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Abstract. We propose a parametric introduction of intensionally defined sets
into any CLP(D) language. The result is a language CLP({D}), where con-
straints over sets of elements of D and over sets of sets of elements, and so on,
can be expressed. The semantics of CLP({D}) is based on the semantics of logic
programs with aggregates and the semantics of constraint logic programming
over sets. We investigate the problem of constraint resolution in CLP({D}) and
propose algorithms for constraints simplification.

1 Introduction

The literature is rich of proposals aimed at developing declarative programming frame-
works that incorporate different types of set-based primitives (e.g., [1,10,17,4]). These
frameworks provide a high level of data abstraction, where complex algorithms can be
encoded in a natural fashion, by directly using the popular language of set theory. These
features make this type of languages particularly effective for modeling and rapid pro-
totyping of algorithms.

A recognized downside of most of the existing languages embedding sets is the focus
on extensional set constructions [4,10,12,8] and/or the severe restrictions imposed on
the use of intensional set constructions [17,16]. Intensionally defined sets (or simply,
intensional sets) are collections of elements where the membership is decided by prop-
erties (instead of enumeration). There is significant evidence that the ability to handle
general intensional sets can drastically simplify the development of solutions to complex
problems, leading to more convenient languages and more compact programs.

In this work we propose a parametric introduction of intensionally defined sets into
any CLP(D) language—for instance D can be F'D for Finite Domains, R for Real num-
bers, and so on. Given a language CLP(D) and its interpretation domain D, we define
the domain Up, which is used to construct an intuitive interpretation for intensional
sets and set-based constraints (Section 3). We define a new language, CLP({D}), where
D-constraints can be expressed, as well as arbitrarily nested extensional and intensional
sets of elements over D and constraints over these entities. The development of a se-
mantics for CLP({D}) program involving intensional sets introduces problems similar
to those arising for the semantics of logic programs with aggregates. In Section 2 we
explain the relationships between aggregates and intensional sets.

The semantic characterization of CLP({D}) (Section 4) is provided as a general-
ization of Gelfond and Lifschitz stable model semantics; this allows us to provide a
semantics to a larger class of programs than various previously proposed schemes (e.g.,
[17,6])—in particular those relying on the use of stratification.



In Section 5 we build on our previous research on constraint solving in presence of
sets [4] to provide an incomplete solver for constraints of CLP({D}). The proposed solver
is aimed at simplifying constraints to a canonical form. In particular, the main goal is
to eliminate occurrences of intensional sets from the constraints without explicitly enu-
merating their elements. Some constraints between intensional sets are easily seen to be
undecidable (e.g., {X : p(X)} = {X : q(X)}); this prevents us from developing a para-
metric and complete constraint solver. To address this issue we subdivide the constraint
solving process in two parts. The first part (propagation) relies on the use of rewriting
rules that take advantage of the semantics of set operation to avoid the explicit com-
putation of intensional sets. The second part (labeling) forces the removal of intensional
sets—via translation to formulae requiring the use of negation and/or explicit grouping of
solutions. The intuition is that, while propagation is transparently performed whenever
possible, labeling—a potentially expensive step—should be explicitly requested.

2 Related work

A number of proposals have been made to support the introduction of aggregate functions
in deductive databases and logic programming. Among them we discuss [11,18,15, 14,
3], where a constraint aggregate is an equation of the form

E=F({e[X.Y.2] : (32)plX.Y.2]}) (1)

whose intuitive semantics is: given values for the variables Y (grouping variables), collect
all the expressions involving X such that there are values for the variables Z (local
variables) such that p[X,Y’, Z] holds. Then apply the function F on this (multi) set.

In this paper we consider a particular function F: if S is a multiset of elements (defined
by a property), then F(S) returns the set of all those elements (namely, it removes
repeated occurrences of elements). On one hand, this may appear as a simplification—
there is no need to compute possibly complex functions. On the other hand, this leads to
a number of complications. In particular, sets have to be introduced as first-class citizens
of the language and they must be properly interpreted and dealt with.

[14] provides a minimal model semantics for monotonic program (i.e., programs for
which the Tp operator is monotonic). However, monotonicity is in general undecidable,
and the syntactic restrictions they impose to ensure it are rather strong. Moreover, F
can be only a simple function of the elements of the aggregate (such as SUM, MIN, MAX).

In [11], the authors introduce aggregate subgoals and they investigate both the three-
valued Well-Founded Semantics and the two-valued Stable Model Semantics for programs
containing aggregations. As in the case above, the aggregate function F, is a simple
function of multisets. In [15], the authors investigate the problem of checking satisfiability
for programs with aggregate subgoals when the function F is a simple multiset SQL
aggregate function. The well-founded and stable model semantics for logic programs
with aggregates is extended through the use of approximation theory in [3].

The work that comes closer in spirit to what we propose here is [18], where Van
Gelder provides a treatment of aggregates based on the capability of expressing a col-
lection (findall) of answers to a predicate. The idea is that the function F can be easily
programmed on top of this aggregate capability. Analogously to the proposal in [4] (and
implicitly provided also in [17]), Van Gelder shows how to program findall using nega-
tion. As discussed at length in [5], the definition of set-grouping can exploit the following



intended semantics of intensional sets:

E={X:pX)} oVX(X € E—-pX)AVX(p(X) > X € E) 2)
—VX(X € E—p(X))A—-3X(X € ENAp(X)).

The first subformula can be implemented using a recursively defined predicate (for finite
sets)—this corresponds to what authors have called restricted universal quantification
[4,12]—while the second subformula can be expressed as a negated predicate, whose
single clause definition has X ¢ E A p(X) as its body. Semantics is therefore reduced
to the semantics of Prolog programs with negation. In [18] the Well-founded semantics
has been employed to handle negation in this framework, while in [5] a general form of
constructive negation was used. This approach is very general. Nevertheless, the direct
transformation approach used to handle aggregations via negation has drawbacks. If the
desire is to allow a general use of sets as first-class citizens of the language, then one
needs to explore the interactions between set constructions and negation—which are
not straightforward [5]. Moreover, investigating the semantics of aggregation through
translation to other constructs hampers the development of implementation techniques
that could be directly targeted to aggregation—especially implementations based on
constraint solving and delaying techniques.

Our investigation builds on the work conduct in the development of a full-blown CLP
language over sets. The language CLP(SET) [4] is an instance of the CLP framework,
whose constraint domain is that of hereditarily finite sets. CLP(SET) allows sets to
be nested and partially specified, e.g., set elements can contain unbound variables and
sets can be only partially enumerated. CLP(SET) provides a collection of primitive
constraint predicates sufficient to cover all the basic set-theoretic operations (along with
their negative counterparts, e.g., € and ¢). In [4] we presented a complete constraint
solver capable of deciding the satisfiability of arbitrary conjunctions of these primitive
set constraints. Intensional sets are allowed, but they are rewritten [5] according to the
technique sketched in formula (2). Moreover, CLP(SET) does not interoperate with
other constraints solvers.

3 Syntax

Following the notation of [9], let D be an arbitrary constraint domain and Cp be a
class of admissible constraints for D. The language we propose has a signature X =
(s, IIp, Ip,F,V) (S stands for Set, D for Domain, and P for Program). Intuitively,
Il s provides constraint predicates to handle sets, IIp provides the constraint predicates
inherited from the underlying constraint domain D, while IIp contains the user-defined
predicates. In particular, we assume that IIs contains €,Us, N3, C, || (these are the basic
set predicates used in [4]). Furthermore, F = Fs U Fp U Fp, where Fp contains the
function symbols provided by the language of D, Fp contains the free function sym-
bols, while Fs contains the traditional function symbols used to create terms denoting
sets. In particular () and the binary set-constructor symbol {-|-} [4] are expected to be
present in Fg (Intuitively, the term {s | ¢} denotes the set {s} Ut). Fs,Fp, and IIs
allow to write terms and constraints regarding extensionally defined finite sets, such as
0,{a,b},{0,{a,b}}. The set V contains a countable number of variables. Variables are
separated in the three sorts D, P, and S.

Definition 1. We allow three sorts D, P, and S for terms.



— For X € {D, P, S}, constant symbols from Fx are terms of sort X.

— We assume that function symbols from Fp of arity n have the sort D" — D.
— The sort of {-]-} is(DUPUS) xS — S.

— The sort of a function symbol from Fp of arity n is: (DUPUS)™ — P.

Definition 2. Atoms are defined as follows:

— If p € IIp with arity n and t1,...,t, are terms (of any sort), then p(t1,...,t,) is a
Il p-atom.

— If p € IIp with arity n and t1,...,t, are terms of sort D, then p(ti,...,t,) s a
domain constraint atom (or simply a D-atom).

— If p € IIs with arity n and ty,...,t, are terms of sort S, then p(t1,...,t,) is an
Intensional constraint atom. The only exception is represented by €: if t is a term of
any sort and s is a term of sort S, then t € s is also an Intensional constraint atom.

—ifE €V, t1,...,t, are terms, p € IIpUIlp with arityn, then E = {X : p(t1,...,t)}
is an aggregate constraint atom. The sort of E is S.

A S-atom is either an intensional constraint or an aggregate constraint atom.

Observe that the aggregate constraint atom is exactly the constraint aggregate (1)
where F is the identity function and the expression e is simply the variable X. We admit
intensional sets only in atoms of the form above. Observe that limiting our attention to
this form of aggregation does not lead to any loss of generality. The variables indicated
with Y in (1) can appear as arguments of p(t;...,t,), while the local (existentially
quantified) variables can be directly placed within the program rules defining p.

Definition 3. A D-admissible constraint is any formula belonging to the class of con-
straints Cp. A S-admissible constraint is a propositional combination of S-atoms. For
the sake of simplicity we do not allow the use of negation applied to aggregate constraint
atoms. Let us denote with Cs the class of S-admissible constraints.

A {D}-admissible constraint is a propositional composition of D-admissible and S-
admissible constraints. We will denote with Cypy the class of {D}-admissible constraints.

Definition 4. A CLP({D}) rule is a formula H < cs,cp|B, ..., B, where
— ¢p 18 a D-admissible constraint,
— c¢s s an S-admissible constraint, and

— H is a IIp-atom and By, ..., B, are IIp-literals (i.e., IIp-atoms or their negations).
A CLP({D}) program P is a finite collection of CLP({D}) rules.

4 Semantics
In this section we provide the semantics for the language CLP({D}). In particular, we
propose an interpretation of the aggregate constraint atoms based on a variation of stable
model semantics [7].

Let D be the initial domain constraint, D its interpretation domain, and Ip its
interpretation function. We define the domain Up = Ui>0 U; where:

Uy, =D
Uipr = U; U pUs)
Observe that, if D is finite, then Up is a set of hereditarily finite sets. Otherwise, Up

contains infinite sets. We will use the following partial order on Up: given two elements
a,beUp:a<b ifandonlyif aCbora,be D anda=>".



Stable model semantics for logic programs are based on the notion of grounding of a
clause. This semantic notion becomes rather syntactical when the interpretation domain
is based on the Herbrand Universe. However, in a CLP context the domain is in general
more complex than the Herbrand Universe. Thus, we redefine the notion of grounding
based on our interpretation domain Up.

Definition 5. (Pre-interpretation) Let t be a term and o : vars(t) — Up be a valuation

function that maps variables of sort D to elements in D, variables of sort S to elements

in Up \ Uy, and variables of sort P to elements in Up. Furthermore, let R be a map that

associates to each element f € Fp of arity k a k-ary function from Up* to Up. R is

called the base of the pre-interpretation. The pre-interpretation t™° of a term t w.r.t.

R, o is defined as follows:

— if t is a variable, then t17 is o(t).

—if t is a constant of sort D, then t% = tP (i.c., the standard interpretation of the
constant in the constraint domain D).

—if t is f(t1,...,tx) and f € Fp, then tfHo = fD(tf’U,...,th’g), where fP is the
standard interpretation of f in D.

—if t is 0, then t™7 is the empty set.

—ift is {a|b}, then t©° is the set bT7 U {af7}.

—if t is f(t1,...,tx) and f € Fs, then tfo = fS(tf’”7...,tf’U). where fS is the
standard set-theoretic interpretation of f.

— if t is a constant in Fp then t™7 is simply t%.

— if t is a variable of sort P then t™° = o (t).

—iftis f(t1,...,tx) and f € Fp then tfto = fR(t?’U,...,t,}j’U).

If ¢ does not contain variables, then we will simply use t? instead of . In the rest of
this discussion we will assume that the base R of the pre-interpretations is fixed.

Definition 6. (Grounding) Given an atom A and a pre-interpretation R, o for the terms
in A (where o is defined for all variables in A), we define the notion of grounding of A
w.r.t. R,o as follows:

—If A=p(t1,...,tn) is a D-constraint atom, the grounding of p(t1,...,t,) w.r.t. R,o
is true if D = p(tf/’o, ..., tl9) false otherwise.

—If A=p(t1,...,t,) is an Intensional constraint atom, then the grounding of the atom
w.r.t. R, o is the atom true if p*» (tf”’a, ot s true (where pYP s the traditional
set-theoretic interpretation of the predicate p on the domain Up), the atom false
otherwise. In particular, given R and o:

o Us(s1, 82, 83) is pre-interpreted as sf’” = S?’U U 85’0
e 5 €t is pre-interpreted as s €t

e s C t is pre-interpreted as ghbo C tho

o s||t is pre-interpreted as s™7 Nt =)

e N3(s1, S2,53) is pre-interpreted as sg’a = s?’g N 85’0

— IfA=p(ty,...,t,) is a [ p-atom, then its grounding w.r.t. R, o is the object p(tf’”, ot

— If A is an atom of the form E = {X : B} and B’ = B[X/X'] is B with X re-
named to X' (X' a new variable), then its grounding w.r.t. R, o is the equality E™7 =
{X": B},



Given an atom A and a pre-interpretation base R, a grounding of A w.r.t. R is a
grounding of A w.r.t. R,o for an arbitrary o : vars(A) — Up (such that R o is a
pre-interpretation for the terms in A). The notion can be easily extended to rules.

Let us assume the base of the pre-interpretation R to be fixed. Let Ip = (D, (-)?)
be the standard interpretation adopted for the constraint domain D.

Definition 7. An interpretation I is a pair (Up, (-)1), where the interpretation function

() is defined as follows:

— I coincides with Ip on the interpretation of atoms built using Fp and Ip.

— €,C,Us, and the other symbols in Ils are interpreted in Up according to their standard
set-theoretical meaning.

— = is interpreted as the identity over Up.

— () interprets each predicate symbol in IIp as a predicate over Up.

— for each grounding R,o of E = {X : A}, (-)! interprets (E = {X : A})®° to true
if ER is equal to the set {X' : (B'"®7)I} (where X' is a new variable and B’ is B
with X renamed to X').

Observe that, under the assumption that the variable X does not occur in p[Y], then
semantics of {X : p[Y]} then its semantics is the empty set () if there is no value for Y
s.t. p[Y]; it is the entire universe Up otherwise.

Let I and J be two interpretations on Up. We say that I < J if for each atom P =
p(t1,...,t,) and for each grounding R, o of P there exists a an atom Q = p(s1,...,Sn)
and a grounding R, of Q such that (P®2)T — (QR?)7 and (t77)! < (sf) for
i=1,...,n. Given an atom P and a grounding R, o of P, we define an interpretation
to be a model of P if (P17 is true. We denote this fact with I = P, Similarly,
we can extend the definition of = to conjunctions of atoms.

We define an interpretation I to be a model of a grounded rule head < cs, cp | body
if I = cs Aep Abody implies I = head. I is a model of a rule if it is a model of each
grounding of the rule.

Stable Model Semantics. Let P be a CLP({D}) program and let I be an interpretation
(built on the pre-interpretation base R). Let P’ contain all possible R, o groundings of the
rules in P. Following the principles used in [7], we define the intensional stable model
transformation G(P,I). The transformation is achieved in two steps, i.e., G(P,I) =
Gset(Gneg (P7 I), I)
The first transformation, G4 is defined as follows: for each
head — ¢s,cp | A1,y..., Ap, By, ...,— By,
rule in P’ if for all B;, 1 <4 < m it holds that I = —B;, then the rule instance
head — cs,cp | A1,y ..., An
is added to Gpey(P,I) (otherwise the rule is erased).

Observe that Gpeq(P,I) is the grounding of a program without negation.

The transformation G is defined as follows; for each rule head < cs,cp | A1, ..., A,
in Gpeg(P,I) (ie., a grounding of a program rule without negative literals), if for all
atoms [ in cg it holds that I = A then the rule

head — cp | Ay,..., A,
is added to Gset(Greg (P, I), I) (otherwise the rule is erased). The program Get(Greq(P, I),I)
is the grounding of a program without negation and without set atoms.



Definition 8. I is a stable model of P if I is the least Up-model of the program
Gset(Gneg(Pv I)vI)

Ezample 1. Consider the program: r(1).p(X) «— X ={Y : r(Y)}. and let us consider
Gset(P, 1) for I = {r(1),p({1})}. With X = () the constraint aggregate becomes: ) = {1}
which is an atom false in its interpretation in Up. This grounding is removed. The
only true grounded clause is: p({1}) «— {1} ={Y : »(Y)}. Thus, Gset(Greg(P, I),I) =
{r(1),p({1})}. I is a stable model of P.

Proposition 1. Let P be a CLP({D}) program.
1. if I be a stable model of P, then I is a model of P.
2. 1f I is the unique stable model of P, then I is the <-minimal model of P.

We cannot claim minimality in general. Consider:

rQ). ). _(x -
M@, al) e Z= (X r(X))p(z). PO TV =10k

If we study the stable models we find two of them: I; = {q(1), ¢(2), p({1,2}),7(1),7(2)}
and I = {¢(1),p(1),7(1),7(2)}. Observe that I; < I5. The fact that non-minimal models
can be stable models is a common problem in the use of stable model semantics for
handling of aggregates (without restrictions on the aggregate operation) [11]. Similar
problems are present for the limited set aggregations described in [13].

5 Constraint solver

A CLP({D}) constraint is a conjunction of CLP({D}) primitive constraints. In the

language CLP({D}) we recognize different classes of primitive constraints:

— D-constraints: these are constraints that are built using exclusively symbols from D;
we assume that all the D-constraints that can be generated belong to the class Cp. We
also assume that this class of constraints is decidable, and we denote with SATp the
procedure used to solve this class of constraints.

For the resolution of certain classes of constrains we will also require the class Cp to
be closed with respect to negation.

— Extensional S-constraints: these are set constraints that do not involve any occurrence
of intensional sets. This class of constraints is decidable and it corresponds to the class
of constraints supported by the language CLP(SET). In [4] an effective procedure to
solve constraints in this class is proposed—we denote with SATsg7 such procedure.
Traditional equality and disequality constraints between terms of the sort P are also
treated in this procedure.

— Intensional S-constraints: these are S-constraints that contain occurrences of inten-
sional sets. A procedure to handle this type of constraints is described in this section;
we refer to this procedure as SATs.

In order to accomplish the goal of resolving constraints in CLP({D}), we develop a con-

straint solver, called Solve;p). This solver repeatedly simplifies the constraint until no

further simplifications are possible. The overall structure is shown in Fig. 1. Since con-
straint solvers can be non-deterministic, with ¢/ = SATx(c) we mean one of the possible
non-deterministic solutions returned. Thus, Solve;py(C) is a non-deterministic proce-

dure. In addition, for a program P we also introduce another function, called Solvegoal p.



Solve(py (C) :

repeat
select ¢ in C;
if ¢ is a D-constraint then ¢ = SATp(c);
if c is an Extensional S-constraint then ¢ = SATser(c);
if ¢ is an Intensional S-constraint then ¢’ = SATs(c);
replace ¢ by ¢ in C;

until no rewriting is possible;

Fig. 1. Overall structure of Solve{p}

The predicate Solvegoalp applied to a IIp atom or formula means that the solving of
its argument is delayed at the end of the constraint solving and it will be done by
the general (constraint) resolution procedure. The only requirement we impose is that:
Solvegoal p(G)) < G. The intuition is that the Solvegoal » will encode the language mech-
anisms required to support the explicit removal of intensional sets—e.g., using negation
(as in Sect. 2). In this section we develop constraint solvers for intensional constraints,
showing the generality of some rewriting rules (propagation) and the difficulties intro-
duced by other rewriting rules (labeling). We also discuss the cooperation between the
three solvers. We allow intensional terms to occur freely as terms in programs. It is
immediate to automatically transform a program into the flat form of Def. 4.

Propagation Procedures. In this subsection we present some rewriting rules for S-constraints
of CLP({D}) that can be easily implemented starting from any initial domain D; these
rules allow us to deal finitely with intensional sets (without any restriction on the finite-
ness of the intensional sets). The application of these rewriting rules to a S constraint
C leads to a disjunction of constraints that is equisatisfiable to C'. However, the rewrit-
ing rules are incomplete, since constraints obtained might be unsatisfiable, but unsat-
isfiability could be not detected right away. Thus, the behavior is not dissimilar from
that of incomplete constraint solvers used in other CLP systems—e.g., arc and bound
consistency employed in FD solvers (e.g., in SICStus Prolog) are insufficient to detect
unsatisfiability of a constraint such as

Xinl.2,Yinl.2,Zinl.2, X #2Y, X £ ZY # Z.
A complete constraint solver can be obtained using a procedure analogous to the labeling
used in CLP(FD). We discuss this enhanced capability in the following subsection.

Some propagation rewriting rules are presented in Figure 2. These propagation rules
are meant to complement the rewriting rules that have been proposed in our previous
works to handle constraints over extensionally defined sets—due to lack of space we omit
reproducing these rewriting rules, and the interested reader is referred to [4,2]. Due to
space limits, we give only the rewriting rules for some of the predicates involved, in
particular for those assumed primitive in [4] and C. No rules are needed for JJs since
the unique rule in [4] apply to intensional sets, as well.

All the propagation rules presented in Fig. 2 do not actually compute the intensional
sets—i.e., they do not force the explicit enumeration of the elements of the intensional
set; thus, they can work without any assumption on the finiteness of these sets. More-
over, they do not introduce negation, but negated constraint literals that are treated as
constraints—this can be seen, for example, in case =-2. in Fig. 2. In addition, some of
the propagation rules are non-deterministic—see, for example, the case #-3. The pres-



ence of non-determinism leads to a family of constraints that are returned at the end
of the processing, whose disjunction is equisatisfiable to the initial constraint C. In the
rewriting rules we also omit the explicit description of the steps used to verify violation
of the sorts of the predicates (with the exception of the =-1 and #-1 cases).

We use some syntactic sugar in the rewriting rules. We make use of the notation
{X : 1 Vo) torepresent {X : p(Y)}, where {Y} = FV (p1)UFV (2) and pis defined
as: p(Y) « @1 V 2. Another syntactic sugar is less(X,Y, Z), defined as

VX,Y,Z(less(X,Y,Z) « Y ={X | Z}ANX & Z)
namely, Z is the set Y without the element X . Other rewriting rules for propagation are
also easy to be defined; for instance,

N3({X : o1} {X @2}, s) > s={X : ¢1 Apa}
we omit a complete list for space reasons.

Other rewriting rules can be considered if we accept the use of negation. Negation
is allowed in CLP({D}) programs. However, it is clear that it might introduce new
problems. In particular, it introduces requirements on the capabilities of the D constraint
solver to handle more difficult constraints. The rewriting rules proposed in Figure 3 rely
on the assumption that the classes of constraints Cp and Cs are closed w.r.t. negation.
Observe that the rules in Fig. 3 produce a negated version of the property employed to
construct the intensional set. It is important to observe that the interaction between the
constraint solvers may actually facilitate the handling of negated constraints—e.g., by
grounding its argument and thus making it easier to solve. Although the rules for ¢- and
||-constraints make use of negation, the intensional sets (that could be infinite) do not
need to be explicitly enumerated (as described in equation (2) of Sect. 2). Thus, these
rules are applicable without having to rewrite the aggregates using negation.

Correctness and completeness of the rewriting rules are immediate consequences of
the semantics of the set-based operators involved. These results can be formally proved
in the theory Set [4], a minimal set theory that deals with 0, {-|-},=, €,Us, || (and also
with N3 and C, that can be easily defined in terms of the previous ones). The theory has
to be extended by adding the well-known comprehension scheme of the ZF set theory

VsVy (y € {X €s: ¢[X]} < (y € sAp[X/y])) for any f.of. ¢.

Condition ‘X € s'—introduced by Zermelo in 1908—is used to overcome Russell’s famous
paradox (pick ¢ as X ¢ X). In the syntax for intensional sets this condition is not
required. We assume that X € Up. With ¢ € Solve;py(C) we mean one of the possible
non-deterministic solutions returned by Solve;p) (C).

Proposition 2. (Non-negative Simplification) Let Cp be a decidable class of D-constraints;
let Solveypy be defined as in Fig. 1, with SATs composed of the rules in Figure 2.
Let C be a CLP({D}) constraint and P be a CLP({D}) program. Then Set,D,P

(C & Vc.550/ve{p}(0) C)'

Proposition 3. (Negative Simplification) Let Cp be a decidable class of D-constraints
which is closed w.r.t. negation. Let Solve(py be defined as in Fig. 1, with SATs composed
of the rules in Figure 2 and in Figure 3. Let C be a CLP({D}) constraint and P be a

CLP({D}) program. Then Set,D, P |= (C’ = \/CESOIVG{D}(C) c
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Fig. 2. Propagation Rewriting Rules




¢Z-constraints
Z-1. t & {X : ¢} Solvegoal , (—p[X/t])
||-constraints
] ] Solvegoalp (X (o A 1) VIX (mp AY))) V
b2 X 5 X 5 gy JopeEonle (SN
[IF3.  {X : ¢}||{s |t} — Solvegoal p(—p[X/s]) Aless(s, {s | t}, N) AN{X : o} JIN

Fig. 3. Propagation with negation

Labeling. The propagation rules allow us, given an original constraint C', to determine
a disjunction of constraints that is equi-satisfiable to C'. Each constraint belonging to
the disjunction is “simpler” than C—e.g., it may contain fewer occurrences of inten-
sional constraints. On the other hand, these rewriting rules do not constitute a complete
solver—in particular, there is no guarantee that unsatisfiable constraints are reduced to
false and tautologies are reduced to true. This situation makes the rewriting procedure
weaker than, for example, the procedures used in CLP(SET), where each set constraint
can be always reduced either to false or to a satisfiable constraint in canonical form.

In order to approximate a similar behavior in the context of CLP({D}) it is necessary
to force the removal of intensional sets from the constraint. This process can be seen
as a sort of labeling of the variables in the constraint. More in detail, intensional sets
must be expanded (and, possibly, D-constraints may have to be subjected to a similar
transformation). We show in Figure 4 how the labeling can be accomplished in the various
cases left. Observe that the right-hand side of the transformation can be encoded either
through the use of negation or by introducing an explicit construct to collect solutions
to a goal (e.g., findall). The additional rewriting rules cannot guarantee completeness
in general, since the problem is inherently undecidable.

=-constraints
3A{X 1 o} =0 — Solvegoal , (=(3X p))
4.{X : p1} ={X : pa} — Solvegoal , (VX (¢1 < ©2))
C-constraints
5. {X : o1} C{X : w2} — Solvegoal , (VX (o1 — ©2))

Fig. 4. Labeling using negation

Further Considerations. Negation as failure in the context of a language with sets has
been studied only for programs that are stratified and meet restrictive allowedness re-
quirements to avoid floundering [17]. Constructive negation in the context of Constraint
Logic Programming with Sets has been studied in [5]. However, the class of programs
that can be dealt with successfully does not enlarge significantly the class of those that
can be dealt with negation as failure and stratification. Moreover, the D constraint solver
should be able to deal with a class of constraints Cp that is closed w.r.t. negation (a
requirement which could be problematic in certain domains).

6 Conclusions

In this paper we presented preliminary ideas on how to extend any C'LP(D) language
with set-based primitives and constraints. The novelty of the framework is not only the
presence of intensional sets but the ability to develop (extensional and intensional) sets
on top of arbitrary constraint domains D. We developed a syntactic and semantics speci-



fication of the new language (called CLP({D})). We also developed rewriting algorithms
to simplify constraints containing intensional sets—relying on the use of negation.

In the immediate future we plan to effectively implement the technique at least for

some largely used constraint domains, such as finite domain constraint. A preliminary
result in this direction is [2] where the CLP(SET) constraint solver is integrated with
the CLP(FD) constraint solver of SICStus Prolog. In this preliminary work intensional
set constraints are allowed but currently solved via explicit enumeration.
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