Interpreting Abduction in CLP *

M. Gavanelli', E. Lamma', P. Mello?, M. Milano?, and P. Torroni?

! Dip. di Ingegneria, Universita di Ferrara
Via Saragat 1, 44100 Ferrara, Italy
{mgavanelli, elamma}@ing.unife.it
2 DEIS, Universita di Bologna
Viale Risorgimento 2, 40136 Bologna, Italy
{pmello, mmilano, ptorroni}@deis.unibo.it

Abstract. Constraint Logic Programming (CLP) and Abductive Logic
Programming (ALP) share the important concept of conditional answer.
We exploit their deep similarities to implement an efficient abductive
solver where abducibles are treated as constraints. We propose two pos-
sible implementations, in which integrity constraints are exploited either
(i) as the definition of a CLP solver on an abductive domain, or (%)
as constraints a la CLP. Both the solvers are implemented on top of
CLP(Bool), that typically have impressively efficient propagation en-
gines.

1 Abduction in CLP

Abduction and Constraint Logic Programming have been successfully
integrated in various works [1] [2].

Abductive reasoning is aimed at inferring hypotheses about unknowns:
typically, some predicates are labelled as abducibles and treated in a spe-
cial way. It is an extremely powerful reasoning mechanism; through ab-
duction one can deal with uncertainty, non-monotonicity and, of course,
hypothetical reasoning. On the other hand, abductive proof procedures
are often based on meta-interpretation, which could lessen the efficiency.

Constraint Logic Programming (CLP), instead, is aimed at solving
efficiently combinatorial problems, and employs various algorithms from
the areas of artificial intelligence and operation research to deal efficiently
with difficult problems.

This paper starts from the observation due to Kowalski et al. [1, 3]
that CLP and abduction share an important concept: namely, that of
Conditional Answer. In both cases, the expected result of a computation
consists of two parts: (i) a binding of the logical variables (as in Logic

* This work is partially funded by the Information Society Technologies programme
of the European Commission under the IST-2001-32530 project

Programming); (i7) some further conditions that should be satisfied in
order for the solution to be correct.

A constraint program provides as answer a set of constraints, i.e.,
interpreted atoms that should be proven true in order for the answer to
be correct. For example, in CLP(FD), given the query

A:1.5,B:1.10,C ::5..10,A< B,B<(C,A>14

the constraint solver can provide as an answer a binding A/5 plus some
further constraints B :: 6..9, C :: 7..10 and B < C. The answer is correct
provided that the constraints are satisfied.

An abductive program provides a set A of abduced atoms; the answer
is correct if the set of abduced atoms is true. For example, given that

grass_is_wet <« rained_last_night.
grass_is_wet <«— sprinkler_was_on.
shoes_are_wet «— grass_is_wet.

a possible answer to the query ? — shoes_are_wet is true, provided that
the unknown rained_last_night is assumed true as well.

From this observation, we could naturally map abduction through
a constraint program, where abduced literals are posted in a constraint
store as constraints are in CLP. This could help the development of a
very efficient abductive system, that would not need meta-interpretation,
and that could exploit the efficient propagation algorithms of CLP.

Abduction and CLP have been integrated from different viewpoints.
Kowalski et al. [1] propose a framework where abduction and constraints
are treated uniformly, but they are not very focussed on efficiency issues.
Kakas et al. [2] [4] implement abduction on top of a CLP system, exploit-
ing constraints to limit the search space. However, their implementations
of abduction are still based on meta-interpretation, and the constraint
solver is not used to reason upon abduced literals, but on the constrained
variables appearing in them.

In this work, we propose two possible implementations of an abductive
proof procedure based on CLP: one is more efficient, while the other can
be extended for non ground abducibles. The implementations are based
on Constraint Handling Rules [5], a rewriting system to build constraint
solvers on top of another CLP solver. Both implementations are on top
of the Boolean domain, CLP(Bool). In the first one, we build a solver
for a new CLP domain, called CLP(.Abd), in which the definition of the
solver is based on integrity constraints. In the second, the solver relates
abducible literals and integrity constraints both as constraints of the CLP

domain. We extend the second implementation to deal with variables in
the abduced literals.

Our work is related to the work of Kowalski et al. [1], where the idea
of treating uniformly constraints and abducibles is presented. Abdennad-
her and Christiansen [6] propose a CHR implementation that is strongly
related both to [1] and to the first of the implementations proposed in
this paper. The main difference between [6] and the first of our implemen-
tations is that we give a CLP flavor of the abductive sort and propose
to exploit a boolean solver. Also, we propose a second implementation
where the integrity constraints are treated as constraints a la CLP.

2 Notation and Preliminaries

Definition 1. An Abductive Logic Program [7] is a triple (K B, Ab, IC):

— KB is a (normal) logic program, i.e., a set of clauses A «<— Ly, ..., Ly,
where L; (i=1,...,m) are literals and A is an atom;

— Ab a set of abducible predicates, p, such that p does not occur in the
head of any clause of K B;

— IC is a set of integrity constraints, that is, a set of closed formulae.

Given an abductive program and a goal G, an abductive explanation
for G is a set A (such that A C Ab) with a substitution 0 such that
KBUA is consistent, KBUA =VY(G/0) and KBUA = IC.

We suppose that each IC has the syntax (where Ly, ..., L, is a con-
junction of literals):
(L) — L1,~--7Ln-

thus, the previous definition KB U A | IC is equivalent to saying that
the literals appearing in an integrity constraint cannot be all true in order
for the program (with the A) to be consistent.

Definition 2. Constraint Logic Programming (CLP) [8/ is a general
framework; its instances are languages CLP(X) where X represents the
domain of the computation. X is the quadruple (¥,D,L,T), where

— X' is a signature

— D is a X-structure that gives the interpretation of the symbols in X
— L is a class of X -formulas that defines the language of constraints
— T is a X-theory that defines the logical semantics of constraints.

A solver solv for the class of constraints L is a function that maps each
formula into true, false or unknown.

Definition 3. Constraint Handling Rules (CHR) [5] are a term-rewriting
system that handles constraints in a store. There are three basic rules,
called simplification, propagation and simpagation rules.

A simplification rule has the following syntax:

[RuleNameQ|Head[, Head] < [Guard|]Body.

Declaratively, a rule relates heads and body provided the guard is true. A
simplification rule means that the heads are true if and only if the body is
true. A propagation rule, like:

[RuleNameQ|Head[, Head] = [Guard|]Body.
means that the body is true if the heads are true. A simpagation rule
[RuleName@Q|Head \ Head < [Guard||Body.

is a combination of a simplification and propagation rule. The rule H1 \
H2 < Body is equivalent to the simplification rule H1, H2 < Body, H1.
However, the simpagation rule is more compact to write, more efficient
to execute, and has better termination behavior than the corresponding
simplification rule. Operationally, when the heads of a simplification rule
can be unified with constraints in the store they are removed from the store
and Body is executed. When the heads of a propagation rule are unified
with constraints in the store, the body is executed. In a simpagation rule,
the first head is kept in the store, while the second one is removed.

3 An abductive solver on top of CLP(Bool)

Abduction can be considered as a CLP sort defined by means of Integrity
Constraints. Each abduced literal is mapped to a (CLP) constraint to-
gether with a boolean that carries information about the truth of the
abduced. If A is a literal, AB4 is true iff (A < Ba), i.e., the boolean By
assumes value true iff A is true. For example, Af%5¢ ig equivalent to —A.
In this section, we focus on ground literals; non ground abduced will be
considered in Section 4.3.

We first give formal definitions, then we show the implementation
together with motivating examples.

3.1 Abduction as a CLP sort: CLP(.Abd)

The concept of abduction could be considered as a language in the CLP
class, in which abduced literals are mapped to (CLP) constraints, and
integrity constraints define the solver.

In particular, we define a CLP sort Abd. The class of constraints,
L Apa, is simply the set of abducible predicates, the YX-structure D g4 (the
domain of the computation) maps the terms in abducibles into Herbrand
interpretations, and the theory 7444 contains the integrity constraints.
We will suppose that in 7454 constraints are idempotent; this will ensure
that abducing twice the same term is equivalent to abducing it once.

A solver, solv g4, on a particular set of abducible predicates, will be
defined by the user by means of integrity constraints. The solver will
give a failure if the constraint store (which coincides with the set A of
abduced literals) is inconsistent with the theory 7 444. For example, if
(L —a,b) € Tapa, solvapa({a,b}) = false (i.e., if the literals a and b are
both abduced, the solver fails). A possible implementation is given in the
following.

3.2 Implementation of solv apg

The implementation of the abductive proof procedure can be based on a
boolean solver. To each abduced literal we associate a boolean variable: if
the boolean has the logic value true, then the literal is positive, otherwise
it is negative. In this way, ICs can be easily handled by the boolean solver.
Consider the IC (where a, b and ¢ are abducibles):

«— a,b,c. (1)

If the atom a is abduced, a (passive) constraint abd(a, true) is inserted in
the constraint store. Now, all the other literals in IC (1) are abduced (if
not already in the store), with unknown (variable) truth status; i.e., the
constraint abd(b, By) and abd(c, B.) are inserted in the store. The integrity
constraint (1) can now be simply turned into a boolean constraint:

—(true A By A —B¢) (2)

and passed to the boolean solver. In this way, the boolean solver could be
able to detect inconsistencies early, avoiding many backtracking steps, and
perform powerful propagation, and could infer the truth status of some of
the variables. Modern CLP languages include very smart boolean solvers,
based on efficient representation techniques of the boolean formulas [9].
For example, suppose to have the following set of integrity constraints:

—b,c «— e, d. «— b, d.

where all the literals are abducible. The corresponding boolean formula,
in our representation, would be

—(By A Be) A=(=Be A Bg) A (By A —By).

The boolean solver clp(B) embedded in SICStus [10] infers immediately
that B, must be false, in order for the ICs to be satisfiable, thus we
can immediately abduce —b. From this viewpoint, most abductive proof
procedures are based on a check a posteriori of the ICs, and on an early
commitment which “labels” an abducible atom as true or false before it
is actually needed. By translating ICs into constraints of efficient solvers
and commit to choices only when really needed, we may a priori remove
inconsistent configurations, and increase the efficiency of the proof.

If the IC also contains non-abducible literals, they can be handled as
in the KM proof procedure [11]. E.g, given an Integrity Constraint:

—a, ba ¢, P (3)

where p is not abducible, one can impose the disjuction of the boolean
constraint (2) and, as an alternative, impose that p fails:

—(true A By A =B.) V not p.

If p is a predicate that does not perform abduction, imposing that it
fails is equivalent to negation as failure. In general one may think to
(i) either perform a consistency derivation [11], that would need meta-
interpretation, or (i7) use negation as failure without abduction, i.e., call-
ing the predicate p with the current set A. In case (i), however, one has
to perform this check each time a new literal is abduced.

Ezample 1. Consider the following program (a and b are abducible):
q — a. p <« b. — a,p.

The derivation for the goal 7 — ¢ would abduce a; now one can try to
falsify p by (i) abducing —b or by (#i) invoking p without abducing new
literals. In case (i7) one should also ensure that whenever a new literal
is abduced, the falsity of p is checked again, otherwise the goal 7 — ¢, b
would, erroneously, succeed.

We are not committed to one choice or the other. In the following, we
will use the symbol not as an implementation of one of the two methods.

Integrity Constraints as Rules Since abducibles are constraints in the
store, CHR seems a perfect means for implementing integrity constraints.
As in [6], integrity constraints could be translated into rules. For example,
the IC in Eq. 3 could be translated into a propagation rule:

abd(a, true), abd(b, true), abd(c, false) = not(p) (4)

i.e., whenever a and b are true and c is false, one should check that p fails.
A more effective solution would exploit also the boolean solver. We could
rewrite the rule in Eq. 4 as follows:

abd(a, B,), abd(b, By), abd(c, B;) = (—(Bq A By A —B.);not(p)). (5)

where the semicolon stands (as in Prolog) for nondeterministic disjunction
and the constraint —(B, A By A = B,) is passed to the boolean solver.
In general, given an integrity constraint

<—A1,...,An,P1,...,Pk

where A; are literals of abducible predicates and P; are literals of defined
predicates, a corresponding propagation rule defining solv 434 is

abd(A1, B1),...,abd(An, Bn) = (=(B1 A ... A By);not((Pr, ..., P))).

Of course, we should also ensure that an abducible is not true and
false at the same time (idempotence of the theory 7 4p4):

abd(X, Bl) \abd(X, BQ) = B1 = BQ

With this idea, the check of ICs is activated only after all the ab-
ducibles in the IC have been abduced (true or false). This can be consid-
ered as a lazy evaluation of integrity constraints. An eager strategy would
activate the constraints when one of the abducibles in the ICs is in A:

abd(a, B,) = abd(b, By), abd(c, Be), (—(By A By A = Bg); not(p)) -
abd(b, By) = abd(a, B,), abd(c, B.), (=(Bs A By A =Bg);not(p)). (6)
abd(c, B;) = abd(a, B,), abd(b, By), (—(Bs A By A =B.); not(p)) .

It is worth noting that the translation from the usual notation of
Eq. 3 to those in Eq. 5 or Eq. 6 can be performed syntactically, as a
preprocessing. Another possibility, that does not need preprocessing, is
shown in the next section.

4 Integrity Constraints as CLP Constraints

Another implementation would consider ICs as CLP constraints and the
CHR rules would define the general propagation of ICs. In other words,
one could write the ICs as constraints in the CLP sense. Thus, the abduc-
tive program would have a form similar to the typical constraint program:

abductive_program :- impose_integrity_constraints, search.

In our syntax, an integrity constraint contains a list of (possibly ab-
ducible) literals. Abducible literals are represented with the same functor
abd /2, where the first argument is the atom, and the second is a boolean
stating if the literal is positive or negative?.

In our example, the user would write something like:

impose_integrity_constraints :-

ic([abd(a,true), abd(b,true), abd(c,false), pl),
abductive_program :-

impose_integrity_constraints, abd(a,true), ...

for an abductive program with an integrity constraint < a, b, —c, p that
abduces the atom a.

Again, we first formalize the sort, then we propose an implementation
of the solver based on CHR, on top of CLP(Bool).

4.1 Abduction as a sort with ICs as constraints: CLP(.Abd2)

In this implementation, both abducibles and integrity constraints are
mapped to constraints a la CLP. We formalize the language as an in-
stance of the CLP framework, that we call CLP(.Abd2), in which the
CLP language contains both abducibles and ICs as constraints. In the
quadruple defining the sort Abd2 we have that:

— the class of constraints, £ 4pq2, contains both the abducible predicates
(indicated with abd/2) and the integrity constraints (ic/1);

— the domain of the computation, the X-structure D 4p40, maps ab-
ducibles and integrity constraints into Herbrand interpretations;

— the theory 74340 contains the basic rule that defines interaction be-
tween integrity constraints and abducibles: if all the literals in an
integrity constraint are true, inconsistency arises, i.e.:

ic([abd(Al, Bl), ‘oo y abd(An, Bn),pl, ce ,pk]),
abd(Al,Bl), .. .,abd(An,Bn),pl, ey PE — 1

In the next section we propose a solver, solv4pq2, for the language
CLP(.Abd2) defined through CHR.

3 Note the abuse of notation: we use the same symbol abd/2 to indicate both the
constraint identifying an abducible and the terms indicating abducibles inside an
IC.

4.2 Implementation: solv gpd2
The following rules would perform the propagation of ICs in a lazy style:

lazy @ ic(L) \ abd(X, B) < delete(L,abd(X, B), R)|ic(R). (7)
goal @ ic(L) < no_abducibles(L)|not(and_call(L)).

The first rule performs propagation. In order to understand its meaning,
let us first consider the following case: abd(X, B) has been abduced and
abd(X,—B) is part of the IC. In this case, the IC is satisfied: in fact,
one of the literals in the body is false. In particular, if the IC contains
abd(X,true), then the IC is satisfied if X is abduced false. If the IC
contains abd(X, false), this means that the negation of X is in the IC,
thus if X is abduced true, the IC is satisfied. Viceversa, if abd(X, B) has
been abduced and abd(X, B) is in the IC, we must prove that the rest of
the (body of the) IC is false. Thus, we remove from the IC abd(X, B).
In this semantics, an empty IC means failure; thus we could have:

ic([])) & fail

However, this rule is redundant, as it is already contained in the second
rule of Eq. 7. The second rule, in fact, considers the case in which no
abducibles are left in the IC. In this case, we should try to prove that the
conjunction of the remaining literals in the body is false: this is performed
by the negation of the conjunction of the literals.

We could also decide to have eager propagation (rule goal is the same
as in Eq. 7):

eager Qic(L) \ abd(X, B) < delete(L,abd(X, B), R)|eager_prop(R).

Predicate eager_prop is defined as follows:
eager_prop(L) :-

divide_abducibles(L,Abducibles,NonAbducibles),

(abduce_eager (Abducibles),

get_booleans (Abducibles,Bools), impose_boolean_nand(Bools)

; ic(NonAbducibles)).
first of all, we separate the abducibles from the non abducibles in the
IC. We try to satisfy the constraint only with the abducibles: we abduce
the predicates with a boolean variable as truth value, then we impose a
boolean constraint that states that not all the literals can be true. If this
attempt fails, then we impose the integrity constraint consisting only of
the non abducibles; the second rule of Eq. 7 will take care of the rest.

These implementations work in the propositional case. If we allow for
generic literals, even with variables, in the A, then we should consider
further issues, depicted in the following section.

4.3 CHR and abduction with variables

In the non-propositional case, it is not safe to remove an IC (or change
it) when a literal that it contains is abduced. E.g., if we have an IC like:

—a(X,Y),b(X) (8)

and we abduce a(1,2), we can, of course, say that b(1) is false, but we can-
not remove the IC. Thus, many of the simpagation rules will be converted
into propagation rules.

Moreover, we have to consider that variables in abduced literals are
existentially quantified, while in integrity constraints they are universally
quantified. Thus, given the IC (8), abducing b(7") means that 37,b(T),
and propagation of the integrity constraint produces:

AT, A = {b(T)} A VY[L < a(T,Y)).

Notice that after propagation we have implications with some of the vari-
ables existentially quantified, and some universally; the scope of existen-
tial variables includes also the set A.

We decided to explicitly tag each variable with its quantification.
Many proof procedures avoid the explicit quantifications by introducing
syntactic restrictions [12].

We recognize two possibilities: we could

1. abduce new literals only when all of the variables are existentially
quantified.
2. abduce literals where some of the variables are universally quantified

Again, the first choice is more “lazy”, while the second is more “eager” in
inferring information to be passed to the boolean solver. In the first idea,
one accepts, in the set A, only existentially quantified literals; this lessens
the information passed to the boolean solver, thus propagation would be
less efficient. For example, consider the following IC:

—a(X),b(X,Y),c(X)

where a/1, b/2 and ¢/1 are abducibles. If one abduces a(f(A)), propaga-
tion will give that:

34, A = {a(f(A)}, VYL < b(f(A),Y), c(f(A))]

Since the term c¢(f(A)) is existentially quantified, one could abduce it
(with a variable B, as truth status), and obtain that

34, A = {a(f(A)), P(F(A)}, [(true A Bo) VY L — b(f(A),Y)]

i.e., we can pass the condition —(true A B.) to the boolean solver, and in
case of backtracking, impose that VY L «— b(f(A4),Y).

The second choice would allow for more powerful propagation: since
we exploit an efficient boolean solver, abducing as many literals as possible
also means inferring as much information as possible for the boolean
solver. In our example, we would also abduce the atom (VY)b(f(A),Y),
with an unknown truth status Bp; i.e., we reach the following state:

A, VY, A = {a(f(A)), b (f(A),Y), cPe (f(A)}, [-(true A By A B)]

The implementation of the proof with this second choice becomes much

harder; we plan to develop it in the future.
The only propagation rule we use is the following:

propagation @ ic(L), abd(X,B) ==>
pat_delete(L,abd(X,B) ,Rest,A) |
copy_term_universal(t(Rest,A),t(R,Y)),
unify_considering_quantification(abd(X,B),Y,Unify),
(Unify=true,
separate_existential_terms(R,ExistentialTerms,Others),
abduce_and_propagate (ExistentialTerms,Others)
; Unify=false).

pat_delete finds in the list L a literal A that matches with abd(X, B)
and provides also the Rest of the list. Note that the predicates in the
guards should not instantiate variables in the abduced literals (in A);
thus predicate pat_delete does not perform usual unification, but only
pattern-matching. A copy of the integrity constraint is made, with fresh
new variables in place of universally quantified variables; existentially
quantified variables are not copied. Unification is then performed between
the abduced literal and its matching literal in the copy of the IC. Notice
that unification is, in general, non-deterministic in presence of existen-
tially quantified variables (if we have two literals A, p(A) 3B, p(B), one
possibility is that A = B, the other is that A # B). If unification succeeds
(the boolean Unify is true), the existential terms are divided from the
others and abduced, while the others are imposed, upon backtracking, as
a new IC (eventually with some existentially quantified variables).

5 Conclusions and Future Work

In this paper we proposed two interpretations of abduction in a CLP set-
ting: one with integrity constraints defining a CLP solver for the domain
of abducibles, the other with both abducibles and integrity constraints as

constraints a la CLP. In both proposals, we rely on a CLP(Bool) solver
to efficiently propagate integrity constraints.

In future work we would like to embed CLP constraints also on the
variables of abduced literals: since many CLP(FD) languages contain rei-
fied constraints (i.e., constraints whose truth value is a boolean variable),
they should integrate smoothly in our framework: we map abducibles
into constraints abd(Atom, Bool) that can be considered as a particular
instance of reified constraints.

Also, we would like to extend the framework to accept universally
quantified variables in abduced literals: this could exploit more deeply
the propagation performed by the CLP(Bool) solver.

A very important issue will be experimentation and comparison with
other available implementations of abductive proof procedures.

References

1. Kowalski, R., Toni, F.; Wetzel, G.: Executing suspended logic programs. Funda-
menta Informaticae 34 (1998) 203-224

2. Kakas, A.C., Michael, A., Mourlas, C.: ACLP: Abductive Constraint Logic Pro-
gramming. Journal of Logic Programming 44 (2000) 129-177

3. Wetzel, G.: A unifying framework for abductive and constraint logic programming.
In Franois Bry, Burkhard Freitag, D.S., ed.: Twelfth Workshop Logic Program-
ming, WLP, Mnchen (1997)

4. Kakas, A.C., Nuffelen, B.V., Denecker, M.: A-System: Problem solving through
abduction. In Nebel, B., ed.: Proceedings of IJCAI 2001, Seattle, Washington,
USA, Morgan Kaufmann (2001) 591-596

5. Frihwirth, T.: Constraint Handling Rules. In Podelski, A., ed.: Constraint Pro-
gramming: Basics and Trends. Number 910 in Lecture Notes in Computer Science.
Springer Verlag (1995) 90-107

6. Abdennadher, S., Christiansen, H.: An experimental CLP platform for integrity
constraints and abduction. In Larsen, H., J.Kacprzyk, Zadrozny, S., Andreasen, T,
Christiansen, H., eds.: FQAS, Flexible Query Answering Systems. LNCS, Warsaw,
Poland, Springer-Verlag (2000) 141-152

7. Kakas, A.C., Kowalski, R.A., Toni, F.: The role of abduction in logic programming.
Handbook of Logic in AT and Logic Programming 5 (1998) 235-324

8. Jaffar, J., Maher, M., Marriott, K., Stuckey, P.: The semantics of constraint logic
programs. Journal of Logic Programming 37(1-3) (1998) 1-46

9. Bryant, R.: Graph-based logarithms for boolean function manipulation. IEEE
Transactions on Computers (1996)

10. Carlsson, M., Widén, J., Andersson, J., Andersson, S., Boortz, K., Nilsson, H.,
Sjoland, T.: SICStus prolog user’s manual. Technical Report T91:15, Swedish
Institute of Computer Science (1995)

11. Kakas, A.C., Mancarella, P.: Abductive logic programming. In Marek, V.W.,
Nerode, A., Pedreschi, D., Subrahmanian, V.S., eds.: Proceedings of the Workshop
Logic Programming and Non-Monotonic Logic, Austin, TX (1990) 49-61

12. Fung, T.H., Kowalski, R.A.: The IFF proof procedure for abductive logic program-
ming. Journal of Logic Programming 33 (1997) 151-165

