
A Logic Programming Approach for Planning
Workflows Evolutions

Gianluigi Greco1, Antonella Guzzo1, and Domenico Sacca1 •2

DEJS1
, University of Calabria, Via Pietro Uucci 4lC, 87036 Rende, Italy

!CAR, CNR2
, Via Pietro Bucci 41C, 87036 Rende, Italy

{ggreco,guzzo}~si.deis.unical .it, saccaOicar .cnr. it

Abstract. Workilow management systems arc a key technology for
effectively modeling, executing, and monU;oring business processes in
several application domains such as finance and banking, healthca.re,
telecommunications, manufacturing, and production. Most of t he formal­
ism for modeling workflow schemes are based on graphical representa­
t ions. Even though such approaches lead to intuitive specifications, they
usually lack of t he ability of specifying complex structural properties.
This paper illustrates how a recent extension of DATALOG, enriched
with features for dealing wiLh events and nondeterministic choice, is well
suited for mode.ling workfiows and expressing complex properties and
constraints on executions. Moreover, the language provides a querying
mechanism for simulating executions, by fixing an initial state and an
execution scenario, and for planning future choices in order to achieve a
given goal.

1 Introduction

A great deal of recent research concerns the task of modelling workflow schemes
and several formalisms for specifying structural properties have been a lready
proposed to support the designer in devising all admissible execution scenarios.
Most of such formalisms are based on graphical representa tions in order to give
a simple and intuitive description of the workflow structure. In particular, the
most common approach is the use of a control flow graph, in which the workflow
is represented by a labelled directed graph whose nodes correspond the task to
be performed, and the arcs describe the precedences among them.

As pointed out by many authors, see e.g [?], the essential drawback of ap­
proaches based on the control flow graph is their limited expressive power: they
are only able to specify local dependencies whereas properties such as synchro­
nization, concurrency, or serial execution of tasks, a lso called in the literature
global constraints, cannot be described. The current trend in workfiow manage­
ment system is to left unstated all the complex constraints (thus delivering an
incomplete specification) or to eventually expressed them using other formalisms,
e.g., some form of logics.

In this paper, we present an overview of a system which realizes a logic based
formalism which combines a rich graphical representation of workflow schemes

76

with simple (i.e., locally strnt i£ied). yel powerful DATALOG rules to express com­
plex properties and global constraints on executions. Both the graph represen­
tation and the DATALOG rules are mapped into a uruque program in DATALOGov!,
that is a recent extension of DATALOG for handling events. A distinguished fea­
ture of our formalism is the ability to instantiate several times the same task so
thal complex flows can be captured by succinct definitions. This formalism very
much simplifies the model proposed in [?] and provides a powerful ground for an
efficient implementat.ion of lhe system using Lhe DLV system I?J. wit.h the aim
of obtaining an effective tool for simulating and reasoning on workfiows. Con­
cerning the translation of DATALOG"vl programs into DLV programs, we mention
that in [?J some of the authors have already shown how to compile them into a
classical logic programming framework.

2 Workflow Schema
A 1uor-kjtow schema. WS is a di.Tected graph whose nodes are the tasks and
the arcs are their precedences. More precisely, WS is de£ined as a tuple:
(A. E, ao, F, A~, A;'"' .Ain, A;,~, Ai:, A~ut• A~,, A~ut• EL, A, L} where:

- ({ao} , A~n , Ain,A£n,A;,~,A£,~) and (F,A~ut,A~u·t>A~ut) are two partitions
of A - the nodes a in A, the unique initial task a0 and Lhe final tasks b
in Fare defined by the predicates task(a), startTask(ao), finalTask(b),
respecLively; every task returns a label in L after its execution that is used
for the possible activation of labelled arcs - a special label is "fail" which
notifies an abnormal execution of the task;

- each task a can be either: (i) a r-egular task, defined by regularTask(a),
which can be executed only once for each occw-rence of the workflow, or
(ii) a replicated task, defined by r eplicatedTask(a), which admit.s several
executions for the same occurrence of the workflow; the replicated tasks are
all the nodes in Ai,.. U Aj{.' U Ai:, whereas all other nodes are regulru·; regular
tasks are identified by their name and the identifier of the workflow insLance
whereas replicated tasks need an additional identifier to distinguish the var­
ious instances, i.e., the key is the triple (WorkflowiD, TaskName, TaskiD);

- the arcs in E are defined by the predicat.es arc (PrecTask, NextTask);
- EL ~ E are a rcs labelled with symbols in L by the function), : EL -+ L and

are defined by the predicate arcLabel(PrecTask, NextTask, Label) (these
arcs can be activated only if the outcome of the task PrecTask coincides
with the label of the arc; we require the source node in a. labelled arc to
belong to A~ut)i

- each task a in Afn, defined-by inAND(a), acts as a synchronizer (also called
a and-join task in the literature), thus, a cannot be started until after all
its incoming arcs are activated; observe that, in the case of an incoming arc
leaving a replicated task, say p, the arc must be activated for each replication
of p before a can be started;

- each task a in Ai,., defined by inOR(a), is a. or-join task and can be started
as soon as one of its incoming arcs is activated; notice that, in the case of
an incoming arc leaving a replicated task, say p , the task a is started even
if the arc is activated for only one replication of p;

77

- each task a in A;
11

, defined by inRep(a). has exactly one preceding task, say p,
and pis not replicated; once the arc (p, a) is activated, a number of instances
for a are started according to specific cr iteria specified for each workflow
iusLance; for ea.ch replicated task b , start•(b) defines the task a E A;n such
that there is a path P from a to b consisting of all replicated tasks, and no
other path P' can extend P with other replicated tasks - it can be shown
that for each replicated task b there exists exactly one task in A;n which
satisfies the above condition;

- each task a in Ai~ , defined by inRepAND(a) , has all preceding tasks repli­
cated and for each two of its preceding tasks, say P1 a.nd p2, sta·rt*(Pt) =
sta·rt*(p2); the task a may have several instances, one for ea.ch instance of
star"t* (a), say with task identifier t·id, and llle task identifier of each instance
of a coincides with tid; an instance of a with identifier tid is actually started
if each incoming arc leaving a task, say p , is act:ival.ed for the instance of p
with identifier tid;

- each task a in A;.;t, defined by inRepOR(a), has all preceding tasks repli­
cated and for each two of its preceding tasks, say P1 and p2, start• (p t) =
start• (p2); the task a may have several instances, one for each instance of
start* (a), say with task identifier tid, and the task identifier of each iru.-tance
of a is tid; an instance of a with identifier tid is actually started as soon as
one of its incoming arcs leaving a replicated task, say p, is activated for for
the instance of p with identifier tid;

- each task a in A~t• defined by outAND(a). activates all its outgoing arcs; if
a is replicated, every arc is activated several times, one for each instance of
a;

- each task a in A~ut• defined by out OR(a). activates exactly one of its outgoing
arcs, that is non-deterministically chosen; if a is replicated, the activation
of one arc is repeated for each instance of a and two instances of a may
activate different arcs, thus the instances of a make their non-deterministic
choice independently from each other ;

- each task a in A~ut• defined by outLabel(a) , activates those outgoing arcs
whose labels coincide with the label returned by a after completion; if a is
replicated, an arc may be activated several times, one for each instance of a
and the label of the arc must be checked against the outcome of the related
instance.

Example 1. An example of workflow schema is shown in Figure 1. A customer
issues a request to purchase a certain amount of given product by filling in a
request form on the browser (task ReceiveOrder). The request is forwarded to
the financial department (task VerifyClient) and to each company store (task
VerifyAvailability) in order to verify respectively whether the customer is reli­
able and whether the requested product is available in the desired amount in
one of the stores. The task ReceiveOr-der· will activate bot.h outgoing arcs after
completion. Note that the task VerifyAvailability is a task in Ain and hence it is
instantiated for each store. Then, ea.ch instance, cha.ra.cteri~ by a unique task
identifier, either notifies to the task OneA vailable t.hat. the requested amount

78

Fig. 1. Example of workflow schema.

is available {label 'T') or otherwise it notifies the non-availability to the task
NoneAvailable (label 'F '). Observe that the task OneAvailable is started as soon
as one notification of availability is received whereas the task NoneAvailable
needs the notifications from all the stores to be activated. Indeed, both the tasks
NoneAvailable and OneAvailable have the effect of dropping the quantifications
over the stores. Finally, the order request will be eventually accepted if both
OneAvailable has been executed and the task VerifyClicnt has returned the la­
bcl'T'; otherwise the order is refused. D

An tnstance WI of a workflow schema WS is a directed graph whose nodes
correspond to the nodes in WS and are denoted by a pair (a ,I D), where n is
the corresponding node in WS and ID is the task identifier if a is replicated
or 1 otherwise. Moreover , each node in WI is marked as: (i) activated if the
corresponding task has been activated by at least one incoming arc but it did
not start because of some missing condition on its precedences, or (ii) executed
with an outpul label from L. The following conditions on WT bold:

- the node (ao, 1) is in WI and is marked as executed;
- for each task a in A~,, the node (a, 1) is in WI if there is at least one

incoming arc ((p, tid), (a, 1)) in WT; moreover, the node (a, 1) is marked
executed (and not just activated) if for each (p, a) E A, either (i) the node
(p, 1) and the arc ((p, 1}, (a, 1)) are in W.T if p is regular or (ii) otherwise,
there is at least one node (r, tid) in WI, where r = sta1·t:(p) , and tid is a
task identifier, and for each node (r, tid) in WT, the node (p, tid) and the
arc ((p, t·id), (a, 1)) are in W I; if some of the above condition is not satisfied
but

- for each task a in A~1 , the node (a, 1} is in WI if there exists an arc (p, a) E A
such that a node (p, tid) and an arc ((p, tid), (a, 1)) are in WI: note tbaL such
nodes are always marked executed as Lhere are no preconditions;

- for each task a in A:'n, given a a task identifier tid, the node (a, tid), is
in WT a.nd is marked executed as well if both the node (p, 1) and the arc
((p, l) , (a, tid)) are in WI;

- for each task a in A;~, the node (a, tid) is in WI if there is at least one
incoming arc ((p, tid) , (a, tid)) in WT; moreover, the node (a, tid) is marked

79

Fig. 2. Example of workflow in~tances.

executed if for each (p, a) E A, the (p, t ·id) anti the arc ((:p, tiel';, (a, tid)) are
in WI;

- for each task a in A;,~, the node (a, tid) i~ in WI and is marked executed
as well if there exists an arc (p, a) E A s uch LhaL Lbe (p, tirf) and the arc
((p, tid), (a, tid)) are in WI;

- for each node {a, tid) in WI that is marked executed, say with output label
l, (i) if a is in A~ut• then for each arc (a, b) E E , the arc ((a, tid) , {b, tid)) is
in WI; (ii) if a in A~ut• then there exactly one arc in W I leaving (a, tid),
say ((a, tid), {b, tid)), and the arc (a, b) is in WS; (iii} if a in A~ut • then for
each arc (a, b) E E with Iabell, the arc ((a, tid), (b, tid)) is in WI.

Example 2. Two examples of workflow instances for the schema in Figure 1 are
shown in Figure 2, where we only report, the tasks that. have been executed. In
parlicular, we assume that the company has two stores. On the left, the order
has been accept-ed, as the requested amount is in the first store, while on the
right the order has been rejected since none of the store has enough av-ailability.
0

3 D escr iption of Servers and Task Executions

In the previous section we have described the concept of workflow instance,
under a "static" perspective, as the tasks can be either activated or executed.
We next enrich the model by also considering the servers that are allowed to
execute the tasks, and consequently we provide a more deta iled analysis of the
possible states of the tasks during their execution.

In the following, we associate to each workflow instance WI a unique identifer
WID , and, in order to simplify the presentation, a predicate p (WID, X), where
X is a generic list. of arguments, is denoted by pwro(X).

We are given a set of servers which (or who) arc defined by the predicate
server(ServerName) and that will be used for the executions of the various
tasks. Actually the predicate executable(S, T, D) states that the server S can
execute the task T and the execution will have the duration D. Moreover , the
predicate outOfOrder(S) states that the server S cannot be temporally used for
any execution. If not out of order, a serverS is available for a new lask execution
if it is not busy- the availability is checked with the following DATALOG rule:

80

available(Server) <- executable(Server, _, -), -, outOfOrder(Server),

..., (startRunningww(Task, Taskldentifier, Server,-),

-. executedwiD(Task, Quantifiers, _,_)).

where startRunning and ended arc predicates defined below in this section. Note

that in order to characterize the task that a server is running, we explicitly need

to consider not only its name (Task), but also its identifier (Taskidentifier),

eventually different from 1 in the case of replicated node.

In the above rule, Lo simplify the notation, we used some syntactic sugar for

writing negative literals in the body of the first of the above rules: -,a(X), stands

for -.a'(Y), where a' is defined by tbe new rule: a'(Y) <- a(X) , and Y is the

list of all non-anonymous variables occurring in X . We have further simplified

ilie notation for writing negated conjunctions in the body of a rule r: ...,(C),

where C is a conjunction, stands for -.c(X), where cis defined by the new rule:

c(X) <- C, and X is the list of all variables occurring in C which also occur in

r. We shall use this notation also in the rest of the paper.

A task (or a task instance if it is replicated) is in one of the following states:

(1) idle, thus the task is not yet activated as none of its incoming arcs are active;

(2) activated, thus the task has received the notification for its execution from al

least one incoming arc bul it is not yet started as it needs the activation of some

additional incoming arcs; {3) ready, i.e., the task is ready for execution and has

been started but it is waiting for the assignmenl of a server ; (4) mnning, i.e.,

the task is currently executed by a server; (5) executed, i.e., the Lask has been

terminated.

Given a workflow instance WID, the state of the execution of a

task T with identifier TID is kept by means of lhe following relations:

startActive ww(T, TID, Time), storing the time when lhe task (T, TID) was ac­

tivated; startReadywm(T, TID, Time), storing the time when tbe task (T, TID)

was declared ready for execution; startRunningww(T, TID, S, Time), storing the

time a server S has started its execution; executed ww(T, TID, Time, Output),

storing the time when the execution of the task (T, TID) is completed and lhe

result Output of the execution - recall that Output is a label in L. The SLate

of a task (T, TID} can be derived using simple DATALOG rules and will be acced

with the predicate state wm(T, TID, stateType) .

Finally the fact that an instance of an arc (Prec, Next) has been activated

from an instance TIDP of the task Prec to an instance TIDN of the task Next is

stored in the predicate activeArc(Prec, TIDP, Next, TIDN).

4 Describing the Workflow Evolution in DATALOGev!

The aim of this section is Lo present a logic framework for the specification of the

executions of a workflow for a given scenario of instances. The first event, called

init, is an external event which starts a new workflow instance at a certain

time. The predicate started wm that is used for keeping trace of the fad that

a new instance WID has been started.

81

r 1 : (init {WID)@(T)j
run()++, startedww(), startReady ww(ST, 1, T) ._ startTask{ST).

Every time the event run(}@(T) is internally triggered, the system tries to assign
the ready tasks to the available servers - as we do not use a particular policy for
scheduling the servers, the assignment is made in a nondeterministic way. The
predicate unsat wmO is true if it has b een already checked that the workflow
instance does not satisfy possible constraints on the overall execution - this
check is performed during the event complete, described below. T he preclicale
executedwmO is true if the workflow instance has a lready entered a final state
so that no other task needs to be performed.

r 2 : (run()@(T)]
evaluate WJD (Task, L, Duration)++
sta.rtRunning ww(Task, TID, Server, T) <- •unsatww(), •executedwro (),

s t atew10(Task1 TID, T'elld!J),
availabl e(Server),
executable(Server, Ta.sk, Duration)
® choice((Task), (Server))
® choice((Server}, (Task)}.

Once t.he tasks are assigned to servers, their executions start. So information
on the assigned servers and the execution starting time are stored; moreover , an
event evaluate is triggered for each execution.

r 3: (evaluateww (Task, TID, Duration)@(!))
completeww(Task, L, Output)+(Duration) , ._ evaluationwro(Task, TID, Output).

The predicate evaluationwm(Task, L, Output) is used to model the function
performed by each task, typically depending on both the execution and internal
databases- this predicate must be suitably specified by t he workflow designer.
The event for completing the task is triggered a t the time T + Duration. As
described in the next event , after the completion of a task, the selection of which
of its successor tasks to be activated depends on whether the task is in A~ut•
A~ut• or A~ut and can be done only if lhe task execution is not failed . The two
actions of registering da.ta about the completion and of triggering the event run
to possibly assign the server to another task are performed in a ll cases. The fact
unsat wm (T) is added only if t he predicate unsatGC WID (Task, L) is true. This
predicate is defined by the workflow designer to enforce possible global constraints
- if not defined then no global constraints are checked after the completion of
tbe task. We shall return on the definition of this p redicate for typical global
constraints in the next section. For a final task, if the global constraints are
satisfied then we can register the successful execution of the workflow instance.

82

r 4 : [complete wJo(Task, TID, Output)©(T)j
run()++, executedwio(Task, TID, T, Output).

rs:

unsat ww() ~ unsatG C wm {Task, L).
executedw1o() ~ !inalTask(Task), -. unsatGCwm (Task, TID).
activateTaskwm(Next , TID, Task)++, ~ outOR(Task), Output =I "fail", arc(Task,Next)

® ChoiceAny().
activateTaskww{Next, TID, Task)++ ~ outAND(Task), Output :/: ''fail", arc(Task, Nen).
activateTaskww (Next, TID, Task)++ ..-. outLabel(Task), Output -:1 "fail",

arcLabel(Task, Next, Label), Label = Output.
The event activateTask is used for activating the target task in an arc. If the

!.ask is in A:n U Ain U Ai,~ lhe activation also implies lhat the la.sk is ready for
lhe execution; in the other cases we have to check more elaborated conditions
by means of the event checkForReadY. In the case Task is in A;n, then for
each NewTID stored in the relation quantifyTID, a now instance of the task is
activated and becomes iuunediately ready. We also keep track of all activated
arcs.

[activateTask ww(Task, TID, Prec)@(T)]
run{)++,
activeArc ww(Prec, TID, Task, NewTID) ,
startActivewro(Task, NewTID, T) ,
startReady wto(Task, NevTID, T),
activeArcwm(Prec. TID, Task, TID)
run()++,
startActi ve ww {Task, TID, T),
startReady wto(Task, TID, T)
activeArcww(Prec, TID, Task, 1)
run()++,

startActiveww(Task, 1, T),
startReady wrv (Task, 1, T)
checkForReady wm (Task, TID)++,
activeArc wto(Prec, TID, Task, TID)
startActiveww (Task, TID, T)
checkForReady ww (Task, 1)++,
activeArcwto(Prec, TID, Task, 1)
startActive wm(Task, 1, T)

+- inRep(Task), quantifyTID(Task, NewTID).
~ inRepOR(Task).

~ inRepOR(Task), -.stateww (Task, TID, actwe).
~ i.nDR(Task).

...... inDR(Task), -.state ww(Task, _,active).

-- •activeArcwto(Prec, TID, Task, TID), inRepAND(Task).
...... ~state wro(Task, TID, active), inRepAND(Task).

~ •activeArc wro(Prec, TID, Task, 1), inAND(Task).
~ •stateww(Task, 1, actwe), inAND{Task).

The event checkForReady d~ides whether a given activated task correspond­
ing to an and-join is ready for execution.

(checkForReadyww (Task, TID)@(T)]
run()++.
startReady wto(Task, TID, T)

startReadyww(Task, 1, T)

~ inANDRep(Task) , • statewro(Task, TID, ready) ,
.., (arc(Prec, Task),.., activeArc wiD(Prec, TID, Task, TID)).

~ ink'ID(Task), -,stateww(Task, 1, ready),
.., (arc(Prec, Task), possinst ance(Prec, TIDP),
.., act iveArcwto(Prec, TIDP, Task, 1)).

83

where

possinstance(Task, 1) ~ regular(Task) .
possinstance(Task, TID) ~ replicated(Task) , staru (Task, TaskR),

startReady{TaskR, TID,_).
staru (Task, TaskR)
starh (Task, Task)

~ arc(Prec, Task), replicated(Prec), start* (Prec, TaskR).
~ inRep(Task).

5 Global Constraints

As shown in 17], a number of global constr-aints and additional constraints on
the scheduling of the activities can be translated into a DATALOa••1 program
Pcon~ttr(WS). In this section, we complete th<:}_model by showing how to specify
global constraints. Let us first formalize the notion of global constramt over a
workflow schema WS: (i) for any a E A, Ia (resp. -.Ia) is a positive (resp.,
negative) primittve global constraint, (ii) given two positive primitive global
constraints c1 and c2, c1 -< c2 is a serial global constraint, (iii) given any two
global constraints c1 and c2 , c1 v c2 and c1 1\ c2 are complex global constraints.

Informally, a. positive (resp., negative) primitive global constraint specifies that a
task must (resp., must not) be performed ii1 any workflow iru;·tance- obviously
a negative constraints makes sense only as a suircxprcssion of a complex global
constraint. A serial global constraint c1 -< c2 specifies that the event specified
in the global constraint. c1 must happen before the one specified in c2. The
semantics of the operators V and 1\ are the usual. Global constraints can be also
mapped mto a set of DATALOGev! rules as follows:

- for each global constraint c = la, we introduce the rules:
unsatGC1 wio(c, gs) ~ endedwm(a , _, _, 0), 0 = "fail".
unsatGC1 wiD(c, gs) ~ .., endedwm(a , _, _, _).

where gs equals s if c only occurs as sub-expression of a complex global
constraint; otherwise (i.e., cis a global constraint), gs holds g.

- for each global conslraint c = -.!a, we introduce the rule:
unsatGC1 WID (c, gs) ~ ended wro (a, _,_, 0) , 0 :f: "fail".

- the rules for a global constraint c =!a1 -< !a2 are:

unsatGClw!D(c, gs) <-- endedw!D(a21 - 1 .., 02) , 02 i= "fail"
endedwro(a l•-•-• "fail").

unsatGClwm (c,gs) <-- endedwm(a2,_, T2, 02), 02 i= "fail "
endedwiD(a l, - , Tl, Ol), 01 i= "fail" , T2 < Tl.

- for each global constraint c : c1 V 02, we have the rule:

unsatGClwiD (c , gs) <-- unsatGC1 wm(c1 1 -), unsatGC1wco (c2·-)·

- for each global constraint c: c1 1\ c2, the rules are:

unsatGClwiD{c) ~ unsatGClw,o(cl ,-)
unsatGClwm(c) <-- unsatGC1 wl1){c2 ,_).

84

Let us now define the predicate unsatGC wro (Task, L) used inside the event
complete. The problem is selecting the time for checlcing global constraints.
Obviously this check must be done after t.he completion of a final task. So we
can use the following definition :

unsatGC ww(Task , L) ,_ finalTaskww(Task), unsatGClwm(_,g).

Observe that we do not check satisfaction for constraints which are only used
as sub-expressions; moreover, we point out that some global constraint check
can be anticipated. For instance, the global constraint c =!at ~ !a2 can be
checked just after the execution of the task a2; so we may introduce the rule
unsatGCww(a2, L) +- unsatGCl ww(c,g). An interesting optimization is­
sue is to lind out which global constraints could be effectively tested after the
completion of each task.

Observe that, as discussed in the previous section, a successful or unsuccessful
completion for a workflow instance ID is registered by means of the predicate
executed ww() or unsat wm(). respectively. If both predicates are not true,
then the are two case: either {i) the exe<.:ution is not yet finished for some task is
currently ready or running, or (ii) non more tasks are scheduled even though a
final task was not reached. The latter case indeed corresponds to an unsuccessful
completion of the workflow instance and can be modelled as follows:

f ailedwJo() +- unsatwm().
failedw1o() +- started wiD(), -. executedww(), -,workingww().
workingww() ~ stateww(T,_,ready)).
workingw1o() +- state ww(T,_,running)).

6 Conclusions and Further Work

vVe have presented a new formalism which combines a rich graph representation
of workflow schemes with simple (i.e., stratified), yet powerful DATALOG rules
to express complex properties and constraints on executions. We have shown
that our model can be used as a run-time environment for workflow execution,
and as a tool for reasoning on actual scenarios. The latter aspects gives also
the designer the ability of finding bugs in the specifications, and of testing the
system's behavior in real cases.

On this way, our long-term goals is to devise workflow systems Lha~ automat­
ically fix "improperly working" workflows (t.ypically, a workflow systems supply,
at most, warning message when detecty such cases). In order to achieve this
aim, we shall investigate formal methods that a..re able to understand when a
workflow system is about to collapse, to identify optimal scheduling of tasks,
and to generate improved workflow (starting with a given specification), on t.he
basis of some optimality criterion.

85

R eferences

1. G. Alonso, Al\TD C. Hagen. FleKible Exception Handling in the OPERA Pro­
cess Support System. In 18/h International Conference on Distributed Computing
SysterTUJ (ICDCS}, pages 526-533, 1998.

2. A. Donner. Workflow, Tra.nsa.ctions, and Datalog. Tn Proc. of the 18th ACM
SIGACT-SIGMOD-SIGART Symposittm on Principles of Database Systems, pages
294- 305, 1999.

3. H. Davulcu, M. Kifer, C. R. Ramakrishnan, and 1. V. Rama.krishnan. Logic Based
Modeling and Analysis of Wm:kflows. lnPrvc. 17th ACM SIGACT-SIGMOD­
SIGART Sympos~um on Principles of Database Systems, pages 25-33, 1998.

4. S. Greco, D. Sacca and C. Zaniolo. Extending Stratified Datalog to Capt.ure Com­
plexity Classes Ranging from P to QH. l n ActqJnformatica, 37(10), pages 699-725,
2001.

5. G. Greco, A. Guzzo and D. Sacca. Reasoning on Workflow Executions. Proc.
ADBIS Conference, September 2003.

6. A. GUll:.t;O and D. Saccil. Modelling the Future with Event Choice DATALOG.
Proc. AGP Conference, pages 53-70, September 2002.

7. G. Kappel, P. Lang, S. Rausch-Schott and W. Retschitzagger. Workflow Manage­
ment Based on Object, Rules, and Roles. Bulletin of the Technical Committee on
Data Engineering, iEEE Computer Society, 18(1), page:; 11- 18, 1995.

8. Eiter T ., Leone K. , Mateis C., Pfeifer G. and Scarcella !<~ .. A Deductive System for
Non-monotonic Reasoning. Proc. LPNMR Con/., 363-374. 1997.

9. P. Muth, J. Weienfels, M. Gillmann, and G. Weikum. ln~egraUng Light,..Weight
Workflow Management Systems within Existing Dusiness Environments. l n Pr-oc.
15th Int. Con/. on Da.ta Engmeering, pages 286-293, 1999.

10. P. Senkul, M. Kifer and l.H. Toroslu. A logical Framework for Scheduling Work­
flows Under Resource Allocation Constraint.s. In VLDB, pages 694-705, 2002.

U . D. Sacca and C. Zaniolo. Stable Models and Non-Determinism in Logic Programs
with Negation. In Proc. A CM Symp. on Principii'-' of Databrtse Sy.~tem.,, pages
205-218, 1990.

12. T he Workflow Management Coalition, httzJ:/ jwww.wfmc.org/.
13. Zaniolo, C., Transaction-Conscious Stable Model Semantics for Active Database

Rules. In Proc. Int. Conf. on Deductive ObJect-Oriented Databases, 1995.
1-1. Zaniolo, C., Active Database Rules with Transaction-Conscious Stable Model Se­

mantics. In Proc. of the Conf. on Deductive Object-Oriented Databases, pp.55-72,
LNCS 1013, Singapore, December 1995.

15. Zaniolo, C., Arni, N., and Ong, K., Negation and Aggregate:; in Recursive Rules:
the LDL++ Approach, Proc. !Jrd Int. Con/. on Deductive and Object-Oriented
Databases, 1993.

