620

abstract standard semantics for the language. This constraint leads to a powerful framework of
collecting semantics where abstract interpretation is used both to relate collecting semantics at
different levels of abstraction, and to systematically construct them by composition. We introduce:
(1) a hierarchy of collecting semantics for logic programs where standard semantic notions (e.g.,
model theory in logic programming) can be extended to any collecting and abstract semantics for
analysis; (2) a systematic approach to collecting semantics design by abstraction, and composition of
more abstract semantics, where collecting semantics are all constrained between a standard and an
operational semantics of the language;-(3) a constructive characterization for the “optimal” collecting
semantics for program analysis, by combining the property to analyze and the standard semantics
(see Theorem 6.4). This semantics characterizes precisely the least amount of information about
program behaviour which is essential to analyze a given program property, and it can be considered
as the simplest (most abstract) concrete semantics in semantic-based program analyses. This view of
collecting semantics is particularly appealing in logic programming where for instance the distinction
between declarative and procedural reading of programs identifies precisely this space of collecting
semantics.

2 Preliminaries

In the following, we will assume familiarity with the standard notions of logic programming (e.g.
see [2]) and abstract interpretation ([12, 13]).

Let A and B be sets. Set isomorphism is denoted =. The isomorphism ¢ : A — B is denoted
A =, B. The powerset of A is denoted by p(A4). Sequences in A* are typically denoted by (a1, ..., an)
or simply aj, ..., an, for a;’s symbols in A. The empty sequence is denoted A. Concatenation of
sequences 1,53 € A* is denoted s; :: sp. The sequence of symbols with first element ¢ followed
by the sequence s is denoted a | s. A equipped with a partial order C is denoted Ag. If A is a
poset, we usually denote C 4 the corresponding partial order. This notation is extended to arbitrary
algebraic structures like lattices etc. Function composition is o and sometimes is omitted. The set
of fixpoints of a function f is denoted fp(f), and the least fixpoint (if it exists) is denoted Ifp(f).
The ordinal power of a function f is denoted f1a where « is an ordinal. w denotes the first limit
ordinal. Let (4,<,A,V, T, L) be a complete lattice, by an (upper) closure operator on A we mean

an operator p : A — A such that for every z,y € A: if ¢ < y then p(z) < p(y), ¢ < p(z), and
" p(p(z)) = p(z). We denote uco(A) the set of all closure operators on A. It is a complete lattice
(uco(A), Cuco, M, U, Az. T, Az.2) where for every p,n € uco(A) and z € A: p Ty 7 iff for each
z € L, p(z) < n(z). (Bgg, @ Ag,,v) is a Galois insertion iff o : B — A and v : A — B are
monotonic mappings,

Throughout, &, Il and Var will respectively denote a set of function symbols, a set of predicate
symbols and a denumerable set of variables, defining a first-order language £. The set of terms,
atoms, clauses and programs on the language £ are denoted respectively Term, Atom, Clause and
Program. Termg, Atomy denote the sets of corresponding ground objects. Atoms and unit clauses
will be considered equivalent notions. Tuples of syntactic objects of the same type (like variables,
terms etc.) are sometimes denoted 5. In the following the set of variables (predicates) that occur in
a syntactic object s is denoted var(s) (pred(s)). If A is a set of syntactic objects and = C II, then
Al denotes the restriction of A to the elements with predicate symbol in 7. In the following we
restrict our interest to idempotent substitutions ranging in Sub, unless explicitly stated otherwise. If
© C Sub, then s© = {s0 |6 € ©}. 1’ < t iff there exists a substitution ¢ such that ¢" = 6. Syntactic
objects #; and 1, are equivalent up to renaming, denoted t; ~ 15, iff 4§ < #; and 1, < ¢;. Term/~,
Atom/~ and Clause/~ are complete lattices with respect o <, and will be often denoted Term,
Atom and Clause. Since all the definitions in the paper are clearly independent on syntactic variable
names, we will let a syntactic object denote its equivalence class by renaming. For a syntactic object
s and a set of (equivalence classes by renaming) of objects I, we denote by (c1,...,¢n) € I, 2 >0
that ci,..., ¢, are representatives of elements of I renamed apart from s and from each other.

621

3 Systems of collecting semantics

A semantic definition (or semantics) is a pair (C, T), where Cg is a complete lattice (the
semantic domain) and T : Program — (C — C) is a mapping such that given a pr, am P: T(P)
a continuous operator on C. In the following, when clear from the context, we ..se and let T
denote T'(P) for a program P.

3.1 Collecting semantics
We formalize the notion of collecting semantics in the standard framework of abstract interpre-

tation [12]. Given a Galois insertion (B, a, 4,7), Cousot & Cousot in [13] proved that it is always

possible to associate with any operator T : B — B, an operator which is the best correct approzi-
mation of T in A: namely the function aoToy. In the following given any two semantics (C, T') and
{C’, T"), then (C, T)7=(C’, T') will denote a Galois insertion (C', @, C,v) such that T = aoT"oy.

Definition 3.1 [soundness & completeness] .
Let S and X be semantic definitions. We say thai S is sound (complete) with respect to X' if S=X
(resp. X%S}.

A collecting semantics (with respect to a semantics) is a semantics A’ which is complete with
respect to S. In this case, S will be called the core semantics. The core semantics is then an
abstract interpretation of any collecting semantics, yet providing the best approximating operator
with respect to the given abstraction. It provides a lower bound with respect to abstraction for
collecting semantics. Therefore, S%X will denote also that X is a collecting semantics with respect
to the core semantics S. When the core semantics is fixed, a collecting semantics will be simply
denoted by X7.

Proposition 3.1 :
Let (C, T) be a semantics and (C,a, A,y) be a Galois insertion. Then (yoa(C),yoaoT) and
(A, @oToy) are isomorphic.

Given a semantics S, a system of collecting semantics is a set of collecting semantics with
respect to S. Systems of collecting semantics with respect to S are usually denoted Us. A system
is generated by S if it contains all the collecting semantics with respecg to §. Let U be a system
of collecting semantics, and «C U x U such that: § o< X iff Jedy. S=X. From a similar result
in [12], Galois insertions can be composed such that if 57 is a collecting semantics and & is such
that S%’X, then X;Ygg is a collecting semantics. Notice that o is a pre-order on U and naturally
defines ‘an observational equivalence on collecting semantics: S =~ X iff § oc & and & o< §. Note
that if (C, T) ~ (C’, T") then C = C’. Moreover, let (C, T') be a collecting semantics, we follow
[30]* by defining an observation as an element in O(S) ={¥ | ¥ €V & ¥ x§ }. It is immediate
to prove that S ~ X iff O(S) = O(X). Equivalent collecting semantics allow the same set of
possible observations (in the sense of [30]). Therefore, they are called observationally equivalent. In
the following we abuse by denoting U the set U/~. Moreover we assume (C, T) # (C, T') while
(c, T):—-—‘(C’, T"). 1t is worth noting that any system Uy is indeed a poset where the core semantics
is fixed to be the most abstract object (i.e., the least collecting semantics).

3.2 Model-theoretic collecting semantics

Our notion of collecting semantics is suitable to provide a formal basis for the definition of a
model-theoretic collecting semantics of logic programs. It is inspired by the s semantics approach in
[21] and generalizes that results to any system of collecting semantics. We introduce the notions of

“model and collecting model for a program as a generalization on collecting semantics of the standard

notion of Herbrand model. Models are T-closed interpretations. A collecting interpretation is a
collecting model if, when abstracted, it provides a model for the program.

1[30] defines an observation for a semantics (C, T) as a complete lattice isomorphic to an upper closure of C. In
our case, this naturally induces a (more abstract) semantics, i.e., an object in o(C,T)).

Definition 3.2 [models & collecting models]
Let P be a logic program and (C', T')] be a collecting semantics in Og, where S = (C,T). An

interpretation M € C is a S-model for P if T(M)Cc M. M' € G’ is a collecting model for P if
a(M') is a S-model for P.

Proposition 3.2
Let P be a logic program and (C, T)7 be a collecting semantics in Os. Then (1) M is a collecting

model for a program P iff yoa(M) is a collecting model for P; and (2) if M € C is a collecting
model for P, then T(M) C¢c yoa(M).

T(M)Cc ya(M) is not sufficient to prove that M is a collecting model. This is because the notion
of collecting semantics is too weak to provide a characterization of collecting models in terms of the
T operator.

Definition 3.3 [model completeness]
A collecting semantics (C', T')}, in U(c 1) is model-complete if Toa C¢ aoT”.

It is straightforward to observe that the composition of model complete collecting semantics is
model complete. Because T' = aoT”oy and by Galois insertion, it is easy to prove that in any
model complete collecting semantics: Toa = aoT’. Model completeness specifies that, from the
core semantics viewpoint, T and 7' are equivalent. Notice that the condition Too = aoT” is
stronger than T' = a0 T"oy (see [15]), and the independent combination of model complete collecting
semantics is not in general model complete, as T may not be additive. In Section 6, we prove that
model completeness is preserved in semantics combination when semantics are derived by abstraction
of a model complete collecting semantics.

Proposition 3.3
Let P be a logic program and (C, T)] be a model complete collecting semantics. Then (1) M is a

collecting model for P iff T(M) Ec ya(M); and (2) if T(M) Cc M then M is a collecting model
for P.

- Because « is additive in any Galois insertion, it is easy to prove that the class of collecting
models for a program in a collecting semantics (C, T) forms a sub-cpo of C. Moreover, given a
model complete collecting semantics (C, T') and a program P: fp(T) C {M | M is a collecting model
of P}. Thus, the fixpoints of the operator T provide only a partial characterization of the class
of collecting models for a program. An interpretation M such that T(M) Ce M will be called a
reachable collecting model. We define full colleciing semantics any collecting semantics (C, T)7 such
that for any I € C: T(I) E¢ yoo(I) = T(I) Ce I. Notice that in full collecting semantics S,
any collecting model is reachable. Therefore an interpretation M is a S-model iff M is a collecting
model.

3.3 Herbrand, Clark, Heyting and s collecting semantics

In this section we consider a system of collecting semantics for logic programs based on the
minimal Herbrand model semantics as core semantics. This system includes well known semantics
for logic programs, and provides a “logical” notion of model for programs at different levels of

abstraction. In the following we fix a function ground that maps any syntactic object to the set of
its ground instances.

Definition 3.4 [the Herbrand semantics M [81]]
Let P be a logic program. The Herbrand semantics H of P is a pair (p(Atomy), Tp) where for each
I € p(Atomq): Tp(I) = {h € Atomy | h — b € ground(P), b C I}.

It is well known that a Herbrand interpretation M is a Herbrand model iff Tr(M) C M ([2]).
Therefore, H-models corresponds precisely to the Herbrand models of the program. In the following,

623 o et

when not specified otherwise, we will consider H as the core semantics in our examples of systems
of collecting semantics. ‘ .

The s semantics introduced in [20] is intended to provide a fully abstract description of computed
answer substitutions of logic programs. This semantics has been successfully consicicred as a base
semantics for abstraction, and applied to static program analysis in [6, 10]. The Clark’s semantics
instead has mostly a theoretical interest, being fully abstract with respect to the “more abstract”
notion of atomic consequences of a program ([20])2. However, as we will show in Section 6, this si.rn-
pler semantics may provide a sound basis for static analysis for some non trivial program properties.
In the following we fix a function up that maps any syntactic object to the set of its instances. Let
P be a program. The s and Clark’s semantics are: (p(Atom), T3) and (up(p(Atom)), T'§) resp.,
where:

C=h+b,..,bheP,
Ts(I) =< h| (b],....by) <c I

9= mgu(<blv ey bﬂ)) (il sy bfl-x))
H is an abstract interpretation of the (more concrete) s semantics in [20], yet providing the best

correct approximation. Observe that (p(Atom)g, ag, p(Atamm)g,'yg) such that: ay = AJ.ground(I)
and v, = A.{A| ground(A) C I}, is a Galois insertion.

c _ CEh'—bl,,bﬂGP
Te(I) = { ’“9‘ e Sub, 9, b0 €T }

Theorem 3.4
For each I € p(Atomy): Tp(I) = ag(Th(v,(1)))-

Likewise, Clark’s semantics can be proved to be a collecting semantics, which is also an abstract
interpretation of the s semantics yet providing the best correct approx.im.ation.of T3. Indeiad, up
is an upper closure operator on p(Afom), naturally inducing a Galois insertion. Ir} pz%rtlcular,
(up(p(Atom)), TE) is a collecting semantics and Toup = upoTH. Clark’s semantics is model
complete ([21]), and therefore the s semantics is also model complete. Moreover, it is easy to see
that the s and Clark’s semantics are not a full collecting semantics (e.g., the least Herbrand model
is not reachable). . . A

The Heyting model theoretic semantics for logic programs has been introduced in [27] to prov1.de
an intuitionistic (constructive) interpretation for definite clause programs. Because for deﬁn.xte
clause programs classical and intuitionistic logic agree, we can easily 9bserve that. the construct}ve
approach of Heyting models, if compared with the Herbrand semantics, .deﬁnes 1ts§1f a collecting
semantics. In the following we will slightly modify the definitions of Heyting semantics in '[27]A Let
Tree denote the domain of labeled trees over Atom such that, for any a € Aiom:. (a, () is a tree,
and if t,...,1, are trees, then (a, (11, ..., tn)) is a tree. For any tree ¢ and substitution 9, 4denotes
the tree obtained by applying ¥ to the labels (atoms) in t. Tree/.fv is ca.llec! the Heyting bfzsel
([27]). Trees constructively represent proofs for atomic goals.‘ A Heyting model Is then a.collectlon
of “closed” trees corresponding to proof trees for (any) atomic goal. M g Tree is a Heyting model
([27)) for a program P iff (a,()) € M for any unit clause a € P, and if b — by,...,b, € P and
(619,11}, ..., (bn¥, 1) € M for some J € Sub, then (hY, ((b19, 1), ..., (ba¥, 1a))) € M. Therefore, the
corresponding Heyting semantics is: (up(p(Tree)), TF) where for any I C Tree:

h—by,..,bpeP, V€& Sub
TH(I) = 1] (10, 1), ..., (¥, ta) €T
t = (Y, ((b19, 11), .., (bpd, 1a)))

‘Proposition 3.5 .
There ezist a and v such that (up(p(Atom)), Tﬁ)%(up(ga(Tree)), TH) and Tgoa = aoTE.

Thus, (up(p(Tree)), TH) is a model complete collecting semantics. Notice however th.a.t the indu?ed
notion of collecting model for the Heyting semantics does not correspond to the notion of Heyting

2 An application to dataflow analysis of a semantics similar to Clark’s semantics is in [28].

624

model for a program. This is because collecting models in the sense of Definition 3.2 provide a
classical view of the constructive (intuitionistic) semantics of Heyting models. This may justify the
interest in the Heyting semantics as core semantics instead of Herbrand.

4 Abstract interpretation and abstract model theory

In this section we consider abstract interpretation of collecting semantics. A properiy for a
collecting semantics (C, T) is any element in uco(C). Let p € uco(C) such that p(C) =, A. In the
following we denote (a,,%,) the pair adjoint functions o, : C — A and 7, : A — C associated with
the closure p, where a, = 20p and 7, = :71. It is known that (C, a,, A, 7,) is a Galois insertion (the
Galois insertion induced by the closure p [13]).

Definition 4.1

Let § and X be collecting semantics such that .S:::X. A properiy p on X is extendible 10 S iff @opory
1s an upper closure operator on . aopoy 15 the induced property on S.

It is immediate to prove that if S and A are collecting semantics such that S=X. and plisa
property on & such that yoor C¢ p, then p is extendible to S.

Following the standard Cousot & Cousot’s approach, for any program property we can define a
notion of abstract interpretation of a collecting semantics. In what follows, the term “abstract inter-
pretation” is clearly overloaded, corresponding both to the general framework of Cousot & Cousot,
and to abstract semantic objects (interpretations). An abstract interpretation for a collecting se-
mantics (C, T') with respect to a property p (denoted (C, T', p, A, T'%)) is a semantics {4, T?) such
that A = p(C) and a,0Toy, T4 T°. For a property p on a collecting semantics (C, T), the best
correct abstract interpretation is therefore (A, a0 Toy,) for A = p(C) ([13]).

Definition 4.2 [abstract model-theoretic semantics]

Let P be a logic program and (C,T,p, A, T be an absiract inlerpretation. M® € A is an abstract
model for P iff ihere exists a collecitng model M such thatl a,(M) = M® (or equivalently M Cc
Yo (M)

Abstract models capture the approximation induced by the abstract interpretation. An abstract
interpretation is an abstract model if and only if it is the approximation of a collecting model. From
the standard properties of Galois insertions it is easy to prove that if M¢ € A and 7,(M?) is a
collecting model, then M ¢ is an abstract model.

Example 1 The domain Dep (see [4]) was proposed by Marriolt and Spndergaard as a domain of
absiract substitutions. We lift it io the domain of absiract aioms. The domain is formalized as a Ga-
fois insertion denoted (p(Atom), o, Dep,vy,) on the s semantics, and consists of equivalence classes
of propositional formulae indezed on [, consiructed using the connectives «— and A, and ordered by
implication. We say that a truth assignment & solisfies o propositional formula f, written & = f, of
E(f) 15 a teutology. An object in Dep 15 a sei of parrs (p(%), /) where % are distinct variables and f is a
prop-formula on T, up fo variable renaming. A truth assignment assigng = (Az.var(8(z)) = 0) is as-
sociated with a substitution 8, and v, ((p(T),/)) = {p(Z)8 | &' < # = assigny: |=f}. We denole ppep
the corresponding properly on p(Atom). Conerder the program P {sum(X,0,%X), sun(X,s(Y),s(2))
— sum(X,¥,2)}. Then {(sum(z,y, 2}, yA\z = 2),} is an abstrect model for P. I is the abstraction
of the corresponding colleciing s-model: {sum(«, s"(0),s™(z)) | » > 0}.

Define a model! complete absiract inierpreiaiion as the abstract interpretation of any model
complete collecting semantics. In the following, pre-fixpoints of the abstract operator 7@ are called
reachable abstract models.

Proposition 4.1
Let P be a logic program and (C,T,p, A, T®) be a model complete absiract inierprelation. Let
M® € A be an abstract interpretation. Then (1) if T(M®)Ca M then M*® is an absiract model

for the logic program P; and (2) if M® is a reachable absiract model for P then v,(M®) is a reachable
collecting model for P.

625

Definition 4.3 [property completeness] '
Let p be a property for (C, T). (C, T) is p-complete iff poTop = poT.

Proposition 4.2 4
Let (C, T,p, A, T be a model complete abstract interpretation, where {C, T)Y is p-complete and
po(yoa) = (yoa)op. If M® is an abstract model of P, then v,(M®) 1s a collecting model of P.

Under the previous hypothesis: an abstract interpretation is an abstract model iff its concretiza-
tion is a collecting model. In this case, p is a model deformation [7], i.e., p maps collecting models
into collecting models.

4.1 Logic-based abstract compilation

In this section we relate model deformations (defined by abstraction) with program transforma-
tion for analysis, such as abstract compilation. In abstract compilation, the analysis is obtained by
“transforming” the source program P into P’ such that, when executed, P’ returns precisely the
desired dataflow information about P. Abstract compilation is then a program deformation, where
the semantics of programs is not usually preserved but approximated. The idea is to study model
deformations as an indirect way of studying abstract compilations. In particular we define abstract
compilation as the class of programs for which the analysis is exact, i.e.., wher.e the analysis is sound
(anything that can happen is predicted) and minimal (anything that is predicted can happen).

Definition 4.4 [abstract compilation]
Let P be a program and p = (C,T,p, A, T?) be an absiract inierpretation. The correspond-
ing abstract compilation is W' C Program, such that for each P e U Ufp(T(P))lpreacry =

F(ifp(T(P))).

Tn the following, a collecting interpretation I is finilely definite clause aziomatizable (FDC as in m
if there exists P € Program such that Ifp(T(P)) = I. Abstract compilation is then the collection of
programs that provide a FDC axiomatization for v(Ifp(T*(P))).

Definition 4.5 [FDC deformations [7]] . ‘
Let (C, T) be a collecting semantics. § : C — C is a FDC deformation 1iff whenever I € C 1s FDC
aziomatizable, then §(I) is FDC aziomatizable.

Theorem 4.3 .
Let {C, T,p, A, T be an abstract interprelation and P be a program. If v,0T %, is a FDC
deformation, then for every n > 0, 7,(T°(P)In) is FDC ariomatizable.

Clearly, with terminating abstract interpretations y (as those for program analysis), 7,(Ifp(T*(P)))
is FDC axiomatizable, and therefore W% # 0.

5 Systematic design of systems of collecting semantics ‘

In this section we introduce a systematic approach to collecting semantics design in logic pro-
gramming. Up to now, a collecting semantics is any concretization of a core semantics (e.g., the
Herbrand semantics). Thus, an arbitrary collecting semantics for a program may be completely
unrelated with the “real” program execution. Let (C, T)7 be a collecting semantics. A correct
collecting semantics (with respect to (C, T')) is a gollecting semantics (C’, .T/) which %s sound with
respect to (C, T) (i.e., such that 3a',": (€', T')=(C, T)). Correct collecting semantics can be (%e—
fined by abstraction of a reference collecting semantics if the property induced by the core semantics
on the reference semantics can be extended to its abstractions, as stated in the following

Theorem 5.1 o o o
Lei (C, TV be a (model complete) collecting semantics in U g 1B) and (C', T') such thet 3o',v":
(¢, T/)':é(c, T). If y'oa’ C¢ yoa then (C', T') is a (model complete) collecting semantics.

626

B C=h4—E—b1,.,.,bn€P
(=M, a8) <. € (1< k<)

c=h — bl, bn eEP 0= mgu((bl, ceey bk>, (lll, ey (I.k))
R1: = R9: —— S O
— (b1, ba) € (b= (by, oy b)) B 2B (b, oy b)) € €

Table 1: AND-compositional traces

A natural choice for a reference semantics is the operational description of the computation
process, in logic programming: SLD resolution. In the following we fix the Prolog left-to-right
selection rule. The operational semantics of a logic program P is defined as a labeled transition
system defining SLD resolution: SLD = (State,{-— |c € P}), where states are pairs of goals
and substitutions: Siale = Atom* x Sub, and transitions are labeled with program clauses: — C
State x State, such that (a | B, o)<—(body :: B,9) iff ¢ = h — body is a renamed apart clause in
P, and ¥ = omgu(ac,). The transitive closure of — is denoted ——* where & € P*. A collecting
semantics can be derived from SLD by modeling execution traces. We denote T (SLD) the set of
(finite) execution traces of SLD, with arbitrary elements 7. 7o denotes the first element of the trace
7. T(SLD) is inductively defined by the rules:

s € State s——mo A 7 € T(SLD)
s € T(SLD) s——m € T(SLD)

It is a common practice in logic program semantics to restrict the interest to AND-compositional
ezecution traces only (e.g., any of the fixpoint semantics in [31, 20, 5, 22] provide AND-compositional
denotations for logic programs). Intuitively a set of traces is AND-compositional if the execution
trace of any (possibly non-atomic) goal can be reconstructed by composing traces for atomic goals
in the set. The inductive definition of the set £ of AND-compositional execution traces for atomic
goals is in Table 1. It is a (positive) inductive definition with universe the set of traces from atomic
goals only T4(SLD). The first rule specifies an atomic transition from an atomic goal h with clause
c. The second rule specifies the AND-compositionality of derivations for a clause c. This is obtained
by composing the successful transitions for the first k — 1 atoms of the body, with the state (goal)
produced from a derivation of the k** atom of the body.

Theorem 5.2 [AND-compositionality]

Lel G = by,...bn be a goal. (G,o)==*(B,d) € T(SLD) iff 3((hi—=A)izl b teBy) < €,
1 <k < n such that § = mgu((by, ..., bx)o, (ha, ... ki), © = & = ... G, and BY ~ (Bg ::

(Okt1, ..o, bn))oé and GY ~ Gob.

By Theorem 5.2, the set of SLD-traces 7(SLD) can be characterized in terms of traces from

atomic goals only, i.e., traces in 7,(SLD). The operator ¢p on ©(72(SLD)) induced by the inductive
definition of £ is ([1]):

pp(X) = X U {h=B | c=he—BeP}u
c=h—bi,.,boeP
(628 a5 B) <. X (1< k<)
f = mgu((bl, ceey bk), (al, ..&%ak_))

T = h—c—>(61, e bn)a—’n.‘—»B 2 (Bk1s ey bn)

It is easy to prove that pp(X) is continuous and £ = ppTw, i.e., the inductive definition is well
formed. In the following we consider (p(7,(SLD)), ¢p) as reference semantics.

Proposition 5.3
(p(T2(SLD)), pp) is a model complete collecting semantics.

627

(p(Ta(SLD)), pp)L is therefore a collecting semantics where the abstra,ctiog funct.ion « maps
any successful sequence h———*A into ground(h) while non successful traces are smlply 1gnore<'i. o
° ’E[‘he angelic absiraction a, is obtained by approximating finite traces by the pair of thelr’ ini-
tial and final state (see [17]) enhanced with the sequence of cla,uses‘ ustad in the' trace. oza().s) =
{{h,B,d) | h-2="B € X}. It is easy to associate with oo a concretization fun?tlon Ya 1f1dug1ng a
Galois insertion such that 750a4 C yoa. By Theorem 5.1, the best correct angelic approximation is
a model complete collecting semantics. This semantics has been recently used in [5] to model Prolog
depth-first search. ‘

o The sequence absiraction a, simply ignores the sequence of clauses used in the trace. .It.can be
composed with ¢, to approximate traces with their initial and final state. only. As before it 11.1duces
a model complete collecting semantics for partial answers. The semantics for call patterns in [23]
can be further derived by approximating (h, b | B) with (k, b). -
e The success absiraction a,s approximates any finite successful trace with its initial state, while
non successful traces are simply ignored. Notice that when composed with sequence abstraction,
it induces a best correct approximation which is equivalent (~) to (p(Atom), T3). Moreover:
o = groundoc,. ‘ . .

e Finally, the Heyling absiraction ap is defined in terms of a map transforming successful (finite)
traces into trees.

6 Combining semantics and properties ‘ ‘

In this section we formally relate and combine collecting semantics. In order to specify the
basic operators to combine collecting semantics, we require some comp{eieness conditions about
the involved system of semantics. A system of collecting semantics Ug is (upper) ct?mplete wh.en
there exists a (reference) collecting semantics W € Us such that for each Q € Us, Qis sounciv with
respect to W. Complete systems are actually complete lattices. In the following we depote Ug the
system of all collecting semantics which can be derived by abstraction from W and having S as core
semantics (i.e., generated by §).

Theorem 6.1 . . ‘

Let W = (C, T')1 be a collecting semantics in the system of collecting semantics with respect 1o S.
Then UY is a complete lattice isomorphic 1o the sub-latlice of uco(C): (T, Cuco, M, U, voar, Az .z)
where T' = {p € uco(C) | p Cuco your}.

In particular we can apply the join and meet operators in uco(C)'to compose co}lecting semanti;:\f}s.
Let W = (C, T') and {pa, }ser be the closure operators associated with the semantics {A;}icr € U5’
We define: ®ierAi = (Uierpa;(C), (Uierpa;)oT) and @ierAi = (Mierpa,(C), (Mierpa;)oT). By
Theorem 6.1, (U¥,=,®,®,S, W) is a complete lattice. . . .

Any set of collecting semantics U can be extended to a system of collecting semantics by observxpg
that any semantics in U is complete with respect to @U, which is actually tl.le most concrete semantics
having this property and which can be derived by abstraction from semantics in U. T_‘herefore, for any 1
set of semantic definitions U, then BU{@U} is always a system of collecting semantics. Analogously,
any system of collecting semantics Ugs can be extended to a corresponding (upPer) complete system
by observing that any semantics in Us is correct with respect to ®Us. In this case Us U{®U} is
complete.

Proposition 6.2 . . . '
Lel W be a possibly non model complete collecting semantics. The family of model complete collecting
-semantics in UY is inf-closed.

Therefore, the reduced cardinal product of model complete semantics is a model complete se-
mantics. In particular, by Theorem 5.1 it is easy to prove the following

Corollary 6.3 R
If W is model complete, then any semantics in U5 is model complete.

628

Therefore, the join of model complete collecting semantics is model complete provided that the
reference semantics is a model complete semantics.

In the following of this section, for simplicity, we consider the system of all collecting semantics
generated by Herbrand’s semantics and correct with respect to SLD, i.e., O;Q{LDA It is worth noting
that all of the following results can be generalized to any complete system of collecting semantics. In

particular, note that by Proposition 5.3 and Corollary 6.3, any semantics in UftLD 1s model complete.

Example 2 A new semantics including both the s and the Heyling semantics can be obtained by
reduced cardinal product of the s and the Heyting semantics defined in Section 3.9: (p(Tree), TH*) ~
(p(Atom), T5) @ (up(p(Tree)), TH), where for each I C Tree:

1= (h, ((h1, ta), ..., (hn, 12)))0
Te*(I)=q 1| C=h+—1by,.. by €P, ((h1, 1), oy (Rny 1)) <o 1
6 = mgu((bs, ..., bn): (R, .., hﬂ))

By Proposition 6.2, (p(Tree), TE®) is model complete. Moreover, we can verify that Clark’s se-
mantics is precisely the common semantics between s and Heyting, namely (up(p(Atom)), TS) =~
(p(Atom), T8) & (up(p(Tree)), TH).

6.1 The “best” collecting semantics for analysis

In the following, we characterize when a collecting semantics is 100 concrete for a given property,
and the best collecting semantics for analysis. The following notion of too concreteness corresponds
precisely to the existence of a collecting semantics which is more abstract but equivalent on the
property to model.

Definition 6.1

A collecting semantics (A', T') is log concrete for a property p of (A’, T') iff there exisis a collecling
semantics (A, T) such that: (4, T)?‘(A’, T'), p is extendible 1o (A, T), and poyo Tocrop = po T'op.

Example 3 Most of the (botiom-up) absiract interprelations designed for success patiern approz-
imation are based on the abstraction of the s collecting semantics (e.g., [6, 10]). However, notice
that the property Dep is extendible to Clark’s semantics and PDepo THopDep = PDepoTEoUPoppep,
“1.e., the s collecting semantics is (1oo) concrete with respect to Dep. The more simple ¢ semantics
can be equivalently used as a base semantics for Dep abstraction. This is not true for Sharing [25],
because the abstraction up which relates Clark and s semantics, may iniroduce new sharings which
are not produced by the program.

Intuitively, the best collecting semantics is a semantics which is not too abstract to lose useful
information but also not too concrete (in view of Definition 6.1). More formally, given a collecting
semantics (C, T'), which is too concrete with respect to a given property p, we are interested in
systematically derive an abstraction of (C, T') which leads to the best collecting semantics for that
property. ’

Theorem 6.4 [the best collecting semantics]

Let (C, T)7 be a collecting semantics. Let p be a property. The best collecting semantics is a *

semantics (CY, T?) such that C* = pN (yoa)(C) and TP = @ pri(yoa)e T'oYpn(voa)-

When S is the core semantics, we will sometimes denote the best collecting semantics for a
property p as S M p. Therefore, given a property p, and a system U%’, we can always define an
operator f, : Us — Us which transforms any (possibly too abstract) semantics X € Us, into the
least (most abstract) semantics which is more concrete than @ and suitable for the analysis, namely
B, = AX.X N p. It is immediate to see that B, is a closure operator on the complete lattice vy,
whose fixpoints are exactly the collecting semantics suitable for the analysis of p. We call these
semantics concrete semantics for p. Thus, if @ and X are concrete semantics for a property p, (i.e.,
6,(Q) = Q and B,(X) = X) ther both Q UX and QN X are concrete for p. By Theorem 5.1, the
best collecting semantics construction maintains model completeness and correctness:

629

Corollary 6.5

Let (C, T) be a collecting semantics and (C°®, T*) be the corresponding best collecting semantics for
a property, as stated in Theorem 6.4. Then, (1) if (C, T) is model complete, then (C?®, T is model
complete; and (2) if (C, T) is correct, then (C, T®) is correct.

Example 4 I1 is easy to see that Clark’s semantics is indeed the best collecting semantics for ground
program properties (e.g., ppep), namely it is isomorphic to the reduced cardinal product of Herbrand
with Dep. To prove this it is sufficient to observe that, by fizing the s semantics as collecting
semantics: ppep N ground = up. Note thal, in the hypothesis of [8], i.e. assuming that T conlains

infinitely many constants, then the Herbrand and Clark’s semantics are isomorphic (see [8]), namely:

‘H is the best collecting semantics for analysis of groundness! By Theorem 6.4, the best semaniics
for Sharing is strictly more absiract than s and sirictly more concrete than Clark’s semantics. We
are currently looking for ils “ezplicit” definition.

7 Related works

In logic programming, the most related works are [6, 15, 11, 21, 26]. [26] firstly applied a notion
of core semantics to build collecting semantics. The approach however was neither oriented to a
systematic design of semantics nor provided with a model theoretic interpretation for collecting
and abstract semantics. While [15] firstly observed that % is an abstract interpretation of a more
concrete backward semantics, [6] applied (orily) the s collecting semantics to program analysis. In
[21] M, Clark and s semantics are related, providing a model theoretic interpretation for s models.
We combine and extend those approaches in the first part of the paper, introducing a generic notion
of collecting semantics for logic programs. This includes the results in [6, 21] as a special case of some
of the results in Sections 3 and 4. Moreover, by using abstract interpretation to relate semantics,
we can systematically derive and compare collecting semantics, and constructively define “optimal”
collecting semantics for analysis. The approach is general enough to include also different semantics
like Heyting semantics, semantics for call patterns etc. Independently, [11] also applied abstract
interpretation to derive semantics by abstraction from SLD trees, similarly to Section 5. The main
difference with our approach is that [11] does not consider a core semantics in concrete semantic
definitions. The core semantics is here a key notion in order to extend to collecting and abstract
semantics many of the (desirable) properties of the standard semantic definition of logic programs,
like its simplicity and its model theoretic interpretation. Morover, it is essential to characterize both
the best collecting semantics for analysis (Theorem 6.4), and the class of correct collecting semantics
for a program.

Acknowledgments
The stimulating discussions with Patrick Cousot, Maurizio Gabbrielli, Thomas P. Jensen, Giorgio
Levi, Francesco Ranzato and Enea Zaffanella are gratefully acknowledged.

References ‘

[1] P. Aczel. An Introduction to Inductive Definitions. In J. Barwise, editor, Handbook of Mathematical
Logic, pages 739-782. North-Holland, 1977.

[2] K. R. Apt. Introduction to Logic Programming. In J. van Leeuwen, editor, Handbook of Theoretical
Computer Science, volume B: Formal Models and Semantics, pages 495-574. Elsevier, Amsterdam and
The MIT Press, 1990.

[3] K. R. Apt and M. Gabbrielli. Declarative Interpretations Reconsidered. In P. Van Hentenryck, editor,
Proc. ICLP’94, pages 74-89, 1994.

[4] T. Armstrong, K. Marriott, P. Schachte, and H. Sg¢ndergaard. Boolean functions for dependency
analysis: algebraic properties and efficient representation. In B. Le Charlier, editor, Proc. SAS’94,
LNCS 864, pages 266-280, 1994.

[5] R. Barbuti, M. Codish, R. Giacobazzi, and M. Maher. Oracle Semantics for PROLOG. In H. Kirchner
and G. Levi, editors, Proc. ALP’92, LNCS 632, pages 100-114, 1992. Extended version to appear in
Information and Computation.

630

[6] R. Barbuti, R. Giacobazzi, and G. Levi. A General Framework for Semantics-based Bottom-up Abstract
Interpretation of Logic Programs. ACM TOPLAS, 15(1):133-181, 1993.

[7] A. Batarekh and V. S. Subrahmanian. Topological model set deformations. Fundamenta Informaticae,
12:357-400, 1989.
[8] M. Bruynooghe. A Practical Framework for the Abstract Interpretation of Logic Programs. Journal
of Logic Programming, 10:91-124, 1991.
[9] K. L. Clark. Predicate logic as a computational formalism. Technical Report Dept. of Computing,
Imperial College, 1979.
[10] M. Codish, D. Dams, and E. Yardeni. Bottom-up Abstract Interpretation of Logic Programs. TCS,
124(1):93—126, 1994.
[11] M. Comini and G. Levi. An Algebraic Theory of Observables. In M. Bruynooghe, editor, Proc. ILPS’94,
1994.
[12] P. Cousot and R. Cousot. Abstract Interpretation: A Unified Lattice Model for Static Analysis of
Programs by Construction or Approximation of Fixpoints. In Proc. ACM POPL’77, pages 238-252,
1977.

[13] P. Cousot and R. Cousot. Systematic Design of Program Analysis Frameworks. In Proc. ACM POPL’79,
pages 269-282, 1979.

[14] P. Cousot and R. Cousot. Constructing hierarchies of semantics by abstract interpretation. Invited
Lecture, Workshop on Static Analysis, WSA’92 Bordeaux 1992.

’[15] P. Cousot and R. Cousot. Abstract Interpretation and Applications to Logic Programs. Journal of

Logic Programming, 13(2 & 3):103-179, 1992.

[16] P. Cousot and R. Cousot. Abstract Interpretation Frameworks. Journal of Logic and Computation,
2(4):511-549, 1992.

[17] P. Cousot and R. Cousot. Inductive Definitions, Semantics and Abstract Interpretation. In Proc. ACM
POPL’92, pages 83-94, 1992.

[18] S. K. Debray. Efficient Dataflow Analysis of Logic Programs. JACM, 39(4):949-984, 1992.

[19] S. K. Debray. On the Complexity of Dataflow Analysis of Logic Programs. In W. Kuich, editor, Proc.
ICALP’92, LNCS 623, pages 505-520. 1992.

[20] M. Falaschi, G. Levi, M. Martelli, and C. Palamidessi. Declarative Modeling of the Operational Behavior
of Logic Languages. TCS, 69(3):289-318, 1989.

[21] M. Falaschi, G. Levi, M. Martelli, and C. Palamidessi. A Model-Theoretic Reconstruction of the
Operational Semantics of Logic Programs. Information and Computation, 102(1):86-113, 1993.

[22] M. Gabbrielli, G. Levi, and M. C. Meo. Observational Equivalences for Logic Programs. In K. Apt,
editor, Proc. JICSLP’92, pages 131-145, 1992.

[23] M. Gabbrielli and M. C. Meo. Fixpoint Semantics for Partial Computed Answer Substitutions and
Call Patterns. In H. Kirchner and G. Levi, editors, Proc. ALP’92, LNCS 632, pages 84-99, 1992.

[24] M. Hermenegildo, R. Warren, and S.K. Debray. Global flow analysis as a practical compilation tool.

Journal of Logic Programming, 13(4):349-366, 1992.

D. Jacobs and A. Langen. Static Analysis of Logic Programs for Independent AND Parallelism. Journal

of Logic Programming, 13(2 & 3):291-314, 1992.

[26] N. D. Jones and H. Sgndergaard. A Semantics-based Framework for the Abstract Interpretation of
Prolog. In 8. Abramsky and C. Hankin, editors, Abstract Interpretation of Declarative Languages, pages
123-142. Ellis Horwood Ltd, 1987.

[27] R. Kemp and G. Ringwood. Reynolds and Heyting Models of Logic Programs. Technical report, Dept.
of Computer Science, Queen Mary and Westfield College, 1991.

[28] K. Marriott and H. Sgndergaard. Semantics-based Dataflow Analysis of Logic Programs. In G. Ritter,
editor, Information Processing 89, North Holland, 1989.

[29] F. Nielson. A denotational framework for data flow analysis. Acta Informatica, 18:265-287, 1982.

[30] B. Steffen. Optimal data flow analysis via observational equivalence. In Proc. MFCS’89, LNCS 379,
pages 492-502, 1989.

[31] M. H. van Emden and R. A. Kowalski. The semantics of predicate logic as a programming language.
JACM, 23(4):733-742, 1976.

S
o

Contributions to a theory of existential
termination for definite logic programs

Giorgio Levi and Francesca Scozzari
Dipartimento di Informatica,
Universita di Pisa,

Corso Italia 40, 56125 Pisa, Italy

{levi,scozzari}@di.unipi.it

Abstract

We suggest a new formalization of the existential termination prob}em of logic. progiaar?ls
under the PROLOG leftmost selection rule and depth-first computation rule. F‘ust CL ,
we give a characterization of the problem in term§ of occurrence set's, by proving that a
(program, goal) existentially terminates if and only if ther.e ex?sts a finite correct occurrenffze
set. Then we show that in order to study existential termination, we do not nef:d to specify
the occurrences of the atoms, since existential termination turns out to be decidable, when

i to renaming).
instances of atoms are used more than once (up ami ' '
We then reduce the verification of existential termination to the search of a suitable semi

occurrence set for the pair (program, goal), by providing an algorithm for proving that th;
proposed semi occurrence set is a correct occurrence set. Finally we propose 2 simple metho
(based on abstract interpretation techniques) for generating such semi occurrence sets.

Keywords: existential termination, program analysis.

1 Introduction

The termination of logic programs became, in the last few. years, an %nterestipg research topic.
The theories and techniques developed for studying the‘termmat.lon n 1mp§rat1ve lar.‘lguages and
term rewriting systems were used first. New termination techr{lq\.‘les §pec1ﬁc to logu; programj
have then been developed. In logic programs, we can make a dlstlnstlon betvyeen universal an
existential termination. A program is universally ter»mig\gi;ir{g for a given goal if the COI:II}?Hté,thD
produces all the solutions and then terminates. It is existc?}ltlally terymlnatmg for a goal if it either

i 1 turns at least one solution. o o Fomiandy Ypnoon.

ﬁnlti\efll\}l]cialv};so?; ;eas been recently devoted to universal termination. For instance _[l, 2, 3, 4] suggest
new theoretical characterizations. In addition there are many proPosals of effective methods, such
as those in [12, 14, 15, 16], which infer interargument relations using AND/QR DataﬂF)w Graphs,
and those in [6, 7], where the termination is proveq for programs enpched with assertions. Up t.o
now, very little attention has been devoted to emsten.tlal termma’glon‘ [5] proposes a sgma?tlc
approach using inductive proof techniques, [11] Stu‘d}es an effective method for functlgn 11'ee
programs, while [10, 19] just contain the basic deﬁ}lltlons., Ac.tua]ly, Whoeyer wants to <leve .0£
an effective (and general enough) method for proving emstfentlalltermmz%t]on., has to dea wit
the impossibility of making any term abstraction, since ex.lstent%a.‘l term{na.tlon does not en]iy
any closure property, neither w.r.t. instantiation nor w.r.t. antl—mstantlathn. Moreover, the
dependence on the computation rule forces us, in most cases, to.choose a speaﬁc‘ search strateg)i
(usually the depth-first rule of PROLOG), which further complicates the analysis of the contro
because of the backtracking mechanism.

FONNS
2 |
632 i i

The development of existential termination techniques becomes essential in order to generalize
the analysis of universal termination to normal programs. In fact, the problem of universal
termination for negative goals boils down to the problem of existential termination for positive
goals. An extension of the techniques for universal termination for dealing with negation is possible
only if we have satisfactory results for existential termination.

In this paper we propose a new theoretical characterization of existential termination with the
leftmost selection and depth-first computation rules. We also propose an abstract interpretation
technique which can be useful to make our results applicable in practice.

In Section 2 we summarize the basic definitions and propose a technique of program indexing
which will be used throughout the paper. In Section 3 we introduce occurrence sets, correct
occurrence sets and their main properties, including an algebraic characterization in terms of
complete lattices. We then introduce the minimal correct occurrence set which will be used in
Section 4 to express our main results, which allow us to get rid of the occurrences in the occurrence
sets, still preserving correctness and completeness w.r.t. existential termination, leading to the
notion of semi occurrence sets of Section 5. Finally, in Section 6 we discuss an application of
abstract interpretation which generates the semi occurrence sets and, in Section 7, show one simple
example.

2 Preliminaries

2.1 Definitions

Let us first consider the classical definition of existential termination and some of its basic
properties [5, 10]. The definition is based on the operational behavior of the program, using the
standard concepts of computation and solution.

Definition 2.1 A program p existentially terminates for the goal g if the computation either
finitely fails or produces at least one solution. P
i Hoe ol afanasos)

A basic property of existential termination is its dependence on both the selegﬁpn,,,mle (as
in the case of universal termination) and the computation rule. Moreover, it does not enjoy the
instantiation closure properties which are typical of universal termination. Namely the existential
termination of a goal does not imply the termination of its instances. It is then necessary to
study the existential termination in a goal-dependent way without 'tﬂé‘possibility of generalizing
the results to instances or anti-instances [18].

In the discussion that follows, we shall consider logic programs with the PROLOG selection and
search rules. We assume the reader to be familiar with the notions of SLD-resolution and SLD-tree.
Moreover, we assume the concept of LD-resolution which uses the leftmost selection rule and the
depth-first search rule. An LD-computation either terminates when it has found the first solution
or diverges in the first infinite branch. An LD-tree is built by collecting from left to right the
branches of the SLD-tree up o and including the first non finitely failed branch. Moreover, if the
node n has associated the goal A, B, we define the selected atom in n as the atom A, according to
the leftmost computation rule. For further definitions we refer to [13, 10].

(p, g) denotes a pair consisting of a definite program p and a goal g. Let I be a set of atoms. We
denote by up(I) the set of all the instances of atoms in I up to renaming. We denote by N*° the
set N\ {0} U {co} obtained by extending the natural (positive) numbers and its ordering relation
in the obvious way. Moreover, all our relations are defined up to renaming. The (atomic) symbol
A will denote an atom or its equivalence class modulo renaming.

Existential termination can be expressed in terms of properties of LD-trees, as shown by the
following proposition.

Proposition 2.2 (p,g) ezisientially terminates if and only if the LD-iree of (p, g) is finite.

PRI ST p(ifm“-li

633

2.2 Program indexing

A partial computation can be viewed as a sequence of goals gg — g1 — ... — 9n w_here Qi1 18
obtained from g; and a (renamed apart) clause ¢ = H : —A4;,..., A, by a single deljlvatlon step. In
the approach we propose, it is necessary to identify the clause used in the resolvent in order to know
which atoms in the program cause non-termination. In particular, for a goal ¢ =— Bi,..., By,
we want to know which clause the selected atom By comes from. To this aim we propose a simple
technique of program indexing. Obviously an atom in the head of a clause can Dever appear ina
partial computation. Therefore only atoms in the body and in the goal need tp be mdexe]d.

Given a pair (p,g), the indexed program and goal is the pair (p’,¢’) obtained from ([J.,_(]), by
indexing all the atoms in the body of any clause in p and in the goal g, so that all the mdlces.are
distinct. For the sake of simplicity, we shall use the natural numbers as index base. We associate
then to every pair (p, g) a set of atoms Atom, 4y containing all the indexed atoms which are in p
and in g.

Example 2.3 Let p be the following program:
q(a).
q(s) :- q(t),p(w).
and g =— q(z),p(y) be a goal. We define the program p'
q(a).
q(s) := qi(t),p2(u).
the goal g’ =— ga(z), pa(y) and Atom, oy = {q1(t), p2(v), ga(x), pa(v)}-

In the following, logic programs and goals will be indexed logic programs and indexed goals.
The usual operations on atoms are extended in the obvious way: the mgu definition is not affected
by the indexing, while the application of a substitution to an atom preserves the index of the atom
itself. This extension aims to guarantee that every atom selected in the computation has an index.
Therefore we define:

mgu(pn(®), pm(8)) 2 mgu(p(d), p(8)

(pn ()8 Z pa(i0)

We need to compare different atoms obtained as instances of the same atom in the program.
Therefore we introduce a new equivalence relation which partitions the set of atoms on the basis
of the associated index.

AminaBY A= Pa(f) A B = pa(ii)

Let A be an atom which is an instance of an atom in Atomy, 5. We denote by Atom, ;) (A)
the only element belonging to Atom, oy N{ B | B ~inqa A }.

3 Occurrence sets and correct occurrence sets

The main idea underlying our construction is that one must be able to recognize the termination
of a goal, by comparing an occurrence set for that goal with a specific partial computation. In
practice, occurrence sets are used to guarantee the effectiveness of the analysis, allowing to compare
the already visited atoms on the basis of the associated index. Therefore, our occurrence sets must
contain both the visited atoms and their occurrences (i.e. how many times they occur in the
computation). :

634

We start by defining the domain of occurrence sets for a pair (p, g) and then stating the basic
properties of correct occurrence sets. An occurrence set for (p, g) is a function which assigns to
every atom A in Atomy, o) a set of pairs of the form (46, n), where n € N*. The second argument
is called occurrence of the instance and can assume the value co.?

Definition 3.1 We define occurrence set for (p,g) a function
Tipg) + Atomp gy — 274) XN
such that VA € Atom, oy { B | (B,n) € I 5 (A) } C up(A).

Therefore, an occurrence set can be thought of as a function whose image is a multiset, and
likewise we can define the notion of correct occurrence set. The idea behind the concept of correct
occurrence set is to collect a superset of the atoms selected in a (leftmost depth-first) derivation,
together with an upper approximation of the occurrences.

Definition 3.2 Let Iy 5 be an occurrence set for (p,g). Then Iip g) s correct for (p,g) if and
only if:

VA € Atomy, oy V0 if Af is selecled n times in the LD-tree of (p,g), then 3m > n s.t. (A0, m) €
Tip.q) (4)2

Note that multiple occurrences of predicates in Atomy, 4 are not identified. Every atom in the
LD-tree comes from a specific atom in Atomp gy and we can easily identify that atom thanks to
the indexing.

Proposition 3.3 Every pair (p,g) has a correct occurrence set.

Proof: The occurrence set
VA € Atom, gy I(A) = up(Atomn, 4)) x {o0}
is correct for any program and goal. i]

Among the occurrence sets, we are particularly interested in finite and weakly finite occurrence
_sets and in completions, in order to capture the concept of existential termination.

Informally, an occurrence set is finite if the set of occurrences of atoms in its image is finite. By
weakening the definition, we obtain the characterization of weakly finite occurrence set. Namely
we simply count the atoms in the image, by ignoring multiple occurrences (or better by assuming
all the occurrences to be unary). On the contrary, the completion is obtained by increasing the
size of the occurrence set by setting all the occurrences to infinity.

Definition 3.4 Let Iip,g) be an occurrence set. Then 1t is finite if the summation
> > om
A€Atom(y, o) (B,n)EI(P’g)(A)
is finite. Likewise, an occurrence set is weakly finite if
> > 1
A€Atom(, g (Byn)€l(p,q)(A)

18 finite.

1We prefer to use the notation (A6, n) rather than (6,n) in order to simplify the definition of equivalence up
to renaming. Consider the atom 4 = p(X,Y) and the substitutions § = {X — f(2)}, 0 = {X — F(W)} and
v ={X « F(Y)}. It turns out that A6 is equivalent to Ac up to renaming but it is not equivalent to A~, i.e.
the renaming equivalence depends on the atom to which we apply the substitution. Therefore it is an equivalence
relation which is parametric w.r.t. atoms.

2Since the relations are up to renaming, actually the definition should be: VA € Atom<p’g) V6 if A6 appears n
times (up to renaming) in the LD-tree of (p, g), then Im > n s.t. (B,m) € Itp,g)(A) where A6 is equivalent up to
renaming to B.

635
Definition 3.5 Let I, 5y be a weakly finite occurrence set. We call completion the occurrence
set Comp(I(p q)) defined as follows.
Comp(I(p))(A) = {{B,00) | (B,n) €[5 0 (A)} VA € Alom, 4.
Proposition 3.6 The completion of a weakly finite occurrence set is weakly finite.
Our characterization of termination is directly obtained by using the above definitions.

Theorem 3.7 (p,g) exisientially terminates if and only if there exists a finite correcl occurrence
set of (p, g).

3.1 The lattice of occurrence sets

We analyze now the structure of the occurrence set Int(, g) for the pair (p,g) in order to be
able to introduce the notion of minimal correct occurrence set, which will be used to state our
main results. Let us start by defining two new operations, i.e. join and meet on occurrence sets.

Definition 3.8 Let I,J € Int(, g be two occurrence sets. We define ¢ new occurrence set (IU
J)(A) for all A € Atomp 5y as follows.

Tuna) 2 { 3]

1. (B,z) € IAN(B,y) €] An = maz{z, y},
2. (B,n) € IAVy B(B,y) € J,

3. (B,n) € JAVy A(B,y) € I}.

Analogously we define the meet (I N J)(A) for all A € Atomy, g -

(InJYA) Y {(B.n)| (B.z) € IA(B,y) € J An = min{z,y} }.

Ini(, 4y can be partially ordered by using the join operation. Let I, J € Int(, g be two occurrence
sets. We define:

ici¥ rur=1

We generalize the join and meet operations to sets of occurrence sets in the obvious way. By
using the above ordering, we prove that {(Int(yq),C,U,M) is a complete lattice. By exploiting the
lattice structure we are able to state the first important result.

Theorem 3.9 The meet of all the correct occurrence sets for the pair (p, g) is a correct occurrence
set for (p,g). Such a occurrence set is called the minimal correct occurrence sel and is unique.

For the sake of simplicity, we denote the minimal correct occurrence set for a pair (p,g) by
min
(g}

Theorem 3.10 An occurrence set Iip gy 15 correct for (p,g) if and only if I&‘Z‘) E lipg)-

Lemma 3.11 The completion of a weakly finite, correct occurrence set is weakly finite and correct.

Theorem 3.10 gives a correct occurrence set characterization, by using the ordering on the
occurrence sets lattice. However the resulting characterization is obviously not effective because
of the two following facts: :

1. not all the correct occurrence sets have a finite representation:
2. the computation of I(';ig") is not effective.

In order to solve the first problem, we shall consider weakly finite occurrence sets (and therefore
weakly finite, correct occurrence sets) only, since they always have an effective representation. The
above constraint automatically solves also the second problem, since the condition I (’;Z‘) E lip,g)
turns out to be decidable, as shown in detail in the next Sections.

636

4 Towards a decision procedure based on weakly finite oc-
currence sets

Dealing with occurrence sets is definitely very close to the original model (the LD-tree) and
results in a very simple theory. Actually, in order to capture existential termination, we can ignore
occurrences and use sets of instances only. This intuition leads to a remarkable simplification in
the construction of the minimal correct occurrence set, since we do not need to worry about the
derivations which use a given instance infinitely many times. The result which allows us to obtain
this simplification is the following. Let A be an atom which is selected at least twice in the LD-tree
of (p,g). By inspecting the (finite) partial computation, included between the first two selections
of the atom A, we are able to decide whether A existentially terminates w.r.t. the program p.

Theorem 4.1 Let A € Atomy gy be such that 3(Af,n) € I(';Z‘) (A) withn > 1.Then it is decidable
whether (p, Af) exislentially lerminates.

Proof: By making a depth-first traversal of the LD-tree, let ny and ny be the first and the second
node labeled A6, B and A6, C respectively (such nodes do exist, because n > 2 by hypothesis).
We take under consideration the branch of the LD-tree starting from the root to the node ny. We
have two cases:

1. the node ny belongs to such a branch. This means that the goal Af, B is rewritten to A6, C.
We have again two cases:

i the resolution of the atom Af terminates with computed answer solution ¢ and the compu-
tation continues with the new goal Bo (and Bo is rewritten to A8, C'). In this case Af
successfully existentially terminates.

ii the goal A6 is rewritten to the goal Af, D and therefore Af diverges.

Note that it is decidable whether the computation associated to Af terminates, since we have
to analyze a finite number of steps (i.e. the nodes included between n; and ny).

2. the node nq does not belong to such a branch. This means that it necessarily belongs to
a previously visited and finitely failed branch. Therefore the goal Af either finitely fails or
successfully terrninates.

Since it is decidable whether n; belongs to a finite branch, the existential termination of A# is
decidable too. |

By using the previous result we can characterize, in effective way, whether the completion of a
weakly finite occurrence set represents a correct occurrence set.

Theorem 4.2 Let Iip 4 be a weakly finite occurrence set. Then it ts decidable whether Ic =

Comp(I(, 4)) is @ correct occurrence set for (p,g), i.e. whether I(’;"’;) C Comp(Ii5,q))- -

Proof: The proof is given by the following algorithm (where Visit and Term are two sets of
atoms).

let (D, E) be the label of the root of the LD-tree of (p,9),
f({4,C), Visit, Term) =
let B = Atom, 4 (A)
in if (4, 00) € I¢(B)
then (Ic is not a correct occurrence set,a)
else if A € Visit\ Term and A does not existentially terminate
then (I is a correct occurrence set,b)

637

else if the depth-first traversal of the LD-tree of (p, q)
is terminated
then (I¢ is a correct occurrence set,c)
else let (A’,C’) be the label of the next selected node
in f((A", "), Visit U{A}, Term U ({A} N Visit))
in f((D, E),0,0).

In order to prove the correctness of the algorithm we have to show that:
i. all the choices are decidable.

o (A,00) & Ic(B). Since I¢ is weakly finite, Ic(B) is finite and therefore the condition
turns out to be decidable.

o A does not existentially terminate. We test this condition only after having checked
that A € Visit \ Term, i.e. that A has already occurred in the visited subtree. Thus,
A occurs at least twice in the minimal correct occurrence set of (p, g) and therefore, by
theorem 4.1, it is decidable whether A existentially terminates.

ii. the algorithm always terminates. In the algorithm we check whether the selected atom
belongs to the set Ic(B). By definition of weakly finite occurrence set, the set { B |34 €
Atomyp g (B, n) € Ic(A)} is finite. Tt follows that the algorithm considers finitely many
distinct atoms. We have only to prove that no atom is selected infinitely many times. We
assume, by contradiction, that there exists a set of atoms which are selected infinitely many
times. This implies that at least one of these atoms recursively calls itself and therefore the
atom does not existentially terminate. But this is a contradiction, since the algorithm should
terminate with label b.

iii. it returns correct answers. It is worth noting that the sets Visit and Term contain,
respectively, the already selected atoms and, among those which have been selected at least
twice, those which existentially terminate. If the algorithm terminates with label a, I¢ cannot
be a correct occurrence set, because it does not contain the selected atom. If it terminates
with label ¢, the complete LD-tree has been visited and all the atoms belong to I¢, and
therefore we can assert that it is a correct occurrence set. The interesting case is the exit
with label b. In this case there exists an atom A which has been visited at least twice and does
not existentially terminate. Theorem 4.1 (part 1.ii.) states that A is rewritten to itself, and
therefore the computation goes into an infinite loop where the selected atoms of the visited
goals are all and only the atoms included between the atom A and its next invocation. Thus
Ic is a correct occurrence set since it contains all these atoms with occurrence oo.

Some remarks about the above theorems are necessary. The above results state that, for a
weakly finite occurrence set, we can decide whether its completion is correct. Furthermore, we
have proved that if a weakly finite occurrence set is correct, then, by theorem 3.10, also the
completion is correct, but the vice versa is not valid. This means that, when moving from an
occurrence set to its completion, the chances to obtain a correct occurrence set do increase. We
can thus get rid of weakly finite occurrence sets and take into consideration their completions only,
since we know that we have more chances to find a correct occurrence set in this class of occurrence
sets. In practice we can neglect the occurrences and consider weakly finite occurrence sets only,
without caring about atoms with multiple occurrences. This is captured by the notion of semi
occurrence set.

638

5 Semi occurrence sets
Definition 5.1 A semi occurrence set for (p,9) is a function

I(P,!I) : Atom(p,g) — QHP(Awm()’,g))

with the constraint that VA € Atomy, o) 11y oy (A) C up(A) andrﬁnzie,

Note that the set of semi occurrence sets and the set of completions are isomorphic. Therefore
we can embed the structure of semi occurrence sets in the lattice of occurrence sets. To this aim
we define the extension of a semi occurrence set as the occurrence set obtained by setting all the
occurrences to infinity.

Definition 5.2 Let I be a semi occurrence set for (p,9)- The occurrence set Ext(I) is defined as:

VA € Atomy, g Ext(I)(A) ¥ { (B, co) | B € I(4)).

By exploiting the concept of semi occurrence set, theorem 4.2 becomes:

Theorem 5.3 Let I1,) be a semi occurrence set. Then it is decideble whether Ext(lip,q)) 5 a
correct occurrence set for (p, g), i.e. whether I(’;,’;) C Ezt(Iip,q))-

Our task is therefore to provide a semi occurrence set and, by using the above theorems and
algorithms, to check whether the correct occurrence set is finite and therefore to infer whether
(p, g9) existentially terminates.

In order to achieve our aim, we only have to check whether the finiteness of weakly finite,
correct occurrence set is decidable. The characterization we obtain is still stronger and allows us

to decide, for a weakly finite, correct occurrence set, whether the minimal correct occurrence set *

of (p,g) is finite, and therefore if there exists a finite correct occurrence set. The next theorem
guarantees the effectiveness of such a check by using the previously specified algorithm.

Theorem 5.4 Let Ii, o) be a semi occurrence set such that Ezt(Iipg)) s a correct occurrence set
for {p,g). Then it is decidable whether I&'i;) 1s finite.

Proof: The proof is based on the algorithm given in theorem 4.2. We use such an algorithm and
the occurrence set Ezt(Ij;). Since the occurrence set is correct, it turns out that the algorithm
terminates either with label b or ¢. If the algorithm terminates with label b, we may conclude that
1] m,‘”) can not be finite since it contains at least an atom which does not existentially terminate. If
the algorithm terminates with label ¢, the minimal correct occurrence set is finite since the LD-tree
of (p, g) is finite. [

6 Generation of the semi occurrence set

As a conclusion, we suggest a method to automatically generate the semi occurrence sets. The
basic idea is to generate an approximation of the atoms selected in the LD-tree, by a refinement of
the depth-k abstraction ([17]) used for program analysis based on abstract interpretation ([8, 9]).
Since existential termination does not enjoy any closure property, we are forced to compute an
abstract denotation depending on both the program and the goal. To this end, we shall use a
(leftmost) top-down construction based on the depth-first search rule. We start defining some
useful functions and the abstract domain used by the fixpoint operator.

Let us consider the function |...|: Term — N, such that
It = 1 if £ is a constant or a variable
maz{fti],..., [tal} +1 ift= f(t1,...,ta)

639

and a given positive integer k. The associated equivalence relation is ~, such that t; ~ 1 iff
ar(t1) = ax(lz), where ax(t) represents the term which can be obtained from the concrete one by
substituting with a fresh variable each subterm ¢’ in ¢, such that |t|— [t/| = k.

We can define the abstract universe as the image of oy, that is Term® = ag(Term) = {[t], :
t € Term} and the abstract base Atom® = {p(t{,...,12) : p € I,1¢ € Term®}. The abstract
semantics is defined as a set of pairs of the form (g, h), where g is the current goal and h is
the sequence of renamed apart clauses used in a partial (leftmost depth-first) derivation starting
from g. We shall refer to h as the history of the (partial) derivation. It follows that the abstract
interpretation domain is simply P((Atom?)* x Clause*).

The next step concerns the abstract domain ordering. First of all, we define the structure of
the program and the ordering on sequences of clauses. A program p is defined as a sequence of
clauses p = ¢; = ... :: ¢p. The ordering on the clauses reflects the position in the program, i.e.
Vi,j ¢; < c¢j & 1< j. We extend the ordering on sequences of clauses. Given a clause ¢ € Clause
and s, s, s"” € Clause* we define

cus<sd & 1)s=Xor
2)s'=d:s" and c< d
3)s’=d:s" and c=d and s < §".

Note that the empty sequence A is the greatest element. We order the pairs (g, k) according
to the ordering on the sequences, i.e. by comparing only the histories of the derivation: (g, h) <
{¢',n’) & h < h'. This allows us to implement exactly the depth-first search strategy.

The abstraction function «; and the equivalence relation ~; are extended on Atom and
Atom™ in the obvious way, that is ar(p(t1,...,1n)) = p(ak(t1),..., cx(ts)) and A;, ..., A, ~¢
By,...,B,& Vi=1l...n oz;,(Ai) ~k Czk(B;).

We define the equi¥alence relation ~ on pairs, in such a way that two pairs are in ~j-relation
if and only if the selected atoms in the goals are in the same relation.

(g,h) ~k (¢, b} <> (g=A,Aand ¢ = B,B and A ~; B)org=g =\

It is straightforward to extend a; on the abstract domain and to define a corresponding Galois
insertion (ag,v:) such that v (I) = {4 € Atom : ap(A4) € I}.3 .
The next step concerns the abstract fixpoint operator. First of all, we define a function

SLDresy : P((Atom)™ x Clause™) — P((Atom)* x Clause™)

which computes all the pairs reachable by one step of SLD-resolution via the leftmost selection
rule.

SLDres(I) = {((B,A)8;h = c)| (A, A;h) el
c=H:—Be€p
6 = mgu(A, H)}.

In order to recognize successful computations, we define the function Idy which returns the
pairs with empty goal: Idx(I) = {(A;h) | (A; h) € I}.

Finally, the abstract semantics is obtained by computing, at each step, the set SLDpcs:i(I)
minus the pairs already computed in the previous steps, (possibly) augmented with a success
pair. The least element of this set, when it exists, is exactly the result obtained by ome step of
SLD-resolution via the leftmost selection and depth-first search rules. The definition of the Tpg
become:

3Note that we do not need to prove that the abstract semantics is correct w.r.t. a suitable concrete one, just
because our semi occurrence sets are not necessarily correct occurrence sets. However, one can easily prove that our
abstract semantics is a Galois insertion of the more concrete one, which can be obtained as a limit with k = co.

640
641

Ty o(7) = TUmin((SLDres(I)\ I) U Idr(1) 8 Conclusions

where min(@) = (*. Using a top-down construction, we have to start with the goal g and history
A, just because in the sequence ordering the empty history represents the top element. The least
fixpoint is then computed in the following way:

Our theory for capturing the notion of existential termination applies to positive log.c programs,
under the leftmost and depth-first rules and, according to the well-known properties of termination,
can be applied to study the universal termination of negative goals in normal logic programs.

T, 1h 0= A An interesting extension is related to the posmbi}ity of using diﬁerept selection rules. In facf,,
P 1k {(e. 1)} | the choice of the selection rule affects only the notion of LD-tree, while all our results are still
f ar(Tpy Ten) ETyy(Tog Ten) ~i Tpg T | valid. On the contrary, the c.hoice of a different search rulfa, would affect the validity of theo.rem
Ty Tk (n+1)= Ty 4(Thy Tx n) otherwise ¢ | 4.1, on which our technique is based. Nevertheless, we believe that our result can be generalized
’ o ’ to any search rule.

where ap(l) = {{ar(g),h) : (g,h) €I} and I ~, J <& VpeEIIgE T pr~rgandVpe JIg € ‘ As a final remark, it is worth noting that our results can be applied in a “reverse” mode.
I'p~kq.) Namely, in order to prove that (p, A) existentially terminates, we can look for a goal g such that
Note that the T, , T operator always terminates just because the partition induced by the the minimal correct occurrence set of (p,g) contains the atom A with occurrence > 2. In such a
~p-relation on the abstract domain is finite. way, we could reduce the problem of existential termination of A4 to the search of a goal with given

Given the above abstract semantics, we extract the semi occurrence set Iip gy, by simply properties.

collecting all the selected atoms and getting rid of the history of the derivation, i.e.
Ty = {4 | (A A) €Ty, 14 w}. ‘ References

[1] K. R. Apt and D. Pedreschi. Studies in Pure Prolog: Termination. In J. W. Lloyd, editor,

7 Example i e Computational Logic, pages 150-176. Springer-Verlag, Berlin, 1990.

A flo ee det oans, [2] K. R. Apt and D. Pedreschi. Proving Termination of General Prolog Programs. In T. Ito and
o et A R. Meyer, editors, Proc. of Int. Conf. on Theoretical Aspects of Computer Software, volume
visit ([1[X]). 526 of LNCS, pages 265-289. Springer-Verlag, Berlin, 1991.

Let p be the following program:

visit([0]Y]) « append;(Y,[0],Z),visits(Z). [3] K.R. Apt and D. Pedreschi. Reasoning about Termination of Prolog Programs. Technical

Report TR-14/91, Dip. di Informatica, Univ. di Pisa, 1991.
append([],s,S).

[4] K.R. Apt and D. Pedreschi. Modular Termination Proofs for Logic and Pure Prolog Programs.

In G. Levi, editor, Advances in Logic Programming Theory, pages 183-229. Clarendon Press
- Oxford, 1994. :

append ([T[U],V, [T[W]) «— appends(U,V,u).

The behavior of the program w.r.t. a given goal visit(t) is the following:

. o [5] M. Baudinet. Proving Termination Properties of Prolog Programs: A Semantic Approach.
Loift=[t1,...,tn | X] then visit(1): Journal of Logic Programmaing, 14:1-29, 1992.

1 infinitely fails <> V1 <i < n t; = 0; [6] A. Bossi, N. Cocco, and M. Fabris. Proving Termination of Logic Programs by Exploiting

ii finitely fails < 31 < j <nV1<i<ji; =0 and t; # 0,1 and #; is not a variable; Term Properties. In S. Abramsky and T.S.E. Maibaum, editors, Proc. TAPSOFT’91, volume
i succeeds © 31 <7 <n V1 <i<jt=0and (¢ = 1ot is a variable); 494 of LNCS, pages 153—180. Springer-Verlag, Berlin, 1991. v
2. visit(t) finitely fails otherwise | [7] A. Bossi, N. Cocco, and M. Fabris. Norms on Terms and Their Use in Proving Universal

Termination of a Logic Programs. TCS, 124(2):297-328, 1994.

We choose k = min{i | p ~; ar(p) and g ~ ax(g)}. The semi occurrence set extracted from

. . [8] P. Cousot and R. Cousot. Abstract Interpretation: A Unified Lattice Model for Static Analysis
Tp,g Tk w is powerful enough to allow the algorithm to state the (non-)termination for every goal®.

of Programs by Construction or Approximation of Fixpoints. In Proc. Fourth ACM Symp.

:Note that < is a total order on P((Alom?)* x Clause*) and therefore min is always defined. Principles of Programming Languages, pages 238-252, 1977.
It is worth noting that, in some cases, the technique is able to decide about the non-termination of a al. In y : : 3
fact, when the algorithm terminates with,label b, we can infer that the minimal correct occirrence set is%ion‘ﬁnite {9] P. Cousot and R. Cousot. Systematic Design of Program Analysis Frameworks. In Proc. Sizth

and therefore that the goal does not existentially terminate. | ACM Symp. Principles of Programming Languages, pages 269-282, 1979.
[10] D. De Schreye and S. Decorte. Termination of Logic Programs: the Never-Ending Story.
Journal of Logic Programming, 19/20:199-260, 1994.

[11] N. Francez, O. Grumberg, S. Katz, and A. Pnueli. Proving Termination of Prolog Programs.
In R. Parikh, editor, Logics of Programs, volume 193 of LNCS, pages 89-105. Springer-Verlag,
1985.

642
[12] G. Groger and L. Plimer. Handling of Mutual Recursion in Automatic Termination Proofs
for Logic Programs. Unpublished draft.
[13] J. W. Lloyd. Foundations of Logic Programming. Springer-Verlag, Berlin, 1987.

[14] L. Plimer. Termination Proofs for Logic Programs, volume 446 of Lecture Notes in Artificial
Intelligence. Springer-Verlag, Berlin, 1990.

[15] L. Plimer. Termination Proofs for Logic Programs based on Predicate Inequalities. In D. H. D.
Warren and P. Szeredi, editors, Proc. Seventh ICLP, pages 634-648. The MIT Press, 1990.

(16] L. Plimer. Automatic Termination Proofs for Prolog Programs Operating on Nonground
Terms. In K. Furukawa, editor, Proc. Eighth Int’l Conf. on Logic Programming, pages 503—
517. The MIT Press, 1991.

[17] T. Sato and H. Tamaki. Enumeration of Success Patterns in Logic Programs. Theoretical
Computer Science, 34:227-240, 1984.

[18] F. Scozzari. Analisi di terminazione mediante intérpretazione astratta. Master’s thesis,
Dipartimento .di Informatica, Universita di Pisa, 1994. in italian.

[19] T. Vasak and J. Potter. Characterization of Terminating Logic Programs. In Proc. Third .

IEEE ILPS, pages 140-147. IEEE Comp. Soc. Press, 1986.

A case study in logic program verification:
the Vanilla metainterpreter

Dino Pedreschi and Salvatore Ruggieri

Di_nartimentc; di Informatica, Universita di Pisa
Corso Italia 40, 56125 Pisa, Italy

e-mail: {pedre,ruggieri}@di.unipi.it

Abstract

We take the formal verification of the Vanilla metainterpreter as an excuse for explaining .
a proof method for reasoning about logic programs. - The choice of a semantics suitable for
program verification is discussed. We consider a variant of the least Herbrand model semantics
which abstracts from ill-typed atoms and the underlying (first order) langnage, thus enhancing
modularity and ease of specification. Then, proof outlines and proof obligations are introduced
in a Hoare’s logic style. In the resulting proof theory, triples of the form {Pre}P{Post} can
be derived for a program P, which allow us to establish partial and total correctness. As a
consequence of our results, the correctness of Vanilla is directly proved (once again.)

Keywords: Verification, program development, metaprogramming, formal methods.

1 Introduction

Logic programming (and Prolog) is advertised as a declaraiive language, in the sense that specifica-
iions, when written in an appropriate syntax, can be directly used as programs. This ideal situation,
however, is often unrealistic in practice, both for the fact that executable specifications may be
extremely inefficient, and for problems related to the implementations of logic programming—
programs may fail to terminate or may result in errors when executed with particular strategies.

It is therefore needed to assess the correctness of a logic or Prolog programs with respect to its
specification, or intended interpretation: a task that has been underestimated in the literature until
recently. Of course, when verifying a logic program P, it would be helpful to use its declarative
semantics, namely its least Herbrand model Mp. A natural approach consists of considering Mp
as the intended specification — therefore, the verification of a program is viewed as checking that
the intended specification of program and its least Herbrand model do coincide.

This approach, however, turns out to be inadequate: strangely enough, the least Herbrand
models semantics is not sufficiently abstract. The justification of this statement is based on two
considerations.

On the one hand, specifications generally deal with top level procedures only, leaving unspecified
the description of auxiliary procedures. This is the case in top-down program development and
modular programming. .

On the other hand, the absence of types implies that the least Herbrand model is generally
dirty with ill-typed atoms. Consider the APPEND program and its specification taken from [SS86):

append(zs, ys, zs) « zs is the concatenation of the lists zs and ys.

append([1, Xs, Xs).
append([X|Xs], Vs, [X[2Zs]) —
append(Xs, Ys, Zs).

The APPEND program is intuitively correct with respect to its specification but (if there are
sufficiently many symbols in the language) its intented interpretation is not a model of the program.

644

In fact, in the least Herbrand model ill-typed atoms appear, such as append([], foo ,\ foo). For

efficiency reasons run-time type-checks are dropped.

As a consequence, reasoning about the whole least Herbrand model implies having to take
into account ill- typed atoms, thus making the specification complex and counter-intuitive. This
problem becomes tauch harder in modular program development, since adding more symbols to
the language in the upper modules entails changing the least Herbrand model of lower modules,
and hence their correctness properties.

A clear point emerges from the previous discussion: a semantics for verification should take the
iniended or well-lyped queries into account.: - :

In this paper, we survey an approach to logic program verification which is based on the infended
or well-lyped fragment of the least Herbrand models [PR95, Rug94]. To illustrate the proposed
proof method and its ability to support modular program development, we tackle the prob]em of
verifying a classic of logic programming, namely the Vanilla meta-interpreter. .

A word on terminology is in order. Throughout the paper we use the standard- notation of
logic programming, as in (L1087, Apt90], whien nct specified: otherwise. For instance, we use
queries instead of goals and consider & fixed language L in which programs and queries are written.
Ambivalent syntax is allowed, in the sense that function and predicate symbols may overlap [KJ95,
Jia94]. By A — By ,... ,B, € groundr(P) we denote a ground instance of a clause from P, and by
bag(a1 ,...,an) the multiset consisting of elements a; , . Given a Herbrand interpretation
I and a query @ we write I = Q if I is 4 model of Q. In parmcular if Ais a ground atom then
I=AiffAel

Sp-’eciﬁcations and' Semantics

Following a-Hoare’s xoglc style of defining partial and total correctness we stipulate that a speci-
fication is a pair Pre, Post of (Herbrand) interpretations, i.e., subsets of By .

The rationale under this choice is the following. The ﬁrst interpretation, Pre, specifies the
intended, or well-typed one-atom queries, i.e., those queries for which we designed the program
under consideration. The second interpretation, Post, specifies some property of successful one-
atom querigs. In this sense, a specification Pre, Post describes the input-output behavior of a
logic progras, in a way-that closely resembles that in Hoare’s logic. According to this choice, the
well-typed frdgment of the least Herbrand model is Mp N Pre.

We are now ready to define our notions of (weak) partial and (weak) total correctness.

DEFINI’fION 1.1 Let P be a logic program,‘ and Pre,Post a specification.
(i) P is partially correc}'vy.r.t_.,a specification (Pre, Post) iff Mp N Pre = Post.
(i) P is weak pdrﬁally correct wr.t. a specification (Pre, Post) iff Mp N Pre C Post.

(i) P is! lotally-corregt w.r.t. a specification (Pre, Post) iff Mp N Pre = Post and
Pre C Mp U FFp, wheré FFp is the finite failure set of P.

(iv) P is weak totally correci w.r.t. a specification (Pre, Post) ifft Mp N Pre C Post :
and Pre C Mp U FFp. o

As a consequence of this definition, partial (and total) correctness of a program P w.r.t. a
specification Pre, Post entails that Post coincides with the well-typed fragment of Mp. In the
next section we introduce a proof theory for partial (and total) correctness which, in particular,
will allow us to abstract away from the ill-typed fragment of Mp. Notice that the weak version
of either notions entails that Post specifies a property of Mp N Pre. Observe that the condition
Pre C Mp U FFp used to define (weak) total correctness is equivalent to require the ezistential
termination of the atoms in the precondition w.r.t. a fair selection rule and a complete search
strategy.

645

As an example observe thaf APPEND is t.otally correct w.r.t. Pre, Post where

Pre = { appen‘d(m':‘ ys, z8) | xs,ys, zs are lists }

Post ;= { append(ws, ys, zs) |zs is the concatenation of the lists zs and ys }.

Vanilla -

A jewel of Loglc Programmlng is the elegant meta-program which, by means of the ambivalent
syntax, specifies the meta-circular interpreter (i.e., the interpreter’ of LP in LP). This program,
referred to'as the Vagiilla metainterpreter, and ﬁrst introduced in [BK82], is denoted by Vanp
when msta.ntlated ¢n an object program P, and consists of the followmg clauses:

prove(true). -
“ 'prove('A & B) «—
prove(A),
" prove(B.).
prove(4) —
clause(4 , B),
prove(B),

clause(A , By & - & By). for every A « B, i, Bp €P

where By & ... & B, is an abbreviation for
©B; & (By & ...(Bo_y &B,) ...) ,ifn>1,
e By ,ifn=1

o true ,ifn:O.

For instance, for P = APPEND the definition of clause is

clause(append([], Xs, Xs) , true).
clause(append([X|Xs], Vs, [XIZs]) , append(Xs, Ys, Zs)).

Before analyzing the meta-interpreter, we haverto agree on a notion of correctness of Vanilla
w.r.t. the semantics of the object program P. We adopt-the following criterion, which states that,

_for the intended queries, provability at the object level and the meta level coincide.

~DEFINITION 1.2 The Vanilla instantiated by P is correct w.r.t. Pre C Bp iff for every A€ Pre

we have

AeMp iff prove(A) € Myan =

In the hterature, the case Pre = Bp is generally considered [Kal95, BT95].. We require that the
symbols & and true are tiot pred1cate symbols of L, i.e., object level predicates. Indeed, without
this assumption the Vanilla is not correct. Consxder in fact, the program q(a). , p(b) s
&(p(c) ,p(c)) .. Then prove(&(p(b) q(a))) isin Mv,m Whereas the atom &(p(b),q(a)) is, not
in Mp. A similar argument applies to the program true « true.

2 Proof Theory

We now introduce a proof method for the various notions of correctness. The aim of this section
is to introduce the concept of (Hoare’s logic style) triples F {Pre} P {Pgst} (for programs) and
b {Pre} Q {Post} (for quenes) which are the basic tool to, prove correctness: As-a specification

Pre, Post of a program is assigned in terms of sets of ground atoms, we can sunply reason about-

ground instances of program clauses and queries. First, the followmg notion of a level mapping is
needed.

646

DEFINITION 2.1 A level mapping (on L) is a function | |: B — N of ground atoms to natural
numbers. [m]

DeriNiTION 2.2 Consider a program P and a query Q. Given a specification (Pre, Post) we write

o F¢ {Pre} P {Post} iff there exists a level mapping | | such that
for every A—B;,...,B, € groundr(P)

“ 1. fori€[l,n]

Prel=A A Post=B;,... Bi_; =
(a) Pre = B; and
(%) 1Al > |Bi

2. Prel= A A Postl=By,...,B, = Post|= A

We write {Pre} P {Post} when (Za) and (2) hold. Pre is called a precondition and Post
a postcondition.

o = {Pre} Q {Post} iff for every ground instance A;,..., 4, ofit
3. fori€[l,n] Postl=A;,..., A1 = Pre = A;

o by {Pre} Q {Post} iff there exist a level mapping | | and k € N such that for every ground
instance A;,..., A, ofit

4. forie[l,n] Postl=Ar,...,Aici = Prel= A A k> A D

The relation F is-devised for proving (weak) partial correctness, whereas ; allows for proving
(weak) total correctness: this role of triples will be clarified later. Some considerations about the
above definition are in order.

Proving a triple for a given program or query involves reasoning on their ground mstances only.
Basically, the definition provides a standard way for lifiing up the results to non- ground queries..
The advantage is that this lifting is made a posterior.

Intultwely speaking, a precondition characterizes the intended (or well-typed) queries. A
ground- mutance of a clause whose head is not in the precondition is superfluous as we never
use it in‘a ground derivation starting with an atom of the precondition. The level mapping plays
the role of a termination function. Strictly speaking, the level mapping has to be defined only on
the precondition.

NoTE 2.3 Given a program P such that + {Pre} P {Post} and A <—B1 e
if A € Pre then it is immediate to prove F {Pre} By ,..
for programs and queries are related.

,Bn € groundp (P) ,
,Bn {Post}. This points out how triples

Proof Qutlines

The proof of a tﬂple t¢ {Pre} P {Post} can be presented in a suggestive way using proof outlines.
A proof outline PO for a clause A« A;,... ,A, and ||, Pre, Postis a construct of the form

647

{g0}

Ao — {10}

{91}

Al) {tl}

- {f1}
{92}

An-1, {tﬂ‘—l}
{fn—l}
{gn}

An {tﬂ}

{fo}

| where t; and fi, gi, for i € [0,n] are respectively integer expressions and (meta) assertions, such
3 that for every ground instance PO’ the followmg proof obligations are satisfied. Here, we denote

by h; for i € [1,n] the assertion go A fi A ... A fi—1

(i) for i € [0,n]: ki =t} = |Al,

(i) gh <« Ah € Pre, and for i € [1,n]: h A g} = A} € Pre,

(iii) for i € [1,n]: fi < A} € Post A B , and hj, A f§ = Ay € Post,

(iv) fori€[L,n]: gh AFIA...ASFl_y = giNtg >t

(V) g6 NN Af = o

In this definition, the intuitive meaning of assertions f! and ¢! is that, for ¢ € [1,n], f{ holds
iff Al € Pre, and analogously g; holds iff Al € Post. However, this constraints are weakened as
shown above, in order to facilitate the construction of the proof outlines. The assertions h; are'
intended to model the assumptions already considered before stage ¢ of the proof, in order to avoid
to repeatedly assume them.

By construction, we have that ; {Pre} P {Posi} if and only if there exists a level mapping
| | and a proof outline for each clause of P and | |, Pre, Post.

Consider, as an example, the following proof outline for the recursive clause of APPEND.

| { [X1Xs] and Ys lists }
append([X|Xs], ¥s, [X]zs]) «
{ Xs and Ys lists }
append(Xs, Ys, Zs). o {1Xsl }
{ Zs is the concatenation of Xs and Ys }
' { [X1Zs] isthe concatenation of [X|Xs] and ¥s }

{ | Xs|+1}

where |X's| denotes the length of a list Xs.
It is immediate to verify, by a simple, natural and intuitive reasoning, that the proof obligations

are satisfied.

The proof outline system become simpler when considering the relation t. In the labelled clause

(iv') fori € [1,n]: gp A f1 CANflLy =gt

Also in this case, by construction F {Pre} P {Post} holds if and only if there exists a proof outline
for each clause of P and Pre, Post.

648
Vanilla_ :

As a first exercise, letas prove that the relation F is closed under Vanilla’s instantiation, in
the sense that if {Pre} P {Post} holds, then + {Preyan} Vanp {Postvan} holds for certam
Prevan, Posltya, defined starting from Pre and Post.

Let By,...,B, be ground atoms, with n > 0. We remember that By & ... & B, is an
abbreviation for :

e (B & (B2 & ...(Ba_y & By)...)),ifn> 1,

"o By,ifn=1
o and true ,ifn=20
Conversely, by writing (B; & ... & B,)~ we:denote the query By ..., B, .

Let us define:

prove(B1 & ... & Bp) € Preyan iff F {Pre} Bi,...,B, {Post}
clause(A, B) € Preyga, iff true

prove(B; & ... & By) € Postys, iff Post=By,...,B,
clause(A, By & ... & B,) € Postyap, iff A—DBy,...,B, € groundr (P)

No other atom is in Prev g, or in Postygp.
The next proof outlines establish that - {Prevan} Vanp {Postyan}.

{ true }
(a) prove(true).
{ true }

{ F{Pre} A,B- {Post} }
(b) prove(d & B') +«—
) { Pre=A}
prove(4),
{ Post =4 }
{ F{Pre} B~ {Post} }
prove(B).
{ Post =B~ }
{ Postl=A,B~ }

{ prove(A4) € Preyu, }
(c) prove(4)
{ true }
clause(A, B), ’
{ A— B~ € ground;(P)) }
{ F{Pre} B~ {Post} }
prove(B).
{ Post =B~ }
{ Post = A}

{ true }
(d) clause(A, B).
{ A~ B~ € ground (P) }

Proof outlines (a,b) are self-explanatory, by simply observing that for a ground query B; yeeu s B

649

(i) -{Pre} Bi,...,B, {Post} =~ Pre = By
(i) = {Pre} Bi,...,Bn {Post} A Posti=EB, = F {Pre} Bs,..., B, {Post}
The proof of (3, u) is immediate by the Definition 2.2. Proof outline (d) is actually a schemam

of proof outlines, one for each clause from P, and it is of 1mmed1ate venﬁcatlon
Consider now the proof outline (c). Fisst, we note that:

prove(A) € Preyan A A — B~ € groundr(P) = Pre =A (1)

In fact, if A is the head of a ground clause from P then its predicate symbol cannot be true or &
oy the assumptions about the language L. Then prove(4) € Preva,, implies + {Pre} A {Post},
i.e. A€ Pre.

Let us prove the proof obligations (iv) case'i = n and (v).

In the former case, assume prove(A) € Preyg, A A — B~ [S groundr (P) . By (1), we have
Pre = A and, by Note 2.3, we conclude + {Pre} B~ {Post}.

In the latter case, assume prove(A) € Preyvan A A — B~ € ground;(P) A Post = B~
(1) and the last two conjuncts we conclude directly by Definition 2.2 that Pre = A.

3 Weak Partial Correctness

We start by stating a persistency properties for I, and by giving a justification of the intuitive
notion that the postcondition is a description of the correct instances of queries satisfying the triple

F {Pre} Q {Post}.

LemMma 3.1 Let P be a program and Q a query such that - {Pre} P {Post} and - {Pre} Q {Post}.
Then

(i) for every SLD-resolvent Q' of @ and P + {Pre} Q' {Post} holds, and
(ii) for every computed (or correct) instance Q' of Q and P Post = Q' holds. [m]

As a consequence, we obtain the weak partial correctness Theorem.

THEOREM 3.2 (WEAK PARTIAL CORRECTNESS) A program P such that - {Pr.a} P {me} is
weak partially correct w. i the speczﬁcatzon (Pre, Post).

Proof. Consider 4 € Mp Pre. Then [{Pre} A {Post} holds, and, by Completeness of SLD-
resolutlon the query A has an SLD “fefutation. So A € Post by Corollar/ 3.1 (%) -0

Vanilla

As we proved F {Preyg, ;
weak partially correct w
Moreover, consiizri

ip {Postyan} we can use Theorem 3.7 to conclude that Vanp is
the specification (Preysn, Postyan) when + {Pre} P {Post}.
(not necessarily ground) query By ;. ., B, such that

F{Pre} B ,.... B, {Post}
it turns out directly from the deﬁnii;ibf‘n}éf 'P"reVan that

F {Preven} prove(B; & ... & B,) {Postyan}

650
4 Partial Correctness

The intuition underlying a Hoare style proof method based on Pre/Post-conditions, become more
concrete when dealing with modular proofs. The modularity theorem may be explained by the
following inference rule
F {Pre} P {Post} + {Pre} P {Post'}
F {Pre} P {Post N Post'} ’

The importance of this fact is twofold.

On the one hand, it has a relevance from an applicative point of view. It allows for splitting a
correctness proof into simpler ones.
On the other hand, it allows us to define a notion of strongest postcondition.

DEFINITION 4.1 Let P be a program such that + {Pre} P {Post}. By sp(P, Pre) we denote the
intersection of all Post’ such that - {Pre} P {Post’}. 0

It is natural to ask ourselves whether the interpretation Mp N Pre is a postcondition. Actually, it
turns out that it is strongest one.

THEOREM 4.2 For a program P such that + {Pre} P {Post} we have
‘ ‘k{Pre} P {MpnN Pre}.

Hence, sp(P, Pre) = Mp N Pre. o

As a result we have the Partial Correctness Theorem.

THEOREM 4.3 (PARTIAL CORRECTNESS) A program P such that + {Pre} P {Post} is partially
correct w.r.t. the specification (Pre, sp(P, Pre)). a

The problem is now to characterize the strongest postcondition without having to construct the
complete minimal model. Proving weak partial correctness is simple, as one have only to show some
proof outlines. Next definition introduces a notion that allows us for proving partial correctness.

DEFINITION 4.4 Let P be a program such that t {Pre} P {Post}. Post is a well-supported
interpretation (w.r.t. P and Pre) iff there exists a well-founded poset (W, <) and a function
| | : B — W such that for any A € Post N Pre there exists A— By ,... ,B, € groundp (P) such
that Vi € [1,n] : Post = B; A |A]| > |B;| a

The underlying idea of this definition is to require that any atom in Post N Pre has a successful
ground derivation. In fact, for each of them there exists a ground finite (as the poset is well-

founded) derivation which is successful because the last selected atom unifies with at least one
head.

THEOREM 4.5 Let P be a program such that - {Pre} P {Post}. Then

Post N Pre = sp(P, Pre) iff Post is well-supported (w.r.t. P and Pre).

651

Proof Outlines

. Definition 4.4 may seem a little complicated. However, it has a straightforward interpretation in

terms of proof outlines. Consider the following proof outline PO for a clause A —A4;,... A, a
function | | : B — W into a well-founded poset (W, <) and Pre, Post

{¢}

A — {to}
A, {t1}
{f1}
An—1, {tﬂ—l}
{fn—l}
An. {ta}
{fa}

where ¢; and fi, g, for i € [0, n] are respectively integer expression and (meta—)assertions, such that
for every ground instance PO’ the following proof obligations hold:
(i) for « ¢ [0,n): ¢’ =i = |A}l,
(i) fori e !1,n]: ¢ A f{ = A} € Post,
(i) forie[l,n]: ¢ = fi nto >t .

The formula g is used to instantiate the variables of the clause to the end of satisfying the proof

obligations. ‘ . . .
By construction, Post is well supported w.r.t. P and Pre if and only if there exist a number of
proof cutlines for (instances of) clauses from P, and a function | | : By — W such that every atom

in Pre N Post is an instance of a clause’s head and satisfies 3%.g, where Z are the local variables of
the clause, and g is the assertion of the head of the clause.

Vanilla

In the last section we have proved F {Prevas} Vanp {Postvan} when + {Pre} P {Post}. Fol-
lowing that reasoning, it would be now interesting to prove that Postva,} is a }Ne}l—supported
interpretation (w.r.t. Vanilla and Preyvan) when the postcondition of the instantiating program
is well-supported (w.r.t. the program and its precondition).

Suppose Post is well-supported. Then there exist (W, <) and a function | | : B — W such
that for any A € Post N Pre there exists A«— By ..., B, € groundr (P) such that
Vi € [1,n] : Post = B; A |A] > |Bil (2)

We consider the well-founded ordering (bag(W), <) over finite multiset of W induced by (W, <),
and the level mapping

llprove(B; & ... & Bp)|| = bag(|Bil,...,|Bxl)

for prove(B; & ... & By) € Preyan,n > 1 and bag() otherwise.
By straightforward arguments, we note that for prove(4 & B) € Prevan

lprove (A)]] < |lprove(A & B)|| A |lprove(B)|| < |lprove(4 & B)|| (3)

Next proof outlines show that Postyan is a well-supported interpretation.

true
(e) }Erove(t}rue). { bag() }

652

{ prove(4 & B) € Prey,, A Post EAB}

() Piove(h & B) — { ||prove(4 & BN}

o, { llprove ()| }

ost = ‘

prr;(B)-#:B } { llprove(B)]| }
ost -

{ A € PosiN Pre A Post ,: B~ AN A— B~ (= g'rozmdL(»P) A
A llprove(B)|| < |jprove(4)| }

(c) prove(4) « { llproveCA)| ¥
clause(A , B), { bag() }
{ A— B~ € ground (P) } -
prove(B). { llprove(B)]| }
{ Post E B~ }

{ A~ B~ € ground (P) }
(d) clause(4, B). { bag() }
The proof outlines are of immediate verification by using the definition of Prevan, Postvan,.

To conclude Posty,, is a well-supported interpretation, we have to show that every A €
Postyan N Prey g, satisfies some 3z.g, where g is a formula of the head and Z are the local variables
of the clause. i

For the atoms whose predicate symbol is clause the conclusion is trivial.

Suppose the hypothesis prove(B; & ... & B,) € Prev,, N Postyg,.

If n # 1 we refer to the proof outline (a) or (b) to note as the head’s formula g is just the
hypothesis.

If n = 1 then let us show that 3Z.g holds by considering the proof outline (c). We have to .

prove that for 4 € Post N Pre there exists B~ such that Post EB AA—B- ¢ groundr (P)
and |lprove(B)|| < |lprove(4)||. Such a B~ surely exists as (2) holds.

5 (Weak) Total Correctness

The relation F is not powerful enough for dealing with (weak) total correctness, as termination is
not taken into account. To pursue this end, we will reason about the relation ;. The results of
termination are not reported for lack of space. They state a form of universal termination w.r.t.
L Dfair resolution. An SLD-derivation is called LDfair if it is finite or the leftmost atom is selected
infinitely many often. For instance, the Prolog selection rule is LDfair. One can prove that when
1 {Pre} P {Post} and F, {Pre} Q {Post} then any LDfair-tree for P U {Q} is finite. °

As an immediate corollary of this termination property, we have the Total Correctness Theo-
rems.

THEOREM 5.1 ((WEAK) ToTaAL CORRECTNESS) A program P such -that F, {Pre} P {Post} is
weak totally correct w.r.1. the specificaiion (Pre, Post), and totally correct w.r.1. the specification
(Pre, sp(P, Pre)). o

i method for total correctness. A straightforward consequence of
o obtain what we desire. '

The next step is finding «
the result of section 4 all

THEOREM 5.2 Lel P be 5 picgam such that =, {Pre} P {Post}. Then Post N Pre — sp(P, Pre)
ff Tp(Post) D Post N Pre. I [

653
Proof Outline and Vanilla

The proof outline system for total correctness is obtained starting from that for partial correctness
by simply not considering the termination constraints, i.e. 2o,,t,,. ‘
In the same way as we proceeded for i, it involves no real difficulty to prove

ki {Prevan} Vanp {Postyan}

for some | |van when by {Pre} P {Post} holds. Analogously to the case of relation , we note as
for a (not necessarily ground) query Bi ,...,B,

Fy {Prevan} prove(B; & ... & B,) {Postvan}
when +; {Pre} Bi,...,B, {Post}. Therefore, we can state that Vanilla is closed w.r.t. the

proof theory notions that we have introduced in the paper.

6 Correctness of Vanilla

The underlying idea we will use to prove correctness of Vanilla is the following:
(i) Counsider a program P such that + {Pre} P {Post}. By Theorem 4.2 we have
t {Pre} P {sp(P, Pre)}

(ii) By defining Prevan, Posty ., starting from Pre, sp(P, Pre) we have showed in Section 2 that
l—y{Prev,m} Vanp {Postv,} holds. Moreover, as sp(P, Pre) is well-supported, also Posty a4,
is. We proved this in section 4. ‘

(iii) Since Posiyqn is well-supported, by Theorem 4.5 we obtain

sp(Van, Prevan) = Postyan N Prevan = Myan N Prevan (4)

(iv) As a result, for every A € Pre we have

prove(A) € My,n
& { (4) A prove(A) € Prevan }
prove(A) € Postyan
& { Definition of Posty,, }
A € sp(P, Pre)
=3 { Theorem 4.2 }
A€ Mp

i.e., the correctness of the Vanilla metainterpreter w.r.t. Pre.
Moreover, we can prove the slightly stronger fact.

COROLLARY 6.1 For a program P and a ground query @ such that & {Pre} P {Post} and
F {Pre} @ {Post}, we have

PEQ iff Vanp = prove(Q) O

) i the last result implies that for every program
As.for every logic program we have - {Br} P {BL} . ['

P ‘.La””ground query @ is a logical consequence of P iff prove(Q) is a logical consequence of Vanilla
instantiated by P. . . S

" ;lele concluge by spending some words about the case in which one desires to distinguish the
underlying language of a program from that of Vanilla. Let M} be the least HerLbra.nd modengf
P with L (extending Lp) the considered underlying language. Obsgrwgg that. Mg NBp = Mg®,
directly from (iv) we obtain the correctness theorem generally studied in the literature.

654

THEOREM 6.2 For a program P and A € Bp we have

AeMEP iff prove(A) € ME,,

7 Conclusions

As a consequence of our exercise, we learned that the verification of the Vanilla meta-interpreter
can be carried out in a simple and natural way within the proof theory sketched in this paper.
Moreover, several improvements can be achieved with little effort.

For instance, by using a generalization of the technique of eztended level mappings from [PR94],
it is possible to drop the groundness requirement in Corollary 6.1. Moreover, by gereralizing the
results of [AGP94], we can identify a large class of programs for which it is possible to fully
reconstruct the operational semantics (i.e., the computed instances of queries) from the well-typed
fragment of Mp. Again, this class of programs is closed under the instantiation of Vanilla.

References

[AGP94] K.R. Apt, M. Gabbrielli, and D. Pedreschi. A closer look at declarative interpretations.

[Apt90]

[BK82)

[BT95]
[Cla79]
[Jia94]

[Kal95]

[KJ95]
[L1087]
[PR94]
[PR95)
[Rug94]

[SS86]

Technical Report CS-R9470, Centre for Mathematics and Computer Science, Amsterdam,
1994.

K.R. Apt. Logic programming. In J. van Leeuwen, editor, Handbook of Theoretical

. Computer Science, volume B, pages 493-574. Elsevier, 1990.

K.A. Bowen and R.A. Kowalski. Amalgamating Language and Metalanguage in Logic
Programming. In K.L. Clark and S.A. Tarnlund, editors, Logic Programming, pages
153-173. Academic Press, 1982.

A. Brogi and F. Turini. Meta-logic for program composition: semantic issues. In K.R.
Apt and F. Turini, editors, Meta-logics and Logic Programming. The MIT Press, 1995.

K.L. Clark. Predicate logic as a computational formalism. Technical Report DOC 79/59,
Imperial College, Dept. of Computing, 1979.

Y. Jiang. Ambivalent logic as the semantic basis of metalogic programming:I. In P. van
Henterynck, editor, Proceedings of ICLP ’94, pages 387-401. The MIT Press, 1994.

M. Kalsbeck. Correctness of the vanilla meta-interpreter and ambivalent syntax. In K.R.
Apt and F. Turini, editors, Meta-logics and Logic Programming, pages 3-26. The MIT
Press, 1995.

M. Kalsbeck and Y. Jiang. A vademecum of ambivalent logic. In K.R. Apt and F. Turini,
editors, Meta-logics and Logic Programminyg, pages 27-56. The MIT Press, 1995.

J.W. Lloyd. Foundations of logic programming. Springer-Verlag, Berlin, second edition,
1987. ’

D. Pedreschi and S. Ruggieri. Termination is language-independent. In M. Alpuente,
R. Barbuti, and I. Ramos, editors, Proceedings of the 1994 Joint Conference, GULP-
PRODE’Y4. Universidad Politecnica de Valencia, 1994.

D. Pedreschi and S. Ruggieri. Verification of prolog programs. Technical Report, 1995.

S. Ruggieri. Metodi formali per lo sviluppo di programmi logici. Master’s thesis, Dipar-
timento di Informatica, Universita di Pisa, 1994.

E. Shapiro and L. Sterling. The Art of Prolog. The MIT press, 1986.

