system presented in [MP83]). 

Example 8.3 Consider again the program Prad. Let the initial assertion be q,= u.0 = [To, .... rk]/\ 

-,free( x~)/\ free(x~ 1 ) /\ at(l). 
Suppose we want to prove that Prad satisfies the following asscrtion: 

D(cp * O(v 0 = r·o * ... * rk /\ at(2))) (2) 

which sa.vs that for every state o: of q,, at least one exec.ution of ,__ prod(u, v) starting in o: terminates 
(i.e. reacÌ1es the pp 2) and its fina! state binds v to ro * ... *"k. Below we use A, B as a shorthand for 
'A(\ B' (i.e. comma stands for conjunction). Using the path rule we get the following (simplified) 
assertions: 

o(~=> O(v'=z'=ro•w',y'=[r,, ... ,r,]),at(4J)) (with path (1, 3, 4)) 

D(v'+'=z'=ro*···*">*W 0 ,y 0 =[],at(4) => O(v'+'=z'=ro•·· •r,,y 0 =[],at(5l)) (with path (4, 6, 5)) 

D ( v'=z'=ro•···*"• ,at(5) => O( v 0 =ro•···*"k ,at(2))) (with path (5, 2)) 

The following assertions can be proven by straightforward induction: 
O (v m+ I =z "'=ro>~< ... *rm*W 0 ,y 0 =[rm+l , ... ,rk},m<k,at(4) => O( vk+I =zk=ro>~< ... *r'k >~<W 0 1Y0=[],at( 4))) 
(using as path 1r = (4, 3, 4) ), a.nd 
o(v'+'=z'=ro*·· •r,,y'=[J.at(5)=> O(v'=z'=ra• ... •r,,at(5J)) (using as path 7f = (5, 5)) 

Then, the repeated application of rule (l) to compose the above assertions yields (2). 

9 Discussion 

In this paper an alternative operational mode! for clp's was proposed, where a program is viewed 
as a dataflow gra.ph and a predicate transformer semantics transforms a set of sta.tes associated 
with a fixed n ode of the graph ( corresponding to the entry-point of the program) into a tuple of set 
of states, one for each node of the graph. To the best of our knowledge, this is the first predicate 
transformer semantics for clp's based on dataf!ow graphs. The dataf!ow gra.ph provides a static 
description of the f!ow of contro! of a program, where sets of constraints 'travel' through its arcs. 
The relevance of this approach was substantiated in the Applications section. 

W e would like to conclude this paper by giving an extension of its results to more genera! CLP 
systems. W e h ave considered 'ideai' CLP systems. With slight modifications, the dataflow semantics 
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F (a,nd all its appiìcations) can be a.dapted to dea] also wtth 'quick-check' and 'progressive' syst.ems 
(cf. l.HI'19·1]), which are those more widely implemented. This can be dane as follows. St.a.l.ee are 
considered to be pairs (cl, c2) of constraints. instead t han constraints, w h ere c1 dcnotes the active 
part and c2 the passive part. 

Siates ={(c~, c2) l c1 and c, are constraints s. t. cons·tsie7lt(cl)}, 

where the test consisieni(cJ) checks for (an approximation of) the consistency of c1 . Then rules R 
an d C of Table l h ave r.o be changed as illustrated below, w h ere a state a = ( c1 , c2 ) is also denoted 
by (al, a,): 

R (\p(s)) ·A. a)- (Ii· (pop) ·A. infer(a;, o; A s1 = 1°) ), 

with n 1 = push(n), if C= p( t)~ Ii is in P. 

C ((d)· A, o)- (A. infer(al, G2 ;\i')), 

if d is a constraint.. Finally, the definition of sp has to be changed in: 

sp.c.tp = {G1 E Staies l 0: 1 = infer(o 1, n~ A c) and cr E dJ}, 

The operator znfer computes from the current state (c1 , c2 ) a new active constraint c~ and passive 
constraint c;, with tbe requirement that c1 Ac2 and c~ Ac2 are equivalent constraint.s. The im.uition 
lS that. c1 lS used to obtain from c2 more active constraims; then c2 is simplified t o c:,. For instance. 

~in the example of Section 5, in the state of wJ the constraint z 0 = x 0 "'w 0 would be p-assive, beca.use 

the equation is no t lmear (cf [J!VISY~2]). Then, in w!{ t bis constraint is transformed by applying 
first p-ush t.o 1t and tben mfe,·, So z = x 1 * -u• 1 becomes act1ve, because w 1 is bound to l and 
hence the equation becomes linear. 

Acknowledgments: VVe would like t.o thank J an Rutt.en an d t be anonymous referees far t.heir 
useful comments. 
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A bstract: Constraint logic programrning aver firìite integer domains allows a dee l arati ve 
and flexible Jlatement of ~combinatori al optirnization problems. The paradigm used is 
"constraint and generate". Constraints prune in advance the search space, and then, a 
enumeration phase, also called labeling, and a search strategy are needed to find the optirnal 
solution. In this paper we introduce the integration of evolutionary algorithrns, a well known 
cornputing paradigm, and the CLP(FD) paradìgm. W e have designed a system that enhances 
CLP with techniques · based in evolutionary ptogramming, allowing to sol ve a constrained 
optirnization problerns without the need of programming an explicit · and exhaustive 
enumeration and specifying a strategy to find the optimal solution. The paper describes the 
algorithms used to irnplement the evolutionary program, and al so the design details' of the 
genetic operators. Finally, we present an example of the operation of the prototype of the 
systern, which has been implernented in ECLiPSe, 

Keywords: CLP(FD), constrained optirnlzation problems, evolutionary prograrnming. 

1 Intmduction, 
The main advantages of applying the CLP(FD) approach (Con:;;traint Logic Prograrmning 
over finite i11teger domairts) [VH89] to cost optimization problems are its flexìbility and 
ease ofp~:Ogrammillg [DiÌ:i90,Wal94l Combinatmial optimizatiòn probleìns over natural 
numbers are defmed as follows: given a set of variables ranging over natural numbers, a 
set of constraints between these variables, and an objective function; the problern is to fmd 
an assignrnent of values to the variables that satisfles the constraints and optirnizes (i,e,, 
rninimizes or rnaxirnizes) the objective function. 

The basic paradigrn used to sol ve this kind of problerns in CLP. is "constraint and 
generate", but in rnany cases after the constraint phase the rernaiiùng search space c an be 
qui te large, so the way labeling is performed plays an irnportant role. CLP supports search 
over a solution space structured into a tree, some of whose leaves are feasible solutions, 
The constraints allow to prune in àdvance during the search some of the branches whose 
leaves include no feasible solutions, Optimization problems require not just a feasible 
solution but an optimal one, assuming some function associating a cost with each solution. 
Finding the optimurn requires some kind of enurneration of the feasible solutions. The 
enumeration efficiency can be improved using problern specific heuristics ancl/or general 
rnethods like branch and bound. But the size of many constrained search problems prevent 
the problem from being tack:led by any complete search technique, even when the search 
space may be pruned by constraint handling. For such approximation algorithms 
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are a good alternative. These kinds of algorithms do not guarantee to fmd an optimal 
solution, but offer a high probability of frnding a go od solution by exploring only a part of 
the solution space. In this paper we introduce the integration of an approximation 
technique called evolutionary programming into CLP(FD) to solve constrained 
optimization problems. This extension allows the programmer to be freed from specifying 
the labeling and optimization strategies. 

1.1 Background on evolutio:nary programming. 
An evolutionary program ìs a stochastic computational device, based on principles of 
evolution and hereditary, that allow an effective search in very large search space. 
Evolutionary programming comes from the refinement of genetic algorithms. As hold in 
[Mic94], "genetic algorithms + data structures = evolution programs". For many hard 
search problems, such as the traveling salesman problem, assembly-line sequencing and 
scheduling, evolutionary algorithms have been used very successfully [Gol89]. The 
skeleton of an evolutionary program in shown in Figure L 

procedure evolutionary prograrn 
begin 

t : = o; 
initialize P(t) 

evaluate P(t) 

while not termination-condition do begin 
t := t+l; 
select P(t) from P(t-1) 
alter P(t) 
evaluate P(t) 

end; 
end. 

Figure l. 

An evolutionary program maintains a population of "chromosomes", P( t)= {X/, ... , Xntl 
for ìteration t. Each chromosome represents a potential solution to the problem at band, 
implemented as some. possibly complex, data structure S. The initial population P( o) is 
generated randomly or by any other method (initialize step). Then the population is 
evaluated (evaluate step), computing a "fitness" value for each chromosome X/ that 
indicates a measure of the goodness of the chromosome as a solution to the optirnization 
problem. The objective function to be optimized is the basis for the computation of this 
fitness value. Then a new population, P(t+l), is formed by selecting some chromosdmes 
(select step) from P(t). Best fitted solutions are more likely to be chosen for survìval. 
Some members of the new population undergo transformations by means of "genetic" 
operators to form new solutions (alter step). There are unary transformatìons mi 
(mutation type), which create new solutions by a small change in a single chromosome 
(mi: S -7 S), and transformations Cj (crossover type), which create new solutions by 
combining two (or more) randomly selected chromosomes (cF S x S-7 S). Best fitted 
solutìons are more likely to be chosen for crossing-over. After some number of 
generations (iterations) the program converges .:_ it is hoped that the best chromosome 
represents a near-optìmum solution. There is a theoretical foundation for this kind of 
algorithms based in the schemata theorem [Hol75], which is beyond the scope of this 
introduction. 
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Section 2 introduces the details of the of the evolutionary algorithm designed for its 
integration in CLP(FD) in order to solve constrained optìmization problems. Section 3 
presents an example and some empirica] results. Finally we discuss the conclusions and 
future work. 

2 · Labeling with evoiutionacy p:rogramming. 
A constrained optimization problem within the framework of CLP(FD) may be stated in 
the following way: given a tuple <V, D, C,f>, where: 

V= {VI, ... , V n} : finite set of domain variables. 
e D= {D 1, ... ,D n} : fmite set of integer domains associated to the variables Vi. 

C= {Cl, ... , Cm} :finite set of constraints between the variables in V. 
• f: objective function rangìng over V. 

fmd an assignment of values from D to the variables in V that satìsfies the constraints in C 
and optimizes (maximizes or minimìzes) the objective function f. First, constraints Ci are 
stated leading a reduction of the original domains, an d then a labeling strategy is needed to 
perform the search for the optimal assignment Our aim is to enhance CLP(FD) with an 
optimization technique that, given a list of domain variables and a cost expression, returns 
a near optimal solution with respect to the cost expression. Searching will be pe1formed 
using a evolutionary constrained algorithm, using constraints to guide the genetic 
operators to a feasible solution. In this section we introduce the rnain points of the design 
of the evolutionary program. 

2.1 Representation of solutions. 
In highly constrained problems, a rninimal change to a feasible solution ìs very likely to 
generate an unfeasible one, but unfeasible solutions cannot simply be dropped from the 
solution space because doing so would prevent certain good solutions from being 
generated. Classical approaches overcome this problem using one or more tricks like 
penalty functions, the avoidance of generating illegal solutions, repair algorithms, linear 
recombination [Min92,Mic93]. The integration of evolutìonary algorithms with the 
constraint propagation and local consistency techniques embedded in CLP over finite 
integer domains offer a new approach to salve this problem. We introduce an approach 
where chromosomes do not represent a "ground" solution, but an "area" of the search 
space, that is, variables are not labeled with an integer value, but a integer dornain, so a 
chromosome may include none or many solutions. Local consìstency [VH92] and 
constraint propagation does not guarantee that a not completely ground chromosome 
includes a solution, but it may contain many, both good and bad, covering an area of the 
search space. Genetic operators have been designed in order to both guarantee the 
convergence to a "ground" solution while exploring as much as possible the search space. 
During generation and recombination of chromosomes local consistency and constraint 
propagation is triggered, keeping chromosomes within the feasible solution space as much 
as possible. 

A chromosome Xi, which represents a set of potential solutions, is formed by the list 
[ d1, .. ,dn1 where each di is an abstract data type representing the integer domain 
associated with the variable i of the list of dornilln variables to be labeled. Each 
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chromosome, a potential solution. has an associated cost dc, which is also the integer 
domain associated to the cost expression to optimize. 

Besides the lists of d(s, we will also keep some extra informatiop about each 
chromosome for the implementation of the evolutionary mechanisms: its fitness value 
(fit), its accumulated relative fitness (arf), used in the select_<:hramasame step, and a 
boolean flag to indicate if it will survive to the next generation. 

2,2 The algorithm, 

Figure 2 shows the main algorithm implemented in our system. It clearly follows the 
skeleton shown in Figure l. The following subsections will describe each step in detail, 
giving the algorithm used for each underlined step. 

procedure evalutionary_labeling_in_CLP (Vars : list af fd_vars; 

begin 
t : = o. 
initialize P(t): 

for i:=l to pop_size do 
X i : = random l abel ing ( Vars) ; 

evaluate P{t): 
for i:=l to pop_size do 

Xi.fit := fitness(f,Xi) 
total_fitness := I xi.tit 

f : objective functian); 

xi.art :=I ij :=1 to i) xj.tit ; total_fitness 
while not terminatian-conditian do 

select P(t) fram P(t-1): 
for i:=l to pop_size * prop_surv do begin 

X-i := select chramosame(P(t}) 
mark xj to survive 

end; 
alter P(t): 

for i:=l to pop_size do 
if not Xi marked for survival then begin 

Xl := select_chromasome(P(t)) 
x2 := select_chromosame(P(t)) 
replace Xi with crossaver(Vars,x1 X 0 ) 

end; ' -
for i:=l to pop_size do 

Xi := mutat:lan(Vars,Xi) 
evaluate P(t) 

end; 
final solutian .- best solutian(Vars,P(t)) 

end .. 

Figure 2, 

The initialize step is a loop that generates pop_size chromosomes by means of a 
randam_labeling procedure. Evaluate step computes the fitness value of each 
chromosome of the population, an d also its accumulated relative fitness. In the select step, 
some randornly chosen chromosomes are rnarked as survivors, so they won't be replaced 
by the new chromosomes generated by crossover. Best fitted chrornosornes are more 
likely to be selected. as select chramasame procedure mal(e a randorn selection bàsed in 
the accumulated relative fitness. The alter step has been divided in the two genetic 
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operators, crassaver and mutatian. New chromosomes generated by crossover take the 
place in the population of those chromosomes that were not chosen for survival. New 
chrornosornes generated by means of rnutation replace the chromosome used to produce 
the mutation. 

2"3 Generating the initial popwation. 
The frrst step in any evolutionary program is the generation of an initial population. Each 
chromosome x/ = [ d1, .. ,d11] of this initial population is generated by means of a 
randam labeling procedure as shown in figure 3 and described below: 

6 Variable (Vi) selection: next variable to be labeled is randomly selected. 
Value (domain di) selection: from the dornain of the variable Vi, which ranges from 
Min to Max, two values LDw and Up are randomly chosen (Min <= LDw <= Up <= 
Max). Then Vi is constrained to a dornain dz. which is a reduction of the originai 
dornain. This reduction rnay be perforrned in two different ways: one reduces the 
domain removing values from the top ancllor bottom, and the other tries to reduce the 
domain towards one of its boundaries. For each variable we randornly select one of 
this two ways, using a randorn rea! number between 0.0 and 1.0, and a parameter, 
called boundmy__prob, that specifies the probability that the "boundary" domain 
reduction is chosen. 
li the first way of dornain reduction is chosen, the new domain di is chosen randornly, 
in a non deterrninistic way, frorn the following dornain.s: 

LDw .. Up 
G LDw .. Max 
Q Min .. Up 
If boundary reduction is chosen, the new domain di is chosen randornly, in a non 
deterministic way, from the following domains: 

Min .. LDw 
~ Up .. Max 

function randam_labeling (Vars : list ?f fd_vars) 
begin 

randamly select a variable vi fram Vars 
fdvar_range(Vi,Min,Max); 
chaase_randamly(Law,Up) fram [Min ta Max]; 
if randam_nurnber < barder_prab then begin 

try secuencialy in any arder: 
vi .. Law .. Up 
Vi :: Law .. Max 
vi :: Min .. up 

end 
else begin 

try secuencialy in any arder: 

end · 

Vi :: Min .. Law 
vi :: Up .. Max 

if all fail then Vi :: Min .. Max 
fdvar_damain (Vi, di) 

return di u randam_labeling(Vars l Vi); 
end. 

chramasame; 

'----------·---------------····-----



574 

2.4 Evaluation of fu e popul.ation. 

The population is evaluated every generation, computing a fitness value for each 
chromosome. Fitness indicates how good a chromosome is as a potential solution to the 
problem, so the domain associated to the cost expression to optimize is the basis for the 
computation of this fitness value. The probability of survival and reproduction of a 
chromosome is directly proportional to its fitness value. 

Figure 4 shows the main steps of the computation of the fitness value. The fitness of 
each chromosome is computed asf( d0 [d1, .. ,dnl), a function of dc, the domain of the cost 
function for that particular solution, and the list of dj'S, the remaining domains of the 
variables. The values Ldc and V dc, the lower and upper bounds of d re;pectively, are the 
main contribution to the fitness function (basic_fitness), but the~e is also two penalty 
components, o ne (pena l ty _cast) depending on Sdc, the size of the domain dc, an d other 
(penalty _ vars) depending o n the sum of the sizes of d( s. The introduction of these 
penalty factors favors those chrornosomes closer to be ground, so that the .algorithm tends 
to converge to a ground solutions. 

Parameters pena!_cost and penal_vars may take any real value from 0.0 to 1.0. They 
weights the penalty introduced to those chromosomes not completely ground. Then, as 
shown in Figure 2, the total_fitness value is computed as the sum of ali fitness values, 
and fmally, we compute the relative fitness (Xi.fit l total_fitness) for each 
chromosome, and its accumulated relative fitness value, used for the random selection of a 
chromosome with a probability proportìonal to its fitness. 

function fitness(Cost: function; [d 1 , ••• ,anl: list of domains) : real; 
begin ~ 

cost_range_size(Cost,Ldc,Udc,Sd0 ); 

Fit1:= basic_fitness(Ld0 ,Ud0 ); 

Pc : = pena l ty _cast ( Sd0 ) ; 1 * O. O t o 1. o * 1 

Pv := penalty_vars(L size(di)); l* 0.0 to 1.0 */ 

Fit2 := (1-Pc*penal_cost) * Fitl; 
Fit3 := (1-Pv*penal_vars) * Fit2; 
return Fit3 

end. 

Figure4. 

2.5 Selection of chromosomes to survive. 
Some chromosomes from population P(t-1) will be present in population P( t). This set of 
chromosomes is randomly chosen, but as we want the population to converge to a good 
~olution, chromo~omes with a higher fitness value are more likely to be chosen. Selecting 
m a random fashion allows some "no good" chromosomes to be selected for survival and 
crossover. This is an important point of the evolutionary mechanism: bad solutions cannot 
be simply dropped becanse they may eventually lead to a good solution. Figure 5 shows 
the algorithm that randomly chooses a chromosome of the population with a probability 
proportional to its relative fitness. This algorithm is also used to select parent 
chromosomes for the crossover operator. 
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function select_chromosome (P : population) 
begin 

R := random number between 0.0 and 1.0. 
i : = l; 
while R > Xi.arf do i:=i+1; 
return Xi 

end. 

Figure5. 

2.6 Genetic operators. 

chromosome; 

Genetic operators generate the new chromosomes that will be added to population P(t) 
from chromosomes from population P(t-1). The design of these operators is a crucial 
point, as they must guarantee that new individuals "inherits" the good properties of their 
parents, an d also must allow the exploration of new areas of the search space. 

In simple evolutionary programs, like classical genetic algorithms, chromosomes are 
coded as bit strings. Binary mutation just inverts some randomly selected bits, and binary 
crossover concatenates two substrings obtained from splitting the parents. However. in 
evolutionary programs chromosomes are complex data structures, and genetic operators 
are much elaborated. The operators used in our system are quite more complex than the 
classical ones, not just because they work over a complex data structure (a list of fmite 
integer domains), but mainly because they trigger the local consistency and constraint 
propagation techniques embedded in CLP(FD)_ Anyway, because of intuitive similarities, 
we cluster the operators in the standard two classes, mutation and crossover. We have 
included two mutation operators, which create new solutions by a small change in a single 
chromosome, and a crossover operator, which create a new solution by combining two 
chromosomes. 

2.6.1 Crossover. 
"Dead" chromosomes (those not selected for survival) are replaced by new chromosomes 
generated by means of the crossover operator. Dead chromosomes are not actually 
replaced until ali new chromosomes are generated, so dead chromosomes may also be 
selected to generate a new ones by crossover. As shown in Figure 2, parent chromosomes 
are chosen using the select_chromosome procedure (described in subsection 2.5), which 
randomly selects a chromosome with a probability proportional to its fitness. 

Figure 6 shows the algorithm used for crossover. Given two chromosomes the 
crossover operator generates a new solution which is an approximate mixture of the two 
parent~. From two chosen parents, Xi = fdi, ·-Ah and Xj = fd./ .. ,dniJ, a new 
chromosome X= [dJ, .. ,dnl is generated by means of a crossover labeling procedure as 
follows: (Keep in mind that whenever a domain variable is forced to modify its domain, 
local consistency and constraint propagation is triggered) 

l. Variable (Vk) selection: next variable to be labeled is randomly selected, being Dk its 
associated domain. 

2. Value (domain) selection: Value (domain dk) selection: if dki n d,j * 0 then dk is 
randomly assigned the domain intersection or the domain union between dki and d,j, 
with a probabili t)' xov _inter _prob in fa v or of the intersection. If dki n d,j = 0 then 
we try to assign to dk, in random order, dki or di If ali ttials fail, dk is assigned Dk 
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function crassaver(Vars:list af fd_vars;Xi,Xj :chramasame) :chramasame; 
begin 

randamly select a variable Vk fram Vars; 
fdvar_damain (Vk, Dk) 
dk~ := k_th(Xi) 
dk] := k_th(Xj) 

if dki n dkj 7= 0 then begin 
R := randam number between 0.0 and 1.0 
if R > xov_inter_prob then dk àki n dkj 

else dk : = dki u dkj 
end 
else begin 

try secuencialy in random arder: 
dk . - dki 
dk := dk] 

end 
if all fa il then dk : = Dk; 
l,Tk :: dk /* may fa il and backtrack *l 
return dk U crossaver(Vars l Vk, Xj l dki, Xj l dkj) 

end; 

Figure 6. 

2.6.2 Mutation. 

Mutation is the unary genetic operator that transforms a single chromosome in a new 
chromosome. It plays the role of "jumping" to unexplored areas of the search space. We 
have included two mutation operators, which may be applied to any chromosome in the 
population with a probability of mut_probl and mut_prob2, respectively. Operator l 
intends to expand the domain of the chosen variable, whereas operator 2 intends to 
"mòve" the domain of a variable to new values. Figure 7 shows the algorithms for the 
mutation operators. 

l. Operator l: 

Given a chromosome X= [ d1, .. ,d11}, we generate a new mutated chromosome X' = 
[di····· dr/, .. , d11], assigning to each variable Vi the domain_ di, except a randomly 
chosen variable Vk, which is constrained to a new domain dk', computed from its 
associated domain Dk, ranging from Min to Max. and dk, ranging from I.ow to Up 
(Min <= I.ow <= Up <= Max). dk' is chosen, randomly, in a non deterministic way, 
from: 

Up .. Max 
Min .. Low 

If both trials fail, the domain of \lk is left unchanged. 
2. Operator 2: 

Given a chromosome X= [d1, .. ,d11 ], we generate a mutated new chromosome X'= 
[d1, ... , dk', .. , d11], assigning to each variable Vi the domain dj, except a randomly 
chosen variable \lk, which is constrained to a new domain dk', computed from its 
associated domain Dk, ranging from Min to Max. and dk, ranging from Low to Up 
(Min <= Low <= Up <= dk'is chosen, randomly, in a non detenninistic way, 
from: 

Min .. Up 
Low .. Max 
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function mutatian(Vars : list of fd_vars; x 
begin 

R := randam number between 0.0 and 1.0 

chromosame) :chromasame; 

if R > mut_probl then X' := mutation1(Vars,X) 
else X' := X 

R := randarn number between 0.0 and 1.0 
if R > mut_prab2 then X' ' : = rnutatian2 ( Vars, X') 

else X'' := X' 
return X'' 

end; 

function mutatianl(Vars : list af fd_vars; X chramasame) :chrornasorne; 
begin 

randamly select a variable Vk tram Vars 
for i:=1 to 1ength(Vars) do 

if i<> k then vi :: di 
fdvar_damain(Vk,dk') 
return (X with dk rep1aced by dk') 

end; 

function mutatian2(Vars : list af fd_vars; X 
be gin 

random1y se1ect a variable Vk frorn Vars 
for i:=l to length(Vars) do 

if i<> k then Vi :: di 
dk := k_th(X); 
fdvar_range(Vk,Min,Max) 
damain_range(dk,Law,Up); 
try in any arder: 

dk' := Min .. Low 
dk' := Up .. Max 

vk ': dk' 
if both fail then dk' := Min .. Max 
return (X with dk replaced by dk') 

end; 

F.igure7. 

2. 7 Termination conditllon. 

chramasame) :chrarnasome; 

The terminati o n condition is the disjunction of the following factors: 
., reaching the maximum number of iterations specified by the pararneter max_iter. 
0 reaching a user specified time-out. 
" obtaining a chromosome with a user specified cost. 
@ reaching a hopelessly invariant population. 

2.8 Extracting the best solution. 
Once the termination condition is met, we must extract the best chromosome from the 
population. Some or even ali chromosomes in the population may not be completely 
ground solutions, so we must use a heuristic to extract the best ground solution present in 
the population. Figure 8 shows the algorithm used to perform this search in the 
population. 
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First we look in the population for the best "ground" chromosome, that is, the best 
fitted chromosome X 1 = [ d1, .. ,dnl such that for ali i, di is a singleton domain, and also 
for the chromosome ing that, not being completely ground, offers a higher fitness. Fr~m 
chromosome Xng• we generate a ground solution Xg2 by means of a classlCal labeling 
procedure, and a pool of chromosomes by means of a random labeling procedure. From 
this pool, we extract the best ground solution Xg3 and the best non ground chromosome. 
The latter gives place to a ground solution Xg4 by means of a classicallabeling procedure. 
The solution offered as the fmal near-optimal labeling for the input variables will be the 
one which offers a better value for the objective function to optimize among the four 
ground so1utions Xg1, Xg2, Xg3 and Xg4· 

function best_solution (Vars : list of fd_variables; 
P : population ) list of integers; 

be gin 
Xgl := best fitted ground solution in P 
Xng := best fitted non completely ground chromosome in P 

Xg2 := labeling(Xngl 
Vars' := Vars updated with Xng 
P' := generated by random_labeling(Vars'); 
XgJ := best fitted ground solution in P' 

X'ng := best_fitted non completely ground chromosome in P' 

Xg4 := labellng(X'ngl; 
return max_fitness(Xg1 ,Xg2 ,Xg3•Xg4) 

end; 

Figure 8. 

2.9 Par:ameters. 
As seen throughout this section. an evolutionary algorithm uses some global parameters 
indicating the population size (pop_size), proporlion of chromosomes to survive from one 
generation to the next one (prop_surv), the maximum numbers of generations to run 
(m.ax_iter), two penalty percentages (penal_cost and penal_vars), and four different 
probabilìties that tune the behavior of the genetic operators (boundary_prob, 
xov _inter _prob, m.ut_probl, m.ut_prob2). The values of these parameters affects 
dramatically the perfo1mance of the evolutionary algorithm, and there are no generai 
values that performs optimally for every benchmark. Table l shows the usual range for 
each of the parameters. 

pop_size 
boundary _prob 
penal_vars 
xov _inter _prob 
mut_prob2 

10- 100 
0.20-0.70 
0.20- 0.90 
0.30- 0.70 
0.01 - 0.15 

Table 1. 

max_iter 
penal_cost 
prop_surv 
mut_probl 

50- 1000 
0.05- 0.40 
0.30- 0.80 
0.01 - 0.15 

Parameters should be ìnìtialìzed every time the evolutionary algorithm is invoked in 
accordance to the initial domains of the variables to be 1abeled and the function co st. Also, 
parameters tuning the behavior of the genetic operators should be tuned every fixed 
number of iterations depending on the evolution of the population. It is stili under 
development a heuristic-guìded self adaptive parameter tuning feature, which is essential 
to achieve our goal, a self contained optimization predicate for constraint logic 
progranuning over fmite integer domains. 
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3 Exampie. 

A prototype of the system has been implememed in Prolog using the logìc programming 
environment ECLiPSe, which offers several facilities for the integration of extensìons in 
logic programming [Ecli94]. The constraint handling itself is provided as an extension by 
means of a library. W e pretend that the fmal version of our system will also be deliverab1e 
as a library for the ECLiPSe system. 

In this section we describe a simple example of the system solving a transportation 
problem. It seeks the determination of a mìnìmum cost transportation plan for a single 
commodity from n sources to k destinations. The amount of supply at source i ìs sour(i), 
and the demand a t destination j is dest(j). The uni t transportation cost between source i 
and destinationj is cost(i,j). The amount transported from source i to destinationj is Xij. 
The constraints and the objective function are: 

L~=l Xij = sour(i) for i=l, ... ,n 

I.ni=l xij = dest(j) for }=l, ... , k 

f= I, Xij * cost(i,j) 

Test data correspond to a n=7, k=7 problem taken from [Mic94]. Figure 9 shows the 
evolution of the cost of best chromosome in the population vs. the number of generations. 

o 

400 

Number of generations. 

Figure8. 

The shape of the curve is characteristic of evolution programs. Chromosomes in the 
randomly generated ìnìtial population ha ve very poor fitness values, but in a few iterations 
good solutions are generated. Then, ne\\f_b~tt~r solutions take more generationstoappear, 
aDQ_<Jlso aJlCllf()illOSOmes in the population SÌÒwly te n d t o COnverge t o the same near­
optimal solution. 

We are currently working on a set of benchmarks of combinatoria] optimization 
problems: job-shop scheduling, traveling salesman, graph partitioning, assemb1y line 
sequencing, and time tabling. First results lead us to expect that a fmal version of the 
system will be competitive with classica] optimization strategies like branch and bound. 

4 Condusions and future wor.k. 

We have introduced a model to integrate evolutionary algorithms in constraint logic 
programming over finite integer domains in order to perform the optimallabeling phase of 
combinatoria! search optimization problems. Chromosomes represent not completely 
ground solutions to the problem to guarantee a wider covering of the search space. A set 
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of genetic operators have been designed in accordance to the particular characteristics of 
constraint logic prograrnming. We have developed a prototype using the facilities 
provided by the logic prograrnming environment ECLiPSe and performed some 
experiments that allow us to expect that a final version of the system will be competitive 
with other optimization methods, lik:e branch and bound, when applied to problems with a 
vast search space. 

This work is stili in its frrst stage. W e believe that the integration of the evolutionary 
prograrnming paradigm in constraint logic prograrnming for optimization purposes has a 
promising future. The implemented prototype has many drawbacks to be flxed, more 
investigation is to be done to design better genetic operators and a self adaptive pararneter 
tuning is stili missing. Besides this problems, future work will emphasize in exploiting the 
great possibilities of parallelism that the integration evolutionary algorithms and CLP 
offers. 
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Abst:ract 

Pat.tern analysis consists in determining the shape of the.set of s0lu~jDI1L9i ijl.e.~onst.rçjnt 
store at some program points: · Our bàsic clalffi is th~tpatte~n ·a~alys~s c an .alÌ be described 
;;tlùn .a ·;;,~ifled f;,;~~,;,o~k ~i 'constra.int domains. W e show the basic blocks of such a frame­
work as well as construction t~·chniques which. mduce a hierarchy of douiains. In particular, 
we propose a general methodology far domain combination with asynchronous interaction. 
The interaction among doma.ins is asynchronous in that it can occur at any time: before, 
during, and after the product operation in a completely homogeneous way. That is achieved 
by regarding semantic doma.ins as particular kinds of (ask-and-tell) constra.int systems. These 
constraint systems allow to express communication among domains in a very simple way. 
The techniques we propose allow far smooth integration within an appropriate framework for 
the definition of non-standard semantics of constraint logic-based Janguages. The effective­
ness of this methodology is being demonstrated by a prototype irnplementation of CHINA, a 
CLP(?i, N) analyzer we have developed. 

Keywords: Constraint Systems, Constra.int-based Languages, Data-flow Analysis, Abstract 
Interpretation. 

l Introduction 

Pattern analysis for constraint logic-based languages consists in determining the shape of the set 
of solutions of the constraint stare at some program point. For usual applications (most promi­
nently, program specialization) the interesting program points are procedure calls and procedure 
(successful) exits. 

In the case of Prolog, pattern analysis has been extensively studied (see [9] for a summary of 
thìs work). In the case of CLP, besides the generalization to CLP('H) of the ideas and techniques 
used for Prolog, not much has been clone. A key observation h ere is that the shape of solutions can 
be conveniently described by constraints. Thus the CLP framework is generai enough to encompass 
(some of) its own data-flow analyses. Intuitively, this is clone by replacing the standard constraint 
domain with one suitable for expressing the desired information. This fundamental aspect was 
brought to light in [5] and elaborated in [12]. 

For languages of the kind of CLP(N), where N is some numerica! domains, the first steps 
towards pattern analysis were moved in~. 4]. [2] describes some ofthe more important applications 
of such analyses. The work clone in this field is being generalized to CLP('H, N) languages, 
integrating numerica] and symbolic pattern analysis. This is clone with a variety of techniques, 
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including depth-k abstraction. A more restricted kind of integration has recently been described 

in [17]. Here, the numerica! part is essentially the one proposed in [3]. 
Now, instead of directly describing the techniques employed in [3, 4, 2, 17], we concentrate on 

what is missing from them: a genera! notion of constraint domain which allows one to adequately 

describe both the "logica! p art" of concrete computations ( e.g. answer constraints) an d as much 

pattern analyses (e.g. the shape of those answer constraints) we can think about. 

We believe that ìt is possible to describe every pattern analysis within a unified framework of 

constraint domains. In particular we wish the framework being able to accommodate approximate 

inference techniques whose importance relies on very practical considerations, such as representing 

good compromises between precision and computational efficiency. Some of these techniques will 

be sketched in the sequel. 
Then, what will be needed is a generalized algebraic semantics for constraint logic programs, 

parameterized with respect to an underlying constraint domain. The main advantages of this 

approach [12] are that: (1) different instances ofCLP can be used to define non-standard semantics 

for constraint logic programs; and (2) the abstract interpretation of CLP programs can be thus 

formalized inside the CLP paradigm. 
Let us concentrate on constraint domains for pattern analysis. They are algebraic structures 

of the kind • •2 · ·~··'' 1:. 

15 = (D,:S,0,~,{3l,:,},O,l,{dxy}), (l) 

where1 D is the set of constraints expressing the properties of interest. D is partially ordered with 

respect to :S which, intuitively, relates the informatìon content of constraints: C1 :S C2 means that 

"C1 is more precise t han C2". 0 an d E!l are binary operators modeling conjunction an d ( weak) 

disjunction. {31,:,} is a family of unary operators, indexed over finite subsets of variables, modeling 

projection of constraints onto designated sets of variables. O an d l represent, intuitively, the class 

of unsatisfiable constraints and the class of non-constraints (i.e. those which do not provide any 

information), respectively. The family of distinguished elements { dxy }, indexed on pairs of n-tu pie 

of variables, allows to mode! parameter passing. 
In this setting, data-flow analysis is then performed (or a t least justified) through abstract 

interpretation [8, 9], i.e., "mimicking" the program run-time behavior by "executing" it, in a finite 

way, on an approximated ( abstract) constraìnt domain. W e will thus ha ve two constraint domaìns 

ofthe form (1): the "concrete" and the "abstract" one. Followìng a generalized semantic approach, 

the concrete an d abstract semantics are more easìly related, beìng instances ( over two different 

constraìnt systems) of the same generalized semantics, which is entirely parametric on a constraìnt 

domain. Thus, to ensure correctness, it will be sufficient to exhibit an "abstraction function" a 

which is a semimorphism between the constraìnt domaìns [10]. 
In thìs paper we descrìbe a hierarchy of constraint systems which capture ali the pattern 

analyses we know of, as well as the "concrete" collecting semantìcs they abstract. The basis ìs 

constituted by a set offinite constraints, each expressing some partial information about a program 

execution's state. Once this ìs given (simple constraìnt systems, Section 2), we provide standard 

ways of representìng an d composing finite constraints (determinate constraint systems, Section 3). 

Then we can have the notion of dependency built into the constraint system ( ask-and-tell constraint 

systems Section 4). Another construction is the one which allows us to treat disjunction (powerset 

constraint systems, Section 5) .. Finally, in Section 6 we sketch how to achieve combination of 

domains by considering dependencies within produci constraint systems. W e feel that, indeed, this 

is one of more important contributions of this paper. 
For the sake of simplicity we will present constraint systems omitting the distinguished elements 

modeling parameter passing. For most applications d Xl' is simply a constraint expressing some 

sort of equivalence between X and Y. VITe disregard them also because, differently from [12], we 

do not require them to satisfy any interesting algebraic property. 

1 For space reasons we om.it many details. 
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2 Simple constraint systems 

The basic blocks of our construction are simple consiraint systems (or s.c.s.), very similar to those 

of [19], but with a tota/ly uninformative token (T) as in [20]. 

Definition 2.1 (Simple constraint system.) A simple constraint svstem is a struciure (C 1- j_ T) 

where C is a set of (noi better specìfied) constraints, j_ E C, T E C, an d 1- ç fPJ (C) x C is a co'm;ac; ' 

entailment re]ation such that, for each C, C'E rp1 (C) and c, c' E C: 

E1. cEC =>Cl-c, 
E2. C 1- T, 

E3. (CI-c)A(Vc'EC:C'I-c') =>C'l-c, 
E4. {J.}I-c 

W e considera/so the extension 1- ç p( C) x p( C) such that, for each C, C'E p( C), 

C 1- C' ? V c' E C' : 3C" çf C . C" 1- c'. 

It is clear that condition E1 implies reflexivity of 1-, while condition E3 amounts to transitivity. E 2 

qualifies T as the least informative token: it will be needed just as a "marker" when the produci 

of simple constraint systems will be considered (see Section 6). E4 ensures that C is a finite]y 
generable element. 

In generai, describing the "standard" semantics of a CLP(X) language is an easy matter. Let 

T be the theory which corresponds to the domain X [15]. Let D be an appropriate set offormulas 

in the vocabulary of T closed under conjnnction and existential quantification. Define r 1- c iff 

f entails c in the logic, with non-logica! axioms T. Then (D, 1-) is the requìred simple constraint 

system. For CLP(7i) (i.e. pure Prolog) one takes the Clark's theory of equality. For CLP(JH'.) the 

theory RCF of rea! closed fields will do the job. 

However, describing "standard" constraint domains is not the reason which motìvated our work. 
Here are the origina] motivations. 

2.1 Pattern analysis for numeric domains 

The analysis described in [3, 4, 2] is based on constraint inference (a vari an t of constraint prop­

agation) [11]. This technique, developed in the field of artificial intelligence, has been applied to 

temporal and spatial reasoning [1, 21]. 
Let us focus our attention to arithmetic domains, where the constraints are binary relations 

over expressions. Let E be the set of arithmetic expressions of interest an d l the set of intervals over 

some computable set of numbers (e.g. rational or floating point numbers). Then our constraints 
are given by 

The meaning of the constraint e <l I is the obvious one: any value the expression e can take is 

contained in I. Thus C provides a mixture of qualitative (relationships) and quantitative (bounds) 
knowledge. 

Now, the approximate inference techniques we are interested in can be encoded into a conse­

quence relation 1- over C. Let us see some of them. The most trivial one is symmetric closure: 

{el !Xl e2} 1- e2 !Xl-l e1, where !Xl-l is the inverse of !Xl (e.g., < is the inverse of >, 2: of::; and so 

on). A more interesting qualitative technique is transitive closure, allowing inferences like A< C 

from A ::; B and B < C. It is formalized by axioms of the form { e1 ::; e2 , e2 < e3 } 1- e1 < e3 • 

A classica! quantitative technique is· interval arithmetic which allows to infer the variation in­

terval of an expression from the intervals of its sub-expressions. Let f(e 1, ... , ek) be any arith-

metic expression having e1, ... , ek as subexpressions. Then {f(e1 , ... , e~c) <l I, e 1 <l h, ... , ek <l 

h} 1- f(eJ, ... ,ek) <l f(h, ... ,h), where j:Jk __,l is such that for each x 1 E h, ... , xk E h, 
/(xl, ... , x ~c) E i( h, ... , h). An example inference is: A <l [3, 6) AB <l [-1, 5]1- A+ B <l [2, 11). 



Another technique is numeric constraint propagatìon, which consists in determining the relation­
ship between two expressions when their associateci intervals do not overlap, except possibly at 
their endpoints. The associateci family of axioms is {e1 <1 I,, e2 <1 h} f- e1 tx1 ez, with the side 
conditi an \ix 1 E h, x 2 E I 2 : x1 tx1 Xz. Far example, ifA E ( -oo, 2], B E [2, +oo ), an d C E [5, 10], 
we can infer that A ::; B and A< C. lt is also possible to go the other way around, i.e., knowing 
that U < V may allow to refine the intervals associateci to U and V so tbat they do not overlap. 
We cali this weak interval refinement: {e1 tx1 e2 , e1 <1 I 1 , e2 <1 h} f- e1 <1 I;, where I; is obtained 
by shrinking Il so to ensure that Xl E I; iff xl E Il 1\ 3x2 E h . Xl (Xl X2. 

In summary, by considering tbe transitive closure of f- and with some minor technical additions 
we end up with a simple constraint system which characterizes precisely the combination of the 
above (an d possibly other) techniques. 

3 Determinate constraint systems 

By axioms E 1 and E3 of Definition 2.1 the entailment relation of a simple constraint system is a 
preorder. Now, instead of considering the quotient poset with respect to the induced equivalence 
relation, a particular choice of the equivalence classes' representatives is made: closed sets with 
respect to entailment. This representation is a very convenient domain-independent strong norma! 

form for constraints. 

Definition 3.1 (Elements.) [19] The elements of an s.c.s. (C, f-, .l, T) are the entailment-closed 
subsets of C, that is, those C ç C such that 3C' çf C . C' f- c ìmplìes c E C. The set of elements 

of (C, f-) is denoted by ICI. 

The poset of elements is thus given by (ICI, 2Ì- Notice that we deviate from [19] in that we order 
our constraint systems in the dual way. 

Definition 3.2 (Inference ma p, finite elements.) Gìven a sìmple constraìnt system (C, f-, J., T), 
the inference map of (C, f-, .l, T) ìs the function P: p( C) --+ p( C) given, for each C ç C, by 
P( C) = { c l 3C' ç1 C . C' f- c}. It is w eli known that P is a kernel operator, over the com­
plete lattice (r(C),2Ì, whose image is ICI. The ìmage ofthe restrìction ofp onto !JJ(C) ìs denoted 
by ICI o- Eiements of ICio are ca/led finitely generateci constraints or sìmply finite constraints. 

From here on we will only work with finitely generateci constraints, since we are not concerned 
with infinite behavior of CLP programs. The next step in our construction is about determinate 

constmint systems (or d.c.s.). 

Definition 3.3 (Determinate constraint system.) Lei S = (C, f-, .l, T) be a simple constraìnt 
system. Lei O, l E ICio, 0: !Cio x !Cio--+ ICio, and f- <; !Cio x !Cio be given, for each C1, Cz E ICio, 
by 

o 
l 

C, 
P(0), 

P(Cl U Cz), 
<=> C1 0 Cz = C1. 

The projection operators 3la: !Cio--+ !Cio are given, for each b.. <;f Vars and each C E p(C), by 

3la C= P({ c E C [ FV(c) ç b..}). 

Finally, /et EB: ICio x !Cio --+ ICI o be an operator enjoying the fol/owìng properties: 

}j. (ICJ 0 , EB, O) ìs a commutative and idempotent monoid; 
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W e will referto the structure (!Cio, f-, 0, EB, {31.o.}, O, l) as the determinate constraint system over 
S an d EB- The relation ç induced by EB over !Cio is given, for each C1 , C 2 E ICI o, by C1 ç C2 iff 
C 1 EB Cz = C2. The relations f- and ç are referred io, respectively, as ihe approximation ordering 
an d the computational ordering of the determinate constraint system. 

Observe that the required conditions on EB are quite reasonable. The purpose of EB is tha.t of 
"merging" the information originating from different paths in the semantic construction. In this 
view, axiom J1 is very natura!: associativity and commutativìty amount to say that we can merge 
paths in any order, idempotence means tha.t we do no t loose precision blindly, a.nd O being the 
monoid unit accounts for the ability of discarding fa.iled computation paths. Condition J2 sta.tes 
the correctness of the merge operation, chara.cterizing i t as a (no t necessarily least) upper bound 
operator with respect to the approximation ordering. 

Notice that the distinction between approxìmation ordering and computational ordering is 
important. Vlfe assume tha.t our semantics are defined as ( approximations of) least fixpoints of some 
operator2 rj;. So, while the approxima.tion ordering, in genera.! abstract interpretation, specifìes the 
relative precision of program properties (e.g. entailment of constraints in our particular case), the 
computational ordering holds among the iterates rf;k(J.) during the fixpoint computation. The 
case where the two orderings coincide (e.g. in [12]) is thus to be considered a special one. In out 

treatment, keeping them distinct a.llows for more freedom in the choice of the merge operator. 
Sin ce the set of finite computation pa.ths is, in genera!, denumerably infinite, we consider also 

the following strengthening of Definitìon 3.3. 

Definition 3A ( Closed d.c. s.) A d. c.s. (JCio, 1-, 0, EB, {3lt>}, O, lÌ is sai d closed ìff it satzsfies 

h. far each family {ci E ICI o} i E N' EBiEN ci = cl EB c2 EB ... exists an d is unìque in ICI o, 
moreover, assocìatìvity, commutativity, and idempotence of EB apply io denum.erable as we/i 
as to finite families of operands. 

So, the operation of merging together the information coming from al! the computation pa.ths 
always makes sense in a. closed determinate constraint system. Notice however that property la 1s 

only necessary when the semantic construction requires it. This will never happen when considering 
"abstract" semantic constructions formalizing da.ta-flow ana.lyses (which are finite in nature). In 
these cases the idea of merging infinitely many pieces of information is a nonsense in itself. 

Determinate constraint systems enjoy severa! properties. Here are some elementary ones: C is 
a partial arder and cl ç c2 implies cl f- Cz; 0 and EB are componentwise monotone with reSPeCt 
to f- and ç, respectively; O is an annihilator for 0, while 1 is a unit for 0 and an annihilator for 
EB- Finally, far absorption laws we have Cz = ( C1 EB Cz) 0 C2 an d C2 f- ( C1 0 C2 ) EB C2 . A t a highe1 
leve!, here is the situa.tion. 

Theorern. 3,1 Let 'D = (!Cio, f-, 0, EB, {31Ll.}, O, lÌ be a determinate constraint system. Then thc 

structure (ICio; f-, O, l, 0Ì is a bounded meet-semilattice and (ICio; t;;:, O, 1, EBÌ is a join-semilatiice. 

Moreover, if'D is complete, ihen (ICio; ç, O, 1, EBÌ is a (join-) complete lattice. 

Notice that (ICio, 0, EB, O, lÌ, in generai, is nota lattice. Both 0 and EB are associative, com­
mutative, and idempotent. But, as stated above, while one of the absorption laws holds, only one 
direction of the dual law is generally valid. In particular 0 is not required to be componentwise 
monotone with respect to ç, and EB might be not componentwise monotone with respect to f-. 
Observe also that. EB does not distribute, in genera!, over 0, as this would imply the equivalence of 
the two absorption laws. · 

2For exam.ple, lf we choose a bottom-up (backwa.rd) sernantic construdion far CLP, this will be an innnedJate 
c::onsequence operator T p parametedzed on the underlying constr.ajnt system [12). We disrega.:rd this issues h.ere 1 a.s 
we concentrate on the construction of constraint domains. 



586 

4 Ask-and-tell constraint systems 

We now consìder constraint systems havìng addìtional structure. This addìtional structure allows 

to express, at the constraint system leve!, that the ìmpositìon of certaìn constraìnts must be 

delayed unti! some other constraìnts are imposed. IJ1.(18]sìmilar constructions are called ask­

and-tell CaJ2§{raint. s.ystems. In our constructìon, ask-and-tell constraìntsystems ;;,!"e l:lu!H froin 
det~r.iilJ.J;"~te constraint systems by regarding some kernel operators as constraints. We follow [18] 

in considering cc as the language framework for expressing and computing with kernel operators. 

For this reason we will present kernel operators as cc agents. For our current purposes we on!y 

need a very simple fragment of the determinate cc language: the one of finite cc agents. This 

fragment is described in [19] by means of a declarative semantics. Here we give an operational 
characterization which is better suited to our needs. 

Definition 4.1 (Finite cc agents: syntax.) A finite cc agent aver a simple canstraint system 
S = (C, 1-, l_, T) is any string generated by the fallowing grammar: 

Agent ::= teli(C) l ask(C) __, Agent l Agent Il Agent 

where C E ICio· We wil/ denote by A(S) the language of such strings. The following explicit 
definition is a/so given: 

ask(Cr; ... ; Cn) __, Agent = ( ask( c,) __, Agent) Il .. ·Il ( ask(Cn) ~ Agent). 

V\1hen this will not cause confusion we will freely drop the syntactic sugar, writing C and C 1 -+ Cz 
where teii(C) and ask(C1 ) __, teii(Cz) are intended. 

The introduction of a syntactic norma! form for finite cc agents allows to simplify to subsequent 
semantic treatment. 

Definition 4.2 (Finite cc agents: syntactic normal form.) The transformatian 1] aver A(S) 
is defined, far each ca, Cf, C2, C' E ICI o an d A, A1 , A2 E A(S), as follows: 

'7(C"-+ C') 

'7(C') 

'7(Cf-+ (C~-+ A)) 

'7( ca -+ (Ar Il Az)) 

'7(Ar Il Az) 

The following fact is easily proved. 

{ l-+ l 
C"__, (ca 0 C') 

l-+ C', 

if C" 1- C', 
otherwise, 

'7((Cf 0 C~)-+ A), 
'7((Ca-+ Ar) Il (C"-+ Az)), 

'7(Ar) 11'7(Az). 

Proposition 4.1 The transformation '7 of Definition 4.2 is well defined. Furthermore, ifA E 
A(S) then '7(A) is ofthe form (Cf-+ Ci) Il·· ·Il (C~-+ C~). 

Thus, by considering on]y agents of the form 117=1 Cf -+ Cf we do notloose any generality. We 
will cali elernentary agents of the kind ca -+ C' ask-te/1 pairs. 

Now we express the operational semantics of finite cc agents by means of rewrite rules. An 

agent in norma! form is rewritten by applying the logica! rules of the calculus modulo a structural 

congruence. This congruence states, intuitively, that we can regard an agent as a set of ( concurrent) 
ask-tell pairs. 

Definition 4.3 (A calculus offinite cc agents.) Lei lA= 1-+ l. The structural congruence 

ofthe calculus is the smal/est congruence relation o=, such that (A(S), Il, lA)/=, is a commutative 

an d idempotent monoid. The reduction rules of the calculus are given in Figure l. W e a/so de fine 
the relation PA ç; A(S) x A(S) given, for each A, A' E A(S), by 

A PA A' {::? 3n E N. A= A1 1\ A, =A' 1\ Ar >--+Az>-+ ···>-+A,., ft 

Structure 

Reduction 
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A 1 o=, A~ A~ ,__.A~ A; o=, Az 

A1 >------ A2 

(Cf-+ Ci) Il (C2-+ Ci),__. (Cf__, Ci) 

Cii- C2 
Deduction 

Absorption 

(CJ' ~ Cilll (C2-+ cD,__. (C]'-+ (Ci 0 cm Il (q-+ cD 
CJ' 1- C2 

(Cf-+ ci) 11 (C2- cD,__. ((Cf 0 Ci)_, (Ci 0 cD) Il (C2 __,cD 

Figure l: Reduction rules for finite cc agents. 

In the following we wìll systematically abuse the notation denoting A(S);=, simply by .A(S). 
Consequently, every assertion concerning A(S) is to be intended modulo structural congruence. 

Proposition 4.2 The term-rewriting system depicted ìn Figure 1 is strongly normalizing. Thus 

the relation PA is indeed a function p A: A(S)-+ A(S). 

The situation here is almost identica! to the one of Definition 3.2, in that we have a domain­

independent strong norma! form also for the present class of constraints (i.e. agents) incorporating 
the notìon of dependency. 

Definition 4.4 (Eierrrents.) The elements of .A(S) are those which are closed under (:re the 
fixed points of) the inference mapPA· The sei ofelements of .A(S) wzl/ be denoted by IA(o)J. 

The strict analogy with determinate constraint systems continues with the following. 

Definition 4.5 (Ask-and-tell constraint system.) Given a simple constraint system S = 

(C, 1-, ..L, T), /et A= l A(S)I. Then /et OA, lA E A, @A: A x A-+ A, an d 1- A ç; A x A be gz11en, far 

eachA1,A2EA, by 

1-+ o, 
1-+ 1, 

pA(A1 Il Az), 
{::? Ar0AA2=Ar. 

The projection operators The projection operators 3!~: A -+ A a-re given, far each Ll ç;f Vars an d 

A E A, by 

w h ere 

}· 
Finally, /et E!JA: A x A -+A be an operai or satisfying, for each Ar, A2 E A, the following a,;ioms: 

Jf. (A, E!JA, OA) is a commutative and idempotent monoid; 

J1. for each Ar, A2 E A, Ar 1- A A, EllA A2 an d A2 1-A Al EllA Az. 

Aga in, we wi/1 denote by !;A the relation induced by E& A aver A: Ar l; A. Az iff ArE& A A2 ::;= A2; W e 

"Il Fer to (A 1- "" '"' {3!A} O l ) as the ask-and-tell constramt system aver v ana E& A. 'WZ TfJ' 1 Al '<YA, WA1 ~ J A1 A 

W e wi/1 ca/l it closed ijJ ii satisfies 



J!j. far eachfamily {A; E A},EN' EB:ENA; = A1EBAA2 EBA· · · exists and is unique in A; moreover, 
assoczatzvzty, commutatzvity, an d idempotence of EBA apply t o denumerable as w el/ as t o finite 
families of operands. • 

Once you have a determinate constraint system, you also have an ask-and-tell constraint system, 
whose merge operator is induced as follows. 

Definition 4.6 Lei S = (C, 1-, l_, T) be an s.e. s., and /et 1J = (ICio, 1-, 0, EB, {31c,.}, O, 1) a d.c. s. 
aver S. Let a/so A= l A(S)j, an d /et ffiA: A x A--+ A be given by 

ulA;) <:BA CTil Bj) = PA uljTil(A; <:BA Bj)). 
wherc, far any two ask-tell pairs Cf _, Ci and C2 _, c;, we define 

ifC" 1- C', 
otherwise, 

being ca = C]'0 C!j an d C' =Cl EB C~. W e will referto ffiA as the merge operator over A induced 
by 1J. 

Proposition4.3 (A,I-A,®A,ffiA,{31~},0A,lA) is an ask-and-tell constraint system. Further­
more, it is closed iff 1J is so. 

Notice that ask-and-tell constraint systems subsume the determinate ones, where only "tells" 
were considered. In fact we have 1J(C1) 0A 1J(C2) = 1J(C1 0 C2) and 1J(C1) ffiA 1J(C2 ) = 1J(C1 EB C2). 

It lS t1me to start showmg why we are interested in this kind of constraint systems, even though 
for the more exciting things we ha veto w ai t unti! the next section, where combination of constraint 
dornains are introduced. Ask-and-tell constraint system are needed to mode! approxìmate inference 
techniques which can be very useful for pattern analysis. 

4ol More pattern analysis for numeric domains 

Following Section 2.1, there is another technique which is used for the analysis described in [3, 4, 2]: 
relatwnal arithmetic [21]. This technique allows to infer constraints on the qualitative relationship 
of an expression to its arguments. If we take the ask-and-tell constraint system over the simple 
one of Section 2.1, we can describe it by a number of (concurrent) agents. Here are some of them 
(where [Xl ranges in{=,#,::;<,~.>}): 

ask(x [Xl O) 

ask(x > 01\y > 01\x lXI l) 

ask(x [Xl y) 

tell((x + y) [Xl y) 

tell((x * y) lXI y) 
tell( ex [Xl eY) 

An example of inference is deducing X+ l ::; Y + 2X + l from X> O 1\ Y > O. Notice that there 
is no restriction to linear constraints. - -

5 Powerset constraint systems 

For the purpose of pattern analysis it is not necessary to represent the "rea! disjunction" of c.on­
straints collected through different computation paths, since we are interested in the common 
information only. To this end, a weaker notion of disjunction suffices. We define powerset con­
straint syst~ms, which are instances of a well known construction, i.e., disjunctive completion3 [IO]. 
When th1s 1s apphed to a s1mple constraint system S it yields the following. 

3 Given a poset (L,J.,$), the relation ::<: ç p(L) X p(L) induced by$ is given, for each M1 ,M2 E p(L) by 
(M, ::<: M2) * (Vm, E M1 :3m2 E M2 . m, $ m2). A subset M E p(L) is sa.id non-redundant iff j_ rt M and 
Vm1, m2 E M : m.1 :5. m2 => m1 = m2 The se t of non-redundant subsets of L is denoted by Pn (L). ThP. f1, '1•m 
D: p(L)--> Pn(L) IS pven, for each M E p( L), by fl(M) =M\ {m E M l m= j_ V 3m1 E M. m< m'}. 
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Dclìnition 5.1 (Powerset constraint systern.) Given an s.c.s. (C, 1-, l_, T), the powerset con­
straìnt system aver (C, l-) is gìven by Ù'n(ICio),l-p,@p,Eflp,{31:;.},0P,lP), where 

31:;, s 
S, l-p Sz 
s1 0p s2 

n ( { 31c, c 1 c E s}), 
.ç:> VC1 E S1 : :IC2 E 52 . C, 1- C2, 

rl({C1®C2I C1 E S1,C2 E 52}). 

V\'ith these definitions (rn (ICio); l-p, O p, lp, @p, EBP ), is a join-complete, distributive bounded 
lattice. W e can of course apply the powerset construction also to ask-and-tell constraint systems. 

6 Combination of domains 

It is well known that different data-flow analyses can be combined together. In the framework of 
abstract interpretation this can be achieved by means of standard constructions such as reduced 
product and down-set completion [8, 9]. The key point is that the combined analysis can be more 
precise than each of the component ones for they can mutually improve each other. However, the 
degree of cross-fertilization is highly dependent on the degree and quality of interaction taking 

piace among the component domains. 
W e now propose a generai methodology for domain combination with asynchronous interaction. 

The interaction among domains is asynchronous in that it can occur at any time: before, during, 
and after the "meet operation" in a completely homogeneous way. 

This is achieved by considering ask-and-tell constraint systems built over praduct simple con­
straint systems. These constraint systems allow to express communication among domains in a 
very simple way. They also inherit all the semantic elegance of concurrent constraint programming 
languages, which provide the basis for their construction. Recently, a methodology for the combi­
nation of abstract domains has been proposed in [7], which is directly based onto low leve! actions 
such as tests and queries. V\Thile the approach in [7] is immediately applicable to an apparently 
wider range of analyses (this is one subject for further study), the approach we follow here for 
pattern analysis has the meri t of being much more elegant. 

W e star t with a se t of simple constraint systems { (C;, 1-;, l_;, T i) l i = l, ... , n } , each expressing 
some properties of interest, an d we wish to combine them so t o: (l) perform ali the analyses at the 
same time; and (2) have the domains cooperate to the intent of mutually improving each other. 
The first goal is achieved by considering the product of the simple constraint systems. 

Definition 6.1 (Produci of sirnple constraint systems.) Given a finite family of simple 
constraint systems S; = (C;, 1-;, l_;, T;) far i= 1, ... , n, the product af the family is the structure 

given by IT7=l S; = (C x, l-x, j_x, T x), where the produci takens are 

the product entaì/m.ent is defined, for each C E PJ (C x), by 

C 1-x (Tl, ... ,Tn-l,cn) Il,.(C) 1-n Cn, 

where, far each i= l, ... , n, Il;: p(Cx)--+ C; is the abviaus prajection mapping a sei af n-tuples 
Mlio the set af i-th companents. Finally, j_x = (j_l, ... , l_,.) an d T x = (T 1, o. o, T 71 ). 

If you h ad a family of determinate constraint systems 1J; bui! ton top of the S; 's, you can easily 
"recycle" the merge qperators EB; to obtain a merge operator EBx: ICx lo x ICx lo --> ICx lo which 
allows you to build a product d.c.s. 
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So, taking tbe product of constraint systems, we bave realized tbe simplest form of domain 
combination. It corresponds to tbe direct product construction of [8], allowing for different analyses 
to be carried out at tbe same time. Notice that there is no communication at ali among t be domains. 

However, as soon a.s we consider tbe ask-and-tell constraint system built over tbe product, we 
can express asynchronous communìcation among the domaìns in complete freedom. At the very 
least we would like to have the smash product among the component domains. This ìs realized by 
tbe agent 117=1 Di-+ D x. To say it operationally, the smash agent globalizes tbe (Jocal) failure on 
any component domain. This is the only domain-independent agent we bave. 

Things become mucb more interesting when instantiated over particular constraint domains. In 
the CLP(R.) system [16] non-linear constraints (e. g. X= Y * Z) are delayed (i.e. not treated by tbe 
constraint solver) unti! tbey become linear ( e.g. unti! eitber Y or Z are constrained to take a single 
value). In standard semantic treatments this is modeled in tbe operational semantics by carrying 
over, besides tbe sequence of goals yet to be solved, a set of delayed constraints. Constraints are 
taken out from this set (and incorporated into the constraint store) a.s soon a.s tbey become linear. 

We believe tbat tbis can be viewed in an alternative way which is more elegant, as it easily 
allows for taking into account tbe delay mechanism also in the fixpoint semantics, and makes 
sense from an implementation point of view. The basic claim is the following: CLP(R) bas three 
computation domains: Herbrand, lR (well, an approximation of i t), and definiteness. 

In otber words, it also manipulates, besides tbe usual ones, constraints of the kind X = gnd' 
which is interpreted as the variable X being definitive]y bound to a unique va.lue. We can express 
the semantics of CLP(R.) ( at a certain leve] of abstraction) witb delay of non-linear constraints 
by considering the ask-and-tell constraint system over tbe product of tbe above three domains. In 
tbis view, a constraint of tbe form X= Y * Z in a program actually corresponds to the agent 

ask(Y = gnd'; Z = gnd') -+ tell(X = Y * Z). 

In fact, any CLP(R.) user must know that X= Y * Z is just a sbortband for that agenti A similar 
treatment could be clone for logic programs with delay declarations. 

Obviously, tbis cannot be forgotten in abstract constraint systems intended to formalize correct 
data-fiow analyses of CLP(R. ). Referring back to sections 2.1 an d 4.1, when the abstract constraint 
system extracts information from non-linear constraints, i.e. ask(Y > O /1 Z > O 1\ Y txJ l) -+ 
teii((Y * Z) txJ Z) by relational arithmetic, you cannot simply !et X = Y * Z stand by itself. By 
doing this you would incur the risk of overshooting the concrete constraìnt system (thus loosing 
soundness), wbicb is unable to deduce anything from non-linear constraints. Tbe rigbt thing to do 
is to combine your abstract wnstraint system with one for definiteness (by the product and the 
ask-and--t.ell construction) a.nd considering, for example, the following agent: 

ask(Y = gnd~: Z = gnd~) ask(Y > O 1\ Z > O 1\ Y 1><1 l) 

tell ( (Y * Z) txJ Z) 

Beware not to confuse X = gnd' with X =cc gnd 11 . The first is the concrete one: X is definite if 
and only if X = gnd' is entailed ìn the cunent store. In contra.st, baving X = gndU entailed in the 
current abstract constraint store mea,ns thBt X is certainly bound to a unique value in the concrete 
computation, but tbis is only a sufficient condition, not a necessary one. 

Let us see another example. The analysis described in [13] aims at the eompile-time detection 
of those non-linear constraints that will become linear at run time. This analysis is important 
for remedying tbe lìmitation of CLP(R) to linear constraints by incorporating powerful (an d com­
putationally complex) methods from computer algebra as tbe ones employed in RISC-CLP(Real) 
[14]. Witb tbe results of the above analysis this extension can be don e in a smootb·way: non-linear 
constraints wbicb are guaranteed to become linear will be simply delayed, wbile only tbe other 
non-linear constraints will be treated with the special solving tecbniques. Thus, programs not 
requiring tbe extra power of these techniques wìll be bopefully recognized as sucb, and will not 
pay any penalties. Tbe analysis of [13] is a kind of definiteness. One of its difficulties shows up 
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when considering the simplest non-linear constraint: X= Y * Z. Clearly X is definite if Y and Z 
are sucb. But we cannot conclude that the definiteness of Y follows from the o":e ~f X _an~ Z, as 
we need also the condition Z =F O. Similarly, we would like to conclude that X IS aefimte 1f Y or 
z bave a zero value. Thus we need approximations of the concrete values of variah!'"' (i. e. patte~n 
analysis), sometbing wbicb is not captured by common definiteness ~nalyses wh1le bemg cru~Ja! 
when dealing witb non-linear constraints. Tben, JUSt take tbe combmatwn to obtam somethmg 
liké 

ask(Y = gndU 1\ Z = gndH)-> tell(X = gndH) 

ask(Y =O; Z =O) -+ tell(X = gndH) 

ask(X = gndH 1\ Z = gndU 1\ Z f. O) -+ tell(Y = gnd~) 
ask(X = gndH 1\ Y = gndH 1\ Y =F O)-+ tell(Z = gndU) 

7 Conclusion and future work 
YVe bave sbown a bierarcby of constraint systems whicb, botb theoretically and experiment.ally, 
have severa! nice features. One feature we did not mention before is tbat proving two members of 
the bierarchy being one a correct approximation of the otber is oft.en qui te easy. 

Almost ali oftbe ideas in tbis paper bave been satisfactorily implemented in the CHINA analyzer 
[2]. The eJ,.--perimental results obtained witb tbe implementation represent a strong encouragement 
to proceed along these lines. . . . . 

In particular, we bave proposed a generai metbodology for doma1_n comb_matwn w1tb asyn­
chronous interaction. Tbe interaction among domains is asyncbronous m tbat 1t can occur at _any 
tìme: before, during, and after tbe domains' operations in a completely bomogeneous ;vay. Tb1s 1s 
achìeved by regarding semantic domains as particular kinds of ( ask-and~tell) constrau~t systems. 
Tbese constraint systems allow to express communication among domams m a very s1mple way. 
Tbey also inberit al! tbe semantic elegance of concurrent constramt pro!\rammmg languages, ":b1cb 
provide tbe basis for tbeìr construction. Future w~rk inc!udes answen":g th: followmg ques;,wns: 
are tbere variation of tbese ideas whicb are apphcable also to analys1s onented towa.rds non­
logica!" properties? Tbat is, properties wbicb are not pre~erv~d as the _c~mputati_on progresses? 
Can we turn thìs constructions capturing dependence, combmatwn, and dlSJUnctwn mto an algebra 
of constraint domains? 
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Abstrad 

In this pa.per, we present a new form of inheritance for (constraint) logic 
programming. This inheritance is informally defined in the following terms: 
a module inherits frorn the other one the consequences tha.t are not covered 
by itself (with respect to a fixed tuple of arguments). A computable approx­
imation to this definition is studied, based on finite failure. In particular, we 
define the dedarative semantics (based on Kunen's 3-valued semantics) and 
the operational semantics (based on constructive negation). Severa! examples, 
showing the l!sefulness of the proposal are presented, as well as some hints for 
its implementation. 
Keywords: Module Inheritance, Object Orienl:ation, Constructive Negatior~o 

From the software engineering poi n t of view i t is dear that modular facilities a.re abso-
important in a programming language. Modularity is a key feature to support 

a programming-in-the-large discipline of programming, including data abstraction, 
reusability support and separate compilation. Nowadays, it is widely accepted that 
object oriented concepts are a good basis for modularity. The di:fferent notions of 
inherita.nce provide various module composition mechanisms. 

In the context of logic programming, modularity comes from severa! approaches. 
In particular, we will follow O'Keefe's approach [O'K85]: logìc programs are elements 
of an algebra and their composition is modeled in terms of operators of the algebra. 

Ivlodule composition is treated as a meta-linguistic mechanism using various op­
erators to compose set of dauses: union, deletion, closure an overriding-union (see 

'This research was supported in part by the spanish project TIC/93-0737-C02-02. 
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[O'KS.5, MPSS, BLM92, BLM94]). Ali these operators have been used to model 
inheritance in logic programming. In object oriented programming there are two 
possible ways of inheriting an operation (or a state) from a module: by replacing the 
operation definition by a new one (overriding) o by extending its behaviour. Follow­
ing the terminology of [BLM94], extension is modeled by program union (P U Q), 
and overriding by the operator with the same name (P <l Q), in which clauses from 
Q are not imported for any predicate yet defined in P. 

However, in a logic program we can combine both modes of inherìtance due to the 
nondeterministic-natured of the language. Multiple definitions for a predicate are 
allowed with clauses that superpose in some arguments. This is the basis for our tuple 
inheritance concept, t ha t we denote P « Q. Instead of giving a syntactic definition 
of inheritance, we provide a more semantical one: for each predicate, we can inherit 
the part of Q that is not covered by the new definition in P. In other words, Q 
computations are overridden by P computations, and for those computations that 
are not in P we use Q computations instead, e:ttending P behaviour. 

We formalize this concept giving the decla.rative semantics of the new operator. 
In order to use a computable approximation of that "is not computed in P" we 
use the notion of finite failure ("it is proved that it cannot be proved"), basing our 
declarative semantics on Kunen's 3-valued semantics. 

At a first sight, it is not very interesting because it does not matter whether an 
atom is true in P or in Q. It is not the case. because: i) clauses can have side effects, 
what supposes a different behaviour of ali atom in P or Q, and ii) P definitions 
can provi de more efficient algorithms t han Q for some specific ( refined) arguments. 
Furthermore, we define our new inheritance concept on a subset of the argument 
tuple for each predicate. This is specia!ly interesting when a predicate is used to 
simulate a function. Although the function a.rguments do not change, P can define 
a different result. Some motivating and practical examples are given. 

For the operational semantics, we a.lso need mechanisms to decide the finite failure 
of a goal. Con.structive n.egation [Ch88, Ch89, St91] is a good candidate. We provide 
a computational mechanism based on constructive negation, proving soundness and 
completeness results. The operational mechanism is "constructive" in the solutions 
of a goal that can be and cannot be overridden. The answer can provide some 
constraints that allow to use Q computations. 

From this poi n t of view, we think that Constraint Logic Programming ( CLP) is 
a more nalural framework to study tu pie inheritance. Additionally, we provide some 
background for the (less developed) theory of modularity in CLP languages. Both 
declarative and operational semantics are developed for (modular) CLP programs. 

A prototype implementa.tion is sketched. A PROLOG implementation with con­
structive negation (like SEPIA-ECLIP$E from ECRC) ca.n be used as a target lan­
guage for a program transformation. 
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2 Motivation 

In this section, we motivate the usefulness of the proposed inheritance operator. We 
also provi de some syntax an d, more briefly, recall some concepts from CLP. 

A constraint logic programming language CLP(A) [JL87] depends on a structure 
A which defines the meaning of functions and constraints relation symbols of some 
language L. A basic constraint is a relation r(t1 , ... , tn) upon terms t;'s of the 
structure domai n ( that, by abuse of notation, we stili cali A), while a constraìnt 
(formula) is any formula involving other constraints and propositional connectives 
and quantifiers. 

Giving a set of (programmed) predicate symbols O"( P), an atom is p (t11 ... , tn), 
where p E O"(P) and i;'s are terms. A constraint logic program P is a finite set of 
rules: p (t1, ... , tn) : -c, B1 , .•. , Bn where cis a constraint and B 1 , ••• Bn(n ~O) 
are atoms, clefining the symbols p in cr( P). 

The logical reading of a rule right hand side is the conjunction of the constraint 
and the atoms: c 1\ B1 1\ ... 1\ Bn. 

The tuple inheritance operator « is clefined between two programs P and Q. 
For every symbol in O"(P) U O'( Q), we specify the subsets of tuples to perform the 
inheritance. Without loss of generality, we can suppose that they are the first ar­
guments in textual order. Let M = { .... mp, .. . } be a set of natura! numbers 
l :::; rnp :::; arity (p), one for each predicate symbol p E a( P) U a( Q). The intended 
semantics for p in P «M Q can be informally defined in the following way: The 
a.torn p (t 1 , •.. , tn) is true if 

w p (t1, ... , tn) is true in P, or 
® p (ti, ... , t n) is true in Q but for all .Smv+h ... , Sn, p (t1, ... , tmp' Smp+l' ... , sn) 

"is not true" in P. 

Before we give the formai definition of <<. Jet us study some examples. 
Example 1: The first example is a very simple program that we will use as a running 
example, as well a.s to compare different inheritance mechanisms. 

P : p (X, l) :- q (X). 
q (X) :-X> O. 

Q: P (Z, 
r (Y) 

:- r (V). 
:-V> O. 

Let mp be l in M. If we query P «.u Q with the goal p (X, Y) we expect the 
following two answers: yes, X > O, Y = l; yes. )( :::; O, V > O 

The semantics of P U Q contains the atoms p (X, l) for X > O, and p (Z, Y) 
for any Z. and Y >O. The overriding operator P <l Q has the following semantìcs: 
p (X, l) for X> O. Our new operator P «M Q has the atoms p (X, l) for X> O 
and p (X, 'V) for X:::; O, Y >O as semantics (see Section 3). 

Now we proceed with three more elaborated examples, paradigms of useful ap­
plications of the new inheritance operator. 
Example :2: The second example comes from typical object oriented programming 
textbooks. Vehicles are the elements of the program and we implement the function 
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wheels defining the number of wheels of a vehicle. Program Q establishes that aH ve­

hicles have four wheels. However, P introduces t.he vehicle motorcyde, as a exception 
to the previous function, because it has two wheels. 

P : wheels (motorcycle, 2). Q : wheels (X, 4). 

A goal wheels (car, W) should answer yes, W= 4, and a goal wheels (motorcyde, 

W) should answer yes, W = 2. Consequently, a goal wheeis (V, W) must have the 

following answers: yes, V = motorcyde, W = 2, and yes, V =f. motorcyde, W = 4. 
This behaviour cannot be obtained neither with union nor overriding. The union 

says that a motorcycle has two and four wheels. The overriding operator cannot find 
a definition for wheels (car, W). 

Tuple inheritance is made in the argument of the function, i.e. in the first argu­
ment of the relation wheels. This is absolutely coherent, because when we define a 

function, the new function definition can override the result and not the arguments. 

The simulation of functions as predicates is a natura! application of tuple inheritance. 

Example S: For the third example, we apply the inheritance operator to all the 

arguments. One ca.n believe tha..t it is not useful at all because there is no difference 

if an atom is true in P or Q. But i t is no t the case if the program contains side 
e:ffects. Consider, for instance, the problem of drawing a rectangle on the screen. We 

h ave a standard procedure, using basic character output encapsulated in module Q. 
However, in the presence of a special screen driver we can use a specific operation to 
plot the rectangle. The new definition is located in program P. 

P: draw_rectangle (8, H) :-driver (Driver), plot_rectangle {Driver, B, H). 

Q: draw_rectangle (B, H) :- write_horizontal ('-', 8), 
write_vertical ('J', B, H), 
write_horizontal ('-',B). 

Notice that the desired effect is not obtained by pure overriding, because we still 
want to draw a rectangle with Q code when the driver is not installed. 

Example 4: The fourth exa.mple has some similarities with the previous one. Again 
we apply the inheritance operator to a.ll the arguments. The difference is that, in 

program P, we provide a more efficient algorithm for some instances of the data that 
are generally ma.naged by Q. Q computes the area of any polygon by dividing it 
into triangles, and them adding the a.reas of such these tria.ngles. However, when P 
detects that the polygon is a rectangle, we apply the well known formula, what is 

more efficient than the generai algorithm. \Ve choose !11 to contain rnpoligon_area = 2. 

P : polygon_are<J (P, A) :- A = 8 * H, rectang!e (P), 

Q : polygon_area (P, A) 

sum_area ([], 0). 
sum_;nea ([T l R], A) 

base (P, B), high (P, H). 

:- triangleJist (P, l), sum_area (l, A). 

:-A = AT + A~. triangle_area (T, AT), 
sum_area (R, AR). 

5CJ7 

Noti ce that the intended behaviour ca.nnot be modeled by the overriding operator 

p <.1 Q. Program unìon P U Q has a. similar behaviour t han P «M Q but a call 

with a recta.ngle will provide two (equiva.lent) answers, the second one more costly 

to compute than the first one. Obviously P «M Q and P U Q are not operationally 

equivalent, and the first operator should be more efficient than the second one. 

Furthermore, if we execute this program in CLP (R), we can loose some precision 

when Q is used a.nd the result of P ca.n be more accurate. Note that polygon_area is 

again a function definition simulated as a. predicate. 

3 Dedarative Semantics 

Following [Re88, Bu92] we believe that the meaning of any composition operator 

must be defined in terms of the dedara.tive semantics. Every program operator has 
an associateci opera.tor between program sema.ntics. vVe use the standard notion 

for ·( constra.int) logic progra.mming: An A-interpreta.tion I can be represented as a 

subset of BA, i.e. I E P(l3A), where BA= {p (dl, ... ,dn)IP E a(P),d, E A}. We 

wiH omit the subscript A whenever it does not cause ambiguity. 
In [MPSS] it is established that, for program composition purposes, the correct 

choice for the meaning of a progra.m is the associateci interpretation transformer Tp, 
as shown in the following example: consider P : p {l) :- q (2). and Q : q (2). The 

mini mal mode! for P is (/) and the mini mal model for Q is {q (2)}. Any composition 

of bot h sets cannot give the intended sema.ntics {p (l), q (2)} for any inheritance 
operator. The main reason is that the classica! minima! mode! semantics is not valid 

since it is not OR-compositional. 
We define the mea.ning of a program P, noted [PD, as ìts associated interpretation 

transformer Tp. The semantics of our inherita.nce operator will be defined as the 

composition of two interpretation tra.nsformers: 

TP«MQ = [P «M Q~ = [PB (~; .. [ [Qn = TP i.?IJI.; Tq 

where (?JM is an operator in P(i3) -+ P(B). By abuse of notation we will also use 

0M to denote an opera.tor between interpreta.tions. Now, the transformer associateci 

to fP«MQ is defined by: 

TP«Mq(I) =lp(!) c::.1M Tq(J) 

so, we onl:r neecl to define ~)M in P(B). 
Du<> to our clefinition of inheritance, we cannot provìcle a syntactic characteri­

zation of the composition of two programs (unless we use some kind of universal 

quantification construct into the programs, hard to be efficiently implemented). We 

will recall this point in the conclusion. 
Let us discuss how to define this composition operator. From the informai clefi­

nition of section 2 ( elements in P plus those elements in Q that are no t defined in 

P, with respect to M), a first attempt yielcls to the followìng formai definition: 

S1 8u S2 = S1 U {p (ti, .. , tn) E S2 l V Smp+l, .. , Sn p (t!, .. , tmp' Smp+l' .. , Sn) 'f. S'I} 
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Unfortunately, this definition is not computable, because the decision p (t) rf. S is 
only computable when S is finite. The previous problem is overcome with a decidable 
notion of "elements in Q tha.t are not in P". A suitable definition for this concept is 
the set of "elements in Q that can be proved that they cannot be proved in P" (i.e. 
they finitely fai! in P). 

The usual semantics are not valid to represent this knowledge. We need to use an 
appropriate semantics with failure information. The same idea underlines the formai 
meaning of negation as failure, where the meaning of a program is given by logica! 
consequences of its completion in a 3-va.lued logic [F85] a.nd can be denotationally 
formalized in terms of 3-valued interpreta.tions [Ku87]. For this reason, we extend 
Kunen's 3-valued semantics to CLP. The basic ideas are taken from [FBJ88] (even 
thought it is not directly referred to constraint logic programming) and [St91]. We 
reformulate them in a set-based framework. This allows us to give a definition of the 
semantics of «111 in a set-based fashion as similar it is done for <l in [Bu92]. The 
simila.rity of the definitions facilitates the comparison. 

First of ali, we need a different notion of interpretation. 
Definition: A :3-valued interpreta.tion is a pa.ir < T, F >, where T, F E P( B) are 
disjoint sets. lnterpretations can be ordered in the following way: 

< T, F > j < T', F' > iff T ç T', and F ç F' 
Intuitively, an atom belongs to T ifit is true (t), and it fails (f) ifit belongs to F. 

Otherwise, it is undefined (u). Notice tha.t a classic interpretation is, in particular, 
a 3-va.lued interpretation where there is no undefined atom. 

Interpretations I =< T, F > can be extended to arbitrary formulas in a natura! 
manner, giving a result in {t, f, u}: I(A) =tifA E T (A atom), I(.4) =fifA E F, 
I(A) = u ifA rf. TU F, I(c) ::::: t ifA l= c, I(c) = f ifA l= -.c, and for the 
propositional connectives strong :3-valued interpretations are used. 

The next step is to define the interpretation transformer T/': P(B)-+ P(B) (or, 
simply, Jp ). 
Definition: /p(I) =<T', F' >, where: 

• p (t) E T' if there exists a ground instance of a clause in P, p (l) : -G, such 
that I(G) =t. 

• p (t) E F' if for each ground instance of a clause in P, p (t) : -G, then 
I(G) =f. 

E:mmple: Remember example l from Section 2. The operators for P and Q are: 
Tp(<T,F>)=< {z>(X,l)lq(X)ET}u, {p(X.Y)IY;/=l}u 

{q (X) l X> O} {p (X, l) l q (X) E F}u 
{q (X) l X;::; O}U{r (X)}> 

1Q(<T,F>)=< {p(Z,Y)I,·(Y)ET}u, {p(Z,Y)i,·(Y)EF}u 
{t· (Y) l Y >O} {r· (Y) l Y ;::; O} U {q(X)} > 

As usual, the semantics of a program P is defined as the least fixpoint of /p. 
Unfortunately, the ·operator Jp is not a.lways continuous and hence its least fixpoint 
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may occur a.t any recursive ordinai, see [FB.JSS]. lt is continuous for logic program­
ming (i.e. A is the Herbrand universe) as established in (Ku87]. In any case, the 
natura! cut off point for computability is after w steps, and Fitting and Ben-Jacobs 
[FBJSS] claim tha.t /p t w (noted M p =< Tp, Fp >) is a natura! definition of the 
true and failing things we can compute from a program P. 

Now, we can define the semantics of (:).u in P( B) x P( B). 

<Ti> F1 >(DM< T2 , F2 >=< Tt U (T2 nu Ft), F2 nM Ft > 
where St nM 5'2 = {p (t l, ... ' t n) E S'd 

V Smp+l, ... ,Sn p (tt, ... ,tmp>Smp+l•· .. ,Sn) E S2} 

Example: Having computed /p a.nd TQ for exa.mple l, we ca.n compute lP<.Q· 
JP<t;.Q(< T.F>) = 

< {p(Z, Y)l1· (Y) E T 1\ 'V W 
p (Z, W) E {p (X', Y')i . 
Y' # l v (Y' = 1/\ q (X') E F} }u 

{p (X, l)iq (X) E T}U 
{q (X)IX > O}U 
{t·(Y)IY >O} 

< {p (Z, Y)ir (Y) E T 1\ q (Z) E F}u 
{p (X, l)iq (X) E T}u 
{q (X)IX > O}u 
{r (Y)IY >O} 

lP<.Q has a finite fixpoint that is 
MP<.Q =< {p (X, l)IX > O}U 

, {p (Z, Y)ir (Y) E F 1\ 'V W 
p (Z, W) E {p (X', Y')i 
}"'i= l V (Y' = 1/\ q (X') E F}}U 

{q (X)IX;::; O}U 
{t· (Y)IY ;::; O}U 
{q (X)IY;::; O} 

, {p (Z, YJir· (Y) E F 1\ q (Z) E F}u 
{t· (Y)IY s O}U 
.{q(X)IX sO} 

{p (Z, Y)il" >O, Z;::; O}u 
, {p (Z, Y)IY S O,Z;::; O}U 

{r (Y)IY;::; O}u 
{q(X)IX;::; O}> {q (X)IX > O}U 

{r· (Y)IY > O} 

The operator (~)tv! ès well clefined. as sta.ted by the following theorem: 

Theorem: 
The operator C:>M is continuous in both arguments in P(B) for any M. 

>= 

> 

P.roof: . 
Let I=< T, F >,l'=< T', F' >,l"=< T 11 , F" >. For the continuity on the first 
argument we need to prove tha.t (I i?Ju I") j (I' i?JM I") if I j I'. It yields to prove 
that: TU (T" nu F) ç T' U (T" nM F') a.ncl F nM F" ç F' nM F", what is obvious 
from set theory. The continuity on the seconcl argument is analogous. 

The result proves that ,?JM preserves some properties. In particular, 8M is con­
tinuous in the doma.in of continuous ma.ppings from P( B) -+P( B). 
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4 Operational Semantics 

Before we give the operational semantics of tuple inheritance, we reformulate CLP 
operational semantics specifying the concrete program P where we look for dauses. 
The rule to compute a goal G is: 

G=c,D1 , ••• ,Dj, ... ,D,. f-~ é,D~, ... ,B~>····B~, ... ,D, 
if Dj = p (t 1 , ••• , tn), there exists a (standardized apart) clause in P: 
p (s,, ... , sn): -c". Br .... , Bt. and A p c A c" A 1\(s, =ti) --l· c'. 

c', D1o ... , B11 ... , B,, ... , D,. Ìs called a chi/d of G. Al! the children for G forms its 
derivation tree. We will omit the superscript with the constraint domain. 

A very important notion for our purpose is the concept of fmntier of (a derivation 
tree for) G: a finite set of nodes in the tree such that every path from G to the leaves 
either contains a failure or passes through exa.ctly one node in the set (Ch89, St91]. 

In order to compute when G 1-P-t:.."Q G', we introduce a new operator for 
goals: V X op(G), the definitionless operator, in the vein of [MN94]. Intuitively, 
V X Jp(c9 ,G) is true when P finitely fails for G for any value of X. More formally, 
if Y are the free va.riables in c9 , G: 

V X op(c9 , G) H Mp(3Yc9 A G8) = f for all ground substitutions (} for X 
W e allow now to write a o-goal \:f x o( Cg, G) in (intermediate) goals. Before we 

explain how a o-goal is computed, we c an defìne the rules for f- P<t:.MQ As usual, we 
use the notation O to denote the empty goal formula. Let rnp be the associateci 
inheritance arity of p in lv!. 

1-P-t:.MQ c", D 1, ... , G, ... , D,. if c,Dj l-p c',G, 
Al=cAc'-tc" 

c,D1, ... ,D;, ... , f-p«MQ c"',D~, ... ,G, ... ,D, 

if oV , ... ,XnJ(p(t 1 , .... tmp•XmpH' ... ,Xn)) l-p c',o, 
11 c', Di l-q c", G' 
~' A F c i\ c' A c" -+ c'" 

A J-goa.l can be computed by adapting the technique of constructive negation. 
Constructive negation can be understood in a more genera! context than negation. 
It is useful to decide when a goal fi.nitely fails (i.e. a comput.able approximation 
to undefined). The techni.qt~e has been used in severa! frameworks: Negatìon in 
Logic Programming [Ch88, Ch89], negation in Constraint Logic Programming [St91], 
membership into a intensional defined set, Constra.int Logic Programming with op­
timization, default mles for functional-logic languages [rviN94], and computation of 
disequalities in equationallogic progra.mming. 

We have only space to recai! brief!y the t.echnique of constructive nega.tion and 
how we a.pply i t to Oli!' context. A v x o( Cy, G) goal is computed in the following 
way. Let c be the accumulateci constraint when the J-goal is computed. Let F = 
{(c A c1 , Br), ... , (c A c"' B,)} be a frontier of the goal c A c9 , Gin P. 

c,Dx, ... , V X o(c9 ,G), ... , D,. l-p c. D1 , •..• Di-r, Dj+l· ... ,Dr if F = 0 

c,D1 ...... ,VX G), .... 1-p cAc:, , .... Dj- 1 , ,Di+1, ... ,D,-

001 

where c;, Ni are obtained by finding a formula (c~ A Nr) V ... V (c; A N1) equivalent 

to the formula 't/ X, Y1 J(ch BI) A ... 1\ V X, Y 8( c,., B,. ), where yk are the variables 
in CkJ Bk which do not appear in c, c9 , G. 

For each i (l::;:: i::;:: l) we have a different child in the de1:ivation tree. 

There are severa.! concrete methods to obta.in the formula V( c/, A Nk): 

o Chan's method [Ch88, Ch89] only applies for logic programming (CLP over 
~qualities and disequalities in the Herbrancl universe) and uses this property: 

\:f X, Yo(Z = s, G) H 't/X(Z =/= s) V 3X(Z =sA \:f Y o( G)) 
where X are the non-free variables in s. 

No completeness result is provicled. 

t~ Stuckey's method [St91] applies to constraint logic programming in general. 
C~·aint information is got from the frontier in the following way: 

\:f x o(c,G) H (V x c) v (V x o(c,G)) 
A completeness theorem is proved. 

® The method of (MN94] is quite similar to the previous ones although it is 
adapted to a different problem. The ma.in difference is the use of a very com­
pact constraint representation ( conjunctions of disjunctions of disequalities) to 
minimize the number of ci, N; generateci. 

0 Drabent [Dr93] presents a different a.pproach. Many frontiers of the derivation 
treemay be selected and only the constraints of such frontiers are used to 
compute answers. In the previous methods only one frontier is selected but 
whole goal bodies of the frontier are used. This yields to subgoals that may 
contain 6-subgoals to be resolved by further derivation steps. [Dr93] claims 
that the new method may be more efficient than the previous one. There are 
also soundness and completeness results. 

Example: The computation of the goal p (X,}·") in our running example is got in the 
following steps: 
It is clearthat (l) p (X, Y) l-p Y =l, q (X) l-p y· =l, X> O 
what supposes p (X, Y) f- P <t:. MQ Y = l, X > O 
For the other derivation in p «M Q we need to compute the o-goal 
V Y S(p (X, Y)) in P. Derivation (l) also gives us a frontier for p (X, Y), {Y = 
l, X > O} which complements to the formula }- =/= l V X $ O. If we choose the 
second part of the formula as c, N we ha.ve: 

VYo(p(X,Y)) l-p X$0 
As we can derive X::;:: O, p (X, Y) f-q X$ O, Y >O 
we can conclude p (X.}'-) f-P«uQ X$ O, Y >O 
and we compute all the solutions in MP-t:..11 q. 
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Now, we are in a position to establish soundness and completeness results. We 
assume that the rules for f- are applied in a fairly consistent way in the sense of 
[St91]. We have only space to include an informai sketch of the proofs. 

Theo1·em: Soundness 

If c,G f-p<t:MQ c',G' then MP«.uQ(c/\ G)= MP«MQ(c' 1\ G'). 
Proof sketch: We proceed by induction on the structure of the goal G. The most 
interesting c~e is the base case, w h ere G is an atom A. The rule c, A f- p c', A' 
implies c, A f-p«MQ c', A' is obviously correct, because corresponds to "Tp U ... " 
in the definition of 0 111 • The second rule imposes (i) c", .4 f-q c', A', what implies 
that (a ground instance of) A E Tq,. and (ii) c, V X J(A.) l-p c", O, what implies 
A E Fp by soundness of constructive negation [St91]. 

Theorem: Completeness 

Let c; G be a goal with free variables X. If :lfP«,uQ(3 X cl\ G)= t then there exists 
a constraint answer c' such that c, G f- P«MQ c', O an d A l= c --+ c'. . 

Proof sketch: Double induction on the structure of G and the step n on the inter­
preta.tion transformer T? <t: MQ t n w h ere we fin d the elements of (a ground instance 
of) G. The proof combines the completeness of constructive negation (St91] with a 
case analysis of the definition of OM· 

5 Implementation 

A prototype implementation has been constructed by tra.nslating modules to SEPIA­
ECLIPSE Prolog. As far as w e know, this Prolog versi o n provi cles the only existing 
implementation of constructive negation. The transformation is carried out in the 
following way. For each p E a( P) U a( Q) we define: 

p (Xt ..... X,.) :- PP (X1 .... , Xn)· 
p (X1, ... , Xn) :- not (pp (X1 .... , Xm"' Vmp+l· ... , V n)). PQ (X1 ..... Xn)· 

where pp, PQ rename p in P and Q respectively, a.nd the li's are new fresh variables. 
However, it is clear that a direct implementation should be more efficient. For 

instance, if al! p-calls are ground, a sound a.nd complete implementation will be the 
following: 

p (X):- PP (X), !. p (X) :- pq (X). 
A specific implementation, like a WAM modification, can use this technìque when 

the a.rguments are ground. 

6 Condusion 

We ha.ve introcluced and formalized a. new inheritance operator which combines ex­
tension and overriding for goals wit.h varia.bles in a natura[ way. This new operator 
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allows for a fully treatment of inheritance in a logic framework. However, tuple in­
herita.nce does no t replace the other inheritance operators ( union an d overriding) 
but complements them. 

The CLP formulation also provides a background for the study of modularity in 
CLP programs. A new use of the technìque of constructive negation is found, what 
enforces our believe that the technique goes beyond negation in logic programming. 

The rneaning of our proposal is given in terrns of the declarative semantics, instead 
of the syntactic characterization of other modular operations. The syntactic char­
acterizatìon is possible ìf J-goals are allowed in clause bodies. We assume that the 
programs are in norma! form, i.e. al! the clause heacls are written as p (X1 , ... , Xn), 
where the X;'s are distinct varìa.bles and the constraint of the clause contains the 
equa[ities of )(/s with the origina.! heacl's tenns. Suppose we have the following 
programs: 

P: p (X):- Gt. Q : p (X) :- G '1 . 

p (X) :- G', .. 

We can joint P with the moclified Q clauses: 
p (X):- v t. v op (G!), ... , VT,Y Jp (Gk). G';. 

where Y = Y mp+l, ... , V n are new fresh vari ab l es that replace the corresponding X's 
in each G;, and T are the free variables in G';. In our running example, the unique 
rule for predicate p will be: 

p (Z, V):- V W Jp (q (Z)), r (V). 
It can be proved that the semantics of this program coincides with the sernantics 

we have developed. 
This transformation also gives us a hint to treat some simpler cases. If the G;'s 

have no free variables we can replace the ò-goa.ls by adequate constraints. Inforrnally, 
the complement of head terms of P cla.uses are computed and they are used later in 
the constraint of the modified Q predicate. The same idea is used into the trans­
formational approach to negation from [BMPT90]. We can modify our example by 
replacing Q rule for p by the rules: 

p (Z, Y) :- q' (Z), r (Y). q' (Z) :- Z ::.::; O. 

A concrete implementation can use this transformation technique whenever pos­
sible, the cut trick to be executed dynamica.lly and constructive negation on!y when 
it is absolutely necessary. 

It is worth to mention that our construction Ìs also va.lid for norma! programs 
(i. e. logic programs with negation ), because the semantics c an handle negative in­
formation by means of finite failures. 

As a future work, we pian to experiment further with the implementatìon of 
constructive negation a.nd to apply these ideas to functional-logic languages, because 
functions are a very natura! framework for t.uple inheritance. 
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Abstract 

vVe extend the declarative diagnosis methods to the diagnosis w.r.t. computed 
answers. VVe show tha.t absence of uncovered a.toms implies completeness for 
a. large cla.ss of progra.ms. We then defìne a. top-down diagnoser, which uses 
one ora.cle only, does not require to determine in a.dva.nce the symptorns and 
is driven by a. (fìnite) set of goals. Fina.lly we ta.ckle the problem of effectivity, 
by introducing (fìnite) partial specifìca.tions. \Ve obta.in a.n effect.ive diagnosis 
method, which is weaker tha.n the generai one in the case of correctness. yet 
can efficiently be implemented in both a. top-down a.nd in a bottom-up style. 

Keywords: Declarative diagnosis, Verifìca.tion, Semantics, Debugging 

l Introduction 

The dia.gnosis problem can formally be defined a.s follows. Let P be a. program. 

[P] be the beha.vior of P w .r. t. th'e observable property a. an d I be the specification 
of the intended behavior of P w.r.t. a. The diagnosis consists of comparing [P] and 
I and determining the "errors" and the progra.m components which are sources of 
errors, when [P] 'f I. The formulation is parametric w.r.t. the property considered 
in the specification I and in the actual behavior [P]. Declar-ative diagnosis [13. 12. 
1 O, 8] is concerned with model-theoretic properties. The specification is the intendecl 



declarative semantics (the least Herbrand model in [13] and the set of atomic logical 
consequences in [8]). 

Abstract diagnosis [4, 5] is agener_alization of decl(trativ(; d,iagnosis, wh~re W('O <:<?n­
si de~- op~~aù;;il·,;:rp;operties, Le:,. observ~bi~s- (an-~bservable is any property which 
~~n-be extraetéd frorn'a goal computation, ì.e., observables are abstractions of SLD­
trees ). An example of a useful observable is computed answers. The diagnosis w.r.t. 
computed answers is expected to be more precisé thàn the declarative diagnoses in 
[13] an d [8], which can be reconstructed in terms of the observables ground instances 
of computed answers and correct answersrespectively [5]. The semantics involved 
in the diagnosis w.r.t. computed answers is the s-semantics [6, 7, 2], which models 
exactly the process of computing answers. 

In this paper we first extend to computed answers the dedarative diagnosis 
methods based on the detection of incorreét clauses and uncovered atoms (Section 
3). The good news is that absence of uncovered atoms implies completeness, for a 
large class of interesting programs ( acceptable programs). 

We then define in Section 4 a top-down diagnoser, which uses one oracle only, 
does not require to determine in advance the symptoms and is driven by a (finite) 
se t of goals ( most generai atomi c goals). 

Finally in Section 5 we tackle the problem of effectivity, by introducing (finite) 
partial specifications. We obtain an effective diagnosis method, which is weaker 
than the generai one in the case of correctness, yet can efficiently be implemented 
in both a top-down and in a bottom-up style. 

2 The semantics modeli~g. computed answers 
,)_r,,_ l'·' 1 "-, 

The s-semantics [6, 7, 2] is defined or{interpretations consisting of sets of possibly 
' non-ground atoms. For every program P, the s-semantics can be characterized as 
\i the least fixpoint of the operator T p: 

Tp(I) ={AB E Bpl 3A :- B1, .. . ,Bn E P, 
{B~, ... ,B~} ç I, 
30 = mgu((B1 , ..• , B,), (B~, ... , B~))} 

where Bp is the set of (possibly non-ground) atoms of Lp modulo variance and I 
is a subset of Bp. The s~me denotation can bé Òbtained in a top-down way, by 
considering the answers computed for "most generai atomi c goals", as shown by the 
following definition. 

X1, ... , Xn are distinct variables, 

? - p(X1, ... ,Xn) !t D}. 
) 
'.-1,-· 
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Diagnosis w .r co1nputed answers: basic defi-
nitions and results 

Tbe following Definitions 3.1 an d 3.2 extend to ~i_agno_sjs w.r~t. co_n;1puted al]SWer_s 
the definitions given in [13, 8, 10] for declarative diagnosis. 

In the following I is the sg~~lfi_::~t~QP ~rth~ int~nd;d~,s-semantics gf p. 

Definition 3.1 

z. P is partially correct w.r.t. I. ifO(P) ç I. 

n. P is complete w.T.t. I. ifi ç O(P). 

m. P is totally correct w. r.i. I, if O( P)= I. 

li P is not totally correct, we are left with the problem of determining the errors. 
-..vhich are related to tbe symptoms. 

Definition 3.2 

1. An incorrectness symptom is an atom A su eh that A E O( P) an d A if_ I. 

n. An incompleteness symptom is an atom A such that. A E I and A if_ O(P). 

Note that a totally correct program has no incorrectness and no incompleteness 
symptoms. Our incompleteness symptoms are related to the insufficiency symptoms 
in [8], which are defined by taking gfp (T p) instead of O(P) = lfp (T p l as program 
semantics. The two definitions, even if different, turn out to be the same for the 
dass of programs we are interested in (see Section 3). Ferrand's choice is motivated 
by the fact that gfp (Tp l is rela.ted to finite failures. The approach of using two 
different semantics for reasoning about incorrectness and incompleteness bas been 
pursued in [9], leading t o an elegant uniform (yet non-effective l characterization of 
correctness and completeness. 

It is straightforward to realize that an atom may sometimes be an (incorrect­
ness or incompleteness) symptom, just because of another symptom. The diagnosis · 
determines the "basic" symptoms, and, in 'tl-lè--casè of ~~correctness. the relevant 
clause in the program. This is captured by the definitions of incorrect cla'1Lse and 
unco_!J_e!·ed atom, which are related to incorrectness and incompleteness symptoms, 
respectively. 

Definition 3.3 lf there exists an aio m A such that A if_ I an d A E T{c}(I), then 
the clause c E P is incorrect on A. 

Informa.lly, c is incorrect on A, if it derives a wrong answer from the intended 
semantics. T{c} is the operator associateci to the program {c}, consisting of the 
clause c only. 
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Definitio:n 3.4 An atom A is uncovered ifA E I and A f/. Tp(I). 

Informally, A is uncovered if there are no clauses deriving it from the intended 
semantics. 

I t is worth noting that checking the conditions of Definitions 3.3 an d 3.4 requires 
one application of T p to I, while the detection of symptoms according to Definition 
3.2 would require the construction of O(P) and therefore a fixpoint computation. 
As we will show in the following, the detection of bugs can be based on Definitions 
3.3 and 3.4, while this is not the case for Definition 3.2. 

The following theorems are instances of the corresponding theorems proved in 
[5] for abstract diagnosis, where they are given for a class of properties called s­
observables ( computed answers is an s-observable (3]). 

The first theorem shows the relation between parti al correctness (Definition 3.1) 
and absence of incorrect dauses (Definition 3.3). 

Theorem 3.5 lf there are no incorrect clauses in P, then P is partially correct 
(hence there are no incorrectness symptoms}. The converse does not hold. 

The theorem shows the feasibility of a diagnosis method for incorrectness based 
on the comparison between I and Tp(I). Note that the second part of the theo­
rem asserts that there might be incorrect clauses even if there are no incorrectness 
symptoms. In other words, if we just look at the semantics of the program, some 
incorrectness bugs can be "hidden" (because of an incompleteness bug). 

As in the case of dedarative debugging, handling completeness turns out to 
be more complex, since some incompletnesses cannot be detected by comparing I 
and Tp(I). The following proposition shows that we cannot base the diagnosis of 
incompleteness on the detection of uncovered atoms. 

Proposition 3.6 There exist a program P and a specification I, such that 

z. there are no uncovered atoms in P, 

n. P is not complete w.r.t. I (i.e., there exist incompleteness symptoms). 

However, the following theorem shows that the diagnosis of incompleteness can 
be based on Definition 3.4 if the operator T p has a unique fixpoint. 

Theorem 3. 7 /f T p has a unique fixpoint and there are no uncovered atoms, then 
P is complete w.r.t. I (there are no incompleteness symptoms). The converse does 
not hold. 

Note that, if T p has a unique fixpoint, ifp (T p) = gfp (T p). Hence our incom­
pleteness symptoms are exactly the insufficiency symptoms in (8]. 

The following corollary is a justification of the overall diagnosis method. 

CoroHary 3.8 Assume Tp has a unique fixpoint. Then P is totally correct w.r.t. 
I, if and only if there are no incorrect clauses and uncovered atoms. 
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The requirement on Tp seems to be very strong. However, this property holds 
fora large class of programs, i.e., for acceptable programs as defined in [1). ~ccept­
able programs are the left-terminating programs, i.e., those programs for wh1ch the 
SLD-derivations of ground goals (via the leftmost selection rule) are finite. Most 
interesting programs are acceptable (all the pure .PROLOG programs in [14] are 
reported in [1] to be acceptable). The same property holds for most of the wrong 
versions of acceptable programs, since most "natural" errors do not affect the lef~­
termination property. One relevant technical property of acceptable programs 1s 

that the ground immediate consequences ope:rator has a unique fixpoint [1]. The 
same property holds for the s-semantics operator Tp. 

Theo:rem 3.9 (fixpoin.t un.iqueness) Let P be an acceptable program. 
Then Tptw is the unique fixpoint ofTp. 

The theorem is proved in [4] for aH the "immediate consequences" ope~ator_s corr~­
sponding to s-observables. Note that the same result applies to dedaratJve d1agnos!s 
as well. 

The overall diagnosis method for acceptable programs is then given by the fol­
lowing corollary. 

CoroHary 3.10 Assume P is an acceptable program. Then P is totally correct 
w. r. t. I, if and only if there are no incorrect clauses and uncovered atoms. 

Example 3.11 Consider the acceptable program P of figure l, which is an "an­
cestor" program with a wrong clause (ancestor(X, Y) :- parent(Y,X). instead of 
ancestor(X, Y) :- parent(X, Y).) and missing database tuples. 

I= { parent(terach, abraham), Tp(I) = { ancestor(abraham, terach), 
parent( abraham, isaac ), ancestor( isaac, abraham), 
ancestor( terach, abraham), ancestor( terach, isaac) }. 
ancestor( terach, isaac), 
ancestor( abraham, isaac)}. 

The dìagnosis delivers the following result: 

1. the clause ancestor(X, Y) :- parent(Y, X). is incorrect on 
ancestor( abraham, terach) an d ancestor( isaac, abraham ). 

11. the atoms parent( terach, abraham), parent( abraham, isaac), 
ancestor(terach, abraham) and ancestor(abraham, isaac) are uncovered. 

Note that O(P) = {}. Hence there are no incorrectness symptoms, even if 
there is an incorrect clause. Note also that the atom ancestor(terach, isaac) is not 
uncovered, even if it is an incompleteness symptom. . 

The example is intended to show the relation among the various concepts m­
volved in the diagnosis and does not use the features of the s-semantics (which 
turns out to be a Herbrand interpretation). "' 
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ancestor(X, Y) :- ancestor(X, Z), parent(Z, Y). 
ancestor(X, Y) :- parent(Y, X). 

Figure 1: A wrong acceptable program 

4 The orade and the "top~down~' diagnosis 

The "bottom-up" diagnosis is based on Corollary 3.10 and requires the appli­

cation of Tp to the intended s-semantics I. Hence I has to be specified in an 

extensional way. We are not concerned, for the time being, with the problem of 

effectivity (i.e., finiteness of I). Rather we are concerned with the problem of spec­

ifying I by means of an oracle, as first suggested in [13]. The oracle is usually 

implemented by querying the user. Several oracles have been used in declarative 

debugging (see the discussion in [11]). We will use one oracle only, directly related 

to the property we are concerned with, namely computed answers. 

Definitio:n 4.1 (o rade) Let G be a goal. 
A( G) = {GO l G computes e according to the intended s-semantics}. 

Once we have the oracle, we can define the oracle simulat·ion, aga.in following [13]. 

The orade simulation allows us to express in a compact way new top-down diagnosis 

conditions. The oracle simulation performs one step of goal rewriting by using the 

program clauses and then gets the answers for the resulting goal from the orade. 

Definitio:n 4.2 ( o:rade simul:ation) Let G be an atomi c goal an d P be a set of 
definite clauses. 

S(G,P) = {G01Bzl3c= A:- B1, ... ,Bn E P, 
381 = mgu(G,A), 
3612, (B1, ... , B,)B182 E A((B11 ... , Bn)81 )} 

Note that the elements of the sets computed by A and S are equivalence classes 

w.r.t. variance, as was the case for the doma.in of the s-semantics. The following 

two theorems justify the top-down diagnosis. 

Theorem 4.3 The clause c E P is incorrect on the atom p(X1 , ... ,Xn)B if and only 

if p(X1, ... , Xn)B E S(p(X1, ... , X,), {c}) and p(X1, ... , Xn)B '1. A(p(X1, ... , Xn)). 

Theorem 4.4 The atom p(X1 , ..• , X,)O is uncovered if and only if 

p(X1, ... ,Xn)B E A(p(XI, ... ,Xn)) and 
p(X1, ... ,Xn)(} '1. S(p(X1, ... ,X,), P). 
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incorrect(G :- B) :- userdefined(G), 
clause(G, B), 
answer(B), 
freeze(G,G1), 
not(answer(G),G = G1). 

uncovered(A) :- userdefined(A), 
answer(A), 
freeze(A, Ai), 
not(clause(A,B), answer(B),A =Ai). 

Figure 2: The top-down diagnosis meta-program 

The proofs of Theorems 4.3 and 4.4 are based on the properties of the s-semantics, 

which relate fixpoint bottom-up computations to top-down refutations for most 

general atomic goals. The same properties allow us to de:fine systematic diagnosis 

algorithms which do not need symptoms as i:nputs. The PROLOG meta-program 

in Figure 2 is an adaptation of the simplest possible declarative debugger in [11]. 

The oracle answer nondeterministically instantiates its argument. The search 

for incorrect clause instances and uncovered atoms is driven by the most general 

atomic goals, represented by unit clauses of the form 

userdefined(p(Xi, ... , Xn))., for any predicate p occurring in the program P. The 

properties of the s-semantics guarantee that we can detect all the incorrect dause 

instances and the uncovered atoms (for acceptable programs), by just looking at the 

behaviors for a finite number of atomic goals. 
The diagnosis meta-program can be extended to achieve a better performance 

and to improve the calls to the oracle. Most of the techniques presented in [11] are 

applicable. However, performance issues are outside the scope of this paper. 

Let us finally note that our formalization of diagnosis based on the s-semantics is 

not subject to the theoreticallimitations proved by Ferrand [8] for his construction 

based on the atomic logical consequences semantics. The problem is the following. 

An incorrect clause instance A :- B may have an instance (A :- B)() which is 

not incorrect. This should be re:fl.ected by the fact that incorrect(A :- B) is in 

the denotation of the diagnoser, while incorrect((A :- B)O) is not. This is not 

possible if the denotation is the non-ground semantics in [8], since i t is closed under 

instantiation. On the contrary, if we choose the s-semantics the problem does not 

anse. 

5 · Diagnosis with partial specifications 

The diagnosis cannot effectively be based on the conditions given above, unless 

the intended s-semantics is finite. In fact, if this is not the case, 
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® the bottom-up diagnosis is unfeasible, since I is infinite and 

., the top-down diagnosis is unfeasible, because the oracle may return infinite 
answers to some queries. 

This is true also for those diagnosis algorithms which are based on a ground seman­
tics or are driven by the symptoms. As a matter of fact, the assumption in [13] 
on the oracle returning a finite number of answers is too strong. The problem can 
only be solved if we have the ability to handle :finite approximations of the intended 
semantics. One solution can be found within the abstract diagnosis framework in 
[4, 5], w h ere we are ab le to cope with abstractions of the observables ( according to 
abstract interpretation theory). 

Here we propose a different solution, where we approximate the intended behav­
ior by a (finite) partial specification. The specification of the intended behavior I 
is approximated by a parti al specification, which is a pair (I+, x-), where 

® I+ is the (positive) partial specification of the answers computed by P for 
most generai atomic goals, i.e., I+ is a finite subset of I, 

e I- is the (negative) partial specification of the answers not computed by P 
for most generai atomic goals, i.e., x- is a finite subset of f. 

We denote by I the complement of I. Note that the relation x+ ç I- must 
hold. The following de:finition generalizes partial correctness and completeness to 
the case of partial specifications. 

Definition 5.1 

z. P is partially p-correct w.r.t. (I+,I-), ifO(P) ç I-. 

u. P is p-complete w.r.t. (I+,I-), iji+ ç O(P). 

The rationale behind Definition 5.1 is clearly related to the fact that the spec­
ification is partial. In a partially p-correct program, for any goal G, there is no 
computed answer {), which we know to be wrong (GB E I-). On the other hand, in 
a p-complete program all the answers that we know to be correct (GO E I+) h ave 
to be computed answers. Note also that definition 5.1 is derived from Definition 3.1 
by taking I- an d I+ as specifications to be used for correctness and completeness 
respecti vely. 

Positive and negative specifications have been used in [9] with the aim of sepa­
rately modeling the behavior w.r.t. incorrectness and incompleteness. x+ and x- are 
no t parti al specifications, rather they are specifications of the (complete) intended 
lfp (T p) and of the (complete) intended gfp (T p). The derived definitions and results 
are completely different from ours. In particular, I- is used for completeness and 
I+ is used for correctness. 

The following definitions, given in terms of the Tp operator, generalize the defi­
nitions of incorrect clause a.nd uncovered atom to the case of partial specifications. 
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Defi.nition 5.2 Ifthere exists an atom A such that A f/ I- and A E T{c}(I-), then 
the clause c E P is p-incorrect on A . 

Defini.ti.on 5.3 An atom A is p-uncovered ifA E x+ and A f/ Tp(I+). 

The following theorem shows the relation between partial p-correctness and ab­
sence of p-incorrect clauses. 

Theorem 5.4 If there are no p-incorrect clauses in P, then P is partially p-correct. 
The converse does not hold. 

Theorem 5.4 would allow us to check partial p-correctness, by just checking that 
there are no p-incorrect clauses. However, we cannot base an effective diagnosis 
method on the detection of p-incorrect clauses, since Definition 5.2 is given in terms 
of I-, which is not part of the partial specification (and is usually infinite). Some 
of the p-incorrect clauses can be determined by choosing x+ as an approximation of 
I-, as shown by the following theorem. 

Theorem 5.5 lf there exists a clause c in P and an atom A, such that A E 
T{c}(I+) n I- 1 then c is p-incorrect on A. The converse does not hold. 

Theorem 5.5 leads to a complete diagnosis method for partial p-correctness, only 
if the specification is indeed complete, i.e., if I+= I-. 

Corollary 5.6 If x+ =I- and there are no clauses c in P and atoms A such that 
A E T{c}(I+) n I-, then P is partially p-correct. 

Let us consider now the diagnosis of p-completeness. As was the case for the 
diagnosis of completeness, the diagnosis can be based on Tp, only if the operator 
Tp has a unique fixpoint. 

Theorem 5. 7 Assume T p has a unique fixpoint. If there are no p-uncovered atoms, 
then P is p-complete w.r.t. (I+,I-). The converse does not hold. 

It is worth noting that the existence of a p-uncovered atom does not necessarily 
mean that there is sornething missing from the program. In fact, an atom in I+ 
might not be in Tp(I+) just because I+ is partial, i.e., it cannot be derived by 
Tp because some of the correct premises are missing from I+. Hence, the overall 
partial diagnosis may return a subset of the incorrect clauses and a superset of the 
real uncovered atoms. 

Let us now move to the top-down diagnosis with partial specifications. The 
definition is given in terms of two oracles, which can be implemented either by 
querying the user or by querying the positive and negative specifications, since they 
are finite and can be de:fined extensionally. 
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pincorrect(G :-B) :-nanswer(G), 
freeze(G,Gi), 
clause(G,B), 
panswer(B),G = Gi. 

puncovered(A) :- panswer(A), 
freeze(A,Ai), 
no t( clause(A, B), panswer(B), A= Ai). 

Figure 3: The top-down diagnosis meta-prograrn for partial specifications 

Defini.tion 5.8 (positive or:ade) Lei G be a goal. 
A+( G)= {GB l G is intended to compute 8}. 

Definition 5.9 (negative ora.de) Let G be a goal. 
A- (G) = { GB l G is intended no t to compute 8}. 

We only need the positive oracle simulation. 

Definition 5.10 (positive orade simulation) Let G be an atomic goal and P be 
a set of definite clauses. 

s+ ( G, P) = { G81 82 l :le = A :- B1, ... , Bn E P, 
381 = mgu(G, A), 
:lfJ2, (B1, ... , Bn)fMJ2 E A+((Bl, ... , Bn)8I)} 

The following two theorems justify the top-down diagnosis. 

Theorem 5.11 The clause c E P is p-incorrect on the atom p(X1 , ... , Xn)B if 
p( XI> ... , Xn)B E s+(p(Xt, ... ,Xn), {c}) and 
p(X1, ... ,)(n)B E A-(p()(i, ... ,)(n)). 
The converse does not hold. 

Theorem 5.12 The atom p(X1 , •.. , Xn)8 is p-uncovered if and only if 
p()(b ... , Xn)B E A+(p(Xl, ... ,Xn)) and 
p(X1 , ... ,Xn)8 cj s+(p(Xl, ... ,Xn),P). 

The corresponding PROLOG meta-program is shown in Figure 3. 
Note that now the search is driven by the elements in the negative and positive 

specification, obtained from the corresponding oracles. Both oracles nondetermin­
istically instantiate their argument. An extensional implementation of the orades 
requires 

i. a uni t clause of the form panswer( A). for any A E I+, 
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appe:nd([A], B, B). 
append([AIB], C, [A, D]):- append(B, C, D). 

Figure 4: A wrong acceptable program 

n. a unit clause of the form nanswer(A). for any A E I-, 

m. the clause panswer((A,G)) :- panswer(A),panswer(G)., to get the intended 
(positive) answers for conjunctive goals. 

Finally, we look at a small example, which shows that it ìs convenient to use 
finite subsets of the s-semantics, since their elements rnay stili represent infinite sets 
of ground atoms. 

lExampìe 5.13 Consider the acceptable program P of figure 4, whose first dause 
is wrong. The partial specification is 

I+= {append([],X,X), r = {append([A],X,X)}. 
append([A], X, [A IX])} 

The diagnosis delivers the following result: 

6 

1. the clause append([A], B, B). is p-incorrect on append([A], X, X). 

IL the atom append([J, X, X) is p-uncovered. 

Condusions 

Our first result is the extension of known diagnosis methods based on the cletec­
tion of incorrect dauses and uncovered atoms to the case of the s-semantics. The 
good news is t ha t absence of uncovered atoms implies complèteness, for a class 
of interesting programs ( acceptable programs). 

The second result is the definition of a top-down diagnoser, which has the fol­
lowing features: it uses one orade only, it does not require to determine in advance 
the symptoms and is driven by the (finite) set of rnost generai atomic goals, it is not 
subject to the incompleteness problem of Ferrand's diagnoser (sìnce the s-semantic~ 
is not closed under instantiation). 

Finally, we have introduced the diagnosis wor.t. partial specifications, which leads 
to an effective diagnosis method, which is weaker than the generai one in the case of 
correctness, yet can efficiently be implemented in both a top-down and in a bottmrl­
up style. 

All the results can naturally be extended to the more generai framework oi 
abstract diagnosis. 
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Abstract 

In this paper we define a framework of collecting semantics far analysis of logic programs. 

The idea is to use abstract interpretation to systematically derive,. compose and compare se­

rnantics according to their expressive power. A hierarchy of collecting semantics is introduced, 

including well known semantics for logic programs and providing a formal basis to extend mode! 
theory to collecting and abstract semantics far analysis. We introduce a formal definition of 
adequacy for a sernantics with respect to data:ftow analysis, and a constructive characterization 

for the "best" collecting semantics for analysis. 

1 Introduction 
The definition of an appropriate concrete semantics, being able to mode! those program proper­

ties of interest, is a key point in abstract interpretation ([12]) an d semantic-based datafiow analysis. 

As shown in [17] the choice of the operational semantics is usually the most appropriate one, as 

it is possible to derive more abstract semantics (e.g., the denotational semantics) by abstract in­

terpretation. This leads to a hierarchy of semantics w bere well known semantics at different levels 

of abstraction are ali derived by abstract interpretation from the operational o ne [14]. However, 

more abstract semantic bases can be suitable to avoid unnecessary details which are useless with 

respect to the program properties of interest. This is particularly important to simplìfy proofs 

of soundness in semantic-based static analysis. Of course, the best choice for a semantics should 

be a semantics which is not too abstract to hide too many details, but also not too concrete to 

introduce useless information (usually encoded by too complex semantic structures). A collecting 

semantics is somehow an intermediate step in abstraction between an often too concrete operational 

semantics an d the standard semantics of the program ( e.g., see the step-by-step abstraction in [29]). 
These semantics are usually derived by abstraction from an operational semantics of the language, 

or derived by a simple concretization process based on a powerset construction, collecting sets of 

denotations. Therefore, the relation between collecting semantics and the underlying more abstract 

standard semantics for the language becomes purely artificial and it is often meaningless. In logic, 

programming for instance, i t is often the case that collecting interpretations are derived by abstract­

ing SLD resolution, without providing any corresponding model-theoretic interpretation, and the 

collecting semantics result to be often too far from the intended logica! meaning of the program: 

its Herbrand mode/ (e.g., see the operational frameworks in [8, 18], or the denotational semantics in 

~~). . . 
In this paper we introduce a new approach to collecting semantics design and analys1s, and 

.apply it to the case of logic programs. Collecting semantics are bere characterized by maintaining 

the underlying structure of a standard semantics (later in the paper called core semantics), which 

ìs characterized by the so called "no junk" and "no confusion" conditions, providing a kìnd of 

minimality with respect to a given semantic property. Therefore, a collecting semantics is not 

merely a sound approximation of a more concrete semantic definition, but has to include a more 

'This work has been partly supported by the EEO Human Capitai and Mobility individua! gra.nt: "Serna.ntic 
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