
A Decision Procedure for

Monotone Functions over Lattices⋆

Domenico Cantone1 and Calogero G. Zarba2

1 Dipartimento di Matematica e Informatica
Università degli Studi di Catania, Italy

cantone@dmi.unict.it

2 Computer Science Department
Stanford University, USA

zarba@theory.stanford.edu

Abstract. This paper presents a practical decision procedure for the
unquantified theory of lattices with monotone functions. Specifically, it
considers the unquantified language Lmf with the predicates = and ≤
and with the operators inf and sup over terms which may involve also un-
interpreted function symbols. Additional predicates expressing increas-
ing and decreasing monotonicity of functions are allowed as well as a
predicate � for pointwise functions comparison.
For a restricted collection of conjunctions, denoted Lmf⋆, we give a
quadratic satisfiability test. We also describe a nondeterministic quadratic
reduction of the satisfiability problem for Lmf -formulae to the one for
Lmf⋆, which allows to prove the NP-completeness of the former prob-
lem.

Key words. Satisfiability decision problem, proof verification, constraints in
lattice theory.

1 Introduction

Lattices are partial orders in which every pair of elements has a least upper bound
and a greatest lower bound. They have several applications in mathematics and
computer science, including model checking [5], knowledge representation [7],
and partial order programming [6].

In this paper we introduce the unquantified language Lmf (Lattices with
Monotone Functions) for expressing constraints over lattices and monotone func-
tions. The language contains the equality predicate =, an ordering predicate
≤, and the operators inf and sup. The language also allows for uninterpreted
unary functions, and has predicates for expressing increasing and decreasing

⋆ This research has been partially supported by MURST Grant prot. 2001017741 under
project “Ragionamento su aggregati e numeri a supporto della programmazione e

relative verifiche.”

monotonicity of functions, as well as a predicate � for pointwise functions com-
parison.

We then present a practical decision procedure for Lmf , and we prove that
the decision problem for Lmf is NP-complete.

The satisfiability problem for unquantified formulae in the more restricted
language obtained by dropping the operators inf and sup and the predicate �
from Lmf was studied in [1]. The decision procedure given there was based on a
nondeterministic quadratic reduction to the NP-complete satisfiability problem
for the unquantified fragment of set theory denoted MLS [2, 4], thus yielding a
much less practical decision test than the one presented in this paper. We recall
that the decision problem for the fully quantified theory of lattices is undecidable,
as proved by Tarski in [8].

The paper is structured as follows. In Section 2 we define the syntax and
semantics of the unquantified language Lmf , and we provide a nondeterministic
quadratic reduction of the decision problem for Lmf to the decision problem for
a restricted class of conjunctions denoted Lmf⋆. In Section 3 we give a quadratic
satisfiability test for Lmf⋆, and we prove its correctness. In Section 4 we prove
that the decision problem for Lmf is NP-complete. Finally, in Section 5 we
conclude the paper with directions for future research.

2 The theory of lattices with monotone functions

We present the syntax and semantics of an unquantified theory of lattices with
monotone functions and discuss some elementary reductions of its satisfiability
problem.

2.1 Syntax

The language Lmf (Lattices with Monotone Functions) is the unquantified lan-
guage containing an enumerable collection of variables x, y, z,. . . , the constants
m and M (intended to denote the minimum and the maximum of the lattice), the
equality predicate symbol =, the binary predicate symbol ≤, the binary function
symbols inf and sup (intended to denote the greatest lower bound and the least
upper bound, respectively), an enumerable collection of unary function symbols
f , g, . . . , the unary predicates inc and dec (intended to state increasing and
decreasing monotonicity of functions, respectively), and the binary predicate �
(intended to compare functions pointwise).

The terms of Lmf are defined in the standard way, namely:

– any variable or one of the constants m and M is a term;
– if t is a term and f is a function symbol, then f(t) is a term;
– if t1 and t2 are terms, then inf (t1, t2) and sup(t1, t2) are terms.

The atomic formulae of Lmf are the following:

t1 = t2 , t1 ≤ t2 , inc(f) , dec(f) , f � g , (1)

where t1, t2 stand for terms of Lmf and f, g stand for function symbols.
Finally, the formulae of Lmf are the propositional combinations of atomic

formulae of Lmf , by means of the propositional connectives ¬, ∧, ∨, →.

2.2 Semantics

The intended semantics for Lmf is based upon complete lattices. Among the
equivalent definitions of lattices, we adopt the following one.

Definition 1. A lattice is a pair 〈L, ≤〉 such that

– L is non-empty set, called the support of the lattice;
– ≤ is a partial order over L;
– every pair of elements of L has both a greatest lower bound and a least upper

bound.

A lattice 〈L, ≤〉 is complete if every subset of L has both a greatest lower
bound and a least upper bound.

Remark 1. A complete lattice has both minimum and maximum.

Definition 2. An Lmf-interpretation A is a pair 〈LA, (·)A〉 such that

– LA = 〈A, ≤〉 is a complete lattice with support A;
– (·)A is a mapping which interprets

• each variable x of Lmf as an element xA in A;
• the constants m and M as the minimum and maximum elements of LA,

respectively;
• the binary predicate symbol ≤ as the partial ordering ≤ of LA;
• the binary function symbols inf and sup as the greatest lower bound (glb)

and the least upper bound (lub) with respect to the partial order ≤;
• each unary function symbol f as a map fA : A → A;
• each atomic formula inc(f) as the truth value true, provided that the

map fA is increasing in A, with respect to ≤;
• each atomic formula dec(f) as the truth value true, provided that the

map fA is decreasing in A, with respect to ≤;
• each atomic formula f � g as the truth value true, provided that

fA(a) ≤ gA(a) holds, for every a ∈ A.

Given a formula Φ of Lmf , we denote by ΦA the truth value of Φ under the
Lmf-interpretation A.

If ΦA = true, then A is called a model of Φ.

Remark 2. As will appear clear later, for our decidability purposes we could have
used a less restricted semantics, based on lattices with minimum and maximum,
rather than on complete lattices. We preferred to use complete lattices in view
of a future extension of Lmf with set variables X, Y, Z, . . . and, among others,
atomic formulae of the form x = inf (X) and x = sup(X).

2.3 The satisfiability problem for Lmf

The satisfiability problem for Lmf is the problem of establishing for any given
formula Φ of Lmf whether it has a model, that is, whether there exists an Lmf -
interpretation A such that ΦA is true. Such a problem can be reduced to simpler
ones, as the following considerations show.

We begin by observing that using disjunctive normal form, the general sat-
isfiability problem for Lmf can be reduced to the satisfiability problem for con-
junctions of literals of Lmf , namely atomic Lmf -formulae of the form (1) or
their negations.

As a second step, Lmf -literals can be put in flat form. This can be achieved
by suitably renaming terms by newly introduced variables: for instance, a literal
of the form f1(f2(x)) 6= g1(g2(g3(y))) can be reduced by such technique to the
equisatisfiable conjunction

z1 = f2(x) ∧ z2 = f1(z1) ∧ w1 = g3(y) ∧ w2 = g2(w1) ∧ w3 = g1(w2) ∧ z2 6= w3 ,

where z1, z2, w1, w2, w3 are new variables. Notice that the complexity of the
above flattening process is linear.

Finally, negative literals of type

x1 6= f(x2) , x1 6= inf (x2, x3) , x1 6= sup(x2, x3) ,
¬inc(f) , ¬dec(f) , f 6� g

(2)

can be replaced by equisatisfiable conjunctions whose negative literals are only
of the types x 6= y or ¬(x ≤ y). For instance, the literal x1 6= inf (x2, x3) is
equisatisfiable with the conjunction w = inf (x2, x3) ∧ w 6= x1 , where w is
a new variable, and the literal ¬inc(f) is equisatisfiable with the conjunction
w1 = f(z1) ∧ w2 = f(z2) ∧ z1 ≤ z2 ∧ ¬(w1 ≤ w2) , where w1, w2, z1, z2 are new
variables. Analogous considerations hold for the remaining four types of negative
literals. Again, the above process can be performed in linear time.

In conclusion, it turns easily out that the satisfiability problem for Lmf can
be reduced to the satisfiability problem for conjunctions of normalized Lmf-
literals, namely literals of the following types

x = y , x 6= y , x ≤ y , ¬(x ≤ y) ,
x = inf (y, z) , x = sup(y, z) , x = f(y) ,
inc(f) , dec(f) , f � g ,

(3)

where x, y, z range over the variables and constant symbols of Lmf and f, g
range over the function symbols of Lmf .

Notice that as a by-product of the preceding discussion we have the following
result.

Lemma 1. For any conjunction of Lmf-literals, one can construct in linear
time an equisatisfiable conjunction of normalized Lmf-literals.

Finally, we further restrict our attention to conjunctions Ψ of normalized
Lmf -literals which satisfy the following closure conditions (C1), (C2), and (C3);
we call such formulae closed conjunctions of normalized Lmf-literals

and denote their collection by Lmf⋆.

Closure conditions for Lmf⋆-conjunctions

(C1) Ψ contains occurrences of both constants m and M .
(C2) Ψ contains at least one literal of the form x = f(m) and one literal of the

form x′ = f(M), for each function symbol f in Ψ.
(C3) For each literal of type f � g in Ψ and for each variable y, the conjunction

Ψ contains a literal of the form x = f(y) whenever it contains a literal of
the form x′ = g(y), and conversely.

It is easy to see that given any conjunction Φ of normalized Lmf -literals,
by a simple quadratic completion process one can construct an equisatisfiable
closed conjunction Ψ of normalized Lmf -literals. Thus, we have:

Lemma 2. For any conjunction of normalized Lmf-literals, one can construct
in quadratic time an equisatisfiable closed conjunction of normalized Lmf-literals.

Summing up, we have proved:

Theorem 1. The satisfiability problem for Lmf is equivalent to the satisfiability
problem for Lmf⋆.

In the next section we will provide a quadratic satisfiability test for Lmf⋆.

3 A satisfiability test for Lmf⋆

Our satisfiability test is based on the collection of saturation rules listed in
Table 1.

Definition 3. A collection H of normalized Lmf-literals is said to be satu-

rated (with respect to the rules of Table 1) if

– for each rule R of Table 1 with premisses, the conclusions of R belong to H

whenever its premisses belong to H;
– the literals

x = x , x ≤ x , m ≤ x , x ≤ M

belong to H, for each variable or constant x occurring in H.1

Given an Lmf⋆-conjunction Ψ, we define the closure of Ψ as the minimal
saturated collection of normalized Lmf -literals containing the literals of Ψ. It
is not hard to see that closures can be calculated by the quadratic procedure in
Table 2.

Notice that procedure Closure(·) does not introduce any new variable during
its computation. Therefore, if its input Lmf⋆-conjunction Ψ contains p distinct
variables and constant symbols and q distinct function symbols, then procedure
Closure(·) adds O(p2 + q2) new literals to the closure of Ψ.

Closures play a particularly important rôle in our satisfiability test for Lmf⋆-
conjunctions; this just consists, as shown in Table 3, in checking whether the
closure of the Lmf⋆-conjunction to be tested for satisfiability contains a pair of
complementary literals.

1 Such condition amounts to the saturatedness of H with respect to the rules with no
premisses [=.1], [≤.1], [≤.4], and [≤.5].

=-rules

x = x [= .1]
x = y
y = x [= .2]

x = y

ℓ

ℓx

y

[= .3]

≤-rules

x ≤ x
[≤ .1]

x ≤ y

y ≤ x

x = y [≤ .2]

x ≤ y

y ≤ z

x ≤ z
[≤ .3]

m ≤ x
[≤ .4]

x ≤ M
[≤ .5]

inf -rules

x = inf (y, z)

x ≤ y

x ≤ z

[I.1]

x = inf (y, z)
w ≤ y

w ≤ z

w ≤ x
[I.2]

sup-rules

x = sup(y, z)

y ≤ x

z ≤ x

[S.1]

x = sup(y, z)
y ≤ w

z ≤ w

x ≤ w
[S.2]

Functions rules

x = f(y)
x′ = f(y′)

y = y′

x = x′
[f.1]

inc(f)
x ≤ y

z = f(x)
w = f(y)

z ≤ w
[f.2]

dec(f)
x ≤ y

z = f(x)
w = f(y)

w ≤ z
[f.3]

�-rules

f � g

g � h

f � h
[� .1]

f � g

x = f(y)
z = g(y)

x ≤ z
[� .2]

In the above rules, the symbols x, x′, y, y′, z, w stand for variables or constant
symbols, whereas f, g stand for function symbols. In addition, ℓ stands for
a normalized Lmf -literal and ℓx

y denotes the result of substituting in ℓ all
occurrences of the symbol x by the symbol y.

Table 1. Saturation rules for Lmf⋆-conjunctions.

Closure(Ψ)

Comment: Ψ is an Lmf⋆-conjunction.

H := collection of the literals in Ψ;
for each variable or constant symbol x in Ψ do

H := H ∪ {x = x , x ≤ x , m ≤ x , x ≤ M};
while H is not saturated do

- let R be an Lmf⋆-saturation rule such that ∅ 6= PR ⊆ H

but CR 6⊆ H, where PR and CR are respectively the
premisses and the conclusions of R;

H := H ∪ CR;
return(H);

Table 2. Saturation function for Lmf⋆-conjunctions.

Lmf⋆-Satisfiability-Test(Ψ)

Comment: Ψ is an Lmf⋆-conjunction.

H := Closure(Ψ);
if H contains a pair of complementary literals ℓ, ¬ℓ then

return “Ψ is unsatisfiable”
else

return “Ψ is satisfiable”

Table 3. A satisfiability test for Lmf⋆-conjunctions.

3.1 An example

We illustrate the complete decision process on a simple example. Let

Φ =Def (f � g ∧ inc(f) ∧ dec(g) ∧ f(x) 6= g(x)) → f(m) 6= g(m) .

To prove that Φ is true under all Lmf -interpretation, we can show that its
negation ¬Φ is unsatisfiable. Plainly, ¬Φ is equivalent to the conjunction

Φ1 =Def f � g ∧ inc(f) ∧ dec(g) ∧ f(x) 6= g(x) ∧ f(m) = g(m) .

By normalizing Φ1, we obtain the equisatisfiable conjunction

Φ2 =Def f � g ∧ inc(f) ∧ dec(g) ∧ y1 = f(x) ∧ y2 = g(x) ∧ y1 6= y2 ∧
z1 = f(m) ∧ z2 = g(m) ∧ z1 = z2 .

By adding to Φ2 suitable literals, we further obtain an Lmf⋆-conjunction Φ3

which is equisatisfiable with Φ2.
Next, let H = Closure(Φ3). We prove that H is unsatisfiable by showing that

it contains a pair of complementary literals. Notice that H must contain the
following literals, among others:

(a) m ≤ x (by rule [≤.4]) (f) z1 ≤ y2 (by rule [≤.3])
(b) z1 ≤ y1 (by rule [f.2]) (g) y2 = z1 (by rule [≤.2])
(c) y1 ≤ y2 (by rule [�.2]) (h) y1 ≤ z1 (by rule [=.3])
(d) y2 ≤ z2 (by rule [f.3]) (i) y1 = z1 (by rule [≤.2])
(e) y2 ≤ z1 (by rule [=.3]) (j) y1 = y2 (by rule [=.3])

Thus, H contains the pair of complementary literals y1 6= y2 (since it belongs
to Φ2) and y1 = y2, so that it is unsatisfiable. It follows that Φ3, Φ2, and Φ1

are unsatisfiable as well, and therefore our initial Lmf -formula Φ must be true
under all Lmf -interpretations.

3.2 Correctness

To prove the correctness of the procedure Lmf⋆-Satisfiability-Test, it is enough
to show that for each Lmf⋆-conjunction Ψ we have

soundness: if Ψ is satisfiable, then Closure(Ψ) is satisfiable;
completeness: if Closure(Ψ) does not contain any pair of complementary liter-

als, then it is satisfiable.

Soundness Concerning soundness, we have a slightly stronger result:

Lemma 3 (Soundness). Let Φ be a conjunction of normalized Lmf-literals
and let A be an Lmf-interpretation. Then A satisfies Φ if and only if it satisfies
Closure(Φ).

Proof. Plainly, if an Lmf -interpretation A satisfies Closure(Φ) then it satisfies
Φ, since all the literals of Φ are contained in Closure(Φ).

On the other hand, it can easily be shown by a simple inspection of the
saturation rules of Table 1 that if an Lmf -interpretation A satisfies Φ, then it
must inductively satisfy all literals which are added to the closure of Φ.

Completeness Let Ψ be an Lmf⋆-conjunction and let H be the closure of Ψ.
Let us assume that H does not contain any pair of complementary literals ℓ, ¬ℓ.
Let V be the collection of variables and constant symbols occurring in H.

We define an Lmf -interpretation A as follows. We let A = V/∼, where ∼ is
the equivalence relation induced by the literals of the form x = y in H, and for
each x in V , we denote by [x] the equivalence class of x relative to ∼ and put
xA = [x].

Clearly, all literals in H of the form x = y and x 6= y are satisfied by A.
Next, we interpret ≤ as follows: for [x], [y] ∈ A, we put

[x] ≤A [y] if and only if the literal x ≤ y occurs in H.

Such a definition is well-given, since if x ≤ y is in H, x′ ∈ [x], and y′ ∈ [y], then
by the =-rules it follows that x′ ≤ y′ is in H too.

By saturation with respect to the ≤-rules, ≤A is a partial order with mini-
mum [m] and maximum [M]. Since A is finite, the lattice induced by 〈A,≤A〉 is
complete.

Plainly, all literals in H of the form x ≤ y and ¬(x ≤ y) are now satisfied by
A.

Next, we interpret the operators inf and sup in 〈A,≤A〉 by putting for
[x], [y] ∈ A

inf A([x], [y]) = greatest lower bound of [x] and [y] in 〈A,≤A〉
supA([x], [y]) = least upper bound of [x] and [y] in 〈A,≤A〉 .

Plainly, all literals in H of the form x = inf (y, z) and x = sup(y, z) are now
satisfied by A.

Finally, we extend A to unary function symbols occurring in H. Let us first
put:

INC(H) = {f | inc(f) occurs in H} ,
DEC(H) = {f | dec(f) occurs in H} ,
MON(H) = INC(H) ∪ DEC(H) .

Then, for each function symbol f ∈ MON(H), we put

fA([x]) =

{

lub{[z] | z = f(y) and y ≤ x are in H} , if f ∈ INC(H)
lub{[z] | z = f(y) and x ≤ y are in H} , if f ∈ DEC(H)

(Thanks to rules [≤ .4], [≤ .5], [f.2], and [f.3], when both inc(f) and dec(f)
occur in H, we have

{[z] | z = f(y) and y ≤ x are in H} = {[z] | z = f(y) and x ≤ y are in H} ,

so that the ambiguity of the above definition for f ∈ INC(H) ∩ DEC(H) is only
apparent.)

Additionally, for each function symbol f occurring in H but such that f /∈
MON(H), we put

fA([x]) =

{

[y] if y = f(x) is in H

lub{gA([x]) | g � f is in H and g ∈ MON(H)} otherwise ,

where we agree that lub ∅ = [m]. (By rule [f.1], if both y = f(x) and y′ = f(x)
are in H, then [y] = [y′], so that even the latter definition is not ambiguous.)

It is not hard to check that the interpretation A so defined also satisfies all
the literals in H involving function symbols, namely those of type x = f(y),
inc(f), dec(f), and f � g. Such verifications are based on the fact that the set
H is saturated with respect to the rules in Table 1 and the closure conditions
(C1)–(C3) of the initial Lmf⋆-conjunction Ψ.

Just to exemplify the kind of reasoning involved, we will limit to verify that
A models correctly a literal in H of type f � g in the case in which H contains
also the literal inc(f). For this purpose, we will assume that the interpretation
A models correctly all literals in H of type y = h(z), inc(h), and dec(h).

Thus, let the literals f � g and inc(f) occur in H and let [x] ∈ A. We need
to show that fA([x]) ≤ gA([x]). We distinguish the following cases:

Case (a): the literal inc(g) occurs in H. In this case we have:

fA([x]) = lub{[z] | z = f(y) and y ≤ x are in H}
gA([x]) = lub{[z] | z = g(y) and y ≤ x are in H} .

Moreover, by the closure condition (C3) and rule [� .2], there exist elements
a1, . . . , ak, b1, . . . , bk ∈ A such that

– {[z] | z = f(y) and y ≤ x are in H} = {a1, . . . , ak},
– {[z] | z = g(y) and y ≤ x are in H} = {b1, . . . , bk}, and
– ai ≤A bi, for i = 1, . . . , k.

By elementary reasoning in lattice theory, it follows at once that

lub{a1, . . . , ak} ≤A lub{b1, . . . , bk} ,

i.e., fA([x]) ≤ gA([x]).

Case (b): the literal dec(g) occurs in H. Let y = f(M) and y′ = g(M) be two
literals in H whose existence is assured by the closure condition (C2). By rule
[� .2], H must contain the literal y ≤ y′, so that

fA([M]) = [y] ≤A [y′] = gA([M]) .

Therefore, since by rule [≤ .5] the literal x ≤ M is in H, so that [x] ≤A [M], then
by exploiting the fact that the maps fA and gA are respectively increasing and
decreasing, it follows that

fA([x]) ≤A fA([M]) ≤A gA([M]) ≤A gA([x]) .

Case (c): neither inc(g) nor dec(g) occurs in H. If H contains a literal y = g(x)
then, by the closure condition (C3) it also contain a literal y′ = f(x), so that,
by rule [� .2], the literal y′ ≤ y must also occur in H. Therefore,

fA([x]) = [y′] ≤A [y] = gA([x]) .

On the other hand, if the term g(x) does not occur in any literal in H, then we
have:

gA([x]) = lub{hA([x]) | h � g is in H and h ∈ MON(H)} ,

so that fA([x]) ≤A gA([x]) follows again.

This concludes the verification that when the literals f � g and inc(f) occur
in H, then f � g is modeled correctly by the interpretation A.

Other cases can be proved similarly, yielding

Lemma 4 (Completeness). Let Ψ be an Lmf⋆-conjunction and let H =
Closure(Ψ). Then H is satisfiable if and only if it does not contain any pair
of complementary literals ℓ, ¬ℓ.

Since closures can be computed in quadratic time, we have

Theorem 2. The satisfiability problem for Lmf⋆ is solvable in quadratic time.

Remark 3. It is to be noticed that as a by-product of the proof of Lemma 4, we
actually have a satisfiability test for Lmf⋆-conjunctions which, when run on a
satisfiable input conjunction Ψ, it returns an Lmf -model of Ψ, and not just the
answer that Ψ is satisfiable.

In view of Lemmas 1 and 2, we also have:

Theorem 3. The satisfiability problem for conjunctions of Lmf-literals is solv-
able in polynomial time.

Finally, combining Theorems 1 and 2, we have:

Theorem 4. The satisfiability problem for Lmf is solvable.

4 Complexity

We show that the satisfiability problem for Lmf is NP-complete.
Concerning the NP-hardness, it is enough to show that SAT is polynomial-

time reducible to the satisfiability problem for Lmf .2 Let P be a propositional
formula (in conjunctive normal form). To each propositional letter P in P we
associate a distinct variable xP of the Lmf -language and define PLmf as the
Lmf -formula obtained by substituting in P each propositional letter P by the
atomic Lmf -formula xP = m. Plainly, P is satisfiable by a truth-value assign-
ment if and only if PLmf is satisfiable by an Lmf -assignment. Moreover, the size
of PLmf is of the same order as the size of P, so that the mapping P 7→ PLmf

just described is a linear-time reduction of SAT to the satisfiability problem for
Lmf , proving that the latter is NP-hard.

To establish the membership of the Lmf -satisfiability problem to NP, we
give the following nondeterministic polynomial test for it. Let Φ be any formula
of Lmf and let AtomsΦ be the collection of distinct atomic subformulae of Φ.
Nondeterministically, we construct a conjunction Ψ0 by choosing a literal in
{At ,¬At}, for each atom At ∈ AtomsΦ. Next, in linear time, we flatten out
the conjunction Ψ0 and eliminate from it all negative literals of type (2), as
shown in Section 2.3. Let Ψ1 be the conjunction of normalized Lmf -literals thus
obtained. In quadratic time, we can construct an equisatisfiable conjunction
Ψ2 ∈ Lmf⋆, satisfying the closure conditions (C1)–(C3) stated at the end of
Section 2.3. Finally, the Lmf -satisfiability of Ψ2 can be verified by means of the
quadratic satisfiability test described in Section 3. It is not difficult to see that
our initial formula Φ is Lmf -satisfiable if and only if there is a computation of the
above procedure which returns a positive answer, so that the Lmf -satisfiability
problem belongs to the class NP and, therefore, it is NP-complete.

2 We recall that SAT is the well-known satisfiability problem for propositional formulae
in conjunctive normal form [3].

5 Conclusion

We presented a practical decision procedure for the unquantified theory of lat-
tices with monotone functions, which can have applications in the assisted veri-
fication of mathematical proofs and handling of constraints in advanced declar-
ative programming languages.

Specifically, we considered the unquantified language Lmf with the predi-
cates = and ≤, with the operators inf and sup over terms which may involve
also uninterpreted function symbols, with predicates expressing increasing or
decreasing monotonicity of functions, and with a predicate � for pointwise func-
tions comparison.

In particular, for a restricted collection of conjunctions, denoted Lmf⋆, we
described a quadratic satisfiability test, which yielded immediately a polynomial
satisfiability test for conjunctions of normalized Lmf -literals. We also provided
a nondeterministic quadratic reduction of the satisfiability problem for Lmf -
formulae to the one for Lmf⋆, which allowed to show the NP-completeness of
the satisfiability problem for Lmf -formulae.

Future research will involve the extension of our decision procedure in pres-
ence of set variables with the set operators of union, intersection, difference, and
singleton, and where the operators inf and sup are extended also to set variables.
We also plan to investigate an extension with non-unary function symbols.

References

1. Domenico Cantone, Alfredo Ferro, Eugenio G. Omodeo, and Jacob T. Schwartz. De-
cision algorithms for some fragments of analysis and related areas. Communications

on Pure and Applied Mathematics, 40(3):281–300, 1987.
2. Domenico Cantone, Eugenio G. Omodeo, and Alberto Policriti. The automation of

syllogistic. II. Optimization and complexity issues. Journal of Automated Reasoning,
6(2):173–187, 1990.

3. Stephen A. Cook. A hierarchy for nondeterministic time complexity. Journal of

Computer and System Sciences, 7(4):343–353, 1973.
4. Alfredo Ferro, Eugenio G. Omodeo, and Jacob T. Scwhartz. Decision procedures for

elementary sublanguages of set theory. I. Multi-level syllogistic and some extensions.
Communications on Pure and Applied Mathematics, 33(5):599–608, 1980.

5. Scott Hazelhurst and Carl-Johan H. Seger. Model checking lattices: Using and
reasoning about information orders for abstraction. Logic Journal of the IGPL,
7(3):375–411, 1999.

6. Bharat Jayaraman, Mauricio Osorio, and David Plaisted. Theory of partial-order
programming. Science of Computer Programming, 34(3):207–238, 1999.

7. Frank J. Oles. An application of lattice theory to knowledge representation. Theo-

retical Computer Science, 249(1):163–196, 2000.
8. Alfred Tarski. Undecidability of the theory of lattices and projective geometries.

Journal of Symbolic Logic, 14:77–78, 1949.

