
620

abstract standard semantics for the language. This constraint leads to a powerful framework of
collccting semantics where abstract interpretation is used both to rela.te collecting semantics at
different levels of abstraction, and to systematically construct them by composition. We introduce:
(l) a hierarchy of collecting semantics for logic programs where st.andard semantic notions (e.g.,
mode! theory in logic programming) can be extended to any collecting and abstract semantics for
analysis; (2) a systematic approach to collecting semantics design by abstraction, an d composition of
more abstract semantics, w h ere collecting semantics are ali constrained between a sta n dard an d an
operationalsemantics ofthe language;·(3) a constructìve characterization for the "optimal" collecting
semantics for program analysis, by combining the property to analyze and the standard semantics
(see Theorem 6.4). This semantics characterizes precisely the least amount of information about
program behaviour which is essential to analyze a given program property, and i t can be considered
as the simplest (most abstract) concrete semantics in semantic-based program analyses. This view of
collecting semantics is particularly appealing in logic programming where for instance the distinction
between declarative and procedura! reading of programs identifies precisely this space of collecting
semantics.

2 Preliminaries
In the following, we will assume familiarity with the standard notions of logic programming (e.g.

see [2]) and abstract interpretation ([12, 13]).
Let A and B be sets. Set isomorphism is denoted =· The isomorphism 1 A ---> B is denoted

A=, B. The powerset of A is denoted by &"(A). Sequences in A* are typically denoted by (a1 , ... ,an)
or simply a1 , •.. , an, for a; 's symbols in A. The empty sequence is denoted A. Concatenation of
sequences s1, s2 E A* is denoted s1 :: s2. The sequence of symbols with first element a followed
by the sequence s is denoted a l s. A equipped with a parti al order ç is denoted A c. If A is a
poset, we usually denote çA the corresponding partial order. This notatìon is extended-te arbitrary
algebraic structures like lattices etc. Function composition is o and sometimes is omitted. The set
of fixpoints of a function f is denoted fp(f), and the]east fixpoint (if it exists) is denoted lfp(f).
The ordina! power of a function f is denoted fi a where a is an ordinai. w denotes the first limi t
ordinai. Let (A,:::;, A, V, T, .L) be a complete lattice, by an (upper) closure operator on A we mean
an operator p : A -+ A su eh that for every x, y E A: if x :::; y then p(x) :::; p(y), x :::; p(x), an d
p(p(x)) = p(x). We denote uco(A) the set of ali closure operators on A. It is a complete lattice
(uco(A), çuco, n, U, .\x.T, .\x.x) where for every p, '7 E uco(A) and x E A: p çuco '7 iff for each
x E L, p(x) :::; TJ(x). (B[;;B, a, Aç:A' 1) is a Galois insertion iff o- : B _, A and 1 : A -+ B are
monotonic mappings,

Throughout, :E, II an d Var will respectively denote a set of function symbols, a set of predicate
symbols and a denumerable set of variables, defining a first-order language C. The set of terms,
atoms, clauses and programs on the language L are denoted respectively Term, Atom, Cla.use and
Program. Term0, Atom0 denote the sets of corresponding ground objects. Atoms and unit clauses
will be considered equivalent notions. Tuples of syntactic objects of the same type (like variables,
terms etc.) are sometimes denoted s. In the following the set of variables (predicates) that occur in
a syntactic object s is denoted var(s) (pred(s)). IfA is a set of syntactic objects and r. ç Il, then
Al,. denotes the restriction of A to the elements with predicate symbol in r.. In the following we
restrict our inte~st to idempotent substitutions ranging in Sub, unless explicitly stated otherwise. If
e ç Sub, then se= {se l e E e}. t':::; t iffthere exists a substitution e such that t'= te. Syntactic
objects t1 and t2 are equivalent up to renaming, denoted t1 ~ tz, iff t1:::; t2 and tz:::; t1. Term/~,

Atom/~ and Clause/~ are complete lattices with respect to :::;, and will be often denoted Term,
Atom and Clause. Sin ce ali the definitions in the paper are clearly independent on syntactic variable
names, we willlet a syntactic object denote its equivalence class by renaming. Fora syntactic object
sand a set of (equivalence classes by renaming) of objects I, we denote by (c1, ... , cn) <,I, n 2: O
that c1, ... , C n are representatives of elements of I renamed a p art from s an d from each other.

621

3 Systems of collecting semantics
A semantic definiti an (or semantics) is a pair (C, T), where C[; is a comp]<>fe lattice (the

semantic domain) and T : Program---> (C_, C) is a mapping such that given a p\ im P: T(P)
a continuous operator on C. In the following, when clear from the context, we .. ,se and Jet T

denote T(P) fora program P.

3.1 Collecting semantics
ì~le formalize the notion of collecting semantics in the standard framework of abstract interpre­

t.ation [12]. Given a Galois insertion (B,o:,A,')'), Cousot & Cousot in [13] proved that it is always
possible to associate with any operator T : B -t B, an operator which is the best correct approxi­

mation of T in A: namely the function o: o T o~'. In the following given any two semantics (C, T) an d
(C', T'), then (C, T)~(C', T') will denote a Galois insertion (C', o-, C, ~) such that T = o: o T'o')'.

Definition 3.1 [soundness é3 completeness]
Let S and .:t' be semantic definitions. W e say that S is sound (complete) with respect. t.o .:t' if S~.:t'
(resp . .. l:'~S).

A collecting semantics (with respect to a semantics S) is a semantics .:t' which is complete with
respect to S. In this case, S will be called the core semantics. The core semantics is then an
abstract interpretation of any collecting semantics, yet providing the best approximating operator
with respect to the given abstraction. It provides a /ower bound with respect to abstraction for
collecting semantics. Therefore, S;,.:t' will denote also that .:t' is a collecting semantics with respect
to the core semantics S. Vl'hen the core semantics is fixed, a collecting semantics will be simply

denoted by XJ.

Proposition 3.1
Let (C, T) be a semantics and (C, o:, A, 1) be a Galois insertion. Then (7oo-(C), ìoo-oT) and

(A, o:oTo"() are isomorphic.

Given a semantics S, a system of collecting semantics is a set of collecting semantics with
respect to S. Systems of collecting semantics wìth respect to S are usually denoted Us. A system
ìs generated by S if it contains ali the collecting semantics with respect to S. Let U be a system
of collecting semantics, and exç U x U such that: S ex X iff 3o-3ì. S~.:t'. From a similar result
in [12], Galois insertions can be composed such that if SZ is a collecting semantics an d X is such

that S~X, then x;;~J is a collecting semantics. Noti ce that oc is a pre-order on U an d naturally
defines "an observational equivalence on collecting sernantics: S co: .:t' iff S ex .:t' and .:t' oc S. Note
that if (C, T) co: (C', T') then C = C'. Moreover, l et (C, T) be a collecting semantics, w e follow
[30]1 by defining an observation as an element in O(S) ={.:t' l X EU & .:t' oc S}. It is immediate
to prove that S co: .:t' iff O(S) = 0(.1:'). Equivalent collecting semantics allow the same set of
possible observations (in the sense of [30]). Therefore, they are called observationally equiva/ent. In
the following we abuse by denoting U the set U /"'. Moreover we assume (C, T) '/:: (C, T') while
(C, T);,(C', T'). It is worth noting that any system Uoc is indeed a poset w h ere the core semantics
is fixed "to be the most abstract object (i.e., the least collecting semantics).

3.2 Model-theoretic coHecting sernantics
Our notion of collecting semantics is suitable to previde a forma! basis for the definition of a

model-theoretic co/lecting sem.antics of logic programs. It is inspired by the s sernantics approa.ch in
[21] and generalizes that results to any system of collecting semantics. W e introduce the notions of

· mode/ an d collecting mode/ for a program as a generalization on collecting semantics of the sta.ndard
notion of Herbrand modeL Models are T-closed interpretations. A collecting interpretation is a
collecting mode! if, when abstracted, it provides a mode! for the program.

l [30] defi.nes an observa.tion for a semantics (C, T) as a complete lattice isomorphic to an upper closure of C. In
our case, this naturally induces a (more abstract) semantics, i.e., an object in O({C, T)).

622

Definition 3.2 [models Cf collecting models}

Let P be a logic program and (C', T') I, be a collecting semantics in Us, where S = (C, T). A n
interpretati an M E C is a S-mode! for P if T(M) çc M. M' E C' is a collectìng mode! for P if
o:(M') is a S-model for P.

Proposition 3.2
L et P be a logic program an d (C, T)J, be a collecting se manti es in Us. Then (1) M is a collecting
mode/ for a program P iff 1oo:(M) is a collecting mode/ for P; and (2) if M E C is a collecting
mode/ for P, then T(M) çc 1oo:(M).

T(M) çc 1a(M) is not suffìcient to prove that M is a collecting mode!. This is because the notion
of collecting semantics is too weak to provi de a characterization of collecting models in terms of the
T opera.tor.

Definition 3.3 [mode/ comp/eieness}
A collecting semantics (C', T')J, in U(c,T) is model-complete if Toa çc aoT'-

It is stra.ightforwa.rd to observe tha.t the composition of mode! complete collecting sema.ntics is
mode! complete. Beca.use T = aoT'oì a.nd by Galois insertion, it is easy to prove tha.t in a.ny
mode! complete collecting semantics: Toa = a o T'- Mode! completeness specifies tha.t, from the
core sema.ntics viewpoint, T an d T' a.re equivalent. Noti ce tha.t the condition Too: = a o T' is
stronger tha.n T = a o T' oì (see [15]), an d the independent combina.tion of mode! complete collecting
sema.ntics is not in generai mode! complete, as T ma.y not be additive. In Section 6, we prove that
mode! completeness is preserved in sema.ntics combina.tion when sema.ntics are derived by a.bstraction
of a. mode! complete collecting semantics.

Proposition 3.3
Let P be a logic program an d (C, T)I, be a mode/ complete collecting semantics. Then (1) M is a
collecting mode/ for P iff T(M) çc 1o:(M); and (2) if T(M) çc M then M is a collecting mode/
for P.

Because a is additive in any Galois insertion, it is easy to prove that the class of collecting
models for a. program in a. collecting sema.ntics (C, T) forms a sub-cpo of C. Moreover, given a
mode! complete collecting semantics (C, T) an d a. program P: fp(T) ç {M l M is a. collecting mode!
of P}. Thus, the fixpoints of the opera.tor T provi de only a pa.rtial cha.racteriza.tion of the class
of collecting models far a. program. An interpretation M such tha.t T(M) çc M will be ca.lled a.
reachable collecting model. We define j1ill co/leciing semantics any collecting sema.ntics (C, T)J, such
that for a.ny I E C: T(I) çc 1oc;(I) ~ T(I) ç:c I. Notice that in full collecting semantics S,
any collecting mode! is rea.chable. Therefore an interpretation M is a S-model iff M ìs a collecting
mode!.

3.3 Herbrand, Cla:rk, Heyting and s coHecting se:mantics
In this section we consider a. system of collecting semantics for logic programs based on the

minima.! Herbrand mode! semantics a.s core semantics. Thìs system includes well known sema.ntics
for logic progra.ms, and provides a "logica.!" notion of mode! for programs a.t di:fferent levels of
abstraction. In the following we fix a function ground that ma.ps any synta.ctic object to the set of
its ground insta.nces.

Definìtion 3.4 [the Herbrand semantics 1i [31}}
Let P be a logic program. The Herbrand semantics 1i of P is a pair (!"(Atom0), Tp) where for each
I E p(Atom0): Tp(I) ={h. E Atom0 l h+- bE ground(P), li ç I}.

It is well known that a. Herbrand interpreta.tion M is a Herbrand mode! iff Tp(M) ç M ((2)).
Therefore, 11-models corresponds precisely to the Herbra.nd models ofthe program. In the following,

623 ,,,,,,; ,.

when not specìfied otherwise, we will consider 1i as the core semantics in our examples of systems
of collecting semantics. ·

The 8 semantics introduced in (20] is intended to provide a fully abstract descriptio·· of computed
a.nswer substitutions of logic programs. This sema.ntics has been successfully consi•'.t:red as a base
semantics for abstraction, and applied to static program analysis in (6, 10]. The Clark's semantics
instead has mostly a theoretical interest, being fully abstract with respect to the "more abstract"
notion of atomi c consequences of a program ((20])2 . However, as we will show in Section 6, thìs sim­
p]er semantics may provide a sound basis for static analysis for some non trivial program properties.
In the following we fix a function up that maps any syntactic object to the set of its instances. Let
p be a progra.m. The sand Clark's semantics are: (p(Atom), Tp) and (up(p(Atom)), Tf,) resp.,
where:

{ l
C=: h+- b1, ... , bn E P, }

Tf,(I) = hv (b;, ... , b~) <c I
V= mgu((h, ... , bn), (bL ... , b~))

Tj,(I)={hvl C=:h+-bj, ... ,bnEP }
vESub, h,9, ... ,bnvEI

1{ is a.n abstra.ct interpretation of the (more concrete) s semantics in (20], yet providing the bes t
correct approximation. Observe that (p(Atom)ç;, o: 9 , p(Atom0)ç;, /g) such that: o: 9 = ÀJ.ground(I)
a.nd /g =M.{ A l ground(A) ç I}, is a. Galoìs ìnsertion.

Theorem 3.4
For each I E p(Atom0): Tp(I) = o: 9 (TJ,(ì9 (I))).

Likewise, Cla.rk's semantics ca.n be proved to be a collecting sema.ntics, which is a.lso a.n a.bstract
interpreta.tion of the s semantics yet providing the best correct a.pprox_im_ation of Tf,. Inde~d, up
is an upper closure opera.tor on p(Atom), natura.lly inducing a Galms msertwn. In pa.rtJcula.r,
(up(i"(Atom)), Tp) is a. collecting sema.ntics and Tj,oup = upoTj,. Clark's sem_a.nt1cs 1s mode!
complete ((21]), and therefore the s sema.ntics is a.lso mode! complete. Moreover, 1t 1s easy to see
that the s a.nd Cla.rk's sema.ntics a.re nota. full collecting semantics (e.g., the least Herbra.nd mode!

is no t reacha.ble). . . .
The Heyting mode! theoretic sema.ntics for logic programs has been mtroduced m [27] to prov1de

a.n intuitionistic (constructive) interpreta.tion for definite clause progra.ms. Because for defimte
cla.use progra.ms classica.! a.nd intuitionistic logic a.gree, we ca.n easily ~bserve tha.t the constructive
approach of Heyting models, if compared with _the Herbra.~d semant1cs, defines 1tself ~ collectmg
sema.ntics. In the following we will slightly mod1fy the defimtwns of Heytmg semant1cs m [27]. Let
Tree denote the domain of !abel ed trees over Atom su eh tha.t, for any a E Atom: (a,()) is a. tree,
a.nd if t1 , ... ,tn a.re trees, then (a, (t1, ... , tn)) is a. tree. For a.ny tree t a.nd substitution v, t{} denotes
the tree obta.ined by applying v to the labels (a.toms) in t. Tree/ ~ 1s ca.lled the Heytzng base
([27]). Trees constructively represent proofs for atomic goals .. A Heyting mode! is then a. _collection
of "closed" trees corresponding to proof trees for (any) atom1c go a.!. M ç Tre e 1s a. Heytmg mode!
([27]) for a. progra.m p iff (a,()) E M for a.ny unit clause a E P, and if h - b1, ... , bn E P and
(b1{}, t1), ... , (bnv, tn) E M for some v E Sub, then (hv, ((hv, t1), ... , (bnv, tn))) E M. Therefore, the
corresponding Heyting sema.ntics is: (up(p(Tree)), Tf!) where for any I<; Tree:

Proposition 3.5 ~
There exist a and ì such that (up(p(Atom)), Tf,)~(up(p(Tree)), Tf!) and Tf,oo: = o:oTf!.

Thus, (up(p(Tree)), Tf!) is a mode! complete collecting semantics. Noti ce however th~t the indu~ed
notion of collecting mode! for the Heyting semantics does not correspond to the notwn of Heytmg

2 An application to datafiow analysis of a semantics similar to Cla.rk's semantics is in [28].

624

:nodel for a program. Thìs ìs because collecting models in the sense of Definition 3.2 provide a
classica! view of the constructive (mtuitìonistic) semantics of Heyting models. This may just.ify the
int.erest in the Heyting semantics as core semantics instead of Herbrand.

4 Abstract interpretation and abstract model theory
In this section we consider abstract interpretation of collecting semantics. A propeTiy for a

collecting semantics (C, T) is any element in uco(C). Let p E uco(C) su eh that p(C) <::', A. In the
following we denote (D'p, ìp) the pair adjoint functions a" . C -A an d ')'p : A ~ C associated with
the closure p, where Cip= 2op an d ìr =,-l. I t is known tlw.t (C, D'p, A, "lp) is a Ga.lois insertion (the
Galois insertion induced by the closure p [13]).

Definition 4.1
Let S and X be colleciin.g semantics su eh that S;,X. A pToperly p on ,:t' is extendible io S ijj aopq
zs an upper closure operator on S. Ctopof is the induc.ed property on S.

H is ìmmedia.te to prove that if S an d X are collecting semantics su eh that S~.:t'. an d p is a
property on X such that ìOCY ç;:c p, theu p is 2xtendible to S ·~

Following the standard Cousot & Cousot's approach, for any program property we can define a
notion of abstract interpretation of a collecting sema.ntics. In whu.t follows. the term "a.bstract inter­
pretation" is clear]y overloaded, conesponding bot h to the generai f;·amswnrk of Cousot & Consot,
and to abstract semantic objects An 1J,bstract inkrpret.a.t.ion for a collecting se­
mantics (C, T) with respect to a property p (denoted (C, T, p, A, T 0) ì a semi'tntics (A, T 0) su eh
that A<::' p(C) and O'poTo"(p ç;:A T 0 . Fora property p on a collecting semantics (C, T), the best
corTect a.bst.ract int.erpretation is therefore (A, a p o Toì P) for A <::' p(C) ([13]).

Definition 4.2 [abstract model-theoretic semantics}
Lei P be a /ogic program an d (C, T, p, A, T") be an absimct interpretati o n. M a E A is an abstract
mode/ for P ifj t.here exists a collecimg mode/ M such th.at Ctp(M) = M" (or equivalently M r;;=c
/p(M")).

Abstract models ca.pture the approximation induced by the abstract interpretation. An abstract
mterpretation is a.n abstract mode! if an d only if it is the approxìmation of a c.ollecting mode!. From
Ghe standard properties of Galois insertions it is easy to prove that if M" E A and ìp(M 0) is a
collecting mode!, then M a is an abstract mode!.

·sxrunple The domazn De p (see [4]) was pToposed by M aniott and Spndergao.rd as a doma in of
,-,bstraci s-abstiiutions.. TV e bfi ii iv {hG doma in of aionìs. The d ornai n is fonnalized as a. Ga-

:.7l!7t:rlion de·noted)J r'<'p· Dep. tJ~e s ,o:,,:-Tnant-a;s1 and consists of eq1..1.ivalence classes

pmpusitìonal index:cd on IT, constructed usinq the connectives <-+ and 11, and ordered by
lmplzcat.ion. W e say that a trut!Ì rtsszgnm.e7li (Miisjies a. propositional formula f, w-ritten~ f= f, if

z.s o ie1rtol{Jgy 14n objr::d :;et L/) whe·re X a:re disti n et vari ab/es an d f a
}JY't}p-form'ula ,cJn X, ttp '11:r·?Jth tt.Esignmei7.,1 <Jf.~s1y·:ite = == 0) is as-
socùxted with a substdrdion {i, and),f)):::-: {p(i)G l Br~ O·~-=> as . .rn:gnrJ' l=f} VVe denate PDep
ihe cornospondin;; property on p(Ai.•''"). ii'1e prvgmm P {.sumO:,O,X), sum(X,s(Y) ,s(Z))

- s·Ulll(X, Y, Z) 1 Then y i\\"· ",' is ''" abstmct mode/ far· P. li is the obst-raction
ofihe t'"'m(c,s''(O), lrt<::O}.

Define a mode/ complde abstmct inlerprda.tion as the absVr"ct iHLfr~wetation of any mode!
complete collectinr; semantics. In the following, pre-fixpoints of the ahstract opcra.tor T 0 are called
r.eachable obstmct mode/s.

Proposition 4.1
Let P be a logic progmm. an d (C, T, p, A, T 0) be a mode/ complete abstract interpreiation. L et
lvi" E A be an abstract int~rpretation. Then (1} if T 0 (M") ç;:A Ma then Ma is an abstract mode/
far th.e logic program P; and (2} if Ma is a reachable abstract mode/ for P then "fp(M 0) is a reachable
collecting mode/ far P.

625

Definition 4.3 {properly completeness}
Let p be a properly far (C, T). (C, T) is p-compie-le ijj poTop = poT.

Proposition 4.2
Let (C, T, p, A, T 0) be a mode! comple-te abstract interpret.ation, wh.ere (C, Tn is p-complet.e and
po(ìoa) = (ìoa)op. If M 0 is an abstract mode/ of P, then "(p(M 0) is a collectmg mode/ of P.

Un der the previous hypothesis: an abstract interpretation is an a.bstract mode] iff its concretìza­
tion is a collecting mode!. In this case, p is a mode l deformation [7], i .e., p maps co!lecting models

into collecting models.

4.1 Logic-based abstract compilation
In this section we relate mode! deformations (defined by abstraction) with program transforma­

tion for analysis, such a.s abstract compilation. In abstract compilation, the analysis is obtained by
"transforming" the source program P into P' such that, when executed, P' returns precisely the
desired dataf!ow information about P. Abstract compilation is then a program deformat.ion, where
the semantics of programs is no t usually preserved but approxìmated. The idea is t o study mode!
deformations as an indirect way of studying abstract compilations. In pa.rticular we define abstract
compilation as the cla.ss ofprograms for which the analysis is exact, i.e., where the analysis is sound
(anythìng that can happen is predicted) and minima/ (anything that is predicted can ha.ppen)"

Definition 4.4 [abstract compilation}
Le t p be a program. an d p = (C, T, p, A, T•) be an absiract inteTpretation. The correspond­
ing abstract compilation is wj, ç Program, such that for each P' E ii!j,: lfp(T(P'))ipred(P) =
ì(lfp(T•(P))).

In the following, a collecting interpretation I is finitely definite cla11"se a.xiomatizable (FDC a.s in [7])
ìf there exìsts p E Program such that lfp(T(P)) =I. Abstract compilation is then the collection of
programs that provide a FDC axiomatization for ì(lfp(T•(P))).

Definition 4.5 [FDC deformations [7}}
Let (C, T) be a colleciing semantics, 6 : C ~ C is a. FDC deformation ijj whenever I E C is F DC
axiomatizable, then o(I) is FDC axiomatizable.

Theo:rem 4.3
Lei (C, T, p, A, T 0) be an abstract interpreta.tion and P be a program. If ÌpoT•oap is a FDC
deforrnation, then for every n<:: O, Ìp(Ta(P)In) is FDC axiomatizable.

Clearly, with terminating abstract interpretations p (as those for program analysis), Tp(lfp(T 0 (P)))
is FDC axioma.tizable, and therefore wj, # 0.

Systematic design of systems of coUecting semantics
In this section '!Ve introduce a systematic approa.ch to collecting semantics design in logic pro­

gramming. Up to now, a collecting sema.ntics is any concretization of a core semantics (e.g., the
Herbra.nd semantics). Thus, an arbitrary collecting semantics for a program may be completely
unrelated with the "rea!" program execution. Let (C, T)J, be a collecting semantics. A correct
collecling semantics (with respect to .(C, T)) is a,Follecting semantics (C', T') which is sound with
respect to (C, T) (i.e., such that :Ja',ì': (C", T')""';(C, T)). Correct collectmg semantrcs can be de­
fined by abstraction of a refeTence collecting semantics if the property induced by the core semantrcs
on the reference semantics can be extended to its abstractions, a.s stated in the following

Theorem 5.1
Let (C, r;);, be a (mode/ complete) collectzng semanizcs zn U(B,TB) and (C', T') such that 3a',ì'·
(C', T'f/==(C, T). Ifì'oa1 çc ìoO' then (C', T') is a (mode/ complete) collectmg semantzcs.

~'

Rl:
c= h~ b1, ... , bn E P

h__:__.(b1, ... , bn) E [

626

_ c=h'-::b1, ... ,bnEP
((a;.2...A)~~}, ak'2...b) <c [(1 :S k :S n)

R2 :--~---B_= __ m~g~u(~(~b1~,~··~-·~bk~-)~,(~a~1 ,~.~ .. ,~a~k~))~---­
(h-'~(b1, ... , bn).':2.... ... '2...b :: (bk+1, ... , bn))B E [

Table 1: AND-compositional traces

A natura! choice for a reference semantics is the operational description of the computation
process, m log1c programming: SLD resolution. In the following we fix the Prolog left-to-right
selectwn rule. The operatwnal semant1cs of a logic program P is defined as a labeled transition
system defini~g SLD resolution: SLD = (State, { ~ l c E P}), where states are pairs of goals
and substJtutwns: State= Atom• x Sub, and transitions are labeled with program clauses: ~c
State X State, such that (a l B, IJ).."._.(body :: B, ,J) iff c= h<-- body is a renamed apart cJause i-;;
P, and .{) = ~Jmgu(aiJ, h). The transitive closure of--+ is denoted -'-·· w h ere c E P*. A collecting
sen:J_ant1cs can be denved from SLD by modeling execution traces. We denote T(SLD) the set of
(fimte) executwn traces of SLD, with arbitrary elements 1r. 7ro denotes the first element of the trace
1r. T(SLD) is inductively defined by the rules:

s E State

sE T(SLD)

s~?ro /\ 7i E T(SLD)
s-c-1r E T(SLD)

It is acommon practice in logic program semantics to restrict the interest to AND-compositional
executz~n traces only (e.g., any ofthe fixpoint semantics in [31, 20, 5, 22] provi de AND-compositional
denotatwns for log1c programs). Intuitively a set of traces is AND-compositional if the execution
trace of any (po~sibly ~on-atomic) goal c an be reconstructed by composing traces for atomi c goals
m the set. The mduct1ve defimtwn of the set [of AND-compositional execution traces for atomic
goals is in Table L It is a (positive) inductive definition with universe the set of traces from atomic
goals only Ta(SLD). The first rule specifies an atomic transition from an atomic goal h with clause
c. The second rule specifies the AND-compositionality of derivations for a clause c. This is obtained
by composing the successful transitions for the first k- l atoms of the body with the state (goal)
produced from a derivation of the k'h atom of the body. '

Theorem 5.2 {AND-compositionalityj
Let G = bJ, ... ,bn be a goal. (G,~J)-c~+(B,?J) E T(SLD) iff3((h;!i:_.A)7;;f,hk~Bk) <a S,
l :S k :S n such that 5 = mgu((b1, ... , bk)IJ, (h1 , ... , hk)), c = c1 :: ... :: Ck, and B{) ~ (Bk ::
(h+J, ... , bn))IJO an d G,J ~ G~J5.

By Theorem 5.2, the set of SLD-traces T(SLD) can be characterized in terms of traces from
atomic goals only, i.e., traces in Ta(SLD). The operator 'P P on ~o(Ta(SLD)) induced by the inductive
definition of [is ([1]):

<pp(X)

It is easy to prove that <pp(X) is continuous and [= <ppfw, i.e., the inductive definition is well
formed. In the following we consider (p(Ta(SLD)), 'P P) as reference semantics.

Proposition 5.3
(p(Ta(SLD)), <p p) is a mode/ complete collecting sem.antics.

627

(p(Ta (SLD)), <p p)i, is therefore a collecting semantics w h ere the abstraction function o· maps
any successful sequence h~* A into ground(h) while non successful traces are simply ignored.
@ The ange/ic abstraction O:a is obtained by approximating finite traces by the pair of their ini­
tial and fina! state (see [17]) enhanced with the sequence of clauses used in the trace. o:a(X) =
{(h, il, 1J) l h.~· il E X}. It is easy to associate with o: a a eoncretization function ì a inducing a
Galois insertion such that ìaOO:a ç -yoo:. By Theorem 5.1, the best correct angelic approximation is
a mode! complete collecting semantics. This semantics has been recently used in [5] to mode] Prolog
depth-first search.
" The sequence abstraction o:, simply ignores the sequence of clauses used in the trace. It can be
composed with o: a to approximate traces with their initial an d fina! state only. As before i t induces
a mode! complete collecting semantics for partial answers. The semantics for cali patterns in [23]
can be further derived by approximating (h., b l il) with (h, b).
o The success abstraction o:, approximates any finite successful trace with its initial state, while
non successful traces are simply ignored. Notice that when composed with sequence a.bstraction,
it induces a best correct approximation which is equivalent (:::=) to (p(Atom), Tp). Moreover:
o: = groundoa 85 •

,. Finally, the Heyting abstraction O:H is defined in terms of a map transforming successful (finite)
tra.ces into trees,

6 Combining semantics and properties
In this section we formally relate and combine collecting semantics. In order to specify the

basic operators to combine collecting semantics, we require some completeness conditions about
the involved system of semantics. A system of collecting semantics Us is (upper) complete when
there exists a (reference) collecting semantics W E Us such that for each Q E U5 , Q is sound with
respect to W. Complete systems are actually complete lattices. In the following we denote U~ the
system of al/ collecting semantics which can be derived by abstraction from W and having S as core
semantics (i.e., generateci by S).

Theorem 6.1
Lei W= (C, T)2 be a collecting semantics in the system of co/lecting semantics with respect to S.
Then U~ is a complete lattice isomorphic to the sub-lattice of uco(C): (r, ç:;uco, n, U, -yoo:, A x .x)
where f ={p E uco(C) l p ç:;uco -yoo:}.

In particular we can apply thejoin and meet operators in uco(C) to compose collecting semantics.
Let W= (C, T) an d {P .Ai }i El be the closure operators associated with the semantics {Ai},EI EU~.
W e define: EEl;EJA; = (UiEJP.Ai(C), (UiEIP.A;)oT) an d ®i E! Ai = (niEIP.Ai (C), (n,EfPA,)o T). By
Theorem 6.1, (U~, ~. @, EEl, S, W) is a complete lattice.

Any set of collecting semantics U can be extended to a system of collecting semantics by observing
that any semantics in U is complete with respect to EElU, which is a.ctually the most concrete semantics
having this property an d which can be derived by abstraction from semantics in U. Therefore, for any
se t of semantic definitions U, then U U { EElU} is always a system of collecting semantics. Analogously,
any system of collecting semantics Us can be extended to a corresponding (upper) complete system
by observing that any semantics in Us is correct with respect to ®Us. In this case Us U { ®U} is
complete.

Proposition 6.2
Let W be a possibly non mode/ complete collecting semantics. The family of mode/ complete collecting
semantics in u~ is inf-closed.

Therefore, the reduced cardinal product of mode! complete semantics is a mode] complete se­
rnantics. In particular, by Theorem 5.1 it is easy to prove the following

Corollary 6.3
lf W is mode/ complete, then any semantics in U~ is mode/ complete.

·~----------------------~-----------~-----------·---

628

Therefore. the join of mode! complete collecting semantics is mode! complete provided that the
reference semantics is a mode! complete semantics.

In the following of this section, for simplicity, we consider the system of al! collecting semantics

generateci by Herbrand's semantics and correct with respect to SLD, i.e., UffD. It is worth noting

t.hat al] of the following results can be generalìzed to any complete system of collecting semantics. In

particular, note that by Proposition 5.3 and Corollary 6.3, any semantics in UffD is mode] complete.

Exarn.ple 2 A ne w semantics inc/uding bot h the s an d the H eyting semantics ca n be obiained by

reduced cardinal produci of ihe s an d the H eyting semantics de fin ed in Section 3. 3: (p(Tree), Tj!") ~
(p(Atom), Tj,) ® (up(t~(Tree)), Tj!), where foT each I ç Tree:

{ l
i= (h, ((hl, t1), ... , (hn, tn)))IJ }

Tj!"(I) = t C_= h+-- b1, ... , bn E P, ((h1, t1), ... , (hn, in)) <e c I

1J- mgu((b1, ... , bn), (h1, ... , hn))

By Proposition 6.2, (p(Tree), Tj!') is mode/ complete. Moreover, we can verify that Clark's se­

mantics is precisely the common semantics between s an d Heyting, namely (up(p(Atom)), Tf,) ::::

(p(Atom), Tj,) Efl (up(p(Tree)), Tj!).

6.1 The "best" collecting semantics for analysis

In the following, we characterize when a collecting semantics is too concrete for a given property,

and the best collecting semantics for analysis. The following notion of too concreieness corresponds

precisely to the existence of a collecting semantics which is more abstract but equivalent on the
property to mode!.

Definition 6.1

A collecting semantics (A', T') is too concrete far a property p of (A', T') iff there exists a colleciing

semantics (A, T) such that: (A, T)~(A', T'), p is exiendible to (A, T), and po-yoToC1'op = poT1op.

Exarnple 3 M ost of th.e (bottom-up) abstract interpretations de.signed far success patiern approx­

imaiion are based an ihe abstraciion of the s colleciing semantics (e.g., {6, 10}}. However, noiice

that the property Dep is exiendible to Clark's semantics and PDepoTj,oPDep = PDepoTf,oupopDep,

~i. e., the s collecting semantics is (ioo) concrete wiih respect to Dep. The more sim.ple c semantics

can be equivalently used as a base semantics far Dep abstraciion. This is noi true far Sharing {25},
be.cause the abstraction up which relaies Clark and s semaniics, may introduce new sharings which
are noi produced by the program.

Intuitively, the best collecting semantics is a semantics which is not too abstract to lose useful

information but also not too concrete (in view of Definition 6.1). More formally, given a collecting
semantics (C, T), which is too concrete with respect to a given property p, we are interested in

systematically derive an abstraction of (C, T) which leads to the best collecting semantics for that
property.

Theorern 6.4 {the best collecting semantics}

Let (C, T)ix be a collecting seman.iics. Let p be a property. The best colleciin.g semaniics is a ·

semaniics (Cb, Tb) such thai Cb'=" p n ('YoQ')(C) and Tb = C1'pn('Yoa)oTo-rpn(-yoa)·

When S is the core semantics, we will sometimes denote the best collecting semantics for a

property p as S n p. Therefore, given a property p, and a system Lì };V, we can always define an

operator (Jp : Us --+ Us which transforms any (possibly too abstract) semantics X E 155 , into the
least (most abstract) semantics which is more concrete than Q an d suitable for the analysis, namely

(Jp = ,\X .X n p. It is immediate to see that (Jp is a closure operator on the complete lattice U}r,
whose fixpoints are exactly the collecting semantics suitable for the analysis of p. We call these

semantics concrete semantics far p. Thus, if Q and X are concrete semantics fora property p, (i.e.,

(Jp(Q) = Q and f3p(X) =X) then' both Q U X and Q n X are concrete for p. By Theorern 5.1, the

best collecting semantics construction maintains mode] completeness and correctness:

629

Corollary 6.5
Lei (C, T) be a collecting semantics an d (Cb, T b) be the corresponding be si collecting seman.iics for

a property, as staied in Theorem 6.4. Then., (1} if (C, T) is mode/ complete, then (Cb, T b) is mode/

complete; and (2) if(C, T) is correci, then (Cb, Tb) is correct.

Exaxnple 4 It is easy t o see that Clark 's semantics is indeed the best collecting sem.antics for ground

program properties (e.g., PDep), namely ii is isom.orphic to ihe reduced cardinal produci of Herbrand

with Dep. T o prove this it is sufficient to ab serve that, by fixing the s semantics as collecting

semantics: PDep n ground = up. Note ihat, in the hypoihesis of {3}, i. e. assuming that :S contains

infinìtely many constants, then the Herbrand and Clark's semantics are isomorphic (see {3}), namely:

1-(. is the best collecting semantics for analysis of groundness! By Theorem 6.4, th.e best sernantics

far Sharing is strictly more absiraci than s and strictly more concrete than Clark's semantics. We

are currently looking far iis "explicit" definition.

7 Related works
In logic programming, the most related works are [6, 15, 11, 21, 26]. [26] firstly applied a notion

of core semantics to build collecting semantics. The approach however was neither oriented to a

systematic design of semantics nor provided with a mode! theoretic interpretation for collecting

and abstract semantics. While [15] firstly observed that 1i is an abstract interpretation of a more

concrete backward semantics, [6] applied (ocily) the s collecting semantics to program analysis. In

[21]1-f., Clark and s semantics are related, providing a mode! theoretic interpretation for s models.

W e combine an d extend those approaches in the first p art of the p a per, mtroducmg a genenc notwn

of collecting semantics for logic programs. This includes the results in [6, 21] as a special case of some

of the results in Sections 3 an d 4. Moreover, by using abstract interpretation to relate semantics,

we can systematically derive and compare collecting semantics, and constructively define "optimal"

collecting semantics for ana!ysis. The approach is generai enough to include also different semantics

like Heyting sernantics, semantics for call patterns etc. lndependently, [11] also applied abstract

interpretation to derive semantics by abstraction from SLD trees, similarly to Section 5. The main
difference with our approach is that [11] does not consider a core semantics in concrete semantic

definitions. The core semantics is bere a key notion in arder to extend to collecting and abstract

sernantics many of the (desirable) properties of the standard semantic definition of logic programs,

Iike its simplicity and its mode! theoretic interpretation. Morover, i t is essential to characterize both

the bes i collecting semantics for analysis (Theorern 6.4), an d the class of correct collecting semantics

for a program.

Acknowledgments
The stimulating discussions with Patrick Cousot, Maurizio Gabbrielli, Thomas P. Jensen, Giorgio

Levi, Francesco Ranzato and Enea Zaffanella are gratefully acknowledged.

References ,
[l] P. AczeL An Introduction to Inductive Defìnitions. In J. Barwise, editor, Handbook of Mathematical

Logic, pages 739-782. NorthCHolland, 1977.

[2] K. R. Apt. Introduction to Logic Pmgramming. In J. van Leeuwen, editor, Handbook of Theoretical

Computer Science, volume B: Formal Models and Semantics, pages 495-574. Elsevier, Amsterdam and
The MIT Press, 1990.

[3] K. R. Apt and M. Gabbrielli. Declarative lnterpretations Reconsidered. In P. Van Hentenryck, editor,
Frac. JGLP'94, pages 74-89, 1994.

[4] T. Armstrong, K. Marriott, P. Schachte, and H. Swndergaard. Boolean functions for dependency
analysis: algebraic properties and effi.cient representation. In B. Le Charlier, editor, Frac. SAS'94,

LNCS 864, pages 266-280, 1994.

[5] R. Barbuti, M. Codish, R. Giacobazzi, and M. Maher. Oracle Semantics for PROLOG. In H. Kirchner
and G. Levi, editors, Proc. ALP'92, LNCS 632, pages 100-114, 1992. Extended version to appear in
lnformation and Gomputation.

630

[6] R. Barbuti, R. Giacobazzi, and G. Levi. A General Framework far Semantics-based Bottom-up Abstr t
lnterpretation of Logic Programs. ACM TOP LAS. 15(1):133-181, 1993. ac

[7] A;_ Batarekh and V. S. Subrahmanian. Topological mode! set deformations. Fundamenta Jnformaticae,
1L.357-400, 1989.

[8] M. Bruynooghe. A Practical Framework for the Abstract Interpretation of Logic Programs. Journal
of Logzc Programming, 10:91-124, 1991.

[9] K. L. Clark. Predicate logic as a computational formalism. Technical Report Dept. of Computing,
Imperial College, 1979.

[lO] M. Codish, D. Dams, and E. Yardeni. Bottom-up Abstract Interpretation of Logic Programs. TCS,
124(1):93-126, 1994.

[11] M. Comini and G. Levi. An Algebraic Theory of Observables. In M. Bruynooghe, editor, Proc. ILPS'94,
1994.

[12] P. Cousot and R. Cousot. Abstract Interpretation: A Unifìed Lattice Mode! far Static Analvsis of
Programs by Constructwn or Apprmcimation of Fixpoints. In Proc. ACM POPL'77, pages 2ù_252,
1977.

[13] P. Co uso t an d R. Cousot. Systematic Design of Program Analysis Frameworks. In P roe. A CM PO p L '79
pages 269-282, 1979. '

[14] P. Cousot and R. Cousot. Constructing hierarchies of semantics by abstract int.erpretation. Invited
Lecture, Workshop on Static Analysis, WSA'92 Bordeaux 1992.

[15] P. Cousot and R. Cousot. Abstract Interpretation and Applications to Logic Programs. Journal of
Logtc Programmmg, 13(2 & 3):103-179, 1992.

[16] P. Cousot and R. Cousot. Abstract Interpretation Frameworks. Journal of Logic and Comput t·
2(4):511-549, 1992. a wn,

[17] P. Cou~ot and R. Cousot. Inductive Definitions, Semantics and Abstract Interpretation. In Proc. A CM
POPL 92, pages 83-94, 1992.

[18] S. K. Debray. Effìcient Dataflow Analysis of Logic Programs. JACM, 39(4):949-984, 1992.

[19] S. K. Debray. On the Complexity of Dataflow Analysis of Logic Programs. In W. Kuich, editor Proc.
ICALP'92, LNCS 623, pages 505-520. 1992. '

[20] M. Fal:'"chi, G. Levi, M. Martelli, and C. Palamidessi. Declarative Modeling of the Operational Behavior
of Logrc Languages. TCS, 69(3):289-318, 1989.

[21] M. Fal:'"chi, G. Le':'i, M. Martelli, and C. Palamidessi. A Mode!-Theoretic Reconstruction of the
Operatwnal Semantrcs of Logic Programs. Information and Computation, 102(1):86-113, 1993.

[22] M: Gabbrielli, G. Levi, and M. C. Meo. Observational Equivalences for Logic Programs. In K. Apt
editor, Proc. JICSLP'92, pages 131-145, 1992. '

[23] M. Gabbrielli and M. C. Meo. Fixpoint Semantics for Partial Computed Answer Substitutions and
Cali Patterns. In H. Kirchner and G. Levi, editors, Proc. ALP'92, LNCS 632, pages 84-99, 1992.

[24] M. Hermenegildo, R. Warren, and S.K. Debray. Global flow analysis as a practical compilation tool.
lournal of Logic Programming, 13(4):349-366, 1992.

[25] D. Jacobs and A. L~ngen. Static Analysis ofLogic Programs far Independent AND Paralielism. Journal
of Logtc Programmmg, 13(2 & 3):291-314, 1992.

[26] N. D. Jones and H. S(l)ndergaard. A Semantics-based Framework for the Abstract Interpretation of
Prolog. In S. Abramsky and C. Hankin, editors, Abstract Interpretation of Declarative Languages pages
123-142. Ellis Horwood Ltd, 1987. '

[27] R. Kemp an d G. Ringwood. Reynolds and Heyting Models of Logic Programs. Technical report, Dept.
of Computer Scrence, Queen Mary and Westfield College, 1991.

[28] K .. Marriott and H. Sfl!ndergaard. Semantics-based Dataflow Analysis of Logic Programs. In G. Ritter,
edrtor, Jnformatwn Processing 89, North Holland, 1989.

[29] F. Nielson. A denotational framework for data flow analysis. Acta Informatica, 18:265-287, 1982.

[30] B. Steffen. Optimal data J!ow analysis via observational equivalence. In Prac. MFCS'89, LNCS 379
pages 492-502, 1989. '

[31] M. H. van Emden and R. A. Kowalski. The semantics of predicate logic as a programming]angnage.
JACM, 23(4):733-742, 1976.

Contributions to a theory of existential
termination for definite logic programs

Giorgio Levi and Francesca Scozzari
Dipartimento di Informatica,

Università di Pisa,
Corso Italia 40, 56125 Pisa, Italy

{levi,scozzari}@di.unipi.it

Abstract

We suggest a new formalization of the existential termination problem of logic programs
under the PROLOG leftmost selection rule and depth-first computation rule. First of ali,
we give a characterization of the problem in terms of occurrence sets, by proving that a
(program, goal) existentially term.inates if and only ii there exists a finite correct occurrence
set. Then we show that in arder to study existential termination, we do not ueed to specify
the occurrences of the atoms, since existential termination turns out to be decidable, when
instances of atoms are used more than once (up to renaming).

We then reduce the verification of existential terminatiou to the search of a suitable semi
occurrence set for the pair (program, gaal), by providing an algorithm for proving that the
proposed semi occurrence set is a correct occurrence set. Finally we propose a simple method
(based on abstract interpretation techniques) for generating su eh semi occurrence sets.

Keywords: existential termination, program analysis.

l Introduction

The termination of logic programs became, in the last few years, an interesting research topi c.
The theories and techniques developed for studying the termiuation in imperative languages and
term rewriting systems were used first. New termination technìques specific to logic programs
have then been developed. In logic programs, we can make a distinction between universal and
existential termination. A program is universally ter~inating for a given goal if the computation
produces al! the solutions an d then termÌÌÌ.ates. I t is existentially terminating for a goal if i t either

finitely fails or returns at least one solution. ·:·"
Much work has been recently devoted to universal termination. For instance [1, 2, 3, 4] suggest

new theoretical characterizations. In addition there are many proposals of effective methods, su eh
as those in [12, 14, 15, 16], which infer interargument relations using AND/OR Dataflow Graphs,
and those in [6, 7], where the termination is proved for programs enriched with assertions. Up to
now, very little attention has beeÌÌ devoted to existential termination. [5] proposes a semantic
approach using inductive proof techniques, [11] studies an effective method for function free
programs, while [10, 19] just contain the basic definitions. Actually, whoever wants to develop
an effective (and genera! enough) method for proving existential termination, has to dea! with
the impossibility of making any term abstraction, since existential termination does not enjoy
any closure property, neither w.r.t. instantiation nor w.r.t. anti-instantiation. Moreover, the
dependence an the computation rule forces us, in most cases, to choose a specific search strategy
(usually the depth-first rule of PROLOG), which further complicates the analysis of the contro]

because of the backtracking mechanism. .

632

The development of existential termination techniques becomes essential in order to generalize
the analysis of universal termination to norma! programs. In fact, the problem of universal
termination for negative goals boils down to the problem of existential 1.ermination for positive
goals. An extension of the techniques for uni versai termination for dealing with negation is possible
only if we have satisfadory results for ex:istential termination.

In this paper we propose a new theoretical characterization of existential termination with the
leftmost selection and depth-first computation rules. We also propose an abstract interpretation
technique which can be useful to make our results applicable in practice.

In Section 2 we summarize the basic definitions an d propose a technique of program indexing
which will be used throughout the paper. In Section 3 we introduce occurrence sets, correct
occurrence sets and their main properties, including an algebraic characterization in terms of
complete lattices. We then introduce the minima! correct occurrence se(which will be used in
Section 4 to express our main results, which allow us to get rid of the occurrences in the occurrence
sets, still preserving conectness and completeness w.r.t. existential termination, leading to the
notion of semi occurrence sets of Section 5. Finally, in Section 6 we discuss a.n appiication of
abstract interpretation which generates the semi occurrence sets and, in Section 7, show one simple
example.

2 Preliminaries

2.1 Definitions

Let us first consider the classica] definition of existential termination and some of its basic
properties [5, 10]. The definition is based on the operational behavior of the program, using the
standard concepts of computation an d solution.

Definìtion 2.1 A program p existentiaHy terminates far the goal g if the computation either
finitely fails or produces at least one solution.

A basic property of existential termination is its dependence on both the selection rule las
in the case of uni versa] termination) an d the comput.ation :rule. Moreover, i t d~e~··;;:ot-enjoy the
instantiation closure properties which are typical of uni versa! termination. N amely the existential
terrnination of a goal d<;>e~ no~ imply the terminatio!l of its instances. I t is then necessary to
study the existential termination in a goa!-dependent way without tbe possibility of generalizing
the results to instances or anti-instances [18].

In the dìscussion that follows, we shall consider logic programs with the PROLOG selection and
searcb rules. VVe assume the reader to be familiar with the notions of SLD-resolution an d SLD-tree.
Moreover, we assume the concept of LD-resolution which uses the leftmost selection rule and the
~.Qt_h:fir.sLs~élr.~l'!c!..ule An LD-computation either terminates wheri ii;__has fo~~d th~ fi;st solution
or diverges in the first infinite branch. An LD-tree is built by collecting. from left tò right the
branches of the SLD-tree up to an~ including the first non finitely failed branch. Moreover, if the
node n has associateci t be goal A, E, we define the selected atom in n as the atom A. according to
the lef~most c.omputation rule_. For further definitions we refer to [13, 10].

(p, g) denotes a pair consisting of a definite program panda goal g. Let I be a set of atoms. We
denote by up(I) the set of all the instances of atoms in I up to renaming. W e denote by N 00 the
set N\ {O} U { oo} obtained by extending the natura! (positive) numbers an d its ordering relation
in the obvious way. Moreover, all our relations are defined up to renaming. The (atomic) symbol
A will denote an atom or its equivalence class modulo renaming.

Existential termination can be expressed in terms of properties of LD-trees as shown bv the
following proposition. ' •

Proposition 2"2 (p, g) existeniia/ly terminates if and only if the LD-tree of (p, g) is finite.

633

2.2 Program indexing

A partial computation can be viewed as a sequence of goals go~ 91 ~ ... ~ 9n, where 9i+l is
obtained from g; an d a (renamed apart) clause c=: H: -A1 , ... , An by a single derivation step. In
the approach we propose, it is necessary to identify the clause used in the resolvent in order to know
which atoms in the program cause non-termination. In particular, for a goal g =~ El, Bn,
we want to know which clause the selected atom E1 comes from. To this aim we propose a simple
technique of program indexing. Obviously an atom in the head of a clause can never appear in a
partial computation. Therefore only atoms in the body and in the goal need to be indexed.

Given a pair (p, g), tbe indexed program and goal is the pair (p', g') obtained from (p, g), by
indexing al! the atoms in the body of any clause in p an d in the goal g, so that all the indices are
distinct. For the sake of simplicity, we shall use the natura! numbers as index base. ìVe associate
then to every pair (p, g) a set of atoms Atom(p,g) containing all the indexed atoms which are in p
and in g.

Exam.ple 2.3 Let p be the following program:

q(a).

q(s) :- q(t) ,p(u).

and g =<- q(x),p(y) be a goal. We define the program p'

q(a).

q(s) :- q1 (t) ,p2(u).

the goal g' =<-- qs(x),P4(Y) and Atom(p,g) = {q1(t),p2(u), qs(x),p4(y)}.

In the following, logic programs and goals will be indexed logic programs and indexed goals.
The usual operations on atoms are extended in the obvious way: the mgu definition is not affected
by the indexing, w bile the application of a substitution to an atom preserves the index of the atom
itself. This extension aims to guarantee that every atom selected in the cornputation has an index.
Therefore we define:

- def -
mgu(pn(t),Pm(u)) = mgu(p(t),p(u))

(Pn(t))e d;j Pn(ÙI)

We need to compare different atoms obtained as Ìnstances of the same atom in the program.
Therefore we introduce a new equivalence relation which partitions the set of atoms on the basis
of the associateci index.

A ~ind E W A.= p,..(t) AB= Pn(u)

Let A be an atom which is an instance of an atom in Atom(p,g), We denote by Atom(p,g) (A)
the only element belonging to Atom(p,g) n { B l E ~ind A}.

3 Occur:rence sets and cor:rect occur:rence sets

The main idea nnderlying our construction is that one must be ab! e to recognize the termination
of a goal, by comparing an occmrence set for that goal with a specific partial computation. In
practice, occurrence sets are used to guarantee the effectiveness of the analysis, allowing to compare
the already visìted atoms on the basis of the associateci in d ex. Therefore, our occurrence sets must
contain both the visited atoms and their occurrences (i.e. how many tirnes they occur in the
computation).

634

We start by defining the domain of occurrence sets for a pair (p, g) and then stating the basic
properties of correct occurrence sets. An occurrence set for (p, g) is a function which assigns to
every atom A in Aiom(p,g) a set of pairs of the form (A e, n), where n E N 00 . The second argument
is called occurrence of the instance an d can assume the value ov. 1

Definition 3.1 W e define occurrence set for (p, g) a functìon

I(p,g) : A.tom(p,g) --+ 2up(Atom(p,,))xN~

such ihat IfA E A.tom(p,g) {E l (E, n) E I(p,g) (A.)} ç up(A).

Therefore, an occurrence set. can be thought of as a function whose image is a multiset, and
likewise we can define the notion of correct occurrence set. The idea behind tbe concepì of correct
occurrence set is to collect a superset of tbe atoms selected in a (leftmost deptb-first) derivation,
togetber witb an upper approximation of the occurrences.

Definition 3.2 Lei I(p,g) be an occurrence sei far (p, g). Then I(p,g) is correct far (p, g) if an d
only if'

IfA E Atom(p,g) Ife if Ae is selectedn times in ihe LD-iTee af(p,g), ihen 3m2: n s.t. (Ae,m) E
I(p,g) (A)2

Note that multiple occurrences of predicates in A.tom(p,g) are not identified. Every atom in t.he
LD-tree comes from a specific atom in Atom(p,g) and we can easily identify that atom thanks to
tbe indexing.

Proposition 3.3 Every pair (p, g) has a carreci accurrence set.

Proof: The occurrence set
IfA E Atom(p,g) I(A.) = up(Atom(p,g)) x { oo}

is correct for any program and goal.

Among the occurrence sets, we are particularly interested in finite an d weakly finite occurrence
sets and in completions, in order to capture tbe concept of existential termination.

lnformally, an occurrence set is finite if tbe set of occurrences of atoms in its image is finite. By
weakening the definition, we obtain the cbaracterization of weakly finite occurrence set. N amely
we simply count the atoms in tbe image, by ignoring multiple occurrences (or better by assuming
ali tbe occurrences to be unary). On tbe contrary, the completion is obtained by increasing the
size of tbe occurrence set by setting ali tbe occurrences to infinity.

Definition 3.4 Lei I(p,g) be an accurrence set. Then ii is finite if thc summatian

AEAtom(p,g) (B,n)EJ(p,o) (A)

is finite. Lìk:ewise, an accurrence set is weakly finite if

I: I:
AEAtom(p,g) (B,n)El(,,g) (A)

is finite.

n

1 1.Ne prefer to use the notation (AB, n) rather than (8,n) in arder to simplify the defin.ition of equivalence up
to renarning. Consider the atom A = p(X, Y) a.nd the substitutions B = {X ~ f(Z)}, cr = {X ~ J(W)} and
-y = {X +-- f(Y)}. It turns out that, AB is equivalent to Acr up to renarning but it is not equivalent to Aì·, i.e.
the rena.rn.ìng equivalence depends on the atom to which we apply the substitution. Therefore it is an equivalence
relation wlùch is parametric w .r.t. atorns.

2 Since the relations are up to renaming, actually the defin.ition should be: VA E Atom(p,g) 'r!B if AB appears n
times (up to renaming) in the LD-tree of (p, g), then 3m2: n s. t. (B,m) E J(p,gj(A) where AB is equivalent up to
renaming t o B.

635

Definition 3.5 Let I(p,g) be a weak:ly finite accurrence set. We cali completion the occurrence
set Comp(I(p,g)) defined as fallaws.

Comp(J(p,g))(A.) = {(E,oo) l (E, n) E I(p,g)(A.)} IfA E A.iom(p,g)·

Proposition 3.6 The campletian afa weak:ly finite accurrence set ìs weak:ly finite.

Our cbaracterization of termination is directly obtained by using tbe above definitions.

Theorem 3. 7 (p, g) exìsieniially terminates if an d anly ìf th.erc exzsis a finite correct accurrence
sei af (p, g).

3.1 The lattice of occurrence sets

W e analyze now tbe structure of the occurrence set I ni(p,g) for tbe pair (p, g) in or der to be
able to introduce the notion of minima! correct occurrence set, wbicb will be used to state our
main results. Let us start by defining two new operations, i.e. join and meet on occurrence sets.

Definition 3.8 Lei I, J E Int(p,g) be two accurrence sets. W e define a new accurrenc<: set (I U
J)(A) far al/ A E Atom(p,g) as fallaws.

(I U J)(A) d;j { (B, n) l
l. (E, x) E I/\ (E, y) E J /\n= max{x, y},
2. (E, n) E I 1\ \fy f:J(E, y) E J,
3. (E, n) E J 1\ lfy !J(E, y) E 1}.

Analagausly we define ihe meet (I n J)(A) far al/ A E Atom(p,g):

(I n J)(A) d;j {(E, n) l (B, x) E I 1\ (B, y) E J 1\ n= min{x, y} }.

Int(p,g) can be partially ordered by using the join operation. Let I, J E Int(p,g) be two occurrence
sets. We define:

I ç J '!!f I U J = J.

We generalize tbe join and meet operations to sets of occurrence sets in the obvious way. By
using tbe above ordering, we prove tbat (Int(p,g), ç, U, n) is a complete lattice. By exploiting tbe
lattice structure we are able to state the first important result.

Theorem 3.9 The meei af al/ the carrect accurrence sets far the pair (p, g) is a correct occurrence
sei far (p, g). Su eh a occurrence sei is ca l/ed the minima/ correci accurrence sei an d is unique.

For tbe sake of simplicity, we denote tbe minima! correct occurrence set for a pair (p, g) by
I~:;).

Theorem 3.10 An accurrence set I(p,g) is carrect far (p, g) if an d anly ìf I[;:;) ç I(p,g).

Lemma 3.11 The campletian afa weakly finite, correct occurrence sei ìs weakly finite and carreci.

Theorem 3.10 gives a correct occurrence set characterization, by using the ordering on the
occurrence sets lattice. However tbe resulting cbaracterization is obviously not effective because
of the two following facts:

l. not ali tbe correct occurrence sets bave a finite representation;

2. the computation of I[;:;) is not effective.

In or der to sol ve tbe first problem, we shall consider weakly finite occurrence sets (and therefore
weakly finite, correct occurrence sets) only, since tbey always bave an effective representation. The
above constraint automatically solves also tbe second problem, since the condition I[;:;) ç I(p,g)
turns out to be decidable, as shown in detail in tbe next Sections.

,,

4

636

Towards a decision procedure based on weakly finite oc­

currence sets

Dealing with occurrence sets is definitely very dose to the origina] mode] (the LD-tree) and
results in a very simple theory. Actually, in arder to capture existential terrnination, we can ignare
occurrences and use sets of instances only. This intuition leads to a remarkable simplifica.tion in
the construction of the minima] correct occurrence set, sin ce we do not need to worry about the
derivations which use a given instance infinitely many times. The result which allows us to obtain
this simplification is the following. Let A be an atom which is selected a t least twice in the LD-tree
of (p, g). By inspecting the (finite) partial computation, included between the first two selections
of the atom A, we are ahle to decide whether A existentially terminates w.r.t. the program p.

Theorem 4.1 Lei A E Atom(p,_q) be such that :J(AO, n) E 1(;;:_;\ (A) with n> l. Then ìt is decìdable

whether (p, AO) existentially termìnates.

Proof: By making a depth-first traversa! of the LD-tree, !et n 1 an d n 2 be the first an d the second
node labeled AO, E and AB, C respectively (such nodes do exist, because n ;:::: 2 by hypothesis).
VVe take un der considera.tion the branch of the LD-tree sta.rting from the root to the n ode n2 . W e
ha.ve two ca.ses:

l. the node n1 helongs to such a. branch. This means that the goal AB, E is rewritten to AB, C.
VV'e bave again two cases:

the resolution of the atom AB terminate~ with COI_!lputed answer solution r7 an d the compu­
tation continues with the new goal Eu (and Br7 is rewritten to AB, C). In this case AB
successfully existentially terminates.

n the goal AB is rewritten to the goal AB, D an d therefore AB diverges.

Note that i t is decidable whether the computation associateci to AB terminates, sin ce we bave
to analyze a fmite number of steps (i.e. the nodes included between n 1 and n 2).

2. the node n1 does not belong to such a branch. This means tha.t it necessarily belongs to
a previously visited and finitely fa.iled branch. Therefore the goal AB either finitely fails or
successfully terrninates.

Since it is decidable whether n 1 belongs to a finite branch. the existential termination of AB is
decidable too. 111

By using the previous result we can chara.cterize, in effective way, whether the completion of a
weakly finite occurrence set represents a correct occurrence set.

Theorem 4.2 Let I(p,g) be a weakly finite occurrence sei. Then ìt ìs decìdab/e whether Ic
Comp(I(p,g)) ìs a correct occurrence set for (p, g), i. e. whether I[;:;) ç Comp(I(p,g)).

Proof: The proof is given by the following algorithm (where Visit and Term are two sets of
atoms).

l et (D, E) _be the !abel of the root of the LD-tree of (p, g),
/((A, C), Visit,Term) =
l et B = Atom(p,g) (A)
in if (A, oo) ~ Ic(B)

then (Ic is not a. correct occurrence set,a)
else if A E Visit \ Term and A does not existentially terminate

then (Ic is a correct occurrence set,h)

637

else if the depth-first traversai of the LD-tree of (p, g)
is terminated

in !((D, E), W,@).

then (Ic is a correct occurrence set,c)
else l et (A', C') be the !abel of the next selected node

in !((A'' C'), Visit u {A}, Term u ({A} n Visit))

In order to prove the correctness of the algorithm we have to show that:

i. ali the choices are decidable.

e (A, oc) ~ Ic(B). Since le is wea.kly finite, Ic(B) is finite and therefore the condition

turns out to be decidable.

o A does not existentially terminate. We test this condition only after having checked
that A E V isit \ Term, i.e. that A has already occurred in the visited subtree. Thus,
A occurs at least twice in the minima! correct occurrence set of (p, g) and therefore, by
theorem 4.1, i t is decidable whether A. existentially terminates.

iL the algorithm always terminates. In the algorithm we check whether the selected atop.1
belongs to the set Ic(B). By definition of weakly finite occurrence set, the set { B l :JA E

Atom(p,g) (B, n) E Ic(A)} is finite. It follows that the algorithm considers finitely many
distinct atoms. We have only to prove that no atom is selected infinitely many times. We
assume, by contradiction, that there exists a set of atoms which are selected infinitely many
times. This implies that at]east one of these atoms recursively ca.lls itself an d therefore the
atom does not existentially terminate. But this is a contradiction, since the algorithm should

terminate with !abel b.

iii. it returns correct answers. It is worth noting that the sets Visit and Term contain,
respectively, the already selected atoms and, among those which have been selected at least
twice, those which existentially terminate. Ifthe algorithm terminates with !abel a, I c cannot
be a correct occurrence set, because it does not contain the selected atom. If it terminates
with !abel c, the complete LD-tree has been visited and a.ll the atoms belong to Ic, and
therefore we can assert that it is a correct occurrence set. The interesting case is the exit
with]abel b. In this case there exists an atom A which has been visited at least twice and does
no t existentially terminate. Theorem 4.1 (p art 1.ii.) sta t es that A is rewritten to itself, an d
therefore the computation goes into an infinite loop w bere the selected atoms of the visited
goals are al! and only the atoms included between the atom A and its next invocation. Thus
Ic is a correct occurrence set since it contains al! these atoms with occurrence co.

Some remarks about the above theorems are necessary. The above results state that, for a
weakly finite occurrence set, we can decide whether its completion is correct. Furthermore, we
have proved that if a. weakly finite occurrence set is correct, then, by theorem 3.10, also the
completion is correct, but the vice versa is not valid. This means that, when moving from an
occurrence set to its completion, the chances to obtain a correct occurrence set do increase. We
can thus get rid of weakly finite occurrence sets an d take into consideration their completions only,
sin ce we know that we bave more chances to fin d a correct occurrence set in this class of occurrence
sets. In practice we can neglect the occurrences and consider weakly finite occurrence sets only,
wìthout caring a.bout atoms with multiple occurrences. This is captured by the notion of semi

occurrence set.

638

5 Semi occurrence sets

Definition 5.1 A semi occurrence set far (p, g) is a functian

I(p,g) : Atom(p,g) __, 2up(Atam(p,g)),

with the constraint that IfA E Atom(p,g) I(p,g) (A) ç up(A) and

~o te that the se t of semi occurrence sets an d the se t of completions are isomoq:>hic. Therefore
we can embed the structure ofsemì ocèurrenéè sets iri.thé htt1èe of occurren~;,- ~~ts. To this aim
we define the extension of a semi occurrence set as the occurrence set obtained by setting al! the
occurrences to infinity.

Definition 5.2 Let I be a semi occurr·ence sei for (p, g). The occurrcnce set Ext(I) is defined as:

def { l \fA E Atom(p,g) Ext(I)(A) = (B, oo) BE I(A)}.

By exploiting the concept of semi occurrence set, theorem 4.2 becomes:

Theorem 5.3 Le t I(p,g) be a semi occurrence set. Then it is decidab!e whether Ext(I(p,g)) is a
correct accurrence set for (p, g), i. e. whether I[;:;) ç Ext(I(p,g))·

Our task is therefore to provide a semi occurrence set and, by using the above theorems and
algorithms, to check whether the correct occurrence set is finite and therefore to infer whether
(p, g) existentially terminates.

In order to achieve our aim, we only have to check whether the finiteness of weakly finite,
correct occurrence set is decidable. The characterization we obtain is stili stronger and allows us
to decide, for a weakly finite, correct occurrence set, whether the minima! correct occurrence set
of (p, g) is finite, and therefore if there exists a finite correct occurrence set. The next theorem
guarantees the effectiveness of such a check by using the previously specified algorithm.

Theorem 5.4 Let I(p,g) be a semi accurrence set su eh that Ext(I(p,g)) is a carrect occurrence set
far (p, g). Then it is decidable whether I[;;:;1 is finite.

Proof: The proof is based on the algorithm given in theorem 4.2. We use such an algorithm and
the occurrence set Ext(I(p,g)). Since the occurrence set is correct, i t turns out that the algorithm
terminates either with l abel b or c. If the algorithm terminates with !abel b, we may conclude that
I[;:;, can not be finite since it contains at least an atom which does not existentially terminate. If
the algorithm terminates with !abel c, the minima! correct occurrence set is finite sin ce the LD-tree
of (p, g) is finite. 111!

6 Generation of the semi occurrence set

As a conclusion, we suggest a method to automatically generate the semi occurrence sets. The
basic idea is to generate an approximation of the atoms selected in the LD-tree, by a refìnement of
the depth-k abstraction ([17]) used for program analysis hased on abstract interpretation ([8, 9]).
Since existential termination does not enjoy any closure property, we are forced to compute an
abstract denotation depending on both the program and the goal. To this end, we shall use a
(leftmost) top-down construction based on the depth-first search rule. W e start defining some
useful functions an d the abstract domain used by the fixpoint operator.

Let us consider the function 1- .. 1 : Term-+ N, such that

if t is a constant or a varìable
ift = f(il, .. . ,in)

639

and a given positive integer k. The associateci equivalence relation is ~b such that t1 ~k t2 iff
ak(tl) = ak(t 2), where ak(t) represents the term which can be obtained from the concrete one by
substituting with a fresh vari ab le each subterm t' in t, su eh that ltl- 1t' l = k.

We can define the abstract universe as the image of o:k, that is Terma = o:k(Term) = {[t]~k
t E Term} and the abstract base Atoma = {p(tf, ... ,t~): p E ll,tf E Terma}. The abstract
semantics is defined as a set of pairs of the form (g, h), where g is the current goal and h is
the sequence of renamed apart clauses used in a partial (leftmost depth-first) derivation starting
from g. W e shall refer to h as the history of the (parti al) derivation. It follows that the ahstract
interpretation domain is simply P((Atoma)' x Clause*).

The next step concerns the abstract domain ordering. First of ali, we define the structure of
the program and the ordering on sequences of clauses. A program p is defìned as a sequence of
clauses p = c1 :: Cn. The ordering on the clauses reflects the position in the program, i.e.
\li, j ci < Cj .;=:.i< j. We extend the ordering on sequences of clauses. Given a clause c E Clau.se
and s, s', s11 E Clause* we define

c :: s < s'.;=:. l) s'=.\ or
2) s' = d :: s" and c < d
3) s' = d :: s" an d c= d an d s < s".

Note that the empty sequence .\ is the greatest element. W e order the pairs (g, h) according
to the ordering on the sequences, i.e. by comparing only the histories of the derivation: (g, h) <
{g1 , h') .;=:. h < h'. This allows us to implement exactly the depth-first search strategy.

The abstraction function O!k and the equivalence relation ~k are extended on Atom and
iitom* in the obvious way, that is O!k(p(tl, ... , in)) = p(ak(tl), ... , ak(tn)) and A1, ... , An ~k
B1, ... , Bn .;=:. \li= l ... n ak(Ai) ~k etk(B;).

We define the equi~alence relation ~k on pairs, in such a way that two pairs are in ~k-relation
ìf an d only if the selected atoms in the goals are in the same relation.

(g, h) ~k (g', h').;=:. (g =A, A and g' = B,B and A ~k B) or g = g' = .\.

It is straightforward to extend Cik on the abstract domain and to define a corresponding Galois
insertion (ak,ìk) such that ìk(I) ={A E Atom: ak(A) E 1}.3

The next step concerns the abstract fixpoint operator. First of ali, we define a function

SLDLeft : P((Atom)* x Clause·)-+ P((A.tom)* x Clause*)

which computes ali the pairs reachable by one step of SLD-resolution via the leftmost selection
rule.

SLDLejt(I) = {((E, A)B; h:: c) l (A, A; h) E I
c:= H: -E E p
B = mgu(A, H)}.

In order to recognize successful computations, we defìne the function IdA which returns the
pairs with empty goal: IdA(I) ={(.\;h) l (.\;h) E I}.

Finally, the abstract semantics ·is obtained by computing, at each step, the set SLDLeft(I)
minus the pairs already computed in the previous steps, (possibly) augmented with a success
paìr. The least element of this set, when it exists, is exactly the result obtained by one step of
SLD-resolution via the leftmost selection and depth-first search rules. The definition of the Tp,g
become:

3 Note that we do no t need to prove that the abstract semantics is correct w .r.t. a suitable concrete one, just
because our senù occurrence sets are not necessarily correct occurrence sets. Howeverl one can easily prove that our
abstract semantics is a Galois insertion of the more concrete one. which can be obtaìned as a lim..it wìth k = oo.

1!1

640

Tp, 9 (J) ==I U rnin((SLDLeft(I) \I) U Id>. (I))

where min(0) == 04 Using a top-down construction, we bave to start with the goal g and history
À, just because in the sequence ordering the empty history represents the top element. The least
fixpoint is then computed in the following way:

Tp, 9 h O== {(g, .\)}

T r (l) { ak(Tj,,g h n)
p,g k 11 + == () Tp,g Tp, 9 Tk n

if Tp, 9 (Tp, 9 h n) ~k Tp,g h n
otherwise,

where ak(I) == {(ak(g),h) (g,h) E l} and I ~k J {o} 'ip E I 3q E J p ~k q and 'dp E J 3q E
I p ~k q.

Note that the Tp,g h operator always terminates just because the partition induced by the
~k-relation on the abstract domain is finite.

Given the above abstract semantics, we extract the semi occurrence set I(p,g), by simply
collecting all the selected atoms an d getting rid of the history of the derivation, i.e.

I(p,g) =={A l (A, A; h) E Tp,g h w}.

7 Example ' ' : ~ !,', ,' l ' '~·
!, ,l

Let p be the following program:

visi t(C1IXJ).

visit([OIYJ) ~ appendl(Y,[O],Z),visit 2 (Z).

append([] ,S,S).

append([TIUJ, V, [TIWJ) <- append3 (U, V, W).

The behavior of the program w.r.t. a given goal visit(t) is the following:

l. ift == [t1, . .. ,tn l X] then visit(t):

i infinitely fails {o} 'il :::; i :::; n ti == O;

ii finitely fails {o} 31 :::; j :::; n 'il :::; i < j ti == O and tj =F O, l and tj is not a variable;

ii succeeds {o} 31 :::; j :::; n 'il :::; i< j t; == O and (tj == l or tj is a variable);

2. visit(t) finitely fails otherwise.

We choose k == rnin{i l p ~k O!k(P) and g ~k O!k(g)}. The semi occurrence set extracted from
Tp,g h w is powerful enough to allow the algorithm tostate the (non-)termination for every goal5 .

4 Note that < is a total order on P((Atom 0)* X Cla11se*) and therefore min .is alwa.ys defined.
5 IL is worth noting that, in some cases, the technique is .ab.le t.o d~cide about t~e non-te~~tion of a ~~al. In

fact, when the algorlthm. tenninates with label b, we can iiifer-tha-(the-!rUillmaJ"èOireCt' OéCU:rreiiCe set iS irifìn..ite
and therefore that the goal does not existentially terminate.

641

8 Condusions

Our theory for capturing the notion of exìstential termination applies to positive)Of' : programs,
un der the leftmost an d depth-first rules an d, according to the well-known properties of termination,
can be applied to study the universal termination of negative goals in normallogic programs.

An interesting extension is related to the poss1bility of using different selection rules. In fact,
the choice of the selection rule affects only the notion of LD-tree, while ali our results are stili
valid. On the contrary, the choice of a different search rule, would affect the validity of theorem
4.1, on which our technique ìs based. Nevertheless, we believe that our result can be generalized
to any search rule.

As a fina! remark, ìt is worth noting that our results can be applied in a "reverse" mode.
N amely, in order to prove that (p, A) existentially terminates, we can look for a goal g su eh that
the minima! correct occurrence set of (p, g) contains the atom A with occurrence 2: 2. In such a
way, we could reduce the problem of existential termination of A to the search of a goal with given
propertìes.

References

[l] K. R. Apt and D. Pedreschì. Studies in Pure Prolog: Terminatìon. In J. W. Lloyd, editor,
Computational Logic, pages 150-176. Springer-Verlag, Berlin, 1990.

[2] K. R. Apt and D. Pedreschi. Proving Termination of Generai Prolog Programs. In T. Ito and
A.R. Meyer, editors, Proc. of Int. Conf. on Theoretical Aspects of Computer Software, volume
526 of LNCS, pages 265-289. Springer-Verlag, Berlin, 1991.

[3] K.R. Apt and D. Pedreschi. Reasoning about Terminatìon of Prolog Programs. Technical
Report TR-14/91, Dip. di Informatica, Univ. di Pisa, 1991.

[4] K.R. Apt an d D. Pedreschi. Modular Termination Proofs for Logic an d Pure Prolog Programs.
In G. Levi, editor, Advances in Logic Programming Theory, pages 183-229. Clarendon Press
- Oxford, 1994.

[5] M. Baudinet. Proving Terrnination Prbperties of Prolog Programs: A Semantic Approach.
Journal of Logic Programming, 14:1-29, 1992.

[6] A. Bossi, N. Cocco, and M. Fabris. Proving Termination of Logic Programs by Exploiting
Term Properties. In S. Abramsky and T.S.E. Maibaum, editors, Proc. TAPSOFT'91, volume
494 of LNCS, pages 153-180. Springer-Verlag, Berlin, 1991.

[7] A. Bossi, N. Cocco, and M. Fabris. Norms on Terms and Theìr Use in Proving Universal
Termination of a Logic Programs. TCS, 124(2):297-328, 1994.

[8] P. Cousot and R. Cousot. Abstract Interpretation: A Unified Lattice Mode! for Static Analysis
of Programs by Construction or Approximation of Fixpoints. In Proc. Fourth ACM Symp.
Principles of Programming Languages, pages 238-252, 1977.

[9] P. Cousot an d R. Cousot. Systeìnatic Design of Program Analysis Frameworks. In Proc. Sixth
ACM Symp. Principles of Programming Languages, pages 269-282, 1979.

[10] D. De Schreye and S. Decorte. Termination of Logic Programs: the Never-Ending Story.
Journal of Logic Programming, 19/20:199-260, 1994.

[11] N. Francez, O. Grumberg, S. Katz, and A. Pnueli. Proving Termination of Prolog Programs.
In R. Parikh, editor, Logics of Programs, volume 193 of LNCS, pages 89-105. Springer-Verlag,
1985.

642

[12] G. Gri:iger and L. Pliimer. Handling of Mutua! Recursion in Automatic Terminatiop Proofs
for Logic Programs. Unpublished draft.

[13] .J. W. Lloyd. Foundations of Logic Programming. Springer-Verlag, BerliP, 1987.

[14] L. Pliimer. Termination Proofs for Logic Programs, volume 446 of Lecture Notes in Artificial
Intelligen ce. Springer-Verlag, Berli n, 1990.

[15] L. Pliimer. Termination Proofs for Logic Programs based OP Predicate Inequalities. In D. H. D.
Warren and P. Szeredi, editors, Proc. Seventh ICLP, pages 634-648. The MIT Press, 1990.

[16] L. Pliimer. Automatic Termination Proofs for Prolog Programs Operating on Nonground
Terms. In K. Furukawa, editor, Proc. Eighth Int'l Conf. on Logic Programming, pages 503-
517. The MIT Press. 1991.

[17] T. Sato and H. Tamaki. Enumeration of Success Patterns in Logic Programs. Theoretical
Computer Science, 34:227-240, 1984.

[18] F. Scozzari. Analisi di terminazione mediante interpretazione astratta. Master's thesis,
Dipartimento .di Informatica, Università di Pisa, 1994. in italian.

[19] T. Vasak an d J. Potter. Characterization of Terminating Logic Programs. In Pro c. Third .
IEEE ILPS, pages 140-147. IEEE Comp. Soc. Press, 1986.

A case study in logic program verification:
the Vanilla metainterpreter

Dino Pedreschi and Salvatore Ruggieri

Dipartimento di Informatica, Università di Pisa
Corso Italia 40, 56125 Pisa, Italy
e-mail: {pedre ,ruggieri}©di. uni p i. it

Abstract

W e take the formal verification of the Vanilla metainterpreter as an excuse for explaining
a p:roof method for reasoning about logic programs. The choice of a semantics suitable for
program v_erification ìs discussed. We considera variant of the least Herbrand mode! semantics
which abstracts from ill-typed atoms and the underlying (first order) language, thus enhancing
modularity and ea.se of specifì.cation. Then, proof o11tlines and proof obligations are introduced
in a Hoare's logic style. In the resulting proof theory, triples of the form {Pre)P{Post} can
be derived for a program P, which allow us to establish partial and total correctness. As a
consequence of our results, the correctness of Vanilla is directly proved (once again.)

Keywords: Verifìcation, program development, metaprogra:mming, formal methods.

l Introduction

Logic programming (an d P rolo g) is advertised as a dee/arative language, in the sense that specifica­
iions, when written in an appropriate syntax, can be directly used as programs. This idea! situation,
however, is often unrealistic in practice, both for the fact that execu.table specifications may be
extremely inefficient, and for problems related to the implementationsof logic programming­
programs may .fai! to terminate or may result in errors when executed with particular strategies.

It is therefore needed to assess the correctness of a logic or Prolog programs with respect to its
specification, or intended interpretation: a task that has been underestimated in the literature unti!
recently. Of course, when verifying a logic program P, it would be helpfulto use its declarative
semantics, namely its least Herbrand mode/ Mp. A natura! approach consists of considering Mp
as the intended specification - therefore, the verification of a program is viewed as checking that
the ìntended specification of program an d its least Herbrand mode! do coincide.

This approach, however, turns out to be iPadequate: strangely enough, the least Herbrand
models semantics is not sufficiently abstract. The justification of this statement is based on two
consìderations.

On the one han d, specifications generally dea! with top leve! procedures only, leaving unspecified
the description of auxiliary procedures. This is the case in top-down program development and
modular programming.

On the other hand, the absence of types implies that the least Herbrand mode! is generally
dìrty with ill-typed atoms. Consider the APPENO program and its specification taken from [SS86]:

append(xs, ys, zs) <-- zs is the concatenation of the lists xs and ys.

append([], Xs, Xs).
append([X l Xs] , Ys, [X l Zs]) +­

append(Xs, Ys, Zs).

The APPENO program is intuitively correct with respect to its specification but (if there are
sufficiently many symbols in the language) its intented interpretation is pota mode! of the program.

644

In fact, in the least Herbrand mode! ill-typed afoms appear, such as append([], foo, foo), For
efficiency reasons run-time type-cheèks are dropped.

As a consequence, reasoning about the whole lea.st Herbrand mode! implies having to take
into account ill-typed atoms, thus making the specification complex and counter-intuitive. This
problem becomes much harder in m<;>dular program development, since a.dding more symbols to
the la.ngua.ge in the upper modules enta.i]s cha.nging the lea.st Herbrand mode! of lower modules,
a.nd hence their correctness properties.

A dea.r point emerges from the previous discussion: a. sema.ntics for verifica.tion should take the
iniended or we/l-typed queries into account.

In this p a. per, we survey an a.pproa.ch to ìoi;ic program verifica.tion which is based on the iniended
or ·well-iyped fragment of the least Herbra.nd models [PR95, Rug94]. To illustrate the proposed
proof method and its ability to sùpport modular progra.m development, we ta.ckle the problè.m of
verifying a da.ssic of logic progra.mming, na.mely th.e Vanilla meta~interpreter. .·

A word on terminology is in order. Throughout the pa.per we use the sta.nda.rd nota.tion of
logic programming, a.s in [Llo87, A.pt90], when not specified otherwise. For instance, we .use
queries instea.d of goals and consider a fixed language L in whii:h programs an d queries are writt~'n.
Ambivalent syntax is allowed, in the sense that function and predicate symbols ma.y overlap [K.J95,
.Tia94]. By A <- E 1 , . . , E n. E groundL (P) w e denote a ground instance of a clause from P, an d by
bag(a1 , ... , an.) the multiset consisting of elements a1 , . . , an. . Given a. Herbrand interpretation
I and a query Q we write I f= Q if I is à mode] of Q. In pa.rticular,if A is a ground atom then
I f= A iff A E J.

Specifications ancl' Semantics

Following a· Hoare's logic st:yle of defining parti al an d total correctness, we stipulate that a. speci­
fication is a pair P re, P'ost of (Herbrand). interpretations, i.e., subsets. of EL.

The rationale under this choice is the following. The first interpretation, Pre, specifies the
intended, or well-typed one-atom queries, i.e., those queries for which we designed the program
under consideration. The second interpretation, Post, specifies some property of successful one­
atom queri,(S. In this sen~·e, a specification Pre, Post describes the input-output behavior of a
logic program, in a way that closely resembles that in Hoare's logic. According to this choice, the
well-typed frà:gment of the least Herbrand mode! is M p n P re.

We are now ready to define our notionsof (wea.k) partial and (weak) total correctness.

DEFINITION 1.1 'Let P be a l?gic program, and P re, Posi a specification.

(i) P is partially_correctvy.r.t. a specifica.tion (Pre, Post) iff Mp n Pre =Posi.

(ii) P is weak pariially corr·ect w.r.t. a specification (P1·e, Post) iff Mp n Pre ç Posi.

(iii) P is totally correçi w.r.t. a specification (P1·e, Post) iff Mp n Pre = Post and
Pre·ç Mp U FFp, whetè FFp is the finite failure set of P.

(iv) P is weak tota/ly correct w.r.t. a specification (Pre, Posi) iff Mp n Pre ç Post
and Pre ç Mp U FFp. D

As a. consequence of this definition, partial (and total) c01;rectness of a program P w.r.t. a.
specification P1·e, Post entails that Post coincides with the we!lctyped fragment of lYfp. In the
next section we introduce a proof theory for pa.rtial (and total) correctness which, in particular,
will allow us to abstract away from the ill-typed fragment of Mp. Notice that the weak version
of either notions entails that Post specifies a pro.perty of M p n Pre. Observe that the condition
Pre ç Mp U FFp used to define (weak) total correctness is equivalent to require the existential
termination of the atoms in the precoridition· w.r.t. a. fa.ir selection rule and a complete search
strategy.

645

As an example, observe that. APPEND is totally correct w.r.t. Pre, Post where

P re

Post

Vanilla i'

{ append(:r7;, ys, zs) l xs, ys, zs are lists}

{ append(~s, ys, zs) l zs is the concatenation of the lists xs and ys }.

A jewel of Logic Progr~•tì'Ìming is the elegant meta-program which, by means of thé ambivalent
syntax, specifies the rrteta-circular interpreter (i.e., the interpreter of LP in LP). This program,
referred to as the V~illa metainterpreter, an d .first introdti.ced ·in. [BK82], is denoted by V an p

when instantiated _on an object program P, an d consiste of the following clauses:

prove (t-rue) .
prove(A &: B)

piove(A);

prove(B) .
prove(A) +­

cla1lse(A , B) ,
prove(B) ~

clause(A , B1 111: •• ,. &: Bn.) .

where B1 111: • • 111: Bn is an abbreviation for

for every A +--- B 1 , . : . , Bn. E P

<> B1 111: (Bz & ... (Bn-1 111: Bn) ...) , if n > l,

c B1 , if n= l

<> true , if n = O.

For instance, for P = APPEND the definition of clause is

clause(append([], Xs, Xs) , true).
clause (append([X l Xs], Ys, [X l Zs]) , append(Xs, Ys ~ Zs)) .

Before analyzing the meta.-interpreter, we have to ag-ree on a notion of correctness of Vanilla
w.r.t. the semantics of the object program P. We adopt the following criterion, which states that,

. for the intended queries, provability at the object levèl an d the meta leve] coincide. 1

DEFINITION 1.2 The Vanilla instantiated by P is correct w .r.t. Pre ç EL iff for e~ery A E Pre
we have

A E Mp iff prove(A) E Mvan D

In the literature, the. ça.S~ Pre = Ep is generally considered [Kal95, BT95]. We require that the
symbols 111: and true are riot predicate symbols of L, i.e., object leve] predicates. Indeed, without
thìs assumption the Vanilla is not correct. Consider, in fact, the program q(a). , p(b).
it(p(c) ,p(c)) .. Then prove(&(p(b) ,q(a))) is in M v an whereas the atoJ;TI &:(p(b), q(a)) is.not
in l'v[p. A similar argument applies to the program true <-- true.

2 Proof Theory

We now introduce a proof method f~r the various notions of correctness. The aim of this section
is to introduce the concept of (Hoare's logic style) triples ~ {Pre} P {P~,st} (for programs) and
f- {Pre} Q {Post} (for queries), which are the basic tool to prove correctn€o's~': A~ a specification
Pre, Post of a program is assigned in terms of sets of ground atoms, we can simply reason about
gwund instances of program clauses an d queries. First, the following notion of a leve! mapping is
needed.

646

DlèFINITION 2.1 A leve/ mapping (on L) is a function Il: EL~ N of ground atoms to natura!
numbcrs. D

DEFINITION 2.2 Considera program Panda query Q. Given a specification (Pre, Posi) we write

• f-, {Pre} P {Posi} iff there exists a leve! mapping Il such that
for every A+--- E1 , ... , En E groundL(P)

1. fori E [l, n]
?re f= A 1\ Posi f= E1 , . . , Ei-1 =?

(a) Pre f= E; and

(b) IAI > IBd

2. Pre f= A 1\ Posi f= E1 , . , En => Posi f= A

We write l- {Pre} P {Posi} when (la) and (2) hold. Pre is called a precondition and Posi
a postcondition.

G l- {Pre} Q {Post} ifffor every ground instance A1 , ... ,An ofit

3. for i E [1, n] Posi f= A1 , ... , A;_ 1 =? Pre f= A;

• h {Pre} Q {Post} iffthere exist a leve] mapping Il and k E N such that for every ground
instance A1 , ... , An of i t

4. fori E [1, n] Posi f= A1, ... ,Ai-! => Pre f= A; 1\ k >lA; l D

The relation l- is devised for proving (weak) partial correctness, whereas 1--, allows for proving
(weak) total correctness: this role of triples will be clarified later. Some consideration!J; about the
above definition are in order.

Proving a triple for a given program or query involves reasoning on their ground in;tances only.
Ba'cÌcally, the dcfinition provides a standard way for lifting up the results to non-ground queries.
Tl": advantage is that this lifting is m ade a posteriori.

Intuitively speaking, a precondition characterizes the intended (or we!l-typed) queries. A
ground instance of a clause whose head is not in the precondition is superfiuous as we never
use it in à. ground derivation starting with an atom of the precondition. The leve! mapping plays
the role of a termination function. Strictly speaking, the leve! mapping has to be defined only on
the precondition.

NOTE 2.3 Given a program P su eh that f-- {P re} P {Posi} an d A+--- B1 , Bn E groundL(P) ,
ifA E Pre then i t is immediate to prove f-- { Pre} B1 , ... , Bn {Posi}. This points out how triples
for programs and queries are related.

Proof Outlines

The proof of a triple 1--, {Pre} P {Posi} can bepresented in a suggestive way using proof outlines.
A proof outline PO for a clause A<- A1 , . , An an d l l, Pre, Posi is a construct of the form

647

{go}
A o {t o}

{gl}
A1, {t d

{h}
{g2}

An-1>
Un-d
{gn}

An.
{fn}

{fo}

where t; and f;,g;, fori E [O, n] are respectively integer expressions and (meta) assertions, such
that for every ground instance PO' the following proof obligaiions are satisfied. Here, we denote
by h; fori E [1, n] the assertion go 1\ h 1\ ... 1\ fi-l·

(i) fori E [0, n]: hi =>t;= IAii,

(ii) gb ~Ab E Pre, an d for i E [1, n]: hj 1\ gj =?Ai E Pre,

(iii) fori E [1,n]: ff ~Ai E Post 1\ hi, and h~ 1\ fo =>A6 E Post,

(iv) fori E [1, n]: gti 1\ f{ 1\ ... 1\ fi-1 => gj 1\ t6 > tj ·
(v) gti 1\ f{ 1\ · · · 1\ f~ => f6,

In this definition the intuitive meaning of assertions !I and gj is that, for i E [1, n], fi holds
i:ff Ai E Pre, and' analogously gj holds iff Ai E Posi. However, this constraints are weakened as,
shown above in order to facilitate the constructwn of the proof outlmes. The assertwns h; are
intended to ~ode! the assumptions already considered before stage i of the proof, in or der to a voi d
to repeatedly assume them.

By construction, we have that h {Pre} P {Posi} 1f and only 1f there ex1sts a leve! mappmg
l and a proof outline for each clause of P and l l, P~e, Post. .

Consider, as an example, the following proof outlme for the recurs!Ve clause of APPENO.

{ [X l X s] an d Y s lists }
append([XIXs], Ys, [XIZs]) +--- { IXsl +l }

{ Xs and Ys lists }
append(Xs, Ys, Zs). , { IXsl}

{ Z s is the concatenation of X s an d Y s }
{ [X l Z s] is the concatenation of [X l X s] an d Y s }

where IX si denotes the length of a list X s.
It is immediate to verify, by a simple, natura! and mtmt1ve reasonmg, that the proof obhgatwns
are satisfied.

The proof outline system become simpler when considering the relation f-. In the labelled clause
no ti appears and the proof-obligations are (ii-iii-v) and

(iv') for i E [1, n] : 9b 1\ f{ 1\ · · · 1\ ff-1 => g; ·
Also in this case, by construction f-- {Pre} P {Posi} holds ifand only ifthere exists aproofoutline
far each clause of P an d Pre, Posi.

648

Vanilla

As a first exercise, ìet· us ptove that the relation 1- is closed under Vanilla's instantiation, in
the sense that if 1- {f're} P {Post} holds, then 1- {Prevan} Vanp {Posivan} holds for certam
Preva,, Postvan defined starting from Pre and Posi.

Let B1 , ... , Bn be ground atoms, with n :;:: O. W e remember that B1 & & Bn is an
ab breviation for

Q CB1 & (B2 & ... (K,-1 & B,) . .)),ifn>l,
· • B1,ifn=l

• an d true , if n= O

-=:onversely, by writing CB1 & . . . & Bn)-: we;:cjenote the query B1 , ... , B, .
Let us define:

prove(Bl & .. 81: B,) E Prevan iff 1- {Pre} B1, ... ,Bn {Post}

clause(A, B) E Prevan iff true

prove(Bl 81: ••• 81: Bn) E Posivan iff Post l= B1 , ... , Bn

clause(A, B1 81: & Bn) E Postvan iff A+- B1 , ... , Bn E groundL(P)

No other atom is in Prevan or in Postvan·
The next proof outlines establish that 1- {Prevan} Vanp {Postvan}·

(a)

(b)

(c)

{d)

{ true }
prove(true).
{ true }

{ 1- {Pre} A,B- {Post} }
prove(A 81: B) ,__

{ Pre l= A }
prove(A),

{ Posi l= A }
{ 1-{Pre} B- {Post}

prove(B).
{ Post l= B- }

Posi l= A, B- }

prove(A) E Prevan }
prove (A) +-

{ true }
clause(A, B),

{ A+- B- E groundL(P)) }
{ 1- {Pre} B- {Post} }

prove(B).
{ Fast l= B- }

{ Posi l= A }

{ true }
clàuse(A, B).
{ A+- B- E groundL(P) }

Proof outlìnes (a, b) are self-explanatory, by simply observing that for a ground query B1 , ... , Bn :

649

(i) 1- {Pre} B1 , ... ,B, {Post} =;;· PTe I=B1

(ii) 1- {Pre} B1, ... , Bn {Posi} Il Posi l= B 1 => 1- {Pre} B 2 , ... , Bn {Posi}

The proof of (i, ii) is immediate by the Definition 2.2. Proof outline (d} is actually a schemata
of proof outlines, one for each clause from P, an d i t is of immediate verification.

Consider now the proof outline (c). Fil·st, we note that:

prove(A) E Prevan Il A+- B- E groundL(P) => Pre l= A (1)

In fact, ifA is the head of a ground clause from P then its predicate symbol cannot be true or 81:

oy the assumptions about the language L. Then prove (A) E Prevan imp!ies 1- {P re} A { Post},
i.e. A E Pre.

Let us prove the proof obligations (iv) case i= n. and (v).
In the former case, assume prove(A) E Prevan Il A ~B- .E gmundL(P). By (1), we have

Pre l= A and, by Note 2.3, we conclude 1- {Pre} B- {Posi}.
In the latter case, assume prove(A) E Prevan 1\ A+-B- E groundL(P) 1\ Posi l= B-. By

(l) and the iast two conjuncts we conclude directly by Definition 2.2 that Pre l= A ..

3 Weak Partial Correctness

W e start by stating a persistency properties for 1-, an d by giving a justification of the intuiti ve
notion that the postcondition is a description of the eorrect instances of qneries satisfying the triple
1- {Pre} Q {Post}.

LEMMA 3.1 L et P be a program an d Q a query s·uch that 1- { Pre} P { Post} an d 1- { Pre} Q {Posi} .
Then

(i) far every SLD-resolvent Q' of Q an d P 1- {Pre} Q' {Posi} holds, an d

(ii) far every computed (or correct) instance Q' of Q an d P Posi l= Q' holds. D

As a consequence, we obtain the weak partial correctnes,s Theorem.

THEOREM 3.2 (WEAK PARTIAL CORRECTNEss) A program P such' that 1- {Pri') P { Post} is
weak partially corre et u•. r: t. ihe specification (Pre, Posi).

Proof. ConsiderA E Mp n Pre. ·Thçl\ 1- {Pre} A {Post} hold3, and, by Completeness of SLD­
resolntion, the query A has an SLn:tefutation. So A E Post by Corollary 3.1 (ii). D

Vanilla

As we proved 1- {Preva,.: {Postvan} we can use Theorem 3.2' to conc.iaòÈ tha.t Vanp 1s
weak partially correct Vlt . .'t: the specification (Prevan, Postvan) when 1- {Pre} P {Posi}.

Moreover. coE~l··1 ~rìtfg'.:a (not necessarily ground) query B1 , .. , B, such that

1- {Pre} B,,

it turns out direct!y from thè definiho'n of Prevan that

& E;,) {Postv-an}

650

4 Partial Correctness

The intuition underlying a Hoare style proof method based on Pre/ Post-conditions, become more
concrete when dealing with modular proofs. The moduli>rity theorem may be explained by the
following inference rule

f- { Pre} P {Posi} f- { Pre} P { Post'}

f- {Pre} P {Posi n Post'}

The importance of this fact is twofold.
On the one hand, it has a relevance from an applicative point of view. It allows for splitting a

correctness proof into simpler ones.
On the other hand, it allows us to define a notion of strongest postconddion.

DEFINITI ON 4.1 L et P be a program such that f- {Pre} P {Posi}. By sp(P, P re) we denote the
intersection of al! Posi' su eh that f- { Pre} P {Posi'}. O

It is natura! to ask ourselves whether the interpretation M p n Pre is a postcondition. Actually, i t
turns out that it is strongest one.

THEOREM 4.2 Fora program P such ihai f- {Pre} P {Posi} we have

f- {Pre} P {Mp n Pre}.

Hence, sp(P, Pre) = l'vfp n Pre. o

As a result we have the Partial Correctness Theorem.

THEOREM 4.3 (PARTIAL CoRRECTNEss) A program P such ihat f- {Pre} P {Posi} is pariially
correct w. r.i. ihe specificaiion (Pre, sp(P, Pre)). O

The problem is now to characterize the strongest postcondition without having to construct the
complete minima! mode!. Proving weak partial correctness is simple, as one ha ve only to show some
proof outlines. Next definition introduces a notion that allows us for proving partial correctness.

DEFINITION 4.4 Let P be a program such that f- {Pre} P {Posi}. Posi is a well-supported
inierpretaiion (w.r.t. P and Pre) iff there exists a well-founded poset (W,<) and a function
[l :EL-+ W such that for any A E Posi n Pre there exists A<-- B 1 , ... , Bn E groundL(P) such
that Vi E [l, n] : Posi f= Bi Il [Al > [Ed o

The underlying idea of this definition is to require that any atom in Posi n Pre has a successful
ground derivation. In fact, for each of them there exists a ground finite (as the poset is well­
founded) derivation which is successful because the last selected atom unifies with at least one
head.

THEOREM 4.5 Let P be a program such that f- {Pre} P {Posi}. Then

Post n Pre = sp(P, Pre) iff Posi is we/1-supported (w. r. t. P and Pre).

o

651

Proof Outlines

Definition 4.4 may seem a little complicateci. However, it has a straightforward interpretation in
terms of proof outlineB. Consider the following proof outline PO for a clause A <-- A1 , ... , An , a
function [[:EL--+ W into a well-founded poset (W,<) and Pre, Posi

{g}
A {t o}

A1, {t d
{!d

An-l, {tn-d
{fn-d

An· {in}
{Jn}

where ti and J;, g, fori E [0, n] are respectively integer expression and (meta-)assertions, such that
for every ground instance PO' the following proof obligations ho! d:

(i) for ' C [0, n]: g' =?t; = lA:[,

(ii) fori E: ll,n]: g' /\ JI :=>A; E Posi,

(iii) fori E [l, n]: g' =? f! /\ t6 >t;.

The formula g is used to instantiate the variables of the clause to the end of satisfying the proof

obligations.
By construction, Posi is well supported w.r.t. P and Pre if and only if there exist a number of

proof out.lines for (instances of) clauses from P, an d a function [[: EL --+ T<V' su eh that every atom
in Pre n Posi is an instance of a clause's head an d satisfies 3x .g, w h ere x are the !oca! vanables of
the clause, an d g is the assertion of the head of the clause.

Vanilla
In the last section we have proved f- {Prevan} Vanp {Postvan} when f- {Pre} P {Posi}. Fol­
lowing that reasoning, it would be now interesting to prove that Posiva'! is a well-supported
interpretation (w.r.t. Vanilla and Prevan) when the postcondJtwn of the mstantJatmg program
is well-supported (w.r.t. the program and its precondition).

Suppose Posi is well-supported. Then there exist (W,<) and a function [[EL~ VV such
that for any A E Posi n Pre there exists A<-- B1, ... , Bn E groundL(P) such that

Vi E [1, n] : Posi f= B; /\ [A[> [Bi[(2)

We consider the well-founded ordering (bag(W), -<) over finite multiset of W induced by (W,<),
and the leve! mapping

for prove (B1 & & Bn) E Prev ~n, n 2': l an d bag() otherwise.
By straightforward arguments, we note that for prove(A & B) E Prevan

llprove(A)!!-< llprove(A & B)![/\ [[prove(B)[[-< [[prove(A & B)[[

Next proof outlines show that Posi v an is a well-supported interpretation.

(a)
{ true }
prove(true). { bag() }

(3)

,l

f,·

652

(b)
{ prove(A & B) E Prevan !\Posi f=A,E-}
p'i~ve(A & B) ~

{ llprove(A & Ellll }
{ llprove(Alll }

(c)

(d)

prove(A),
{ Posi f= A }

prove(B).
{ Post f= E- }

llprove(Blll }

A E Posi n Pre !\ Posi F B- !\ A~ B- E groundL (P)
Il llprove(Blll -< llprove(Alll }

prove(A) <-

clause(A , B),
{ A~ B- E groundL(P)

prove (B).
{ Posi f= E- }

{ A+-E- E groundL(P)
clause(A, B).

{ ltpr<JVe(Alll }
{ bag() }

{ llprove(Elll }

{ bag() }

The proof outlines are of immediate verification by using the definition of Prevan, Posi v an.

To conclude Posivan is a well-supported interpretation, we ha.ve to show tha.t every A E
Posi v an n Prevan sa.tisfies some 3x .g, w h ere g is a formula of the head a.nd x are the !oca.! variables
of the cla.use.

For the atoms whose predicate symbol is clause the conclusion is trivial.
Suppose the hypothesis prove(B1 & ... & Bn) E Prevan n Postvan·

If n =F l we refer to the proof outline (a) or (b) to note as the hea.d's formula g is just the
hypothesis.

If n = l then !et us show tha.t 3x.g holds by considering the proof outline (c). We have to
prove tha.t for A E Posi n Pre there exists B- such tha.t Posi f= E- 1\ A+- B- E groundL(P)
and llproveCB)II -< llprove(Alll· Such a E- surely exists a.s (2) holds.'

5 (Weak) Total Correctness

The rela.tion 1- is not powerful enough for dealing with (wea.k) tota.l correctness, as termination is
not taken into account. To pursue this end, we will rea.son about the rela.tion 1-,. The results of
termina.tion are no t reported for lack of space. They state a. form of universo! ierm.inaiion. w .r .t.
LDfair resolution. An SLD-deriva.tion is ca.Iled LDfair if i t is finite or the leftmost atom is selected
infinitely many often. For insta.nce, the Prolog selection rule is LDfair. One ca.n prove that. when
1-, {Pre} P {Posi} a.nd 1-dPre} Q {Posi} then any LDfair-tree for P U {Q} is finite. ·~.

As an immediate corollary of this termina.tion property, we h ave the Total Correctness Theo­
rems.

THEOREM 5.1 ((VVEAK) TOTAL COPRECTNESS) A program P such that 1-, {Pre} P {Posi} is
weak ioially correci w.r.i thP specificràion (Pre, Posi), an.d ioial/y correci w. r. t. the specificaiion
(Pre, sp(P, Pre)). O

The next step is finding ò '~"~~·d method for tota.l correctness. A stra.ightforward consequence of
the result of section 4 aiio•·'•· :·" to obta.in wha.t we desire.

THEOREM 5.2 Let P be,, f'· rr .. arn such ihat ~·, {Pre} P {Posi}. Then. Posi n P""= sp(P,Pre)
iff Tp(Post) 2 Post n Pre. o

653

Proof Outline and Vanilla

The proof outline system for total correctness is obtained starting from that for parti al correctness
by simply no t considering the termination constramts, Le. io, . · .. , tn. .

In the same way as we proceeded for 1-, i t involves no rea! dlfnculty to prove

h {Prevan} Vanp {Posivan}

for some l lv an when 1-, {Pre} P {Posi} holds. Analogously to the case of relation 1-, we note as
for a (not necessarily ground) query E1 , ... , Bn

1-, {Prevan} proveCB1 &

when h { Pre} B1 , ... , Bn {Posi}. Therefore, we can state that Vanilla is closed w. r. t. ihe
proof iheory noiions that we have introduced in the paper.

6 Correctness of Vanilla

The underlying idea we will use to prove correctness of Vanilla is the following:
(i) Consider a. program P su eh tha.t 1- { Pre} P {Posi}. By Theorem 4.2 we h ave

1- {Pre} P {sp(P,Pre)}

(ii) B d fi · p Post starting from Pre sp(P Pre) we ha.ve showed in Section 2 that V e n1ng revan 1 Van 1 '

1-.{Prevan} Vanp {Posivan} holds. Moreover, as sp(P,Pre) is well-supported, also Posivan
is. We proved this in section 4.

(iii) Since Posivan is well-supported, by Theorem 4.5 we obta.in

sp(Van, Prevan) = Posivan n Prevan = Mvan n Prevan

(iv) As a. result, for every A E Pre we have

prove(A) E Mvan

{:} { (4) !\prove(A) E Prevan}

prove(A) E Posivan

{:} { Definition of Posivan

A E sp(P,Pre)

{:} { Theorem 4.2 }

AEMp

i.e., the correctness of the Vanilla meta.interpreter w.r.t. Pre.

Moreover, we ca.n prove the slightly stronger fact.

CoROLLARY 6.1 Fora program Panda ground query Q such ihai 1- {Pre} P {Posi} and
1- {Pre} Q {Posi}, we have

p F Q iff Vanp f= prove(Q)

(4)

D

·As·for every]ogic progra.m we ha.ve 1- {EL} P {EL} the last result implies tha.t for every program
P,\::·ground query Q is a logica.! consequence of P iff prove(Q) 1s a logJca.l consequence of VanJ.lla

instantiated by p. . a· . . l h
W e conclude by spending some words about the case in which one desnes to 1stmgms 1 t e

underlying]angua.ge of a program from that of V~illa. Let M ft be the least He~brand ~odel~f
p with L (extendìng Lp) the considered underlymg language. Observmg that. M p n Bp - M p ,
dìrectly from (iv) we obtain the correctness theorem genera.lly stud1ed m the hterature.

654

THEOREM 6.2 For a program P and A E Bp we h ave

A E MftP iff prove(A) E Mfan o

7 Conclusions

As a consequence of our exercise, we learned that the verification of the Vanilla meta-interpreter
can be carried out in a simple and natura! way within the proof theory sketched in this paper.
Moreover, severa! improvements can be achieved with little effort.

For instance, by using a generalization of the technique of extended leve/ mappings from [PR94],
it is possible to drop the groundness requirement in Corollary 6.1. Moreover, by generalizing the
:esults of [AGP94], we can identify a large class of programs for which it is possible to fully
reconstruct the operational semantics (i.e., the computed instances of queries) from the well-typed
fragment of M p. Again, this class of programs is closed under the instantiation of Vanilla.

References

[AGP94] K.R. Apt, M. Gabbrielli, and D. Pedreschi. A closer look at declarative interpretations.
Technical Report CS-R9470, Centre for Mathematics and Computer Science, Amsterdam,
1994.

[Apt90] K.R. A.pt. Logic programming. In J. van Leeuwen, editor, Handbook of Theoretical
Computer Science, volume B, pages 493-574. Elsevier, 1990.

[BK82] K.A. Bowen and R.A. Kowalski. Amalgamating La.nguage and Metalanguage in Logic
Programming. In K.L. Clark and S.A. Tarnlund, editors, Logic Programming, pages
153-173. Academic Press, 1982.

[BT95] A. Brogi and F. Turini. Meta-logic for program composition: semantic issues. In K.R.
Apt and F. Turini, editors, Meta-logics and Logic Programming. The MIT Press, 1995.

[Cla79] K.L. Clark. Predicate logic as a computational formalism. Technical Report DOC 79/59,
Imperia! College, Dept. of Computing, 1979.

[Jia94] Y. Jiang. Ambivalent logic as the semantic basis of metalogic programming:I. In P. van
Henterynck, editor, Proceedings of ICLP '94, pages 387-401. The MIT Press, 1994.

[Kal95] M. Kalsbeck. Correctness of the vanilla meta-interpreter an d ambivalent syntax. In K.R.
Apt and F. Turini, editors, Meta-logics and Logic Programming, pages 3-26. The MIT
Press, 1995.

[KJ95] M. Kalsbeck and Y. Jiang. A vademecum of ambivalent logic. In K.R. Apt and F. Turini,
editors, Meta-logics and Logic Programming, pages 27-56. The MIT Press, 1995.

[Llo87] J.W. Lloyd. Foundations of logic programming. Springer-Verlag, Berlin, second edition,
1987.

[PR94] D. Pedreschi and S. Ruggieri. Termination is language-independent. In M. Alpuente,
R. Barbuti, and L Ramos, editors, Proceedings of the 1994 Joint Conference, GULP­
PRODE'94. Universidad Politecnica de Valencia, 1994.

[PR95] D. Pedreschi and S. Ruggieri. Verification of prolog programs. Technical Report, 1995.

[Rug94] S. Ruggieri. Metodi formali per lo sviluppo di programmi logici. Master's thesis, Dipar­
timento di Informatica, Università di Pisa, 1994.

[SS86] E. Shapiro and L. Sterling. The Art of Prolog. The MIT press, 1986.

