
A Knowledge Transaction P rocessing Language

and Model for Mobile Application

J. Cheo1 •2 andY. Zhang2

1 IBM Global Service Australia

20 Berry Street, North Sydney, NSW 2060, Australia

E-mail:jchen@au Ubm.com
2 School of Computing ll.lld Information Technology

University of Western Sydney

Penrith South DC, NSW 1797, Australia
E-mail: yan@cit.uws.edu.au

Abstract. Abstract. A new environment model is proposed in this pa­

per to study transaction processing, intelligent agent and knowledge base

in mobile environment~. This model combines the features of mobile envi­

ronments and intelligent agents. Another very innovative aspect of Ulis

paper is that a knowledge transaction processing language and model

for mobile environments is defined and form alized by using logical pr<r

gramming as a mathematic tool and formal b-pecification method. We

use this knowledge transaction language and model to study transaction

processing iu mobile environments.

1 Introduction

Studying intelligent agent and knowledge base in mobile environments is a very

new and meaningful research area. A manager uses mobile host to do t he rule

based decision-making and negotiation is a very practical study case in !.his re­

search area.. The issue of data and knowledge transactions has presented new

challenges for researchers in mobile environments because of tho feat ures of mo­

bile environments. There seems t.o be a separ~ttion between multlagent. systems

and the inteUigeut agent.s community on one side, and Lhe mobile agents com­

munity on the other side [12}. A<;; so far very few work has been done and no any

formal study has been conducted to the i~ue of knowledge transaction in mobile

environments, as the first step, Lhis paper proposes a knowledge tran~>action pro­

cessing language and model in mobile environments. The paper is organized as

follows. In section 2. we give some background knowledge on intelligent agents

and mobile environments, and then int roduce our new environmental model. In

section 3, we describe Lhc transaction processing in mobile environments and

introduce relevant concepts of logic programming. In section 4, we formalize a

knowledge transaction processing language and model in mobile environments.

In section 5, we give a t ransaction example to demoru.-trate how a knowledge

transaction is processf)d based on our transaction language and model. In sec­

tion 6, we conclude and summarize our work.

51

2 Environment Model

When we ::,'tudy the transaction processing [3, 6] in mobile environments, we
choice the following environment model t.o represent the salient features of mo­
bile environments discw:>.~ed in the paper [2, 7, 9]. We are looking at a Home
Server (HS) acting as permanent. st.orage of Mobile hosts' {MH) Files. There arc
Mobile Support Stations (MSS) providing serviees to a NIH when it is wit hin
its ceil. T he MSS is corweeted to the HS via hardwires. The MH is continu­
ously connected to a MSS via a radio link while a,J;ccssing data. It may, however,
become disconnected either voluntarily or involuntarily. There is a centralized
database rt.-siding in the HS. On each mobile host, YIH, there re:>idcs a trans­
action manager which preprocesses transaction operations; a scheduler which
cont.rols the relative order in which transat:tion opcrat.ions are executed; a re­
covery manager which is rc::,'])onsible for commitment. and abort ion management
and a cache manager. The transaction study model in the mobile environment
is then described as shown in Fig.l. When we study the intelligent agent in

Sends the page in MH Profile

Receives MH Profile and
creats proxy for MH and caches

_ MHProfile
~Wireless link

~Caches the subprofilc

Fig. 1. Tl:ans i1.ions Study Model in mobile environments.

non-mobile environments, we usually use the following environment. model [10]
~U> shown in Fig. 2.

Fig. 2. Intelligent Agent Model.

52

The idea is that function sec captures the agent's ability to observe its envi­

ronment whereas function action represent:; the agent's decision making process.

Fundamentally, an agent is an active object with the ability to perceive, reason

and act. We <l.!>~mmo that an agent has explicitly represented knowledge and a

mechanism for operating on or drawing inferences from its knowledge. We also

assume Lhat an agent has the ability to communicate. In a distributed computing

system, agents communicate in order to achieve better goals of Lhemselves or of

the system in which they exist. In order to study intelligent agent and knowledge

base ill mobile environments, we prop,Jse a new environment model by integrat­

ing the features of mobile environments and intelligent agents as shown in Fig.

3.

Fig. 3. Intelligent Agent in mobile environment.

In the environment model above, we assume that every Mobile Host (MH)

has its own knowledge base (KB) and intelligent agent (All , A12, A21, A22},

every MSS has knowledge base residing on it as well, MSSl and MSS2 represent

different MSS in different geographic areas. In Home Server (HS} level, there is

a knowledge base which has a set of rules in it. Every intelligent agent onMH is

3 Mobile TransactiOn Processing and Logic Programs

A typical transaction T inmobile environments wiU look like [4J: Contactproxy

~ r[xJ --t w(x] _. inu -. Contactproxy --t s ~ wy -+ • · • --t c

contact proxy -+ · - · -+ Contactproxy -+ s ~ wu -+ · · · -+ c

in which the proxy first acquires the appropriate set of Jocks for the MH. Once

a write is executed , t he proxy is asked to broadcast a report of invalidation to

proclaim the existence of a new version of x. In this example, t he MH, after

serving a number of operations of t he T. decides to go to sleep voluntarily. This

is done by first contacting the proxy and then flushing all its dirty pages (to

the MSS) and releasing all t he write-locks it holds. Upon waking up, the MH

53

goes through a process similar to start-up, i.e. there will be fetches of data
objects (possibly through the proxy) and [9] requests through the proxy. The
remaining operations are then executed under the covering of Lhe locks. Finally,
the transaction is committed Ulrough delayed writes [13] to the MSS. In the
case of involuntary sleep the proxy is not contacted and completed with MH in
another one. In t his case, t he transaction T becomes:
Contactproxy --+ r[xJ _, w[xJ --> inv --> move --> Contaciproxy --+ · · • --+ c
Here we have lum ped all tho activities related to handoff and the creation of a
now proxy by a new MSS into the operation move.

3.1 Extended Logic Programs

In non-mobile environments. tradit ional logic programming is used as a knowl­
edge representation tool. An important limitation of this method is that logic
programming doe:; not allow us to deal directly with incomplete informa.t.ion,
and therefore we only can get either yes or no answer from a query. Thi::; i::;
because in lhe traditional logic programming, closed world assumption is auto­
matically applied to all predicates (5], understand that there is a major cli..ffcrent
between the scenario thai the transaction fails and the transaction hangs on due
LO mobile user's sleep. Therefore, in mobile environments, we need a method
which can deal with incomplete information directly, and this method should
handle the transaction fails in the sense of its negation ::;ucceeds and transaction
docs not succeed in the mobile situation. The extended logic programs [5] can
overcome limitation above from traditional logic programs, it contains classical
negation..., in addition to negation-as-failure not. An extended logic program can
include explicit negative information. In the language of extended programs, we
can distinguish between a query which fails in the sense that it does not suc­
ceed and a query which fails in the stronger sense thaL its negation succeeds. By
a.ddil1g mobile semantics to extend logic programl:i, we can usc Lhis method to
study transaction processing and deal with the incomplete info rmation directly
in mobile environments. In mobile tlemantics, classical negation ..., is defined as
explicit ocgat.ivo information, is explicit no when t ransaction is explicit fail. In
t he situation thr. mobile host is in voluntary or involuntary sleep, and Lhere­
fore the information is ineornpleteness, we say it is absent of atom A, noted by
notA, therefore it is unkown. 1Ne consider closed world assumption from mobile
semantics as following; If mobile host is in voluntary or involuntary sleep and
sleep time is beyond tile limited time, we say we assume -.p is derived [rom not
p at this time, unkown become no ior the transaction. We can express closed
world assumption by the rule -.p(x) ~ notp(x),xfgeT. Here Tis the time limit
for mobile hosts' sleep. An extended logic program is a. set of rules of the form

Where each Li is a literal.
Now we give a. Yale Shooting Problem (YSP) example [1] to demonstrate how

to represent. knowledge in logic programs. The syntax of the language contains

54

variables of t hree sorts: situation variables S , fluent variables F, and action
variable A. Its only situation constant is So, and res(A , S) denotes the new
situation that is reached after the action A is executed in situation S. The
atom holds(F, s) means that the fluent. F is true in situation S. Usually, to
represent prcdicatC1; and functions whose value changes over time, term fluent
is introduced. In the Yale Shooting P roblem, there arc two ftucnts : alive and
loaded, and three actions: wait, load, and shoot. We know thaL the execution of
loading leads to the gun being loaded, and that if the gun i::; ::;hot while it is
loaded, a turkey Fred dies. We have following rules for this example:
Yl: holds(F,res(A,S)) -holds(F,S),rwta.b(A,F,S),
Y2: holds(loaded, 1·es(load , S)) +--,

Y3: ab(shoot, alive , S) +-- holds(loaded, S),
Y4: hold.s(F, res (A , S)) +-- ab(A, F , S),
Let So be the initial state, and suppose we arc given that
Y5 : holds(alive, SO) +--.

n is easy to sec that program gamma entail::; holds(alive, res(load, So)) and
-,holds{ alive, res(shooL, 1·es(waiL, res(load, S0)))) .

4 A Logic Programming Based Transaction Language
and Model

In this section, we start with a complete t ransaction stage by stage Lo give read­
ers a clear idea what activities arc supposed to happen on MR, MSS and HS
at every stage. Then, we define a logic programming (SJ based knowledge trans­
action processing language (TPL) and impose all necessary rules to formalize a
knowledge transaction model in mobile environments.

4 .1 Transact ion Processing Activities

Firstly, let us sec what a.ctivitics happen on "Nffi, MSS and HS on every trans­
action stage [9j. Here, we specify the a.ctivities for t ransaction start and commit
as welL

Startup: Startup is the initial powering up of the mobile computer. When
the MH is powered on, it register~ with MSS. The MH notifies the MSS of its
HS address. MSS then crcaws the proxy process which retrieves the MH profile
from HS. HS sends the pages in the MH profile. The proxy receives and caches
the MH profile.

Start Transaction: The MH requests a query or updale tra.nsaction. The
~ acquires a lock if it is an update transaction. The MSS submits the trans­
action request to HS. The HS docs the transaction after MSS submits the trans­
action request.

Sleep : There arc essentially two types of sleep voluntary and involuntary.
Voluntary sleep is a planned power down, while involuntary sleep is an unplanned
power down. i.e., the !>-ystem crash or run out of battery power. There are different
activities during voluntary and involuntary sleep.

55

Wakeup: Wakeup is the powering up after a MH has been asleep. Although
similar to startup, wakeup has slightly different semantics. The wakeup sequence
is as follows: Upon wakeup, the MH waits to get MSS's addrel:iti (beacon). Upon
receiving the beacon, t he MH sends wakeup notification to MSS and req1Jests
missed messages.

MovejHando.ff: The MH listens for MSS beacon. When lho MH notices
that it i~ in a di£Ienmt region, it contacts the new MSS. T he new MSS contacts
the old MSS to get the state of the MH proxy. The old MSS flushes any dirty
pages Lo HS and sends the pro}..')' state to the new MSS. The new MSS proxy
contacts HS to ~ell iL where to contact the "NIH. 'Phe new MSS proxy broadcasts
any invalidations to MR.

Commit Transaction: The HS commits or aborts transaction according to
the two phase commit protocol. T he HS sends the transact.ion result to MSS.
The MSS broadcasts ~he transaction result to MR. The MH updales t.hc local
knowledge bal:ie according to the transaction result.

4.2 Formalizing a Knowledge Transaction Processing Language

We define our Transaction Processing Language (TPL) to formal.i:Go transaction
related action and Ouent functions at MH, MSS and HS level. We start by
introducing bal:iic sort of functions to characterize the basic components of our
language. We usc actions and ftuents to denote transaction processing activities,
re:>ults and status. We usc x denote:> MH, y denotes MSS, yl denotes MSSl, y2
denotes :V1SS2, and z denotes RS. At each level of MH, MSS and RS, we define
som.o actions and fluents. The a.rgum.ents and values of them will be clear from
their use in the rules below in section 4.3.

Mobile Host (MH) level: We have t he following action::;: M ove(y, x),
Qucry(x), Write(x), Acq·uire -lock(x), Fl·ush (x), Release -lock(x), Request ­
message(x), Fetch - m essage(x) , Update - kn owledge(x). We have t he follow­
ing fl uents: Re g·i s te·red(y 1, x), Query-requested (x), Trans- start(~r;), U pdaLe -
r·equested(x), Locked(x) , V ol - slept(x) ,S leep - s·ig(x), I nvol - slept(x) , Lock ­
cancelled(x), Update -lost(x), Wakeup- s·ig(x), Message - received(x),
Registered(y2, x), Knowledge- updated(x), Commit-broadcasLing(y, x). Abo?·t­
lffoadcasting(y. x), T·imeoutl(x). Action examples: M ove(y, x) denotes MH moves
into MSS cell, Query(x) denotes .NIH has a query transaction reque~-t. Flu­
ent examples: Registered(yl ,x) denotes MH has registered in MSSl , Query ­
requested(x) denotes MH has requested to start a query transaction.

Mobile Support Sta tion (MSS) level: We have the following actions:
Create-proxy(yl, x), Create-proxy(y2, x), Retrieve(y), Cache(y), Broodco.st(y),
M ark(y), Submit(y), Update-sleeptime(y), Buffer(y}, Page-lffoadcast(y l , x),
Page-broa.dcast(y2, x), Cancel- lock(y), Flush(y l), Broadcast(y, x). We have
the following fiuents: Proxy(yl ,x), Proxy(y2,x), Cached(y), Broadcasting(y),
M arked(y), Trans- submitted(y), Buf fered(y), Page - broadcasting(y),
Timeout(x), Nf ove-sig(y2), Flushed(yl) , Commit-broadcasting(y. x), Abort­
lffoadcasting(y, x), Commit- naticed(z. y). Abort- noticed(z, y).

56

Home Server (HS) level: We have the following actions: Send-page(z, y),

Mark- MH(z,y), Do- trans(z}, Kill- proxy(z,y), Send- dirtypa.ge(z , y2),

Commit(z), N otice - comm·i.t(z, y), Notice- abort(z, y) . We have the following

fluents: Sent(z, y), lVf H - marked(z, y), Trans-started(z), Proxy - killed(z, y),

Trans- committed(z), Commit- a.greed(z), Abort- agreed(z) , Timeout2(z),

C ommit- nol'iced(z, y) , Abort- noticed(z, y).

4 .3 Formalizing a Knowledge Transaction Model

Based on the transaction processing language defined above, we start to specify

and impose all necessary rules to formalize a logic programming based transac­

~ion model in mobile environments, modeling all transaction activities, requests,

results and constraints on MH, MSS, and HS three levels. In our language, only

situation constant is So, and res(A, S) denotes t he new situat ion that is reached

after the action A is executed in situationS. The atom holds(F, s) means t hat

t he fluent F is true in situation S.

Mobile H ost. (MH) leve l:

Register: When MH moves into YISS cell, it is registered. The rule for this is

rl : halds(registered(yl ,x).res(move(yl ,x), s)) <-

Start a query or update transaction : For a query transaction, as long as

MH has a transaction request, t he transaction should be started straigh~ away.

The rules are
r2: holds(query - reqtLested(x), res(query(x), s)) -,

r3: holds(trans- sta.rt(x),s) <- holds(query- requested(x),s),

For a update transaclion, after MH has a write request, the lock need to be ac­

quired firstly to start this transaction. The transaction will start after the lock

is available.
r4 : h.olds(update- requested(:c), res(write(x), s)) <-,

r5: holds(trans- start(x), s) <-holds(update- requested(x), s),

holds(locked(x), res(llcquire - lock(x), 1·es(wri·t.e(x) , s))),

Sleep: For a voluntary sleep, the MH informs t he proxy of its intention to sleep,

and then flushes its dirty page:;, gives up any write-locks it holds, after these,

t he MH goes to voluntary sleep.

r6: holds(vol-slept(x), .,·es(release-lock(x). res(flush(x), s))) .- holds(sleep­

sig(x),s),
For an involuntary sleep, we suppose the :Nffi is holding a write-lock when it goes

to involuntary sleep. In the meantime, if the lock is asked by another writer, Lhe

HS will forward the request to the proxy, and the proxy will forward it to the

MH. If proxy docs not receive the lock from the MH in a limited amount of

time, it invalidates the lock and sends it back to HS. And therefore, the MR will

inevitably lose the updates it had made.

1·1 : holds(in·uol - slept(x), s) ._,

r8 : holds{lock-cancelled(x), s) +-- holds(invol - slept(x) , s), holds(t imeouL(x), s) ,

r9: holds(update -lost(x), s) +-- holds(lock - cancelled(x) ,s) ,

Wake up: Upon the MH waking up, the MH sends wakeup notification to MSS

and requests missed messages.

rlO: holds(message- received(x), res(! etch - message(x),
res(request - message(x), s))) ~ holds(wakeup- sig(x), s),

57

Move/handoff: When the MH notices that it is in a different region, it contacts
t he new MSS. After new MSS contact HS and old MSS, the MSS proxy broad­
cast~ any invalidations whose time~tamp is later than lru:.1;-time-MSS-contacted­
MH.
r 11 : holds(registered(y2, x), s) +-- holds(move-sig(y2, x), res(move(y2, x), s)),
r 12 : holds(message -1·eceived(y2,x) ,s) +- holds(?·egiste?·ed(y2,x),s),
Transaction Commit: Aher MH requests a transaction, the transaction will be
committed or aborted on the HS according to the two phase commit protocol.
After that HS sends transaction result to MSS, the MSS broadcasts the transac­
tion result to MH, the MH updates the local knowledge base accordingly based
on transaction commit or abort. If after a period time (timeoutl) of tram;action
starting, the MH host still hasn't got any transaction commit or abort notice
from ~lSS for whatever reason, we use closed world assumption in this case, as­
sume not pas -,p at this time, unkown (not) become no(...,) for the transact.ion.
1·13 : holds(knowledge - updated(x), res(update - knowledge(x), s)) .._
holds(commit- ln-oadcasting(y, x), s), holds(trans- start(x),s),
r14: -,holds(l.--nowledge - updated(x),s) ~ holds(abort-ln-oadcasting(y,x),s),
holds(trans- start(x), s),
rlS: -,holds(knowledge- updated(x}, s) ~
notholds(commit-broadcasting(y, x), s), notholds(abort-broadcasting(y, x), s),
holds(timeotttl(x), s), holds(tra.ns - sta.rt(x), s).

Mobile Support Station (MSS) level:
Register: After the MH registers with MSS, MSS creates the proxy process which
retrieves the MH profile from HS, the proxy receives anti caches the MH profile,
anti then broadcasts the :;ub-profile to the Nffi, and marks t he in-NfH-ca.che bit
for those pa.ge!l. The rules for t hese are
rl : holds(proxy(y, x), 1·es(create-proxy(y , x), s)) ~ holds(registe·red(y, x), s),
·r2 : holds(cached(y) ,1·e.s(cache(y) , res(·ret'T'ieve(y), s))) ~ holds(pr·oxy(y, x), s)
r3 : holds(b·roadcasting(y, x), res(broadcast(y , x), res(retTieve(y), s))) +­

holds(proxy(y, x) , s),
r4 : holds(marked(y) , res(mark(y), s)) <- holds(lrroadcasting(y, x), s),
Start a query or update transaction: After MH requests a query or update,
MSS submits this t ransaction request to HS on behalf of MH. If it it~ a write
request, t he lock needs to be acquired firstly to submit this transaction.
r5 : holds(tra.ns-sulnnitted(y), res(submit(y), s)) +-- holds(query-requested(x), s),
r6: holds(trans- submitted(y), res(submit(y), s)) ~ holds(locked(x), s),
holds(update- required(x), s)),
Sleep: For the volunt-ary sleep, the proxy updates MH-sleep-Lime and buffers
messages and invalidations for the MH until the NfH wakes up and is ready to
receive t hem.
r7 : holds(buf fered(y). res(buf fer(y). res(update- sleeptime(y). s))) +­

holds(vol- slept(y,x),s).
In the involuntary sleep case, the proxy doesn't know that MH is not listen-

58

ing and continues to broadcast invalidations ns normal. If the .NIH is holding a
\vrite-lock when it goes to involuntary sleep, in the meantime the lock is asked
by another writer, t.he proxy forwards this request to t he :Vffi. If proxy docs not
receive the lock from the NIH in a limited amount. of t ime, it invalidates the lock
and sends it back to RS.
r 8 : holds(page- broadcasting(y,x), res(page- broadcasL(y, x), s)) +-- ,

1·9: holds(lock - cancelled(y,x), res(cancel - lock(y ,x), .s)) +-­

holds(invol - slept(x), s), holds(timeaut(:I:), s)).
Wake up: Upon the l\lfH waking up, the MH se11ds wakeup notification to MSS
and requests mlssed messages, the MSS then bora.dcasts missed messages to l\lfH.
rlO: holds(page- broadcasting(y, x),r·es(page- broadcast(y, x), s)) +-­

holds(wakeup- sig(x), s).
Move/ handoff: After MH contacts and registers in the new MSS, t he new MSS

contacts the old MSS to get the l\lrH proxy status. The old MSS flushes any dirty
pages to HS and sends t he proxy status to the new MSS. The new MSS proxy
contacts RS to tell it where to contact t he MH. The new MSS proxy broadcasts
any invalidations to MH.
rll: holds(proxy(y2, x), 1·es(create - proxy(y2, x), .s)) ,_.
holds(1·egistered(y2, x), s),
rl2: holds(fl·ushed(yl) ,7·es(flush('yl) , .s)) +-- holds(move - .sig(y2, x) , s),
r 13 : holds (page - broadcasting(y2, x), res (page- broadcast(y2, x), s)) <­

holds(proxy(y2, x), s),
Transaction Colll!Dit: After YLSS gets the transaction commit or abort notice
from HS, t he MSS will broadcast t he transaction result to MR accordingly.
r14: holds(commit- broadcasting(y, x), re.~(broadcast(y. x). s}} +-

holds(commit- noticed(z. y). s).
1"15 : holds(abort- broadcasting(y, x), res(broadcast(y, x}, s)) +-­

holds(abort- noticed(z,11), s).

Home Server (HS) level:
Register: At. registration stage, HS ~ends the pages in the l\lffi profile, marks
the MH as a valid reader of those pages, a.nd notes where to contact the MH.
rl: holds(sent(z, y). res(send- page(z, y) , s)) ,_. holds(proxy(y, x) , s),
r2: holds(M H -marked(z, y), res(mark-lvf H (z, y), s)) <- holds(sent(z, y), s),
Start transaction: After Aill[requests a query or update transaction and MSS
submits t his transaction request to HS, the HS starts the transaction. In update
transact ion situation, MSS submits transaction only when lock is available.
r3: holds(trans-start(z), res(do- tmns(z), s)) +- holds(trans- submitted(y), s).
Sleep: The sleeping MH process may not return (e.g., Nffi dies, leaves cell), in
this case the proxy may wait around aimlessly. To remedy this problem, the MR
status is sent to RS afLer a system-specific amounL of time and the proxy process
is killed.
r4 : holrls(proxy-killed(z, y) , res(kill - proxy(z, y) , s)) +-- holds(timeottt(x), s),
holds(vol- slept(x),s),
r5 : holds(proxy - killed(z, y), res(kill-proxy(z, y), s)) +- holds(timeout(:c), s),
holds(imJOl- slept(x).s).

59

Movej handoff: After NrH moves to new MSS, the old MSS will flush any dirty
pages to HS and new MSS will contact HS to get these dirty pages regarding
t he NIH.
r6: hold.s(senl(z, y2) , res(send- dirtypage(z, y2) , s)) ,_ holds(proxy(y2, x}, s).
Transaction Commit: According to t he two ph!l:;c commit protocol, if all
involved lVIH:; agree to commit the transaction, t hen t he t ransaction will be
conunitted. If any of them does not agree with commit and want to abort t he
transaction, then tia.nsaclion will be aborted. If aitcr a period time {timcout2)
the transaction is :;till not be agreed to be committed, t hen we usc closed world
assumption here to assume the transaction worn be committed any more, un­
known (not} becomes no (-.) in thi:; scenario . .For example in the C(l:;e one of
the involved MH has gone to voluntary or involuntary sleep and t herefore no
commit agreement can be available from that MH during this time duration.
After transaction h!l:; been committed or aborted, the HS will send tran..<:action
commit or abort notice to MSS.
r7 : holds(trans- committecl(z),res(commit(z}.s)) ,_
hold(commit - agreed(z), s), notholds(abort- agreed(z), s).
holds(tmns- start(z), s),
r·8: -.holds(trans - committed(z), res(commit(z). s)) ,_
holds(abort- agr·eed(z), s) , hold.~(trans- start(z) , s),
r9 : •holds(t1·ans - committed(z), s) ,_ notholds(t1·ans- committed(z), s),
holds(Umeout2(z), s), holds(trans- start(z), s) ,
riO: holds(commit-noticed(z, y), res(notice-commit(z, y),s)) ~ hold(trans­
committed(z), s) ,
rll : holds(abort- noticed(z, y), res(notice- abort(z , y), s)) ~ ~hold(tran.<;­
committed(z), s).

5 A Transaction Example

In this section, we will give an example to demonstrate how to usc our logic
programming based transaction processing lling\1age and model to study trans­
actions in mobile environments. We raise an example to cover the following three
different scenarios:
Scenario 1: The MH requests an update t ransaction, the transaction is commit­
ted on HS using two phase commit protocol. The HS sends commit notice to
MSS, MSS then broadcasts the commit result to MH, the MH updates the local
knowledge base accordingly. This is yes scenario for an update transaction.
Scenario 2: The NIH requests an update transaction, t he transaction is aborted
on HS using two phase commit. protocol. The HS sends abort, notice to MSS,
MSS then broadcasts the abort result to MH, the MH lmows that no update
should be done in local knowledge base in this scenario. This is no scenario for
an update transaction.
Scenario 3: The MH requests an update transaction, but l.VIH ha.!>"'l't received
any commit. or abort notice within certain time. This is unknown scenario for
an update transaction.

60

Now we go through our example to discus:. these three scenarios. We usc our
proposed logical programming ba~ed knowledge Transaction Processing Lan­
guage (TPL) and model in section 4 as our restriction language and model here
by replacing x, y, z with NIH, MSS, and HS respectively. vVe assume there is a

local knowledge base on MH. Let 50 be the initial state, and suppose we are
given that
tl : holds(registered(M SSl, M H) , So) +-.

The MH has registered in MSS L Scenario 1: The MH requests an update trans­

action. According to "NfH level r4 and r5 in section 4, we have
t2: holds(update -1·equested(MH) ,res(write(MH) ,S0)) +-,

t3 : holds(trans-slart(M H) , So) +- holds(locked(M H), r·es(acquire-lock(M H),
res(write(MH), So))), holds(update- requ.ested(x), S0)) After MH requests an
update transaction and t.hc lock has been acquired, the transaction will start.

MSSl will submit t his transaction rcquc.\!t to HS. According to MSS level r6 in

section 4, we have
l4: holds(trans- submitted(NISS1),1·es(submit(MSSl),sO)) +­

holds(locked(M H), So), holds(update- rerru:iTed(NI H), sO)).
As long as MSS submits the transaction to HS, the HS will start the transaction.
According to HS level r3 in section 4, we have
t5: holds(trans- start(HS),res(do- trans(HS),sO)) +-

holds(tmns - submi tted(J\1! SSl) , S0). Then the transaction is committed ac­
cording to the two phase commit protocol. The HS sends commit notice to

MSS. According to the HS level r·7 and rlO, we have
/,6 : holds(trans - committed(HS),·res(commit(HS),sO)) +- hold(commit­

ag1·eed(HS), So) , notholds(abort-agreed(H S), So), holds(trans-start(H S) , So),
t7: holds(commit-noticed(HS, MSSl),res(nolice- commit(HS,MSSl), sO)) +­

hold(trans- committed(HS), S0).

The MSS broadcasts the commit result to MH. According to MSS level r14 in
l:iection 4, we have
t8: holds(commit-broadcasting(M SS1 , M H), res(broadcast(lvlSSl , NIH) , So))
+- holds(commit - noticed(HS. MSSl) ,So).
The NIH will update the local knowledge base accordingly after the MSS broad­
casts the commit result to MH. According to the Nffi level 7"13 in section 4, we
have t9: holds(knowledge- updated(M H) , res(u.pdate- knowledge(M H), S0)) +­

holds(commit - broadca.<;Ling(M SSl, M H) , S0). holds(trans- start(M H), So).
Scenario 2: In scenario 2, afterMH requests an update t ransaction, the trans­
action will follow the sa.mc rule t2, t3, t4, and t5 as scenario 1. Then the trans­
action is aborted according to the two-phase commit protocol. The HS sends

abort notice to MSS. According to the HS level r·8 and rll, we have t6 :
--.holds(trans- committed(HS), r·es(commit(HS) , Sa)) <-

holds(abort - agreed(HS). S0), holds(trans- start(HS), So) ,
t7 : holds(abort- noticed(HS. MSSl), res(notice - abort(H S, .MSSl), So)) +­

-.hold(trans- committed(HS). So).
The NISS broadcasts the abort result t.o MR. According to MSS level r15 in

section 4, we have

61

t8: holds(abort- broadcasting(MSSl, M H), res(broadca.st(M $$1, NIH), So))
- hold.$(abort - noticed(HS, M SS1),Sa).
The MH will know the local knowledge base shouldn't be updated aftCl· the MSS
broadcasts the abort result to MR. According to the MH level r·14 in stJction 4,
we have
t9: -.holds(knowledge- updated(M H) , S0) +-

hold.~(abort - broadcasting(MSSl , M H), S0), holds(tr·a.ns - start(M H) , S0).

Scenario 3: In scenario 3, after MH request~; an update transaction, th.e transac­
tion will follow Lhe same rule t2 , t3, t4, and t5 as scenariol. But. after a certain
period time (timel), the MH still hasn't got any transa<:tion commit or abort
notice from MSS. we usc closed world assumption in this case, assume noL p as
--.pat this time, unkown (not) become no (-.) for the transaction. According to
the MH level 7'15 in section 4, we have
t6 : -.holds(knowledge- updated(M H). So) .­
notholds(cummit- broadcasting(M SSl , M H), S0) ,

notholds(abort- broadcasting(MSSl,M H), S0). holds(timeoutl(M H), $0) ,

holds(trans- start(MH),So)-

6 Conclusion

In this paper, we proposed a new environment model t hat intcgrat.es the fea­
tures of mobile environments and intelligent agents. We formalh:ed a logic pro­
gramming based Transaction Processing Language (TPL) and model to study
knowledge transaction processing in mobile environments. We illust.ra.le a typi­
cal transaction example to demon::.'trate how to apply OUl' transaction proce:;::.ing
language and model in practical transaction scenarios. In the future, we will usc
lhis knowledge trammction language and model to study distributed knowledge
transactions and knowledge base in mobile environments.

References

1. Baral, C. and Gelfond, M., Logic Programming and Knowledge Representation.
Journal of Logic Progra.mm·ing (1994) 73-148.

2. Barbara, D. and Imiclinski, T., Sleepers and Workaholics: Caching Strategieli in Mo­
bile Environments. In Proceedings of ACM-SIGMOD 1998 International Confe7-ence
on Management of Data, ppl-13, 1994.

3. Blaybrook, B., On Line 'lhmsaction Processing Systems. John Wiley & Sons, 1992.
4. Chan, W .K. and Chen J., Serializability and Epsilon Serializability in a Mobile

Environment. In P1'0ceedings of seventeenth lASTED International Conference in
Applied Informatics, pp 273-297, 1999.

5. Celfond, M. and Lifschitz. V., Classical Negation in Logic P rograms and Disjunctive
Databases. New Generation Computing (1991) 365-385.

6. Gray, J. and Reuter, A., Tronsaction Processing: Concepts and Techniques. Morgan
Kaufman, 1993.

7. Imielinski, 1'. and Korth, H.F., Mobile Computing, Kluwer Academic Publishers,
1996.

8. Milojieic, D., Mobile Agent Applications. In IEEE Concun-ency (1999) 80-90.

62

9. l\llirghafori , N. and Fontaine, A. , A Design for File Access in a Mobile Environment.

In Proceedings of the IEEE - Conference on Mobile Computing, pp 57-61, 1995.

10. Weiss G., Multiagent System.s: A Modem Approach to Distributed Artificial Intel,.

ligence. };ITT Press, 1999.

