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8.1 A Parallel Execution Model

The Incrementality Lemma 7.1 for F suggests a possible parallel execution model of clp’s, based
on a network of processors:

Network Let N be the set of pp's of P. For [ € N. a processor P, is associated with /.

Communication among processors is realized by means of channels, as follows:

— . .\ entry(G .
Communication Processors are connected by the following channels: (i) c5" ™ from the envi-

ronment w t0 Pepyry(g) and Ct}ir(ci from Pegiyg) to the environment; (ii) ¢j from j to i for every
i,j such that there is an arc from j to 7 in dg(P).

A channel c; is called an input channel of P; and an outputl channel of P;. Each channel is
supposed to have a memory that contains a queue of states whose policy is fair (e.g. first in first
out).

The execution model allows the processors to run in parallel and asynchronously:

Execution Model Processors in the network execute asynchronously the following algorithms:

entry(G)

- Pentry(c) takes an o from cg and sends it to all its output channels.

entry(C)
call(A)

computes f = (push(a)AF! = 170), where A = p(5) and p(7) is the head of H; then Pepspy(c) sends
8 to every its output channel.

- Psuccess(a), where A is not a constraint and is contained in the clause C, selects with fair choice

from one of its input channels, say cifo(%“.‘(A), an «; then it computes # = pop(a); if B € —free(z2)

then Pgyccess(a) sends 8 to every its output channel.
- Psuccess(4), Where A is a constraint, takes an « from its input channel and computes 3 = (aAA?),
then Piyecess(a) sends f to every its output channel.

- Pentryccy selects with fair choice from one of its input channels, say ¢ , an a, and it

This model describes a sound and complete implementation of @, as stated in the following
theorem.

Theorem 8.1 (Adequacy of M) If the inpul channel c¢f, of M 1is feed with the set of states
¢ sl & C —free(zl), and ¢ C free(z) for every non goal, non-unilary clause C, then
Uerpath(I) psp.m.¢ 1s the set of states that Py in M sends on its output channels. )

Remark 8.2 Our execution model assigns one processor to each program point. However, because
the processors work asynchronously, in case there are less processors than program points, then a
single processor can be assigned to a number of pp’s, which can be encoded as distinct tasks to be
executed with a fair schedule discipline. This will still yield a complete and asynchronous model.

8.2 Burstall’s Intermittent Assertions Method

We show how the intermittent assertions method of Burstall [Bur74] can be adapted to clp’s.
The advantages of the Intermittent Assertion Method, and of Temporal Logic (TL) in general, for
instance to prove liveness properties, termination, total correctness etc. are well known (see for
instance [CC93]). So far, finding a suitable presentation of the intermittent assertion method for
logic programming was still an open problem ([CC93]). In this section a solution to this problem
for clp’s is given, by means of the intermediate semantics .

For lack of space, we shall be rather sketchy and we refer the interested reader to the full version
of the paper.

For simplicity assertions are denoted by ¢, ¥, thus identifying an assertion with the set of states
it denotes. Implication is interpreted as set inclusion, i.e. ¢ = 4 iff & C v. Also, conjunction and
disjunction are interpreted set-theoretically as intersection and union, respectively. The assertion
push(¢) is obtained by replacing each i-variable z' in ¢ by the i-variable 2*1; and pop(¢) is
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" obtained by first renaming with fresh variables all the i-variables of level 0 and then replacing

each remaining i-variable ' with il

Here, an ‘intermittent rule’ is a formulain temporal logic of the form D (éAat(i) = O(¥Aat(j))),
where O and O are the ‘always’ and ‘sometime’ operators, and at(7) indicates that execution is
at program point 7. The set of proof rules we consider contains a formalization of the induction
principle (Burstall’s “little induction”), a suitable axiomatization of TL (cf. [Sti92, CC93]), plus
the following path rule, which formalizes the “hand simulation” part of the method:

(7 € path(i, j) A psp.7.¢ # false) = O(d A at(7) = O(psp.7.¢ A at(7)))

A sound and relatively complete proof system1 w.r.t. F can be defined using these tools.

We illustrate by means of an example how the method can be applyed to prove total correctness
of a clp. The following composition rule will be used:

O(enat() = Oynati))  O(wras) = Oxratr))
O(gnat(i) = O(xrat(k)))

(1)

It enables us to compose intermittent assertions (note this is a particular case of the ‘chain rule’
which is one of the basic tools in the proof system presented in [MP83]).

Example 8.3 Consider again the program Prod. Let the initial assertion be ¢ = u® = [rg, ..., rx]A
—free(z) A free(zd;) Aat(l). ' 4 ‘
Suppose we want to prove that Prod satisfies the following assertion:

B(¢ = O(° =ro *... g Aat(2))) @

which says that for every state a of @, at least one execution of — prod(u,v) starting in « terminates
(i.e. reaches the pp 2) and its final state binds v to ro*...*r. Below we use A, B as a shorthand for
‘AA B’ (i.e. comma stands for conjunction). Using the path rule we get the following (simplified)
assertions:

D(¢ => O(v‘:zuzronwo,y‘):[rl,.,.,rk]),at(4))) (With path (1, 3, 4))
O (v + =k mron.erenw® y°0=[)at(4) = O(v*+ =% =rox..xri,y°=(],at(5))) (with path (4,6, 5))

D(ulzz":ru*...*r;‘,at(S) = 0(u°=rn*...mrk,at(2))) (Wlth path (5, 2))
The following assertions can be proven by straightforward induction:
D(vm"'l:z"‘:rn*m*rm #w° Y O=[rmagr o Rl m <k at(4) = O(uk+l =:k=r°*“'"’<*“'07y0=[]'at(4)))
(using as path = = (4,3,4)), and
D(vk'H=zk:rg*...wrk,y‘):[],at(iv) = O(U’=:°=ro-,..*rk,at(5))) (using as pa.th m= (5, 5))
Then, the repeated application of rule (1) to compose the above assertions yields (2). n]

9 Discussion

In this paper an alternative operational model for clp’s was proposed, where a program is viewed
as a dataflow graph and a predicate transformer semantics transforms a set of states associated
with a fixed node of the graph (corresponding to the entry-point of the program) into a tuple of set
of states, one for each node of the graph. To the best of our knowledge, this is the first predicate
transformer semantics for clp’s based on dataflow graphs. The dataflow graph provides a static
description of the flow of control of a program, where sets of constraints ‘travel’ through its arcs.
The relevance of this approach was substantiated in the Applications section.

We would like to conclude this paper by giving an extension of its results to more general CLP
systems. We have considered ‘ideal’ CLP systems. With slight modifications, the dataflow semantics
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F (and all its applications) can be adapted to deal also with ‘quick-check’ and ‘progressive’ systems
(cf. [JM94]), which are those more widely implemented. This can be done as follows. States are

considered to be pairs (c1, o) of constraints, instead than constraints, where ¢; denotes the active
part and cp the passive part.

States = {(c1,¢2) | ¢ and ¢y are constraints s.t. consistent(c;)},

where the test consistent(c;) checks for (an approximation of) the consistency of cy. Then rules R
and C of Table 1 have to be changed as illustrated below, where a state o = (c1, ¢a) is also denoted
by (a1, as):

R ((p(3)) 4 — (B -{pop) - 4, infer(a},a’ A F* :?O)),
P. :

a)
with o’ = push(a), if C'= p(I) — B is in
C ((d)-A a)— (A, infer(ai,asr A d%)),
if d is a constraint. Finally, the definition of sp has to be changed in:
sp.c.p = {a’ € States | o' = infer(a1, a2 Ac) and a € ¢}.

The operator nfer computes from the current state (¢, ¢y) a new active constraint ¢y and passive
constraint ¢y, with the requirement that ¢y Acy and ¢} Acj are equivalent constraints. The intuition
1s that c; is used fo obtain from c» more active constraints; then c» is simplified to ¢,. For instance.,

“in the example of Section 5, in the state of ¥ the constraint z° = z%+w? would be passive. because

the equation is not linear (cf. [JMSY92]). Then, in ¥§ this constraint is transformed by applying
first push to it and then infer . So z* = 2! x w! becomes active, because w! is bound to 1 and
hence the equation becomes linear.

Acknowledgments: We would like to thank Jan Rutten and the anonymous referees for their
useful comments.

\
References

7 [BGLM94] A. Bossi, M. Gabbrielli, G. Levi, and M. Martelli. The s-semantics approach: theory and ap-

plications. The Journal of Logic Programming, 19,29: 149-197, 1994.

[Bur74] ~ R.M. Burstall. Program proving as hand simulation with a little induction. Information Pro-
cessing, 74:308-312, 1974. .

[CC93] P. Cousot and R. Cousot. “A la Burstall” Intermittent Assertions Induction Principles for Prov-
ing Inevitability Properties of Programs. Theoretical Computer Science, 120:123-155. 1993.

[CMM95] L. Colussi, E. Marchiori and M. Marchiori. On Termination of Constraint Logic Programs. In

' Proc. First International Conference on Principles and Practice of Constraint Programming.

LNCS. Springer-Verlag, 1995. To appear.

[JMSY92] J. Jaffar, S. Michaylov, P.J. Stuckey and R.H.C. Yap. The CLP(R) Language and System.
ACM TOPLAS, 14(3):339-395. 1992. )

[IM94] J. Jaffar and M.J. Maher. Constraint Logic Programming: A Survey. JLP 19,20: 503-581, 1994.

[Mel87]  C. Mellish. Abstract interpretation of Prolog programs. In S. Abramsky and C. Hankin, edi-
tors, Abstract Interpretation of declarative languages, pp. 181-198. Ellis Horwood, 1987.

[MP83] Z. Manna and A. Pnueli. How to cook a proof system for your pet language. In Proceedings
10th ACM Symposium on Principles of Programming Languages (POPL), pp. 141-154, 1983.

[N1190] U. Nilsson. Systematic semantics approximations of logic programs. In Proc. PLILP, pp. 293-
306. Eds. P. Deransart and J. Maluszyniski, Springer Verlag, 1990.

[St192] C. Stirling.’ Modal and. Temporal Logics. In ‘S. Abramsky, Dov M. Gabbay, and
T.S.E. Maibaum, editors, Handbook of Logic in Computer Science, vol. 2, pp. 477-563, 1992.

[YT94] S. Yamasaki and K. lida. Transformation of Logic Programs to FP Programs Based on
Dataflows. Journal of Symbolic Computation, 17-18:157-182, 1994.

[WA84] W.W. Wadge and E.A. Ashcroft. LUCID, the datafiow programming language. Academic
Press, London, 1985.

Labeling in CLP(FD) with
evolutionary programming.

Alvaro Ruiz-Andino Illera, José J. Ruz Ortiz

Dpto. Informética y Automética
Fac. CC. Mateméticas. Universidad Complutense de Madrid
Av. Complutense s/n. Madrid 28040 SPAIN
Tel: 34 - 1- 394 44 68 - Fax: 34 -1- 394 46 07
e-mail: {arai,jjruz} @dia.ucm.es

£

SN s Lt

Abstract: Constraint logic programiming over finite integer domains allows a declarative
-and flexible ;t:éiement of combinatorial optimization problems. The paradigm used is
"constraint and generate”. Constraints prune in advance the search space, and then, a
enumeration phase, also called labeling, and a search strategy are needed to find the optimal
solution. In this paper we introduce the integration of evolutionary algorithms, a well known
computing paradigm, and the CLP(FD) paradigm. We have designed a system that enhances
CLP with techniques based in evolutionary programming, allowing to solve a constrajned_
optimization problems without the need of programming an explicit and exhaustive
enumeration and specifying a strategy to find the optimal solution. The paper describes the
algorithms used to implement the evolutionary program, and also the design details of the
genetic operators. Finally, we present an example of the operation of the prototype of the
system, which has been implemented in ECLiPSe.

Keywords: CLP(FD), constrained optimization problems, evolutionary programming.

'

1 Introduction. )
The main advantages of applying the CLP(FD) approach (Constraint Logic Programming

‘over finite integer domains) [VH89] to cost optimization problems are its flexibility and

ease of programming [Din90,Wal94]. Combinatorial optimization problems over natural
numbers are defined as follows: given a set of variables ranging over natural numbers, a
set of constraints between these variables, and an objective function; the problem is to find
an assignment of values to the variables that satisfies the constraints and optimizes (i.e.,
minimizes or maximizes) the objective function. ) |
The basic paradigm used to solve this kind of problems in CLP. is "constraint and
generate", but in many cases after the constraint phase the remaining search space can be
quite large, so the way labeling is performed plays an important role. CLP supports search
over a solution space structured into a tree, some of whose leaves are feasible solutions.
The constraints allow to prune in advance during the search some of the branches whose
leaves include no feasible solutions. Optimization problems require not just a feasible
solution but an optimal one, assuming some function associating a cost with each solution.
Finding the optimum requires some kind of enumeration of the feasible solutions. The
enumeration efficiency can be improved using problem specific heuristics and/or general
methods like branch and bound. But the size of many constrained search problems prevent
the problem from being tackled by any complete search technique, even when the Sfaarch
space may be pruned by constraint handling. For such problems approximation algorithms
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are a good alternative. These kinds of algorithms do not guarantee to find an optimal
solution, but offer a high probability of finding a good solution by exploring only a part of
the solution space. In this paper we introduce the integration of an approximation
technique called evolutionary programming into CLP(FD) to solve constrained
optimization problems. This extension allows the programmer to be freed from specifying
the labeling and optimization strategies.

1.1 Background on evolutionary programming.

An evolutionary program is a stochastic computational device, based on principles of
evolution and hereditary, that allow an effective search in very large search space.
Evolutionary programming comes from the refinement of genetic algorithms. As hold in
[Mic94], "genetic algorithms + data structures = evolution programs". For many hard
search problems, such as the traveling salesman problem, assembly-line sequencing and
scheduling, evolutionary algorithms have been used very successfully [Gol89]. The
skeleton of an evolutionary program in shown in Figure 1.

procedure evolutionary program
begin
t := 0;
initialize P(t)
evaluate P(t)
while not termination-condition do begin
t = t+1;
select P(t) from P(t-1)
alter P(t)
evaluate P(t)
end;
end.

Figure 1.

An evolutionary program maintains a population of "chromosomes”, P(t) = {X It, Xnt }
for iteration r. Each chromosome represents a potential solution to the problem at hand,
implemented as some, possibly complex, data structure S. The initial population P(0) is
generated randomly or by any other method (initialize step). Then the populatiton is
evaluated (evaluate step), computing a "fimess” value for each chromosome X;" that
indicates a measure of the goodness of the chromosome as a solution to the optimization
problem. The objective function to be optimized is the basis for the computation of this
fitness value. Then a new population, P(t+1), is formed by selecting some chromosdmes
(select step) from P(z). Best fitted solutions are more likely to be chosen for survival.
Some members of the new population undergo transformations by means of "genetic"
operators to form new solutions (alter step). There are unary transformations m;
(mutation type), which create new solutions by a small change in a single chromosome
(m;: § — §), and transformations ¢j (crossover type), which create new solutions by
combining two (or more) randomly selected chromosomes (Cj.‘ S x §— §). Best fitted
solutions are more likely to be chosen for crossing-over. After some number of
generations (iterations) the program converges — it is hoped that the best chromosome
represents a near-optimum solution. There is a theoretical foundation for this kind of
algorithms based in the schemata theorem [Hol75], which is beyond the scope of this
introduction.
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Section 2 introduces the details of the of the evolutionary algorithm designed for its
integration in CLP(#D) in order to solve constrained optimization problems. Section 3

presents an example and some empirical results. Finally we discuss the conclusions and
future work.

2 - Labeling with evolutionary programming.

A constrained optimization problem within the framework of CLP(FD) may be stated in
the following way: given a tuple <V, D, C, f>, where:

o V={V; Vy,}:finite set of domain variables.

e D={D; Dy} :finite set of integer domains associated to the variables V;.

o C={Cy, G} :finite set of constraints between the variables in V.

¢ f: objective function ranging over V.

find an assignment of values from D to the variables in V that satisfies the constraints in C
and optimizes (maximizes or minimizes) the objective function f. First, constraints C; are
stated leading a reduction of the original domains, and then a labeling strategy is needed to
perform the search for the optimal assignment. Our aim is to enhance CLP(FD) with an
optimization technique that, given a list of domain variables and a cost expression, returns
a near optimal solution with respect to the cost expression. Searching will be performed
using a evolutionary constrained algorithm, using constraints to guide the genetic
operators to a feasible solution. In this section we introduce the main points of the design
of the evolutionary program.

2.1 Representation of solutions.

In highly constrained problems, a minimal change to a feasible solution is very likely to
generate an unfeasible one, but unfeasible solutions cannot simply be dropped from the
solution space because doing so would prevent certain good solutions from being
generated. Classical approaches overcome this problem using one or more tricks like
penalty functions, the avoidance of generating illegal solutions, repair algorithms, linear
recombination [Min92,Mic93]. The integration of evolutionary algorithms with the
constraint propagation and local consistency techniques embedded in CLP over finite
integer domains offer a new approach to solve this problem. We introduce an approach
where chromosomes do not represent a "ground" solution, but an "area" of the search
space, that is, variables are not labeled with an integer value, but a integer domain, so a
chromosome may include none or many solutions. Local consistency [VH92] and
constraint propagation does not guarantee that a not completely ground chromosome
includes a solution, but it may contain many, both good and bad, covering an area of the
search space. Genetic operators have been designed in order to both guarantee the
convergence to a "ground” solution while exploring as much as possible the search space.

~ During generation and recombination of chromosomes local consistency and constraint

propagation is triggered, keeping chromosomes within the feasible solution space as much
as possible.

A chromosome X;, which represents a set of potential solutions, is formed by the list
[d;, ...d,] where each d; is an abstract data type representing the integer domain
associated with the variable i of the list of domain variables to be labeled. Each
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chromosome, a potential solution, has an associated cost d,, which is also the integer
domain associated to the cost expression to optimize.

Besides the lists of dj's, we will also keep some extra information about each
chromosome for the implementation of the evolutionary mechanisms: its fimess value
(£it), its accumulated relative fitmess (arf), used in the select_chromosome step, and a
boolean flag to indicate if it will survive to the next generation.

2.2 The algorithm.
Figure 2 shows the main algorithm implemented in our system. It clearly follows the

skeleton shown in Figure 1. The following subsections will describe each step in detail,
giving the algorithm used for each underlined step.

procedure evolutionary_labeling_in_CLP (Vars : list of fd_vars;
£ : objective function); -
begin
t := 0;
initialize P(t): .
for i1:=1 to pop_size do
X; := random labeling(Vars);
evaluate P(t):
for 1i:=1 to pop_size do
X;j.fit := fitness(f, X;)
total_fitness := ¥ X;.fit
Xj.arf := ¥ (j :=1 to i) Xj.fit / total_fitness
while not termination-condition do
select P(t) from P(t-1): '
for 1:=1 to pop_size * prop_surv do begin

X+ := select chromosome (P(t)
mark Xj to survive
end;

alter P(t):
for 1:=1 to pop_size do
if not X; marked for survival then begin

X; :=. select_chromosome (P(t))
X, 1= select_chromosome (P(t))
replace X; with crossover(Vars,Xl’XE)
end; ’
for 1i:=1 to pop_size do
X; := mutation(Vars,X;)
evaluate P(t)
end;
final_solution := best solution(Vars,P(t))
end ..
Figure 2.

The initialize step is a loop that generates pop_size chromosomes by means of a
random_labeling procedure. Evaluate step computes the fitness value of each
chromosome of the population, and also its accumulated relative fitness. In the select step,
some randomly chosen chromosomes are marked as survivors, so they won't be replaced
by the new chromosomes generated by crossover. Best fitted chromosomes are more
likely to be selected, as select chromosome procedure make a random selection based in
the accumulated relative fitness. The alter step has been divided in the two genetic
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operators, crossover and mutation. New chromosomes generated by crossover take the
place in the population of those chromosomes that were not chosen for survival. New
chromosomes generated by means of mutation replace the chromosome used to produce
the mutation. '

2.3 Generating the initial population.

The first step in any evolutionary program is the generation of an initial population. Each

chromosome Xl-o = [d}, ..,d,] of this initial population is generated by means of a

random labeling procedure as shown in figure 3 and described below:

o Variable (V;) selection: next variable to be labeled is randomly selected.

o Value (domain d;) selection: from the domain of the variable V;, which ranges from
Min to Max, two values Low and Up are randomly chosen (Min <= Low <= Up <=
Max). Then V; is constrained to a domain d;, which is a reduction of the original
domain. This reduction may be performed in two different ways: one reduces the
domain removing values from the top and/or bottom, and the other tries to reduce the
domain towards one of its boundaries. For each variable we randomly select one of
this two ways, using a random real number between 0.0 and 1.0, and a parameter,
called boundary_prob, that specifies the probability that the "boundary” domain
reduction is chosen.

If the first way of domain reduction is chosen, the new domain d; is chosen randomly,
in a non deterministic way, from the following domains:

o Low.Up
e Low..Max
e Min. Up

If boundary reduction is chosen, the new domain d; is chosen randomly, in a non
deterministic way, from the following domains:

o  Min..Low

e Up.Max

function random_labeling (Vars : list of fd_vars) : chromosome;
begin
randomly select a variable V; from Vars
fdvar_range(Vj,Min,Max);
choose_randomly (Low,Up) from [Min to Max];
if random_number < border_prob then begin
. try secuencialy in any order:
Vi :: Low..Up
Vi :: Low..Max
Vi :: Min..Up

end
else begin
try secuencialy in any order:
Vi :: Min..Low
) Vi :: Up..Max
end °
if all fail them V; :: Min..Max
fdvar_domain(V&,di)
return d; U random_labeling(Vars / Vj);
end.

Figure 3.




574
2.4 Evaluation of the population.

The population is evaluated every generation, computing a fimess value for each
chromosome. Fitness indicates how good a chromosome is as a potential solution to the
problem, so the domain associated to the cost expression to optimize is the basis for the
computation of this finess value. The probability of survival and reproduction of a
chromosome is directly proportional to its fitness value.

Figure 4 shows the main steps of the computation of the fitness value. The fitness of
each chromosome is computed as fid,[d}, ..,d,]), a function of d,., the domain of the cost
function for that particular solution, and the list of dj's, the remaining domains of the
variables. The values L4, and U4, the lower and upper bounds of d. respectively, are the
main contribution to the fitmess function (rasic_fitness), but there is also two penalty
components, one (penalty_cost) depending on Sd.., the size of the domain d., and other
(penalty_vars) depending on the sum of the sizes of dj's. The introduction of these
penalty factors favors those chromosomes closer to be ground, so that the algorithm tends
to converge to a ground solutions.

Parameters penal_cost and penal_vars may take any real value from 0.0 to 1.0. They
weights the penalty introduced to those chromosomes not completely ground. Then, as
shown in Figure 2, the total_fitness value is computed as the sum of all fitness values,
and finally, we compute the relative fimess (X;.fit / total_fitness) for each
chromosome, and its accumulated relative fitness value, used for the random selection of a
chromosome with a probability proportional to its fitness.

function fitness(Cost: function; [dl"--'dn]’ list of domains) : real;
begin

cost_range_size(Cost,de,Uac,sdc);

Fitl:= basic_fitness(de,Udc);

Pc := penalty_cost(Sdc); /* 0.0 to 1.0 */

Pv := penalty_vars(¥ size(d;)); /* 0.0 to 1.0 */
Fit2 := (l-Pc*penal_cost) * Fitl;
Fit3 := (l-Pv*penal_vars) * Fit2;
return Fit3
end.
Figure 4.

2.5 Selection of chromosomes to survive.

Some chromosomes from population P(z-1) will be present in population P(z). This set of
chromosomes is randomly chosen, but as we want the population to converge to a good
solution, chromosomes with a higher fitness value are more likely to be chosen. Selecting
in a random fashion allows some "no good" chromosomes to be selected for survival and
crossover. This is an important point of the evolutionary mechanism: bad solutions cannot
be simply dropped because they may eventually lead to a good solution. Figure 5 shows
the algorithm that randomly chooses a chromosome of the population with a probability
proportional to its relative fitness. This algorithm is also used to select parent
chromosomes for the crossover operator.
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function select_chromosome (P : population) : chromosome;
begin

R := random number between 0.0 and 1.0.

i::l,’

while R > X;j.arf do i:=1i41;
return Xj
end.

Figure 5.
2.6 Genetic operators.

Genetic operators generate the new chromosomes that will be added to population P(z)
from chromosomes from population P(t-1). The design of these operators is a crucial
point, as they must guarantee that new individuals "inherits" the good properties of their
parents, and also must allow the exploration of new areas of the search space.

In simple evolutionary programs, like classical genetic algorithms, chromosomes are
coded as bit strings. Binary mutation just inverts some randomly selected bits, and binary
crossover concatenates two substrings obtained from splitting the parents. However, in
evolutionary programs chromosomes are complex data structures, and genetic operators
are much elaborated. The operators used in our system are quite more complex than the
classical ones, not just because they work over a complex data structure (a list of finite
integer domains), but mainly because they trigger the local consistency and constraint
propagation techniques embedded in CLP(FD). Anyway, because of intuitive similarities,
we cluster the operators in the standard two classes, mutation and crossover. We have
included two mutation operators, which create new solutions by a small change in a single
chromosome, and a crossover operator, which create a new solution by combining two
chromosomes.

2.6.1 Crossover,

"Dead" chromosomes (those not selected for survival) are replaced by new chromosomes
generated by means of the crossover operator. Dead chromosomes are not actually
replaced until all new chromosomes are generated, so dead chromosomes may also be
selected to generate a new ones by crossover. As shown in Figure 2, parent chromosomes
are chosen using the select_chromosome procedure (described in subsection 2.5), which
randomly selects a chromosome with a probability proportional to its fitness.

Figure 6 shows the algorithm used for crossover. Given two chromosomes the'
Crossover operator generates a new solution which is an approximate mixture of the two
parents. From two chosen parents, X; = [dj}, ..d,l] and X; = [dY, ..dy]], a new
chromosome X = [dj, ..,d,] is generated by means of a crossover labeling procedure as
follows: (Keep in mind that whenever a domain variable is forced to modify its domain,
local consistency and constraint propagation is triggered)

1. Variable (V) selection: next variable to be labeled is randomly selected, being Dy, its
associated domain.

2. Value (domain) selection: Value (domain df) selection: if dki N diJ = @ then dy, is
randomly assigned the domain intersection or the domain union between dj and dy/,
with a probability xov_inter_prob in favor of the intersection. If dki N dkf = J then
we try to assign to df, in random order, dj! or.dyl. If all trials fail, dy, is assigned Dy,
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function crossover (Vars:list of fd_vars;Xi,Xj :chromosome) : chromosome ; ° Min..Up
begin o Low.Max
randomly s;lect a variable Vi from Vars; function mutation(Vars : list of fd_vars; X : chromosome) :chromosome;
fd\l(ar_domaln (Vi Dy) begin
dy = k_th(X;) R := random number between 0.0 and 1.0
CISERE 'k—th(?{j) if R > mut_probl then X' := mutationl (Vars,X)
if dpl ndy? # then begin ) . else X' := X
R := random number between 0.0 and 1.0 ] R := random number between 0.0 and 1.0
if R > xov_inter_prob then dj := dkl r\ko ' ) if R > mut_prob2 then X'' := mutation2(Vars,X')
: - else dy := ditudy] else X'' := X'
end - return X'’
else begin end;
try secuencialy in random order:
dy i= dki ’ function mutationl (Vars : list of fd_vars; X : chromosome) : chromosome;
end . ) randomly select a variable Vi from Vars
if all fail them dy := Dy for 1i:=1 to length(Vars) do
Vi i dy /* may fail and backtrack */ ) . ' if i <>' k then V; :: dj
return dy U crossover(Vars / Vi, Xj / axt, X5/ aiJ) fdvar_domain (Vy, dy"')
end; : ) return (X with dy replaced by di’)
Figure 6. end;
. : v function mutation2(Vars : list of fd_vars; X : chromosome) : chromosome;
2.6.2 Mutation. ‘ ‘ ‘ begin
Mutation is the unary genetic operator that transforms a single chromosome in a new randomly select a variable Vi from Vars
chromosome. It plays the role of "jumping" to unexplored areas of the search space. We f°ri e l=l< :c]’{ 1‘31? (V‘f‘rs.)_ ddf’
have included two mutation operators, which may be applied to any chromosome in the G t= k_th(x); : .
population with a probability of mui_probl and mut_prob2, respectively. Operator 1 fdvar_range (Vj, Min, Max)
intends to expand the domain of the chosen variable, whereas operator 2 intends to . domain_range (dy, Low, Up) ;
" "move" the domain of a variable to new values. Figure 7 shows the algorithms for the tr}; n aniﬁ‘;r d‘iro’w
. k = ..
mutation operators. dy' := Up..Max
1. Operator 1: . Vi =0 dy!
. . , if both fail them dj’' := Min..Max
Given a chromosome X = [d}, ..,d,,], we generate a new mutated chromosome X' = return (X with dy replaced by dy ')
[d},..., d}',.., dy], assigning to each variable V; the domain dj, except a randomly end;
chosen variable Vi, which is constrained to a new domain dj', computed from its Figure 7.

associated domain Dy, ranging from Min to Max, and dj, ranging from Low to Up

. : Low 2.7 Termination condition.
(Min <= Low <= Up <= Max). d'is chosen, randomly, in a non deterministic way,

The termination condition is the disjunction of the following factors:

froml; Masx o e reaching the maximum number of iterations specified by the parameter max_izer.
. Mlz)n Low o reaching a user specified time-out.
If both trials fail, the domain of V}, is left unchanged. | e obtaining a chromosome with a user specified cost.

3 Operator 2 ’ e reaching a hopelessly invariant population.

. Operator 2: ,

Given a chromosome X = [dj, ..,d,,], we generate a mutated new chromosome X' = / 2.8 Extractfng the best solution.
[d),..., dy'.., dy], assigning {0 each variable V; the domain d;, except a randomly Once the termination condition is met, we must extract the best chromosome from the
chosen variable Vi, which is constrained to a new domain dj’, computed from its population. Some or even all chromosomes in the population may not be completely
associated domain Dy, ranging from Min to Max, and d, ranging from Low to Up ground solutions, so we must use a heuristic to extract the best ground solution present in
(Min <= Low <= Up <= Max). dj,"is chosen, randomly, in a non deterministic way, the population. Figure 8 shows the algorithm used to perform this search in the

from: population.
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First we look in the population for the best "ground” chromosome, that is, the best
fitted chromosome X,; = [d}, ..,dy,] such that for all i, d; is a singleton domain, and also
for the chromosome ng that, not being completely ground, offers a higher fitness. From
chromosome X0, we generate a ground solution X,, by means of a classical labeling
procedure, and a pool of chromosomes by means of a random labeling procedure. From
this pool, we extract the best ground solution X, 3 and the best non ground chromosome.
The latter gives place to a ground solution X4 by means of a classical labeling procedure.
The solution offered as the final near-optimal labeling for the input variables will be the
one which offers a better value for the objective function to optimize among the four
ground solutions Xg;, Xgp, X,z and Xgy.

function best_solution (Vars : list of fd_variables;

P : population ) : list of integers;

begin

Xg1 = best fitted ground solution in P

Xng = best fitted non completely ground chromosome in P

Xg2 = labeling(Xng)

Vars' := Vars updated with X,

P' := generated by random_labeling(Vars');

Xg3 3= best fitted ground solution in P’

X'phg = best fitted non completely ground chromosome in P’

Xg4 1= labeling(X'ng);

return max_fitness(Xgl,XgZ,XQJ,Xg4)
end;

Figure 8.
2.9 Parameters.

As seen throughout this section, an evolutionary algorithm uses some global parameters
-indicating the population size (pop_size), proportion of chromosomes to survive from one
generation to the next one (prop_surv), the maximum numbers of generations to run
(max_iter), two penalty percentages (penal_cost and penal_vars), and four different
probabilities that tune the behavior of the genetic operators (boundary_prob,
xov_inter_prob, mut_probl, mut_prob2). The values of these parameters affects
dramatically the performance of the evolutionary algorithm, and there are no general
values that performs optimally for every benchmark. Table 1 shows the usual range for
each of the parameters.

pop_size 10 - 100 max_iter 50 - 1000
boundary_prob  0.20 - 0.70 penal_cost 0.05-0.40
penal_vars 0.20- 0.90 prop_sury 0.30 - 0.80
xov_inter_prob  0.30-0.70 mut_probl 0.01-0.15
mut_prob2 0.01-0.15

Table 1.

Parameters should be initialized every time the evolutionary algorithm is invoked in
accordance to the initial domains of the variables to be labeled and the function cost. Also,
parameters tuning the behavior of the genetic operators should be tuned every fixed
number of iterations depending on the evolution of the population. It is still under
development a heuristic-guided self adaptive parameter tuning feature, which is essential
to achieve our goal, a self contained optimization predicate for constraint logic
programming over finite integer domains.
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3 Example.

A prototype of the system has been implemented in Prolog using the logic programming
environment ECLiPSe, which offers several facilities for the integration of extensions in
logic programming [Ecli94]. The constraint handling itself is provided as an extension by
means of a library. We pretend that the final version of our system will also be deliverable
as a library for the ECLiPSe system.

In this section we describe a simple example of the system solving a transportation
problem. It seeks the determination of a minimum cost transportation plan for a single
commodity from n sources to k destinations. The amount of supply at source i is sour(i),
and the demand at destination j is dest(j). The unit transportation cost between source i

and destination j is cost(i,j). The amount transported from source i to destination j is Xl
The constraints and the objective function are:

ij:l Xijj = sour(i) for i=1, ..., n

pILr Xjj = dest(j) for j=1, ..., k

=2 Xjj * cost(i,j)

Test data correspond to a n=7, k=7 problem taken from [Mic94]. Figure 9 shows the
evolution of the cost of best chromosome in the population vs. the number of generations.

1900

C 1800
o 1700
s 1600
t 1500
1400

0 100 200 300 400 500

Number of generations.

Figure 8.

The shape of the curve is characteristic of evolution programs. Chromosomes in the
randomly generated initial population have very poor fitness values, but in a few iterations
good solutions are generated. Then, new better solutions take more generations to appear,
and also all chromosomes in the populatxon slowly tend to converge to the same near-
optimal solution.

We are currently working on a set of benchmarks of combinatorial optimization
problems: job-shop scheduling, traveling salesman, graph partitioning, assembly line
sequencing, and time tabling. First results lead us to expect that a final version of the
system will be competitive with classical optimization strategies like branch and bound.

4 Conclusions and future work.

We have introduced a model to integrate evolutionary algorithms in constraint logic
programming over finite integer domains in order to perform the optimal labeling phase of
combinatorial search optimization problems. Chromosomes represent not completely
ground solutions to the problem to guarantee a wider covering of the search space. A set
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of genetic operators have been designed in accordance to the particular characteristics of
constraint logic programming. We have developed a prototype using the facilities
provided by the logic programming environment BECLiPSe and performed some
experiments that allow us to expect that a final version of the system will be competitive

with other optimization methods, like branch and bound, when applied to problems with a
vast search space.

This work is still in its first stage. We believe that the integration of the evolutionary
programming paradigm in constraint logic programming for optimization purposes has a
promising future. The implemented prototype has many drawbacks to be fixed, more
investigation is to be done to design better genetic operators and a self adaptive parameter
tuning is still missing. Besides this problems, future work will emphasize in exploiting the
great possibilities of parallelism that the integration evolutionary algorithms and CLP
offers.
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Abstract e et

Pattern analysis consists in determining the shape of the set of solutions of the constraint
store at some program points':‘ Our basic claim is that pattern analyses can all be described
within a unified framework of constraint domains. We show the basic blocks of such a frame-
work as well as construction techniques which induce a hierarchy of dorfiains. In particular,
we propose a general methodology for domain combination with asynchronous interaction.
The interaction among domains is asynchronous in that it can occur at any time: before,
during, and after the product operation in a completely homogeneous way. That is achieved
by regarding semantic domains as particular kinds of (ask-and-tell) constraint systems. These
constraint systems allow to express communication among domains in a very simple way.
The techniques we propose allow for smooth integration within an appropriate framework for
the definition of non-standard semantics of constraint logic-based languages. The effective-
ness of this methodology is being demonstrated by a prototype implementation of CHINA, a
CLP(H, N) analyzer we have developed.

Keywords: Constraint Systems, Constraint-based Languages, Data-flow Analysis, Abstract
Interpretation.

1 Introduction

Pattern analysis for constraint logic-based languages consists in determining the shape of the set
of solutions of the constraint store at some program point. For usual applications (most promi-
nently, program specialization) the interesting program points are procedure calls and procedure
(successful) exits.

In the case of Prolog, pattern analysis has been extensively studied (see [9] for a summary of
this work). In the case of CLP, besides the generalization to CLP(H) of the ideas and techniques
used for Prolog, not much has been done. A key observation here is that the shape of solutions can
be conveniently described by constraints. Thus the CLP framework is general enough to encompass
(some of) its own data-flow analyses. Intuitively, this is done by replacing the standard constraint
domain with one suitable for expressing the desired information. This fundamental aspect was

‘brought to light in [5] and elaborated in [12].

For languages of the kind of CLP(N), where N is some numerical domains, the first steps
towards pattern analysis were moved in [3, 4]. [2] describes some of the more important applications
of such analyses. The work done in this field is being generalized to CLP(H, N) languages,
integrating numerical and symbolic pattern analysis. This is done with a variety of techniques,
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including depth-k abstraction. A more restricted kind of integration has recently been described
in [17]. Here, the numerical part is essentially the one proposed in [3].

Now, instead of directly describing the techniques employed in 3, 4, 2, 17}, we concentrate on
what is missing from them: a general notion of constraint domain which allows one to adequately
describe both the “logical part” of concrete computations (e.g. answer constraints) and as much
pattern analyses (e.g. the shape of those answer constraints) we can think about.

We believe that it is possible to describe every pattern analysis within a unified framework of
constraint domains. In particular we wish the framework being able to accommodate approximate
inference techniques whose importance relies on very practical considerations, such as representing
good compromises between precision and computational efficiency. Some of these techniques will
be sketched in the sequel.

Then, what will be needed is a generalized algebraic semantics for constraint logic programs,
parameterized with respect to an underlying constraint domain. The main advantages of this
approach [12] are that: (1) different instances of CLP can be used to define non-standard semantics
for constraint logic programs; and (2) the abstract interpretation of CLP programs can be thus
formalized inside the CLP paradigm.

Let us concentrate on constraint domains for pattern analysis. They are algebraic structures
of the kind B A e fent potboy, e

D= <D,j,®,€lB,{EA},0,1,{dj-}‘r}>, (1)

where! D is the set of constraints expressing the properties of interest. D is partially ordered with
respect to < which, intuitively, relates the information content of constraints: Cy < C» means that
“C, is more precise than Cy”. ® and @ are binary operators modeling conjunction and (weak)
disjunction. {JF} is a family of unary operators, indexed over finite subsets of variables, modeling
projection of constraints onto designated sets of variables. 0 and 1 represent, intuitively, the class
of unsatisfiable constraints and the class of non-constraints (i.e. those which do not provide any
information), respectively. The family of distinguished elements {dxy }, indexed on pairs of n-tuple
of variables, allows to model parameter passing.

In this setting, data-flow analysis is then performed (or at least justified) through abstract
interpretation [8, 9], i.e., “mimicking” the program run-time behavior by “executing” it, in a finite
way, on an approximated (abstract) constraint domain. We will thus have two constraint domains
of the form (1): the “concrete” and the “abstract” one. Following a generalized semantic approach,
the concrete and abstract semantics are more easily related, being instances (over two different
constraint systems) of the same generalized semantics, which is entirely parametric on a constraint
domain. Thus, to ensure correctness, it will be sufficient to exhibit an “abstraction function” «
which is a semimorphism between the constraint domains [10].

In this paper we describe a hierarchy of constraint systems which capture all the pattern
analyses we know of, as well as the “concrete” collecting semantics they abstract. The basis is
constituted by a set of finite constraints, each expressing some partial information about a program
execution’s state. Once this is given (simple constraint systems, Section 2), we provide standard
ways of representing and composing finite constraints (determinate constraint systems, Section 3).
Then we can have the notion of dependency built into the constraint system (ask-and-tell constraint
systems Section 4). Another construction is the one which allows us to treat disjunction (powerset
constraint systems, Section 5).  Finally, in Section 6 we sketch how to achieve combination of
domains by considering dependencies within product constraint systems. We feel that, indeed, this
is one of more important contributions of this paper.

For the sake of simplicity we will present constraint systems omitting the distinguished elements
modeling parameter passing. For most applications dgy is simply a constraint expressing some
sort of equivalence between X and Y. We disregard them also because, differently from [12], we
do not require them to satisfy any interesting algebraic property.

1For space reasons we omit many details.

“terval of an expression from the intervals of its sub-expressions. Let f(ey,...
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2 Simple constraint systems

The basic blocks of our construction are simple constraint sysiems (or s.c.s.), very similar to those
of [19], but with a totally uninformative token (T) as in [20].

Deﬁniti9n 2.1 (Simple constraint system.) A simple constraint system s a struclure (C,F, L, T),
where C is a set of (not betier specified) constraints, L € C, T € C, and + C 07 (C)x C is a compact
entailment relation such that, for each C,C' € p;(C) and c,c’' € C:

Ei. ¢c€C = Ckte, Es. (Che)A(YVdeC:C'HC) = C'hg,
E,. CFT, Es {Ll}Fc

We consider also the extension = C p(C) x p(C) such that, for each C,C’ € p(C),
CHC' & YdeC':3C"C;C.C"FC.

It is clear that condition E; implies reflexivity of I, while condition E3 amounts to transitivity. Es
qualifies T as the least informative token: it will be needed just as a “marker” when the product
of simple constraint systems will be considered (see Section 6). E4 ensures that C is a finitely
generable element.

In general, describing the “standard” semantics of a CLP(X) language is an easy matter. Let
T be the theory which corresponds to the domain X [15]. Let D be an appropriate set of formulas
in the vocabulary of T closed under conjunction and existential quantification. Define T + ¢ iff
T entails ¢ in the logic, with non-logical axioms T.. Then (D,F) is the required simple constraint
system. For CLP(H) (i.e. pure Prolog) one takes the Clark’s theory of equality. For CLP(RR) the
theory RCF of real closed fields will do the job.

However, describing “standard” constraint domainsis not the reason which motivated our work.
Here are the original motivations.

2.1 Pattern analysis for numeric domains

The analysis described in [3, 4, 2] is based on constraint inference (a variant of constraint prop-
agation) [11]. This technique, developed in the field of artificial intelligence, has been applied to
temporal and spatial reasoning [1, 21].

Let us focus our attention to arithmetic domains, where the constraints are binary relations
over expressions. Let E be the set of arithmetic expressions of interest and | the set of intervals over

some computable set of numbers (e.g. rational or floating point numbers). Then our constraints
are given by

C={eraey |me{=#<<,>> e, e2€ E}U{exl|ecETel}.

The meaning of the constraint e < I is the obvious one: any value the expression e can take is
contained in I. Thus C provides a mixture of qualitative (relationships) and quantitative (bounds)
knowledge.

Now, the approximate inference techniques we are interested in can be encoded into a conse-
quence relation - over C. Let us see some of them. The most trivial one is symmetric closure:
{e1 0aea} eg ! ey, where s is the inverse of >< (e.g., < is the inverse of >, > of < and so
on). A more interesting qualitative technique is transitive closure, allowing inferences like A < C
from A < B and B < C. It is formalized by axioms of the form {e; < es,e2 < €3} F &1 < es.
A classical quantitative technique is-interval arithmetic which allows to infer the variation in-
,er) be any arith-
metic expression having" €1, ..., eg as subexpressions. Then {f(e1, aep)<lier <. . e <
I} + f(el,‘“,f'z.k) < f(I,...,Iy), where fi1¥ — Iis such that for each zy €L, ...,z € I,
f(z1,...,zx) € f(D, ..., It). An example inference is: A < [3,6) A B < [-1,5]F A+ B <« [2,11).
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Another technique is numeric constraint propagation, which consists in determining the relation-
ship between two expressions when their associated intervals do not overlap, except possibly at
their endpoints. The associated family of axioms is {e; < I1,e2 < I} b ey o< ey, with the side
condition Yz; € I1,z2 € I : z1 5 z5. For example, if A € (=00,2], B € [2,+00), and C € [5,10],
we can infer that A < B and A < C. It is also possible to go the other way around, i.e., knowing
that U < V may allow to refine the intervals associated to U and V so that they do not overlap.
We call this weak interval refinement: {e; > ez, e1 < I1,e2 < Io} F ey < I{, where I is obtained
by shrinking I; so to ensure that z; € I{ iff z; € 1 A3za € I . 71 < 22,

In summary, by considering the transitive closure of  and with some minor technical additions
we end up with a simple constraint system which characterizes precisely the combination of the
above (and possibly other) techniques.

3 Determinate constraint systems

By axioms E; and Ej of Definition 2.1 the entailment relation of a simple constraint system is a
preorder. Now, instead of considering the quotient poset with respect to the induced equivalence
relation, a particular choice of the equivalence classes’ representatives is made: closed sets with
respect to entailment. This representation is a very convenient domain-independent strong normal
form for constraints.

Definition 3.1 (Elements.) [19] The elements of an s.c.s. (C,F, L, T) are the entailment-closed
subsets of C, that is, those C C C such that AC' Cy C . C' ¢ implies ¢ € C. The set of elements
of (C,F) is denoted by |C|.

The poset of elements is thus given by {|C|, D). Notice that we deviate from [19] in that we order
our constraint systems in the dual way.

Definition 3.2 (Inference map, finite elements.) Given a simple constraini system (C,F, L, T)
the inference map of (C,F, L, T) is the function p:p(C) — p(C) given, for each C C C, by
p(C) = {c|3C" C; C.C" F c}. Itis well known that p is a kernel operator, over the com-
plete lattice {p(C), D), whose image is |C|. The image of the restriction of p onto f7(C) is denoted
by |Clo. Elements of |C|o are called finitely generated constraints or simply finite constraints.

From here on we will only work with finitely generated constraints, since we are not concerned
with infinite behavior of CLP programs. The next step in our construction is about determinate
constraint systems (or d.c.s.).

Definition 3.3 (Determinate constraint system.) Let § = (C,F, L, T) be a simple constraint
system. Let 0,1 € |Clo, ®:[Clo % |Clo — |Clo, and F C |Clo x |Clo be given, for each C1,C3 € [Clo,
by

0 = C, Ci®C, = p(CLUCY),

1 p((Z)), CikFCy & C1®Cy=Ch.

The projection operators Ia:|Clo — |Clo are given, for each A C; Vars and each C € p(C), by

3.C=p({ceC|FV()CA}).
Finally, let ®: |Clo x |Clo — |Clo be an operator enjoying the following properties:
J1. {IClo, ®, 0) is a commutative and idempotent monord;

Jy. for each C1,Cs € |Clo, C1 F C1 @ Cy and Co + C1 ® Co:
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We will refer to the siruclure <|C|0,I-,®,€B, {I»},0, 1) as the determinate constraint system owver
S and @. The relation T induced by & over |Clo is given, for each C1,Cy € |Clo, by C1 C Co iff
Cy ® Cy = Cy. The relations b and T are referred 1o, respectively, as the approximation ordering
and the computational ordering of the determinatle consiraint system.

Observe that the required conditions on & are quite reasonable. The purpose of & is that of
“merging” the information originating from different paths in the semantic construction. In this
view, axiom J is very natural: associativity and commutativity amount to say that we can merge
paths in any order, idempotence means that we do not loose precision blindly, and 0 being the
monoid unit accounts for the ability of discarding failed computation paths. Condition J, states
the correctness of the merge operation, characterizing it as a (not necessarily least) upper bound
operator with respect to the approximation ordering.

Notice that the distinction between approximation ordering and computational ordering is
important. We assume that our semantics are defined as (approximations of) least fixpoints of some
operator? ¢. So, while the approximation ordering, in general abstract interpretation, specifies the
relative precision of program properties (e.g. entailment of constraints in our particular case), the
computational ordering holds among the iterates ¢*(.L) during the fixpoint computation. The
case where the two orderings coincide (e.g. in [12]) is thus to be considered a special one. In our
treatment, keeping them distinct allows for more freedom in the choice of the merge operator.

Since the set of finite computation paths is, in general, denumerably infinite, we consider also
the following strengthening of Definition 3.3.

Definition 3.4 (Closed d.c.s.) A d.c.s. <IC'0,|‘, ®,€B,{EBA},O,1> 1s said closed iff it satisfies

J3. for each family {C; € ‘C|°}ieN’ @ieN C; = C1®C2® -+ exisls and is unigue in |Clo;
moreover, associalivily, commutativily, and tdempolence of @ apply to denumerable as well
as to finite families of operands.

So, the operation of merging together the information coming from all the computation paths
always makes sense in a closed determinate constraint system. Notice however that property Js is
only necessary when the semantic construction requires it. This will never happen when considering
“abstract” semantic constructions formalizing data-flow analyses (which are finite in nature). In
these cases the idea of merging infinitely many pieces of information is a nonsense in itself.

Determinate constraint systems enjoy several properties. Here are some elementary ones: C is
a partial order and C; C C; implies C; F Cy; ® and @ are componentwise monotone with respecs
to F and C, respectively; 0 is an annihilator for ®, while 1 is a unit for ® and an annihilator for
&@. Finally, for absorption laws we have Cy = (C1 @ C2) ® C and Cs + (C1 ® C2) ® Ca. At a higher
level, here is the situation.

Theorem 3.1 Let D = <|C|0,i-,®, @, {EHA},O,1> be a determinate consiraini sysiem. Then the
struciure <|C]o;|—,0,1,®> s a bounded meei-semilatiice and <|C|g; C, 0,1,69) is a join-semilaiiice.

Moreover, if D is complele, then (]CIO; I;,O,l,ea) 15 a (join-) complete latiice.

Notice that <]C]0,®, ®,0, 1), in general, is not a lattice. Both ® and @ are associative, com-
mutative, and idempotent. But, as stated above, while one of the absorption laws holds, only one
direction of the dual law is generally valid. In particular ® is not required to be componentwise
monotone with respect to C, and & might be not componentwise monotone with respect to |-.
Observe also that & does not distribute, in general, over ®, as this would imply the equivalence of
the two absorption laws. '

2For example, if we choose a bottom-up (backward) semantic construction for CLP, this will be an immediate
consequence operator Tp parameterized on the underlying constraint system [12]. We disregard this issues here, as
we concentrate on the construction of constraint domains.
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4 Ask-and-tell constraint systems

We now consider constraint systems having additional structure. This additional structure allows
to express, at the constraint system level, that the imposition of certain constraints must be
delayed until some other constraints are imposed. In [18] similar constructions are called ask-

and-tell constrainl systems. In our construction, ask-and-tell constraint s systems are built from
determinate constraint systems by regarding some kernel operators as constraints. We follow (18]
in considering cc as the language framework for expressing and computing with kernel operators.
For this reason we will present kernel operators as cc agents. For our current purposes we only
need a very simple fragment of the determinate cc language: the one of finite cc agents. This
fragment is described in [19] by means of a declarative semantics. Here we give an operational
characterization which is better suited to our needs.

Definition 4.1 (Finite cc agents: syntax.) A finite cc agent over a simple constraint system
§=(C,, L, T) is any siring generated by the following grammar:

Agent ::= tell(C) | ask(C) — Agent | Agent || Agent

where C' € |Clo. We will denote by A(S) the language of such strings. The following ezplicit
definition is also given:

ask(C1;...;Cn) — Agent = (ask(C;) — Agent) || ---||(ask(Cp) — Agent).

When this will not cause confusion we will freely drop the syntactic sugar, writing C and C; — C»
where tell(C) and ask(C;) — tell(C,) are intended.

The introduction of a syntactic normal form for finite cc agents allows to simplify to subsequent
semantic treatment.

Definition 4.2 (Finite cc agents: syntactic normal form.) The transformation 7 over A(S)
is defined, for each C%,C¢,C5,C" € |Clo and A, A1, Ay € A(S), as follows:

et - = { éa_;l(ca ®C') Zlirztzg
n(CY) = 1-C7,
(Cf — (C5 — 4)) ((Ct ® C3) — 4),
1(C* — (A1 || A2)) 1((C* — A1) || (C® — 42)),
(A1 || Az) = n(Ap) || 7(4s).

The following fact is easily proved.

Il

Proposition 4.1 The transformation 7 of Definition 4.2 is well defined. Furthermore, if A €
A(S) then 1(A) is of the form (Cf — Ct)||--- || (C& — CL).

Thus, by considering only agents of the form ||7_; Cf — C} we do not loose any generality. We
will call elementary agents of the kind C* — C* ask—tell pairs.

Now we express the operational semantics of finite cc agents by means of rewrite rules. An
agent in normal form is rewritten by applying the logical rules of the calculus modulo a structural
congruence. This congruence states, intuitively, that we can regard an agent as a set of (concurrent)
ask—tell pairs.

Definition 4.3 (A calculus of finite cc agents.) Let 1, = 1 — 1. The structural congruence
of the calculus is the smallest congruence relation =, such that (A(S), II,14) /=, is @ commutative
and idempotent monoid. The reduction rules of the calculus are given in Figure 1. We also define
the relation py C A(S) x A(S) given, for each A, A’ € A(S), by

Apa A & IneEN. A=A ANA =A ANAL — Aps s Ay s
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A= AL A Ay A=, A A A
Structure A — A, A || Az — AL || Ay
cs ke CiF G
Reduction g
educ (C* — C || (C8 — CL) — (CF — CY)
CirCs
Deduction ” o t a ! : 5 — Cj
(CF — G105 — Cf) — (CF — (T @ C})) (G5 — CF)
corCs
Absorption

(Cf = CHII(Cs — C3) — ((CT ©C3) — (C1®C) [ (G5 — C)

Figure 1: Reduction rules for finite cc agents.

In the following we will systematically abuse the notation denoting .4(S),=, simply by A(S).
Consequently, every assertion concerning A(S) is to be intended modulo siructural congruence.

Proposition 4.2 The {erm-rewriting system depicled in Figure 1 is strongly normalizing. Thus
the relation p, is indeed a function p,: A(S) — A(S)-

The situation here is almost identical to the one of Definition 3.2, in that we ha}!e a doma}n-
independent strong normal form also for the present class of constraints (i.e. agents) incorporating
the notion of dependency.

Definition 4.4 (Elements.) The elements of A(S) are those which are closed under (are the
fized points of) the inference map p,. The set of elements of A(S) will be denoted by | A(S)].

The strict analogy with determinate constraint systems continues with the following.

Definition 4.5 (Ask-and-tell constraint system.) Given a simple constraint systf?m S =
(C,F, L, T), let A=]A(S)]. Thenlet 04,1, € A, @ Ax A — A, and -, C A x A be given, for
each Ay, Ay € A, by

1—0, A1 ®@r A = pa(Ar]l A2),
1_"11 _Ali‘AAz p=4 A1®AA2=A1‘

0a
1,

I

The projection operators The projection operators Ix: A — A are given, for each A Cy Vars and
Ac A by )
3R A=pa(41),
where (Ct —»C"') €A and }

(1 =3aC%) @s A) ks (1 —C9)

Finally, let @,: A x A — A be an operator satisfying, for each Ay, Az € A, the following azioms:

A = { (35C°—3aC")

J¢. (A, @4,0,) is a commutative and idempotent monoid;
JS. for each Ay, Ay €A, A1 Fa A1 ©a Azrraid/flz Fa AL @4 As.

Again, we will denote by C, the relation induced by @4 over A: Ay E4 Ay iff Ay @A Ay = Ay, We
will refer 1o (A, F 4, ®a, Da, {EZ},OA,1A> as the ask-and-tell constraint system over & and @, .
We will call it closed iff il salisfies
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J§. for each family {A,- € A}ieN’ @:‘JEN A; = A1 @A A2®D, - - - exists and is unique in A; moreover,
associativity, commutativily, and idempotence of ®, apply to denumerable as well as to finite
families of operands. ¢

Once you have a determinate constraint system, you also have an ask-and-tell constraint system,
whose merge operator is induced as follows.

Definition 4.6 Let § = (C,F, L, T) be an s.c.s., and let D = (ICIO,F,®,®,{3A},O,1> a d.c.s.
over S. Let also A= | A(S)|, and let &,: A x A — A be given by

<iﬁ1 A;) N (,E Bj> = pa <jljrﬂl1(fh N Bj))>

where, for any two ask-tell pairs Cf — Ct and C§ — C}%, we define
if Ce - CY,
C*®C") otherwise,

being C® = C¢®CS and C* = Ct®C}. We will refer 1o &, as the merge operator over A induced
by D.

Proposition 4.3 (A, s, ®,, &a, {FA},04,14) is an ask-and-tell constraint system. Further-
more, 1 1s closed iff D 1is so.

© — et —cp={ th_

Notice that ask-and-tell constraint systems subsume the determinate ones, where only “tells”
were considered. In fact we have 7(C1) ®, 7(Cz) = 1(C1 ® C2) and n(C1) &4 7(C2) = 1(Cy & Cs).

1t is time to start showing why we are interested in this kind of constraint systems, even though
for the more exciting things we have to wait until the next section, where combination of constraint
domains are introduced. Ask-and-tell constraint system are needed to model approximate inference
techniques which can be very useful for pattern analysis.

4.1 More pattern analysis for numeric domains

Following Section 2.1, there is another technique which is used for the analysis described in [3, 4, 2]:
relational arithmetic [21]. This technique allows to infer constraints on the qualitative relationship
of an expression to its arguments. If we take the ask-and-tell constraint system over the simple
one of Section 2.1, we can describe it by a number of (concurrent) agents. Here are some of them
(where > ranges in {=,#,< <, >,>}):

ask(za0) — tell((z +y) > )
ask(z >0Ay>0Az=1) — tell((z*y)wy)
ask(zay) —  tell(e” eY)

An example of inference is deducing X +1 <Y 4+ 2X 4+ 1 from X > 0AY > 0. Notice that there
is no restriction to linear constraints.

5 Powerset constraint systems

For the purpose of pattern analysis it is not necessary to represent the “real disjunction” of con-
straints collected through different computation paths, since we are interested in the common
information only. To this end, a weaker notion of disjunction suffices. We define powerset con-
straint systems, which are instances of a well known construction, i.e., disjunctive completion® [10].
When this is applied to a simple constraint system &S it yields the following.

3Given a poset (L, L, <), the relation < C p(L) X p(L) induced by < is given, for each My,Mz € p(L) by
(My; < M) & (Ym1 € My : 3my € My . my < mz). A subset M € p(L) is said non-redundant iff L ¢ M and
Vmi,mz € M : m1 < ma = my = my The set of non-redundant subsets of L is denoted by pn(L). The {1+ 1ion
Q: p(L) — pn(L) is given, for each M € p(L), by QM) =M\ {meM |m=LvIn' eM.m<m'}.
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Definition 5.1 (Powerset constraint system.) Given an s.c.s. (C,F, L, T), the powerset con-
straint system over (C,F) is given by (gon(ICio),l'p,@)P,eap, {32},05,15), where

0, = 0, IS = Q({EEAC|C€S}),
1: {1}, SiFp Sy & VC1€S51:3C € Sy . C1 F Ca,
S1 ®e S2 Q(S; U S3), 516852 = Q{C1®Ca|Ci€S51,CE S5, })

With these definitions (pn(|C|g);l—p,0p,1p,®p,e}p>, is a join-complete, distributive bounded
lattice. We can of course apply the powerset construction also to ask-and-tell constraint systems.

o, ti et kg i e

[= DR i
§ 4

6 Combination of domains

It is well known that different data-flow analyses can be combined together. In the framework of
abstract interpretation this can be achieved by means of standard constructions such as reduced
product and down-set completion [8, 9]. The key point is that the combined analysis can be more
precise than each of the component ones for they can mutually improve each other. However, the
degree of cross-fertilization is highly dependent on the degree and quality of interaction taking
place among the component domains.

We now propose a general methodology for domain combination with asynchronous interaction.
The interaction among domains is asynchronous in that it can occur at any time: before, during,
and after the “meet operation” in a completely homogeneous way.

This is achieved by considering ask-and-tell constraint systems built over product simple con-
straint systems. These constraint systems allow to express communication among domains in a
very simple way. They also inherit all the semantic elegance of concurrent constraint programming
languages, which provide the basis for their construction. Recently, a methodology for the combi-
nation of abstract domains has been proposed in [7], which is directly based onto low level actions
such as tests and queries. While the approach in [7] is immediately applicable to an apparently
wider range of analyses (this is one subject for further study), the approach we follow here for
pattern analysis has the merit of being much more elegant.

We start with a set of simple constraint systems { (Ci Fi, Li, Ti) I i=1,...,n }, each expressing
some properties of interest, and we wish to combine them so to: (1) perform all the analyses at the
same time; and (2) have the domains cooperate to the intent of mutually improving each other.
The first goal is achieved by considering the product of the simple constraint systems.

Definition 6.1 (Product of simple constraint systems.) Given a finile family of simple
constraint systems S; = (Ci, i, Li, Ti) fori=1,...,n, the product of the family is the siruclure
given by T17; Si = (Cx,Fx, Lx, Tx), where the product tokens are )
y Trot1:¢n) | cn €Cn } S] {_Lx},

Crx={(c1,Taye- s Ta) Jar€Ci}U---U{(Ty,...

the product entailment is defined, for each C € 05(Cx), by

C f‘x (Cl,Tg,,..,Tn) E=4 Hl(C) |‘1 c1,
C Fx (T1,.-,Tno1,¢a) =N 0,.(C) Fn cn,
where, for each i = 1,...,n, I;: p(Cx) — Ci is the obvious projection mapping a set of n-tuples

onto the sei of i-th components. Finally, Ly = (L1,...,Ln) and T =(Ty,.. o Ta)

If you had a family of determinate constraint systems D; built on top of the ;’s, you can easily
“ecycle” the merge operators @; to obtain a merge operator ®x:|Cx]o X [Cxlo — |Cx|o -which
allows you to build a product d.c.s.
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So, taking the product of constraint systems, we have realized the simplest form of domain
combination. It corresponds to the direct product construction of [8], allowing for different analyses
to be carried out at the same time. Notice that there is no communication at all among the domains.

However, as soon as we consider the ask-and-tell constraint system built over the product, we
can express asynchronous communication among the domains in complete freedom. At the very
least we would like to have the smash product among the component domains. This is realized by
the agent ||7_,0; — 0. To say it operationally, the smash agent globalizes the (local) failure on
any component domain. This is the only domain-independent agent we have.

Things become much more interesting when instantiated over particular constraint domains. In
the CLP(R) system [16] non-linear constraints (e.g. X = Y % Z) are delayed (i.e. not treated by the
constraint solver) until they become linear (e.g. until either ¥ or Z are constrained to take a single
value). In standard semantic treatments this is modeled in the operational semantics by carrying
over, besides the sequence of goals yet to be solved, a set of delayed constraints. Constraints are
taken out from this set (and incorporated into the constraint store) as soon as they become linear.

We believe that this can be viewed in an alternative way which is more elegant, as it easily
allows for taking into account the delay mechanism also in the fixpoint semantics, and makes
sense from an implementation point of view. The basic claim is the following: CLP(R) has three
computation domains: Herbrand, R (well, an approximation of it), and definiteness.

In other words, it also manipulates, besides the usual ones, constraints of the kind X = gndb
which is interpreted as the variable X being definitively bound to a unique value. We can express
the semantics of CLP(R) (at a certain level of abstraction) with delay of non-linear constraints
by considering the ask-and-tell constraint system over the product of the above three domains. In
this view, a constraint of the form X =Y % Z in a program actually corresponds to the agent

ask(Y = gnd’; Z = gnd') — tell(X = Y = 2).

In fact, any CLP(R) user must know that X =Y % Z is just a shorthand for that agent! A similar
treatment could be done for logic programs with delay declarations.

Obviously, this cannot be forgotten in abstract constraint systems intended to formalize correct
data-flow analyses of CLP(R). Referring back to sections 2.1 and 4.1, when the abstract constraint

“system extracts information from non-linear constraints, i.e. ask(Y > 0AZ > 0AY 1 1) —

tell((Y * Z) b Z) by relational arithmetic, you cannot simply let X = Y % Z stand by itself. By
doing this you would incur the risk of overshooting the concrete constraint system (thus loosing
soundness), which is unable to deduce anything from non-linear constraints. The right thing to do
is to combine your abstract constraint system with one for definiteness (by the product and the
ask-and-tell construction) and considering, for example, the following agent:

ask(Y = gnd'; Z = gnd") — ask(Y >0AZ>0AY 1)
— tell((Y * Z) > Z)

Beware not to confuse X = gnd’ with X = gnd'. The first is the concrefe one: X is definite if
and ouly if X = gndl’ is entailed in the current store. In contrast, having X = gnd' entailed in the
current absiract constraint store means that X is certainly bound to a unique value in the concrete
computation, but this is only a sufficient condition, not a necessary one.

Let us see another example. The analysis described in [13] aims at the compile-time detection
of those non-linear constraints that will become linear at run time. This analysis is important
for remedying the limitation of CLP(R) to linear constraints by incorporating powerful (and com-
putationally complex) methods from computer algebra as the ones employed in RISC-CLP(Real)
[14]. With the results of the above analysis this extension can be done in a smooth way: non-linear
constraints which are guaranteed to become linear will be simply delayed, while only the other
non-linear constraints will be treated with the special solving techniques. Thus, programs not
requiring the extra power of these techniques will be hopefully recognized as such, and will not
pay any penalties. The analysis of [13] is a kind of definiteness. One of its difficulties shows up
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when considering the simplest non-linear constraint: X =Y # Z. Clearly X is definite if Y and Z
are such. But we cannot conclude that the definiteness of Y follows from the one of X .antfl Z, as
we need also the condition Z # 0. Similarly, we would like to conclude that X is deﬁx?lte if Y or
Z have a zero value. Thus we need approximations of the concrete values of va,rial:ﬂf"s (1:e. patte'rn
analysis), something which is not captured by common definiteness :a,nalyses while .bemg cruqal
when dealing with non-linear constraints. Then, just take the combination to obtain something

like?
ask(Y = gnd' A Z = gndt) — tell(X = gnd")
| ask(Y =0;Z = 0) — tell(X = gnd")
| ask(X = gnd' A Z = gnd' A Z # 0) — tell(Y = gnd')
| ask(X = gnd' AY = gnd* AY # 0) — tell(Z = gnd")

7 Conclusion and future work

We have shown a hierarchy of constraint systems which, both theoretically and experimentally,
have several nice features. One feature we did not mention before is that proving two members of
the hierarchy being one a correct approximation of the other is often quite easy.

Almost all of the ideas in this paper have been satisfactorily implemented in the CHINA analyzer
[2]. The experimental results obtained with the implementation represent a strong encouragement
to proceed along these lines. ' o '

In particular, we have proposed a general methodology for domain comb}natlon with asyn-
chronous interaction. The interaction among domains is asynchronous in that it can occur at any
time: before, during, and after the domains’ operations in a completely homogeneous way. This is
achieved by regarding semantic domains as particular kinds of (ask-and.-tel!) constraint systems.
These constraint systems allow to express communication among domains in a very simple way.
They also inherit all the semantic elegance of concurrent constraint programming lau‘guages7 w.hlch
provide the basis for their construction. Future work includes answering thfa following quest:(lons:
are there variation of these ideas which are applicable also to analysis oriented Atowards non-
logical” properties? That is, properties which are not preserved as the .c?mpu'tatl.on progresses?
Can we turn this constructions capturing dependence, combination, and disjunction into an algebra
of constraint domains?
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Abstract

In this paper, we present a new form of inheritance for (constraint) logic
programming. This inheritance is informally defined in the following terms:
a module inherits from the other one the consequences that are not covered
by itself (with respect to a fixed tuple of arguments). A computable approx-
imation to this definition is studied, based on finite failure. In particular, we
define the declarative semantics (based on Kunen’s 3-valued semantics) and
the operational semantics (based on constructive negation). Several examples,
showing the usefulness of the proposal are presented, as well as some hints for
its implementation.

Keywords: Module Inheritance, Object Orientation, Constructive Negation.

1 Introduction

From the software engineering point of view it is clear that modular facilities are abso-
lutely important in a programming language. Modularity is a key feature to support
a programming-in-the-large discipline of programming, including data abstraction,
reusability support and separate compilation. Nowadays, it is widely accepted that
object oriented concepts are a good basis for modularity. The different notions of
inheritance provide various module composition mechanisms.

In the context of logic programming, modularity comes from several approaches.
In particular, we will follow O’'Keefe’s approach [0’K85]: logic programs are elements
of an algebra and their composition is modeled in terms of operators of the algebra.

Module composition is treated as a meta-linguistic mechanism using various op-
erators to compose set of clauses: union, deletion, closure an overriding-union (see

*This research was supported in part by the spanish project TIC/93-0737-C02-02.




594

[O’KS85, MP88, BLM92, BLM94]). All these operators have been used to model
inheritance in logic programming. In object oriented programming there are two
possible ways of inheriting an operation (or a state) from a module: by replacing the
operation definition by a new one (overriding) o by extending its behaviour. Follow-
ing the terminology of [BLM94], extension is modeled by program union (P U @),
and overriding by the operator with the same name (P« @), in which clauses from
@) are not imported for any predicate yet defined in P.

However, in a logic program we can combine both modes of inheritance due to the
nondeterministic-natured of the language. Multiple definitions for a predicate are
allowed with clauses that superpose in some arguments. This is the basis for our tuple
inheritance concept, that we denote P <« Q. Instead of giving a syntactic definition
of inheritance, we provide a more semantical one: for each predicate, we can inherit
the part of () that is not covered by the new definition in P. In other words, Q
computations are overridden by P computations, and for those computations that
are not in P we use () computations instead, extending P behaviour.

We formalize this concept giving the declarative semantics of the new operator.
In order to use a computable approximation of that “is not computed in P” we

use the notion of finite failure (“it is proved that it cannot be proved”), basing our

declarative semantics on Kunen’s 3-valued semantics.

At a first sight, it is not very interesting because it does not matter whether an
atom is true in P or in Q. It is not the case. because: i) clauses can have side effects,
what supposes a different behaviour of an atom in P or @, and ii) P definitions
can provide more efficient algorithms than @ for some specific (refined) arguments.
Furthermore, we define our new inheritance concept on a subset of the argument
tuple for each predicate. This is specially interesting when a predicate is used to

- simulate a function. Although the function arguments do not change, P can define

a different result. Some motivating and practical examples are given.

For the operational semantics, we also need mechanisms to decide the finite failure
of a goal. Constructive negation [Ch88, Ch89, St91] is a good candidate. We provide
a computational mechanism based on constructive negation, proving soundness and
completeness results. The operational mechanism is “constructive” in the solutions
of a goal that can be and cannot be overridden. The answer can provide some
constraints that allow to use @ computations.

From this point of view, we think that Constraint Logic Programming (CLP) is
a more natural framework to study tuple inheritance. Additionally, we provide some
background for the (less developed) theory of modularity in CLP languages. Both
declarative and operational semantics are developed for (modular) CLP programs.

A prototype implementation is sketched. A PROLOG implementation with con-
structive negation (like SEPIA-ECLIPSE from ECRC) can be used as a target lan-
guage for a program transformation. '
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2 Motivation

In this section, we motivate the usefulness of the proposed inheritance operator. We
also provide some syntax and, more briefly, recall some concepts from CLP.

A constraint logic programming language CLP(.A) [JL87] depends on a structure
A which defines the meaning of functions and constraints relation symbols of some
language £. A basic constraint is a relation r(¢y,...,t,) upon terms t;’s of the
structure domain (that, by abuse of notation, we still call 4), while a constraint
(formula) is any formula involving other constraints and propositional connectives
and quantifiers.

Giving a set of (programmed) predicate symbols o(P), an atom is p (¢;,...,%,),
where p € o(P) and ;'s are terms. A constraint logic program P is a finite set of
rules: p (¢1,...,tx) : — ¢, By, ..., B, where ¢ is a constraint and By, ... B,(n > 0)
are atoms, defining the symbols p in o(P).

The logical reading of a rule right hand side is the conjunction of the constraint
and the atoms: ¢ A B, A ... A B,.

The tuple inheritance operator « is defined between two programs P and Q.
For every symbol in ¢(P) U o(Q), we specify the subsets of tuples to perform the
inheritance. Without loss of generality, we can suppose that they are the first ar-
guments in textual order. Let M = {....m,,...} be a set of natural numbers
1 < my, < arity (p), one for each predicate symbol p € 0(P) U ¢(Q). The intended
semantics for p in P «s @ can be informally defined in the following way: The
atom p (ty,...,t,) is true if

e p(tr,....t,) is true in P, or )
o p(ti,...,t,) is true in Q but for all Smptlse- 280, P (t, ...
“is not true” in P.

1tmp75mp+11 o '7311)

Before we give the formal definition of < let us study some examples.
Ezample I: The first example is a very simple program that we will use as a running
example, as well as to compare different inheritance mechanisms.

Pip (X 1) - q(X). Q:p(Z.Y) = r(Y)
g(X) =X>0. r(Y) =-Y>o0.

Let m, be 1 in M. If we query P <y Q with the goal p (X,Y) we expect the
following two answers: yes, X >0, Y = 1; yes. X <0,Y >0

The semantics of P U @ contains the atoms p (X,1) for X > 0, and p (Z,Y)
for any Z. and ¥ > 0. The overriding operator P <1 @ has the following semantics:
p (X, 1) for X > 0. Our new operator P < s @ has the atoms p (X,1) for X > 0
and p (X.Y) for X <0,Y > 0 as semantics (see Section 3).

Now we proceed with three more elaborated examples, paradigms of useful ap-
plications of the new inheritance operator.
Ezample 2: The second example comes from typical object oriented programming
textbooks. Vehicles are the elements of the program and we implement the function
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wheels defining the number of wheels of a vehicle. Program @ establishes that all ve-
hicles have four wheels. However, P introduces the vehicle motorcycle, as a exception
to the previous function, because it has two wheels.

P : wheels (motorcycle, 2). Q : wheels (X, 4).

A goal wheels (car, W) should answer yes, W = 4, and a goal wheels (motorcycle,
W) should answer yes, W = 2. Consequently, a goal wheels (V, W) must have the
following answers: yes, V = motorcycle, W = 2, and yes, V # motorcycle, W = 4.
This behaviour cannot be obtained neither with union nor overriding. The union
says that a motorcycle has two and four wheels. The overriding operator cannot find
a definition for wheels (car, W).

Tuple inheritance is made in the argument of the function, i.e. in the first argu-
ment of the relation wheels. This is absolutely coherent, because when we define a
function, the new function definition can override the result and not the arguments.
The simulation of functions as predicates is a natural application of tuple inheritance.
Example 3. For the third example, we apply the inheritance operator to all the
arguments. One can believe that it is not useful at all because there is no difference
if an atom is true in P or . But it is not the case if the program contains side
effects. Consider, for instance, the problem of drawing a rectangle on the screen. We
have a standard procedure, using basic character output encapsulated in module Q.
However, in the presence of a special screen driver we can use a specific operation to
plot the rectangle. The new definition is located in program P.

P: draw_rectangle (B, H) :- driver (Driver), plot_rectangle (Driver, B, H).

Q: draw_rectangle (B, H) :- write_horizontal ('-', B),
: write_vertical ('|', B, H),
write_horizontal (-, B).
Notice that the desired effect is not obtained by pure overriding, because we still
want to draw a rectangle with @ code when the driver is not installed.
Example {: The fourth example has some similarities with the previous one. Again
we apply the inheritance operator to all the arguments. The difference is that, in
program P, we provide a more efficient algorithm for some instances of the data that
are generally managed by Q). @ computes the area of any polygon by dividing it
into triangles, and them adding the areas of such these triangles. However, when P
detects that the polygon is a rectangle, we apply the well known formula, what is
more efficient than the general algorithm. We choose M to contain mpuiigon_grea = 2-
P : polygon_area (P, A) - A =B * H, rectangle (P),
base (P, B), high (P, H).

Q : polygon_area (P, A) - triangle_list (P, L), sum_area (L, A).
sum_area ([ ], 0).

sum_area ([T | R], A) - A = AT + AR, triangle_area (T, AT),
sum_area (R, AR).
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Notice that the intended behaviour cannot be modeled by the overriding operator
P 4 Q. Program union P U @ has a similar behaviour than P <y @ but a call
with a rectangle will provide two (equivalent) answers, the second one more costly
to compute than the first one. Obviously P <r @ and P UQ are not operationally
equivalent, and the first operator should be more efficient than the second one.
Furthermore, if we execute this program in CLP (R), we can loose some precision
when Q is used and the result of P can be more accurate. Note that polygon_area is
again a function definition simulated as a predicate.

3 Declarative Semantics

Following [ReS88, Bu92] we believe that the meaning of any composition operator
must be defined in terms of the declarative semantics. Every program operator has
an associated operator between program semantics. We use the standard notion
for (constraint) logic programming: An A-interpretation [ can be represented as a
subset of B4, i.e. I € P(Ba), where B4 = {p (di,...,dn)|p € o(P),d; € A}. We
will omit the subscript A whenever it does not cause ambiguity.

In [MPS8S] it is established that, for program composition purposes, the correct
choice for the meaning of a program is the associated interpretation transformer 7p,
as shown in the following example: consider P : p (1) :- q (2). and Q : q (2). The
minimal model for P is §} and the minimal model for Q is {g (2)}. Any composition
of both sets cannot give the intended semantics {p (1),q (2)} for any inheritance
operator. The main reason is that the classical minimal model semantics is not valid
since it is not OR-compositional.

We define the meaning of a program P, noted [P], as its associated interpretation
transformer 7p. The semantics of our inheritance operator will be defined as the
composition of two interpretation transformers:

Trawa = [P < Q) =[Pl [Q) = TP Ou To
where ®as is an operator in P(B) — P(B). By abuse of notation we will also use
O to denote an operator between interpretations. Now, the transformer associated
to Tpg, 0 is defined by:

Treno(l) = Te(I) Ou To(1)
so, we only need to define Gy in P(B).

Due to our definition of inheritance, we cannot provide a syntactic characteri-
zation of the composition of two programs (unless we use some kind of universal
quantification construct into the programs, hard to be efficiently implemented). We
will recall this point in the conclusion.

Let us discuss how to define this composition operator. From the informal defi-
nition of section 2 (elements in P plus those elements in @) that are not defined in
P, with respect to M), a first attempt yields to the following formal definition:

Sl @,\[ Sz = 51 U {p (tl, ..,tﬂ) € Sg I \4 Smp+1, ey Sp P (tl, ..,th,Smp+1, ..,Sn) ¢ Sl}
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Unfortunately, this definition is not computable, because the decision p (f) € S is
only computable when S is finite. The previous problem is overcome with a decidable
notion of “elements in ¢ that are not in P”. A suitable definition for this concept is
the set of “elements in @ that can be proved that they cannot be proved in P” (i-e.
they finitely fail in P).

The usual semantics are not valid to represent this knowledge. We need to use an
appropriate semantics with failure information. The same idea underlines the formal
meaning of negation as failure, where the meaning of a program is given by logical
consequences of its completion in a 3-valued logic [F85] and can be denotationally
formalized in terms of 3-valued interpretations [Ku87]. For this reason, we extend
Kunen's 3-valued semantics to CLP. The basic ideas are taken from [FBJ88] (even
thought it is not directly referred to constraint logic programming) and [St91]. We

reformulate them in a set-based framework. This allows us to give a definition of the
semantics of <7 in a set-based fashion as similar it is done for < in [Bu92]. The
similarity of the definitions facilitates the comparison.

First of all, we need a different notion of interpretation.

Definition: A 3-valued interpretation is a pair < T, F >, where T, F € P(B) are
disjoint sets. Interpretations can be ordered in the following way:
<T,F>=X<T,F'> if TCT, and FCF'

Intuitively, an atom belongs to T'if it is true (t), and it fails (f) if it belongs to F.
Otherwise, it is undefined (u). Notice that a classic interpretation is, in particular,
a 3-valued interpretation where there is no undefined atom.

Interpretations I =< T, F > can be extended to arbitrary formulas in a natural
manner, giving a result in {t,f,u}: I(4) =tif A € T (A atom), [(A)=fif A€ F,

H(A)=uif AETUF, Ic)=tif A ¢ I(c) = f if A = —¢, and for the

propositional connectives strong 3-valued interpretations are used.

The next step is to define the interpretation transformer 73! : P(B ) = P(B) (or,
simply, 7p).
Definition: Tp(I) =< T', F' >, where:

e p (t) € T" if there exists a ground instance of a clause in P, p () : =G, such

that J(G) = t.
e p (t) € F'if for each ground instance of a clause in P, p () : =G, then
[(G) =1,

Erample: Remember example 1 from Section 2. The operators for P and @ are:
Te(< T F>) =< {p(X,)]q(X)eTu ., {p(X.V)|Y #1}U
{¢ (X)] X >0} {p(X.1) g (X)e Fyu
{g ()X <0tu{r(X)}>

To(KT.F>)=< {p(ZzY)|[r(¥)eTu . {p(2Y)|r(Y)eFJU
{r ()Y >0} {r (M) 1Y <0jufex))>

As usual, the semantics of a program P is defined as the least fixpoint of 7p.
Unfortunately, the operator 7p is not always continuous and hence its least fixpoint
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may occur at any recursive ordinal, see [FB.J8§]. It is continuous for logic program-
ming (i.e. A is the Herbrand universe) as established in [Ku87]. In any case, the
natural cut off point for computability is after w steps, and Fitting and Ben-Jacobs
[FBJSS] claim that 7p 1 w (noted Mp =< Tp, Fp >) is a natural definition of the
true and failing things we can compute from a program P.

Now, we can define the semantics of G5y in P(B) x P(B).

<T,L,Fy>0pn <D Fa>=<TVU (T2 Ny F1), Fo O Fy >

where S; Nar S2 = {p (t1,...,t,) € Si|
V Smp+l| R (tl,‘ . 1tm,,75mp+la< .. ,Sn) (S 52}

Ezample: Having computed 7p and 7o for example 1, we can compute Tp«q.
Tre(< T.F>) =

< PZY)r (Y)eTAY W , {p (ZY)r (Y)Y e FAYW
p(Z,W)e{p (XY p(Z.W)e {p (X" Y]
Y #1Vv(Y'=1Aq (X') e F}U Y/ £1v(Y'=1Aq (X') € F}}U
{p (X.Dlg (X)e T} {g (X)X <0}U
{g (X)]X >0}u {r (VY <0}u
{r(")[Y >0} {g (X)|Y <0} > =
< {pEYV)r(Y)eTAg(Z)eF}u , {p(ZY)r(Y)EFAqg(Z)eF}U
{r (X,1)]g (X) e T} {r MY <0}u
{g (X)X > 0}u {e(X)IX <0}
{r ()Y >0} >

Tp«q has a finite fixpoint that is
Mpgo =< {p (X,1)|X > 0}U , {p(Z Y)Y <0,Z<0}u
{p(Z V)Y >0,Z<0}u {r (MY <0}u
{g (COIX > 0)u (X)X <0} >
{r (¥)ly >0

The operator &y s well defined. as stated by the following theorem:

Theorem:
The operator @y is continuous in both arguments in P(B) for any M.

Proof:

Let If=< T,F>I'=<T F > I"=<T" F">. For the continuity on the first
argument we need to prove that (I @ [”") X (I' ©ag [") if [ X I'. Tt yields to prove
that: TU(T" Ny FY CT'U(T" Npy F') and F Ny F" C F'Npe F”, what is obvious
from set theory. The continuity on the second argument is analogous.

The result proves that .74y preserves some properties. In particular, ®p is con-
tinuous in the domain of continuous mappings from P(B) — P(B).
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4 Operational Semantics

Before we give the operational semantics of tuple inheritance, we reformulate CLP
operational semantics specifying the concrete program P where we look for clauses.
The rule to compute a goal G is:
G=¢Dy,....,D;,....,D, +$ ¢, Dy,...,By,...,B,,.... D,

if Dj = p (t1,...,tn), there exists a (standardized apart) clause in P:

P(st,.-.v8n) =" Bi....,Band Al c A AN(si =) = ¢\
¢,Dy,....By,...,Bi,.... D, is called a child of G. All the children for G forms its
derivation tree. We will omit the superscript with the constraint domain.

A very important notion for our purpose is the concept of frontier of (a derivation
tree for) G: a finite set of nodes in the tree such that every path from G to the leaves
either contains a failure or passes through exactly one node in the set (Ch89, Sto1].

In order to compute when G' Fpg o G, we introduce a new operator for
goals: V X' 6p(G), the definitionless operator, in the vein of [MN94]. Intuitively,
V X 6p(cg, G) is true when P finitely fails for G for any value of X. More formally,
if Y are the free variables in g, Gt

V X 0p(cg, G) ¢+ Mp(I¥¢cy A GO) = f for all ground substitutions 8 for X

We allow now to write a d-goal V X d(cg, G) in (intermediate) goals. Before we
explain how a §-goal is computed, we can define the rules for Fraao As usual, we
use the notation O to denote the empty goal formula. Let m, be the associated
inheritance arity of p in M.

. U
¢,Dy,...,Dj,..,D, Fpg,o ¢".Dy,....G.....D, if jtf—.] CF/\”C,C_;GC;,
C,Dl....,DJ‘,...,D,- |"P<<MQ C’/l,Dx,...,G,...,Dr
if oV . Xp ..., X, 8(p (ty oo itmps X1, ..., X)) Fp L0,

e, D; ko "G
e AEcAd A = "

A d-goal can be computed by adapting the technique of constructive negation.
Constructive negation can be understood in a more general context than negation.
It is useful to decide when a goal finitely fails (i.e. a computable approximation
to undefined). The technique has been used in several frameworks: Negation in
Logic Programming [Ch88, Ch39], negation in Constraint Logic Programming [St91],
membership into a intensional defined set, Constraint Logic Programming with op-
timization, default rules for functional-logic languages [MN94], and computation of
disequalities in equational logic programming.

We have only space to recall briefly the technique of constructive negation and
how we apply it to our context. A VX d(c,,G) goal is computed in the following
way. Let ¢ be the accumulated constraint when the §-goal is computed. Let F =
{(¢A e, By),....(cAcs, B.)} be a frontier of the goal cA ¢y, G in P.

CED}A’"'!V'\’ 6(cva)7-"~Dr I_P C.D[,....D]’_],DI‘.H....,D,- lfF:@
¢, Dy,.... VYJ(CQWG).Y..‘D,. Fp Cf\C;TDl,..'..Dj‘_l,fi\/i,Dj+l,,,,,Dy_
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where ¢, V; are obtained by finding a formula (¢ A N1) V...V (¢] A N;) equivalent
to the formula V X, V' 6(ct, BI)A ... AY X, Y 6(c,, B,), where ¥* are the variables
in ¢k, By which do not appear in ¢, c;, G.
For each i (1 < i < () we have a different child in the derivation tree.

There are several concrete methods to obtain the formula \/(¢}, A Ni):

e Chan’s method [Ch88, Ch89] only applies for logic programming (CLP over
equalities and disequalities in the Herbrand universe) and uses this property:

VX Y6Z =4G) aVX(Z#£s)VIX(Z=sAVY §Q))
where X are the non-free variables in s.

No completeness result is provided.

e Stuckey’s method [St91] applies to constraint logic programming in general.
Constraint information is got from the frontier in the following way:
VX §(c,G) o (VX )V (VX §c,G))

A completeness theorem is proved.

e The method of [MN94] is quite similar to the previous ones although it is
adapted to a different problem. The main difference is the use of a very com-
pact constraint representation (conjunctions of disjunctions of disequalities) to
minimize the number of ¢, N; generated.

e Drabent [Dr93] presents a different approach. Many frontiers of the derivation
tree may be selected and only the constraints of such frontiers are used to
compute answers. In the previous methods only one frontier is selected but
whole goal bodies of the frontier are used. This yields to subgoals that may
contain §-subgoals to be resolved by further derivation steps. [Dr93] claims
that the new method may be more efficient than the previous one. There are
also soundness and completeness results.

Ezample: The computation of the goal p (X, Y) in our running example is got in the
following steps:

It is clear that (1) p(X,)Y) Fp YV=1¢(X) Fp Y =1,X>0

what supposes p(X)Y) Fpgyo Y=1LX>0

For the other derivation in P <3 @ we need to compute the d-goal
VY é(p (X,Y)) in P. Derivation (1) also gives us a frontier for p (X,Y), {¥ =
1,X > 0} which complements to the formula ¥ # 1 Vv X < 0. If we choose the
second part of the formula as ¢, N we have:

VY d(p (X.Y)) Fp X <0
As we can derive X<0,p(X,Y) Fg XLO0,Y >0
we can conclude p(X.Y) Fpgyo Y <0,V >0
and we compute all the solutions in Mpg,,q-
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Now, we are in a position to establish soundness and completeness results. We
assume that the rules for F are applied in a fairly consistent way in the sense of
[St91]. We have only space to include an informal sketch of the proofs.

Theorem: Soundness
If e, G Fpgyo .G then Mpg,,g(cAG) = Mpg,,0(c NG').

Proof sketch: We proceed by induction on the structure of the goal G. The most
interesting case is the base case, where G is an atom A. The rule ¢c,A +Fp ¢, A’
implies ¢, 4 Fpg,o ¢, A is obviously correct, because corresponds to “Tp U ..."
in the definition of @ps. The second rule imposes (i) ¢’, 4 kg ¢, A’, what implies
that (a ground instance of) A € Tg, and (ii) ¢,V X §(A) Fp ¢”,0, what implies
A € Fp by soundness of constructive negation [St91].

Theorem: Completeness

Let ¢, G be a goal with free variables X. If Mp¢,,o(3 X cAG) =t then there exists
a constraint answer ¢’ such that ¢,G Fpg,0 ¢,Oand AEc— .

Proof sketch: Double induction on the structure of G and the step n on the inter-
pretation transformer Tpg,,o T n where we find the elements of (a ground instance
of) G. The proof combines the completeness of constructive negation [St91] with a
case analysis of the definition of 3.

5 Implementation

A prototype implementation has been constructed by translating modules to SEPIA-
ECLIPSE Prolog. As far as we know, this Prolog version provides the only existing
implementation of constructive negation. The transformation is carried out in the
following way. For each p € o(P) U o(Q) we define:

p (X1, ... Xn) =pp (K1, .0, X2).

P (Xp, ..oy Xp) = not (pp (X1s -y Xinps Yomptts -0 Yn)), Po (X1, -, X5).
where pp, pq rename p in P and @ respectively, and the ¥;’s are new fresh variables.

However, it is clear that a direct implementation should be more efficient. For

instance, if all p-calls are ground, a sound and complete implementation will be the

following;: . . . .
p () - pr (T). 1. p (X) = po (X).
A specific implementation, like a WAM modification, can use this technique when
the arguments are ground.

6 Conclusion

We have introduced and formalized a new inheritance operator which combines ex-
tension and overriding for goals with variables in a natural way. This new operator
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allows for a fully treatment of inheritance in a logic framework. However, tuple in-
heritance does not replace the other inheritance operators (union and overriding)
but complements them. .

The CLP formulation also provides a background for the study of modularity in
CLP programs. A new use of the technique of constructive negation is found, what
enforces our believe that the technique goes beyond negation in logic programming.

The meaning of our proposal is given in terms of the declarative semantics, instead
of the syntactic characterization of other modular operations. The syntactic char-
acterization is possible if d-goals are allowed in clause bodies. We assume that the
programs are in normal form, i.e. all the clause heads are written as p (X,..., X,),
where the X;’s are distinct variables and the constraint of the clause contains the
equalities of X;’s with the original head’s terms. Suppose we have the following
programs:

P:p (X) - Gy Q:p(X) -G

p (X) - Gu. b (X) - G

We can joint P with the modified Q clauses:
p(X):-VZ.Y6p (G), ....VZ, Y 6p (G), G's.
where Y = Ympt1, - -+, Yo are new fresh variables that replace the corresponding X’s
in each G;, and Z' are the free variables in G';. In our running example, the unique
rule for predicate p will be:
p(Z,Y):-YWp(q(Z)) r(Y).

It can be proved that the semantics of this program coincides with the semantics
we have developed.

This transformation also gives us a hint to treat some simpler cases. If the G;’s
have no free variables we can replace the §-goals by adequate constraints. Informally,
the complement of head terms of P clauses are computed and they are used later in
the constraint of the modified @ predicate. The same idea is used into the trans-
formational approach to negation from [BMPT90]. We can modify our example by
replacing @ rule for p by the rules:

p(Z Y):-q (Z), r(Y). q(Z)-2<0.

A concrete implementation can use this transformation technique whenever pos-
sible, the cut trick to be executed dynamically and constructive negation only when
it is absolutely necessary.

It is worth to mention that our construction is also valid for normal programs
(i.e. logic programs with negation), because the semantics can handle negative in-
formation by means of finite failures.

As a future work, we plan to experiment further with the implementation of
constructive negation and to apply these ideas to functional-logic languages, because
functions are a very natural framework for tuple inheritance.
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Abstract

We extend the declarative diagnosis methods to the diagnosis w.r.t. computed
answers. We show that absence of uncovered atoms implies completeness for
a large class of programs. We then define a top-down diagnoser, which uses
one oracle only, does not require to determine in advance the symptoms and
is driven by a (finite) set of goals. Finally we tackle the problem of eflectivity,
by introducing (finite) partial specifications. We obtain an effective diagnosis
method, which is weaker than the general one in the case of correctness. yet
can efficiently be implemented in both a top-down and in a bottom-up style.

Keywords: Declarative diagnosis, Verification, Semantics, Debugging

1 Introduction

The diagnosis problem can formally be defined as follows. Let P be a program.
[P] be the behavior of P w.r.t. the observable property «, and T be the specification
of the intended behavior of P w.r.t. a. The diagnosis consists of comparing [P] and
7 and determining the “errors” and the program components which are sources of
errors, when [P] # I. The formulation is parametric w.r.t. the property considered
in the specification 7 and in the actual behavior [P]. Declarative diagnosis [13, 12,
10, 8] is concerned with model-theoretic properties. The specification is the intended
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declarative semantics (the least Herbrand model in [13] and the set of atomic logical
consequences in [8]).
Abstract diagnosis [4, 5] is a generalization of declarative diagnosis, where we con-

51der operatlonal properties, i.e., observables (an observable is any property which

trees). An example of a useful observable is Eomputed answers. The diagnosis w.r.t.
computed answers is expected to be more precise than the declarative diagnoses in

[13] and [8], which can be reconstructed in terms of the observables ground instances

—

of computed answers and correct answers respectively [5]. The semantics involved
in the diagnosis w.r.t. computed answers is the s-semantics [6, 7, 2], which models
exactly the process of computing answers.

In this paper we first extend to computed answers the declarative diagnosis
methods based on the detection of incorrect clauses and uncovered atoms (Section
3). The good news is that absence of uncovered atoms implies completeness, for a
large class of interesting programs (acceptable programs).

We then define in Section 4 a top-down diagnoser, which uses one oracle only,
does not require to determine in advance the symptoms and is driven by a (finite)
set of goals (most general atomic goals).

Finally in Section 5 we tackle the problem of effectivity, by introducing (finite)
partial specifications. We obtain an effective diagnosis method, which is weaker
than the general one in the case of correctness, yet can efficiently be implemented
in both a top-down and in a bottom-up style.

2 The semantics modeling computed answers
e V,"" e

The s-semantics [6, 7, 2] is defined or{ intérpretations consisting of sets of possibly
non-ground atoms. For every program P, the s-semantics can be characterized as

| the least fixpoint of the operator Tp:

Tp(I)={A9 € Bp| 3A:— B,,...,B, € P,
(B!,...,B'}C I,

360 = mgu((Bl, ceny Bn)7 (Bia seey B;l))}

where Bp is the set of (possibly non-ground) atoms of Lp modulo variance and [
is a subset of Bp. The same denotation can be obtained in a top-down way, by
considering the answers computed for “most general atomic goals”, as shown by the
following definition.

Op = {p(Xi1,...,Xn)0 € Bp| Xi,...,X, are distinct variables,
?—p(Xl,. ..,Xn) _9) D}
T (h = O Wopiag |
Lot 1% -

(k‘:‘(r Z(, OGP 'y
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3 Diagnosis w.r.t. computed answers: basic defi-
nitions and results

The following Definitions 3.1 and 3.2 extend to diagnosis w.r.t. computed answers
the definitions given in [13, 8, 10] for declarative diagnosis.

In the following I is the spec1ﬁca,t10n of the intended s-semantics of P.

Definition 3.1
i. P is partially correct w.r.t. I, if O(P) C I.
@. P is complete w.rt. Z, if T C O(P).
wi. P s totally correct w.r.i. Z, if O(P) = I.

If P is not totally correct, we are left with the problem of determining the errors.
which are related to the symptoms.

Definition 3.2
. An incorrectness symptom is an atom A such that A € O(P) and A ¢ T.
t. An incompleteness symptom is an atom A such that A € T and A € O(P).

Note that a totally correct program has no incorrectness and no incompleteness
symptoms. Our incompleteness symptoms are related to the insufficiency symptoms
in [8], which are defined by taking gfp (Tp) instead of O(P) = Ifp (Tp) as program
semantics. The two definitions, even if different, turn out to be the same for the
class of programs we are interested in (see Section 3). Ferrand’s choice is motivated
by the fact that gfp (Tp) is related to finite failures. The approach of using two
different semantics for reasoning about incorrectness and incompleteness has been
pursued in [9], leading to an elegant uniform (yet non- eﬁ"ectwe) characterization of
correctness and completeness.

It is straightforward to realize that an atom may sometimes be an (incorrect-

ness or incompleteness) symptom, just because of another symptom. The diagnosis
determines the “basic” symptoms, and, in the case of incorrectness. the relevant
clause in the program. This is captured by the definitions of incorrect clause and
uncovered atom, which are related to incorrectness and incdmpleteneés symptoms,
respectively.

Definition 3.3 If there exists an atom A such that A € T and A € T(y(Z), then
the clause ¢ € P is incorrect on A.

Informally, ¢ is incorrect on A, if it derives a wrong answer from the intended
semantics. Ty is the operator associated to the program {c}, consisting of the
clause ¢ only.

w "y e
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Definition 3.4 An atom A is uncovered if A € T and A ¢ Tp(ZT).

Informally, A is uncovered if there are no clauses deriving it from the intended
semantics.

It is worth noting that checking the conditions of Definitions 3.3 and 3.4 requires
one application of Tp to I, while the detection of symptoms according to Definition
3.2 would require the construction of O(P) and therefore a fixpoint computation.
As we will show in the following, the detection of bugs can be based on Definitions
3.3 and 3.4, while this is not the case for Definition 3.2.

The following theorems are instances of the corresponding theorems proved in
[5) for abstract diagnosis, where they are given for a class of properties called s-
observables (computed answers is an s-observable [3]).

The first theorem shows the relation between partial correctness (Definition 3.1)
and absence of incorrect clauses (Definition 3.3).

Theorem 3.5 If there are no incorrect clauses in P, then P is partially correct
(hence there are no incorrectness symptoms). The converse does not hold.

The theorem shows the feasibility of a diagnosis method for incorrectness based
on the comparison between T and 7p(Z). Note that the second part of the theo-
rem asserts that there might be incorrect clauses even if there are no incorrectness
symptoms. In other words, if we just look at the semantics of the program, some
incorrectness bugs can be “hidden” (because of an incompleteness bug).

As in the case of declarative debugging, handling completeness turns out to
be more complex, since some incompletnesses cannot be detected by comparing T
and Tp(Z). The following proposition shows that we cannot base the diagnosis of
incompleteness on the detection of uncovered atoms.

Proposition 3.6 There ezist a program P and a specification I, such that
i. there are no uncovered atoms in P,
. P is not complete w.r.t. T (i.c., there exist incompleteness symptoms).

However, the following theorem shows that the diagnosis of incompleteness can
be based on Definition 3.4 if the operator Tp has a unique fixpoint.

Theorem 3.7 If Tp has a unique fizpoint and there are no uncovered atoms, then
P is complete w.r.t. T (there are no incompleteness symptoms). The converse does

not hold.

Note that, if Tp has a unique fixpoint, Ifp (Tp) = gfp (Tp). Hence our incom-
pleteness symptoms are exactly the insufficiency symptoms in (8]
The following corollary is a justification of the overall diagnosis method.

Corollary 3.8 Assume Tp has a unigue fizpoint. Then P is totally correct w.r.t.
Z, if and only if there are no incorrect clauses and uncovered atoms.
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The requirement on T seems to be very strong. However, this property holds
for a large class of programs, i.e., for acceptable programs as defined in [1]. Accept-
able programs are the left-terminating programs, i.e., those programs for which the
SLD-derivations of ground goals (via the leftmost selection rule) are finite. Most
interesting programs are acceptable (all the pure PROLOG programs in [14] are
reported in [1] to be acceptable). The same property holds for most of the wrong
versions of acceptable programs, since most “natural” errors do not affect the left-
termination property. One relevant technical property of acceptable programs is
that the ground immediate consequences operator has a unique fixpoint [1]. The
same property holds for the s-semantics operator Tp.

Theorem 3.9 (fixpoint uniqueness) Let P be an acceptable program. ‘
Then Tptw is the unique fizpoint of Tp.

The theorem is proved in [4] for all the “immediate consequences” operators corre-
sponding to s-observables. Note that the same result applies to declarative diagnosis
as well.

The overall diagnosis method for acceptable programs is then given by the fol-
lowing corollary.

Corollary 3.10 Assume P is an acceptable program. Then P is totally correct
w.r.t. I, if and only if there are no incorrect clauses and uncovered atoms.

Example 3.11 Consider the acceptable program P of figure 1, which is an “an-
cestor” program with a wrong clause (ancestor(X,Y):— parent(Y,X). instead of
ancestor(X,Y) :— parent(X,Y).) and missing database tuples.

T = { parent(terach, abraham), Tp(T) = { ancestor(abraham, terach),
parent(abraham,isaac), ancestor(isaac, abraham),
ancestor(terach, abraham), ancestor(terach,isaac)}.
ancestor(terach, isaac),
ancestor(abraham, isaac)}.

The diagnosis delivers the following result:

i. the clause ancestor(X,Y) :— parent(Y,X). is incorrect on
ancestor(abraham, terach) and ancestor(isaac, abraham).

ii. the atoms parent(terach,abraham), parent(abraham,isaac),
ancestor(terach, abraham) and ancestor(abraham,isaac) are uncovered.

Note that O(P) = {}. Hence there are no incorrectness symptoms, even if
there is an incorrect clause. Note also that the atom ancestor(ierach,isaac) is not
uncovered, even if it is an incompleteness symptom.

The example is intended to show the relation among the various concepts in-
volved in the diagnosis and does not use the features of the s-semantics (which
turns out to be a Herbrand interpretation). s




612

ancestor(X,Y) :— ancestor(X, Z), parent(Z, Y).
ancestor(X,Y) :— parent(Y, X).

Figure 1: A wrong acceptable program

4 The oracle and the “top-down” diagnosis

The “bottom-up” diagnosis is based on Corollary 3.10 and requires the appli-
cation of Tp to the intended s-semantics Z. Hence Z has to be specified in an
extensional way. We are not concerned, for the time being, with the problem of
effectivity (i.e., finiteness of 7). Rather we are concerned with the problem of spec-
ifying Z by means of an oracle, as first suggested in [13]. The oracle is usually
implemented by querying the user. Several oracles have been used in declarative
debugging (see the discussion in [11]). We will use one oracle only, directly related
to the property we are concerned with, namely computed answers.

Definition 4.1 (oracle) Let G be a goal.
A(G) = {G8 | G computes 0 according to the intended s-semantics}.

Once we have the oracle, we can define the oracle simulation, again following [13].
The oracle simulation allows us to express in a compact way new top-down diagnosis
conditions. The oracle simulation performs one step of goal rewriting by using the
program clauses and then gets the answers for the resulting goal from the oracle.

" Definition 4.2 (oracle simulation) Let G be an atomic goal and P be a set of
definite clauses.

S(G,P)={G6:16; | Ic=A:— By,...,B, € P,
30; = mgu(G, A),
36, (B, - .., Bn)010, € A((By, - .-, Bn)61)}

Note that the elements of the sets computed by A and S are equivalence classes
w.r.t. variance, as was the case for the domain of the s-semantics. The following
two theorems justify the top-down diagnosis.

Theorem 4.3 The clause ¢ € P is incorrect on the atom p(Xi, ..., X,)0 if and only
ifp(X1,..., X)0 € S(p(Xy,. .., Xa),{c}) and p(Xy,...,X.)0 & Alp(Xs,...,X,)).

Theorem 4.4 The atom p(Xy,...,X,)0 is uncovered if and only if
p(X1,...,X.)0 € A(p(Xa,..., X)) and
p(X1,..., Xn)0 & S(p(Xy, ..., Xn), P).
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incorrect(G:— B) :— userdefined(G),

clause(G, B),

answer(B),

freeze(G,Gl),

not(answer(G),G = G1).
userdefined(4),

answer(4),

freeze(A,Al),

not(clause(A,B), answer(B),A = Al).

uncovered(A) :—

Figure 2: The top-down diagnosis meta-program

The proofs of Theorems 4.3 and 4.4 are based on the properties of the s-semantics,
which relate fixpoint bottom-up computations to top-down refutations for most
general atomic goals. The same properties allow us to define systematic diagnosis
algorithms which do not need symptoms as inputs. The PROLOG meta-program
in Figure 2 is an adaptation of the simplest possible declarative debugger in [11].

The oracle answer nondeterministically instantiates its argument. The search
for incorrect clause instances and uncovered atoms is driven by the most general
atomic goals, represented by unit clauses of the form
userdefined(p(X1,...,Xn))., for any predicate p occurring in the program P. The
properties of the s-semantics guarantee that we can detect all the incorrect clause
instances and the uncovered atoms (for acceptable programs), by just looking at the
behaviors for a finite number of atomic goals.

The diagnosis meta-program can be extended to achieve a better performance
and to improve the calls to the oracle. Most of the techniques presented in [11] are
applicable. However, performance issues are outside the scope of this paper.

Let us finally note that our formalization of diagnosis based on the s-semantics is
not subject to the theoretical limitations proved by Ferrand [8] for his construction
based on the atomic logical consequences semantics. The problem is the following.
An incorrect clause instance A :— B may have an instance (A :— B)# which is
not incorrect. This should be reflected by the fact that incorrect(A :— B) is in
the denotation of the diagnoser, while incorrect((A :— B)#) is not. This is not
possible if the denotation is the non-ground semantics in [8], since it is closed under
instantiation. On the contrary, if we choose the s-semantics the problem does not
arise.

5 Diagnosis with partial specifications

The diagnosis cannot effectively be based on the conditions given above, unless
the intended s-semantics is finite. In fact, if this is not the case,

-0
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e the bottom-up diagnosis is unfeasible, since Z is infinite and

e the top-down diagnosis is unfeasible, because the oracle may return infinite
answers to some queries.

This is true also for those diagnosis algorithms which are based on a ground seman-
tics or are driven by the symptoms. As a matter of fact, the assumption in [13]
on the oracle returning a finite number of answers is too strong. The problem can
only be solved if we have the ability to handle finite approximations of the intended
semantics. One solution can be found within the abstract diagnosis framework in
[4, 5], where we are able to cope with abstractions of the observables (according to
abstract interpretation theory).

Here we propose a different solution, where we approximate the intended behav-
ior by a (finite) partial specification. The specification of the intended behavior Z
is approximated by a partial specification, which is a pair (Z*,Z~), where

e It is the (positive) partial specification of the answers computed by P for
most general atomic goals, i.e., It is a finite subset of Z,

e I~ is the (negative) partial specification of the answers not computed by P
for most general atomic goals, i.e., I~ is a finite subset of Z.

We denote by Z the complement of Z. Note that the relation Z+ C Z- must
hold. The following definition generalizes partial correctness and completeness to
the case of partial specifications.

Definition 5.1
i. P is partially p-correct w.r.t. (Z*,I7), if O(P) CZ-.
. P is p-complete w.r.t. (Z+,I7), if T+ C O(P).

The rationale behind Definition 5.1 is clearly related to the fact that the spec-
ification is partial. In a partially p-correct program, for any goal @, there is no
computed answer 0, which we know to be wrong (G8 € Z~). On the other hand, in
a p-complete program all the answers that we know to be correct (G € I+) have
to be computed answers. Note also that definition 5.1 is derived from Definition 3.1
by taking Z- and Z* as specifications to be used for correctness and completeness
respectively.

Positive and negative specifications have been used in [9] with the aim of sepa-
rately modeling the behavior w.r.t. incorrectness and incompleteness. Z+ and 7~ are
not partial specifications, rather they are specifications of the (complete) intended
Ifp (Tp) and of the (complete) intended gfp (Tp). The derived definitions and results
are completely different from ours. In particular, Z- is used for completeness and
T+ is used for correctness.

The following definitions, given in terms of the T operator, generalize the defi-
nitions of incorrect clause and uncovered atom to the case of partial specifications.
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Definition 5.2 If there exists an atom A such that A ¢ I~ and A € T(;y(Z-), then
the clause ¢ € P is p-incorrect on A.

Definition 5.3 An atom A is p-uncovered if A € I+ and A ¢ Tp(Z).

The following theorem shows the relation between partial p-correctness and ab-
sence of p-incorrect clauses.

Theorem 5.4 If there are no p-incorrect clauses in P, then P is partially p-correct.
The converse does not hold.

Theorem 5.4 would allow us to check partial p-correctness, by just checking that
there are no p-incorrect clauses. However, we cannot base an effective diagnosis
method on the detection of p-incorrect clauses, since Definition 5.2 is given in terms
of Z-, which is not part of the partial specification (and is usually infinite). Some
of the p-incorrect clauses can be determined by choosing I+ as an approximation of
7, as shown by the following theorem.

Theorem 5.5 If there exzists a clause ¢ in P and an atom A, such that A €
T (Zt)NI~, then c is p-incorrect on A. The converse does not hold.

Theorem 5.5 leads to a complete diagnosis method for partial p-correctness, only
if the specification is indeed complete, i.e., if I+ = 7-,

Corollary 5.6 If I+ = I~ and there are no clauses ¢ in P and atoms A such that
A€ Tiy(ITY) NI, then P is partially p-correct.

Let us consider now the diagnosis of p-completeness. As was the case for the
diagnosis of completeness, the diagnosis can be based on Tp, only if the operator
Tp has a unique fixpoint.

Theorem 5.7 Assume Tp has a unigue fizpoint. If there are no p-uncovered atoms,
then P is p-complete w.r.t. (I+,Z7). The converse does not hold.

It is worth noting that the existence of a p-uncovered atom does not necessarily
mean that there is something missing from the program. In fact, an atom in Z*
might not be in Tp(Z*) just because I* is partial, i.e., it cannot be derived by
Tp because some of the correct premises are missing from Z+. Hence, the overall
partial diagnosis may return a subset of the incorrect clauses and a superset of the
real uncovered atoms.

Let us now move to the top-down diagnosis with partial specifications. The
definition is given in terms of two oracles, which can be implemented either by
querying the user or by querying the positive and negative specifications, since they
are finite and can be defined extensionally.
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pincorrect(G :— B) :— nanswer(G),

freeze(G,G1),

clause(G,B),

panswer(B),G = G1.

panswer(A),

freeze(A,Al),

not(clause(4,B), panswer(B), A = A1).

puncovered(A) :—

Figure 3: The top-down diagnosis meta-program for partial specifications

Definition 5.8 (positive oracle) Let G be a goal.
A*(G) = {G0 | G is intended to compute 8}.

Definition 5.9 (negative oracle) Let G be a goal.
A~ (G) = {G0 | G is intended not to compute 0}.

We only need the positive oracle simulation.

Definition 5.10 (positive oracle simulation) Let G be an atomic goal and P be |
a set of definite clauses.

S*(G,P) = {G6:6,| Je=A:—B,,... B, € P,
36, = mgu(G, A), ‘
30,,(By,..., B.)0:0, € A*((By, ..., B.)6))}

The following two theorems justify the top-down diagnosis.

Theorem 5.11 The clause ¢ € P is p-incorrect on the atom p(X,...,X,)0 if
p(X1,...,X.)0 € ST (p(X1,...,Xn),{c}) and

p( X1y, X0)0 € A~ (p(Xy, ..., Xn)).

The converse does not hold.

Theorem 5.12 The atom p(Xi,...,X,)0 is p-uncovered if and only if
P(X1y..., X0)0 € A (p(Xy,...,X,)) and
p(X1,..., X0)0 € ST(p(Xy1,...,X.), P).

The corresponding PROLOG meta-program is shown in Figure 3.

Note that now the search is driven by the elements in the negative and positive
specification, obtained from the corresponding oracles. Both oracles nondetermin-
istically instantiate their argument. An extensional implementation of the oracles
requires

i. a unit clause of the form panswer(A). for any A € I+,
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append([A], B, B).
append([AlB],C, [AvD]) B append(B,C,D).

Figure 4: A wrong acceptable program

ii. a unit clause of the form nanswer(4). for any A € 7,

ili. the clause panswer((A,G)):— panswer(A),panswer(G)., to get the intended
(positive) answers for conjunctive goals.

Finally, we look at a small example, which shows that it is convenient to use
finite subsets of the s-semantics, since their elements may still represent infinite sets
of ground atoms.

Example 5.18 Consider the acceptable program P of figure 4, whose first clause
is wrong. The partial specification is

It = { append([], X, X), I~ = {append([A], X, X)}.
append([A], X, [A]| X])}

The diagnosis delivers the following result:
i. the clause append([A], B,B). is p-incorrect on append([A], X, X).

ii. the atom append({], X, X) is p-uncovered.

6 Conclusions

QOur first result is the extension of known diagnosis methods based on the detec-
tion of incorrect clauses and uncovered atoms to the case of the s-semantics. The
good news is that absence of uncovered atoms implies completeness, for a large class
of interesting programs (acceptable programs).

The second result is the definition of a top-down diagnoser, which has the fol-
lowing features: it uses one oracle only, it does not require to determine in advance
the symptoms and is driven by the (finite) set of most general atomic goals, it is not
subject to the incompleteness problem of Ferrand’s diagnoser (since the s-semantics
is not closed under instantiation).

Finally, we have introduced the diagnosis w.r.t. partial specifications, which leads
to an effective diagnosis method, which is weaker than the general one in the case of
correctness, yet can efficiently be implemented in both a top-down and in a bottom-
up style.

All the results can naturally be extended to the more general framework of
abstract diagnosis. )
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Abstract

In this paper we define a framework of collecting semantics for analysis of logic programs.
The idea is to use abstract interpretation to systematically derive, compose and compare se-
mantics according to their expressive power. A hierarchy of collecting semantics is introduced,
including well known semantics for logic programs and providing a formal basis to extend model
theory to collecting and abstract semantics for analysis. We introduce a formal definition of
adequacy for a semantics with respect to dataflow analysis, and a constructive characterization
for the “best” collecting semantics for analysis.

1 Introduction

The definition of an appropriate concrete semantics, being able to model those program proper-
ties of interest, is a key point in abstract interpretation ([12]) and semantic-based dataflow analysis.
As shown in [17] the choice of the operational semantics is usually the most appropriate one, as
it is possible to derive more abstract semantics (e.g., the denotational semantics) by abstract in-
terpretation. This leads to a hierarchy of semantics where well known semantics at different levels
of abstraction are all derived by abstract interpretation from the operational one [14]. However,
more abstract semantic bases can be suitable to avoid unnecessary details which are useless with
respect to the program properties of interest. This is particularly important to simplify proofs
of soundness in semantic-based static analysis. Of course, the best choice for a semantics should
be a semantics which is not too abstract to hide too many details, but also not too concrete to
introduce useless information (usually encoded by too complex semantic structures). A collecting
semantics is somehow an intermediate step in abstraction between an often too concrete operational
semantics and the standard semantics of the program (e.g., see the step-by-step abstraction in [29]).
These semantics are usually derived by abstraction from an operational semantics of the language,
or derived by a simple concretization process based on a powerset construction, collecting sets of
denotations. Therefore, the relation between collecting semantics and the underlying more abstract
standard semantics for the language becomes purely artificial and it is often meaningless. In logic
programming for instance, it is often the case that collecting interpretations are derived by abstract-
ing SLD resolution, without providing any corresponding model-theoretic interpretation, and the
collecting semantics result to be often too far from the intended logical meaning of the program:
its Herbrand model (e.g., see the operational frameworks in [8, 18], or the denotational semantics in
[26]). .

In this paper we introduce a new approach to collecting semantics design and analysis, and
apply it to the case of logic programs. Collecting semantics are here characterized by maintaining
the underlying structure of a standard semantics (later in the paper called core semantics), which
is characterized by the so called “no junk” and “no confusion” conditions, providing a kind of
minimalily with respect to a given semantic property. Therefore, a collecting semantics is not
merely a sound approximation of a more concrete semantic definition, but has to include a more

*This work has been partly supported by the EEC Human Capital and Mobility individual grant: “Semantic
Definitions, Abstract Interpretation and Constraint Reasoning”, N. ERB4001GT930817.




