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Abstract. Default lobric is used to descno e regular behavior and normal proper­
ties. We suggest to exploit the framework of default logic for detecting outliers 
- individuals who behave in an unexpected way or feature abnormal properties. 
We first formally define the notion of an ollllier and an outlier witness. We then 
show that finding outliers is quite complex. Indeed, we show that several versions 
of the outlier detection problem lie over the second level of the polynomial hi­
erarchy. For example, the question of establishing if at least one outlier can be 
detected in a given propositional default theory is Ef -complete. In addition, we 
show that outlier detection can be done in polynomial time for both the class of 
acyclic normal unary defaults and the class of acyclic dual normal unary defaults. 

1 Introduction 

Default logics were developed as a tool for reasoning with incomplete knowledge. By 
using default rules, we can descnoe how things work in general and then make some 
assumptions about individuals and draw conclusions about their properties and behav­
IOr. 

In this paper, we suggest a somewhat different usage of defaul t logics. The basic 
idea is as follows. Since default rules are used for describing regular behavior, we can 
exploit them for detecting individuals or elements who do not behave nonnally accord­
ing to the defaul t theory at hand . ..We call such entities outliers. An outlier is an element 
that shows some properties that are contrary to those that can be logically justified. 

Outlier detection can be useful in several application contexts, e.g., to single out 
exceptional behaving individuals or system components. Note that according to our ap­
proach, exceptions are not explicilly listed in the theory as "abnonnals," as is often done 
in logical-based abduction [II, 2, 3]. Rather, their "abnonnality" is singled out exactly 
because some of the properties characterizing them do not have a justi1ication within 
the theory at hand. For example, suppose that it usually takes about two seconds to 
download a one-megabyte file from some server. Then, one day, the system is slower­
instead four seconds are needed to perform th e same task. While four seconds may in­
dicate a good perfonnance it is helpful to find the source of the delay. Another example 
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might be that someone's car brakes are making a strange noise. Although they seem to 
be functioning properly, this is not normal behavior and the car should be serviced. In 
this case, the car brakes are outliers and the noise is their witness. 

Oullier detection can also be used for examining database integrity. If an abnormal 
property is discovered in a database, the source who reported this observation would 
have to be double-checked. 

Detecting abnormal properties, that is, detecting outliers, can also lead to an update 
of default rules. Suppose we have the rule that birds fly, and we observe a bird, say 
Tweety, that docs not .fly. We report this occurrence of an outlier in the theory to the 
knowledge engineer. The engineer investigates the case, finds out that 1\veety is, for 
example, a penguin, and updates the knowledge base with the default "penguins do not 
fly." 

rn this paper, we formally state the ideas briefly sketched above within the context 
of Reiter's default logic. For simplicity, we concentrate on the propositional fragment 
of default logic although the generalization of such ideas to the realm of first-order 
defaults is also worth exploring. So, whenever we use a default theory with variables, 
as in some of the following examples, we relate to it as an abbreviation of its grounded 
version. 

The rest of the paper is organized as follows. [n Section 2, we give preliminary 
definitions as well as a formal definition of the concept of an outlier. ln Section 3, 
we describe the complexity of finding outliers in propositional default logic. Section 4 
describes some tractable cases. Related work is discussed in Section 5. Conclusions are 
given in Section 6. 

Because of space limitations, throughout the paper proof.~ of results are sketched or 
omitted. Full proofs can be found in [1]. 

2 Definitions 

Tn this section we provide preliminary definitions for concepts we will be using through­
out the paper. 

2.1 Preliminaries 

The following definitions will be-assumed. Let T be a propositional theory. Then T* 
denotes its logical closure. If S is a set ofliterals, then -.S denotes the set of all literals 
that are the negation of some literal in S. 

Default logic was introduced by Reiter [12). A propositional default theory .::l is 
a pair (D, W ) consisting of a set W of propositional formulas and a set D of default 
rules. A default rule 8 has the form rf>~t/J (or, equivalently,¢ : 'lf;/x), where ¢, '1/J and 
X are propositional formulas, called, respecti vely, prerequisite, justification, and con­
sequenz of tl. The prerequisite could be omitted, though justincation and consequent 
are required. lf 1jJ = x, the default rule is called normal. The informal meaning of a 
default role tl is the following: if ¢ is known, and if it is consistent to assume '1/J, then 
we conclude X· An extension is a maximal set of conclusions that can be drawn from a 
theory. An extension E of a propositional default theory ..1 = (D, W) can be finitely 
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characterized through the set DE of generating defaults for E w.r.t. Ll, i.e ., the set 
DE= {0: 1/J/x E D 1 <PE E A~ ~ E}. Indeed, E = (W u {x I <P: ?/J/x e Ds })*. 

A propositional default theory Ll = {D, W ) is disjunction free (DF for short), if 
W is a set of literals, and the prerequisite, justification and consequent of each dct'imlt 
in D is a conjunction of literals. A DF default theory is normal mixed unary (NMU in 
short) iiTits set of defaults contains only rules of the form 7J, where a is either empty 
or a literal and /3 is a literal. An NMU default theory is norma/unary (NU for short} i IT 
the prerequisite of each default is either empty or positive. An NMU default theory is 
dual normal unary (DNU for short) iff the prerequisite of each default is either empty 
or negative. 

Let Ll be a default theory and l a literal. Then Ll F l means that l belongs to 
every extension of Lt Similarly, for a set of literals S, Ll F S means that every literal 
l E S belongs to every extension of Ll. A default theory is coherent if it bas at least one 
extension. 

We review some basic definitions about complexity theory, particularly, the polyno­
mial hierarchy. The reader is referred to [6] for more on complexity theory. The classes 

Ef and JJf are defined as follows: Ef =II[ = P and for all k 2: 1, Ef = NPZf- 1, 
and fl[ = co-Ef. Ef models computability by a nondeterministic polynomial-time 
algorithm which may use an oracle, loosely speaking a subprogram that can be run with 
no computational cost, for solving a problem in Ef_1. The class Df, k ~ 1, is defined 
as the class of problems that consists of the conjunction of two independent problems 
from Ef and JJf, respectively. Note that for all k ~ 1, Ef ~ Df ~ Ef+1. 

A problem A is complete for the class C iff A belongs to C and every problem in 
C is reducible to A by polynomial-time transformations. A well known Ef -complete 
problem is to decide the validity of a formula QBEk,3. that is, a formula of the form 
3X 1VX2 . •• QXd(X 1 .. . . , Xk). where Q is 3 if k is odd and is V if k is even, X 1 , 

.. . , X k are disjoint set of variables, and f (X 1 , . • . , X k ) is a propositional formu la in 
X1, . .. , Xk· Analogously, the validi ty of a formula QBEk,v. that is a formula of the 
form VX13X2 . . . QXkf(X 1 , • • • , Xk), where Q is V if k is odd and is 3 if k is even, is 
complete for JJf. Deciding the conjunction <I> A !Jt, where <Pis a QBEk,3 form ula and 
IJr is a QBEk,v formula, is complete for Df. 

2.2 Defining outUers 

Next we formalize the notion of an outlier in default logic. ln order to motivate the 
definition and make it easy to understand, we :first look at an example. 

Example I. Consider the following default theory which represents the knowledge that 
b irds fly and penguins are birds that do not fly, and the observations that Tweety and 
Pini are birds and Twecty docs not fly. 

D = { Bird(x ) : Fly(x) Penguin(x) : Bir·d(x) Penguin(x) : -.Fly(x ) } 
Fly(x) ' B ird(x ) ' -....Fly(x) 

W = {Bird(Tweety) ,Penguin(Pini). -....Fly(T weety )} 

This theory bas two extensions. One extension js the logical closure ofWU {Bird( P ini), 
-.Fly(Pini)} and the other is the logical closure of W U {Bi1·d(Pini), Fly( Pini) }. 
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If we look carefully at the extensions, we note that Tweety not·flying is quite strange, 
since we know that birds fly and Tweety is a bird. Therefore, there is no apparent jus­
tification for the fact that Tweety does not fly (other than the fact -,Fly(Tweety) be­
longing to W). Had we been told that Tweety is a penguin, we could have explained 
why Tweety does not fly. But, as the theory stands now, we are not able to explain why 
Tweety does not fly, and, thus, Twccty is an exception. Moreover, if we are trying to 
naiJ down what makes Tweety an exception, we notice that if we would have dropped 
the observation -.Fly(T weety) from W, we would have concluded the exact opposite, 
namely, that Tweety does fly. Thus, · Fly(Tweety) "induces" such an exceptional­
ity (we will call witness a literal like -.Fly(Tweety)). Furthermore, if we drop from 
W both -,F ly(Tweety) and B ir·d(Tweely ), we are no longer able to conclude that 
Twecty flies. This implies that Fly(T weety) is a consequence of the fact that Tweety 
is a bird, and thus B-ini(Tweety) is the property ofTweety that behaves exceptionally 
(or the outlier). 

From the above example, one could be induced to define an outlier as an individual, 
i.e., a constant, in our case Tweety, that possesses an exceptional property, denoted 
by a literal having the individual as one of its arguments, in our case B ird(Tweety). 
However, for a conceptual viewpoint, it is much more general and flexible to single out 
a property of an individual which is exceptional, rather than simply the individual. That 
assumed, we also note that within the propositional context we deal with here, we do 
not explicitly have individuals distinct from their properties and, therefore, the choice 
is immaterial. 

Based on the example and considerations mentioned above, we can define the con­
cept of an outlier as follows. 

Definition 1. Let L1 = (D, W) be a propositional default theory such that W is con­
sistent and l EW is a Literal. If there exists a :set ofliterals S ~ W such that: 

l. (D, Ws) f= ...,s, and 
2. (D , Ws,l ) ~ -.S. 

where Ws = W \ Sand W5 ,1 = W5 \ {l}. then we say that lis an outlier in L1 and S 
is an outlier witness set for l in .<:1. 

According to this definition, a literal I is an outlier if and only if there is an exceptional 
property, denoted by a set of literals S, holding in every extension of the theory. 

The exceptional property is the outlier witness for l. Thus, according to this defini­
tion, in the default theory ofExample 1 above we should conclude that Bird(Tweety) 
denotes an outlier and { ·Fly(T weely )} is its witness. Note that we have defined an 
outlier witness to be a set, not necessarily a single literal, since in some theories tak­
ing a single literal does not suffice to form a witness tor a given outlier, being that all 
witnesses of such an outlier have a cardinality strictly larger than one. 

Example 2. Consider the default theory L1 = (D , W) , where the set of default rules D 
conveys the following information about weather and traffic in a small town in southern 
California: 
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1. Julyf\Weekend:-:-Traf fic.Ja:nf\~R.am - that is normally during a July weekend there 
~Tro.fjtc..Jamf\~Ratn ' 

arc no traffic Jams nor any rain. 
2 Janur1ry:Rain .lamJaMJ:~Rain • in January it sometimes rains and sometimes it 

· R am 1 - Ratr< 
doesn't rain. 

3 Weekcwlf\T raf fic..Jum:AccitlentVRuin _ Jf there is a traffic J·am in the weekend then 
· AcctdentV Ra£11 

normally it must be raining or there would have been an accident. 

Suppose also that W = {July, Weekend, T raf fic.J am, Rain}. Then, the set S = 
{Traf fic.Jam, Rain} is an outlier witness for both Weekend and July. Moreover, 
S is a minimal outlier witness set for either Weekend or ] 'ILly, since deleting one of 
the members from S will render S not being a witness set. 

Here is another example. 

Example 3. Consider the following defaul t theory .1: 

D _ { lncame(:z:)f\Adult(x):Works(x) 
- Work.•(:r.) ' 

PlyingS(x):Intere.•tTakeO ff(:z:) 
lnt"'·r.st.TGkeO f f(x) ' 

Flying8 (x): lntere.<tNat~igate(x} } 
I nterestN a11igat• (x) 

W = {Income(Johnny) , Adult( Johnny ), 
-.W ork.s(Johnny) , Fly ingS(Johnny), 
-.JnterestTakeOf !(Johnny)} 

This theory claims that normally adults who have a monthly income work, and students 
who take flying lessons are interested in learning how to take off and navigate. The ob­
servations are that Johnny is an adult who has a monthly income, but he does not work. 
He is also a student in a flying school but he is not interested in learning bow to take­
off. Based on the events of September l l , 2001 , we'd like our system to conclude that 
Johnny is the argument of two outliers. Indeed, the reader can verify that the following 
facts are true: 

I. (D, W~work,•(Jnhnny)) I= Wo1·ks(Johnny), 
2. (D, W~rntc>·estTo.keOJ t ( Johrm:v)) I= Inte·restTakeO f !(Johnny), 
3. (D, W~works(Jnhrmy).Ad~t.ll(Johnny) ) ~ Wm·ks(J ohnny), and 
4. (D, W~Inle.,.estTakeOff (Johrmy),FlyingS(Johnny) ) ~ 

I ntenstTakeO f f (Johnny) . 

Hence, both -.w orks(Johnny) and -.JnterestTakeO f !(Johnny) are outlier wit­
nesses, while Adult( .Johnny) and FlyingS( Johnny) are outliers. Note that Income 
(Johnny) is also an outlier, with the witness -.Wor·ks(Johnny). 

2.3 Defining outlier detection problems 

In order to state the computational complexity of detecting outliers, in the rest of the 
work we refer to the following problems (also referred to as queries) defined for an 
i.nput default theory L1 = (D, W): 
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QO: Given ~. does there exist an outlier in ~ ? 
Ql : Given~ and a literal l E W, is there any outlier wimess for lin Ll? 
Q2: Given~ and a set of literals S ~ W, isS a witness for any outlier l in~ ? 
Q3: Given Ll, a set of literals S ~ W, and a literal IE W, isS a wimess for lin~? 

3 General complexity results 

In this and in the followi ng section we will analyze the complexity associated with 
detecting outliers in general, DF, NMU, NU and DNU propositional default theories 
(th is section) and illustrate some tractable classes of theories (Section 4). Here, we 
limit ourselves to provide, for each of t he outlier problems defined above (i.e. QO, Ql, 
Q2, and Q3), a general discussion of the proof (for the full proofs, see [ I]). 

Theory \ Querv QO Ql Q2 Q3 
Propositional E3 -c x:;~ D2~ Df -c 

DF,NMU Ef -c ~-~ Dl' ~ Dl'~ 
NU, DNU NP~ NP~ p p 

Acy. NU. A1;y. DNU p p p p 

Table 1. Complexity results for outlier detection 

The complexity results are summarized in Table I , where C-c stands for C-complete. 
We recall that the entailment problem is !If -complete for general propositional 

default theories [13, 7], co-N P-complete for DF [8] and NMU [ I] propositional default 
theories, and in P for NU [8] and DNU [14] propositional default theories. 

3.1 Queries QO and Ql 

We start commenting about query QO, the most general form of query that we have 
defined above. Given a default theory, this query asks for the existence of an outlier 
in the theory. When general propositional default theories are considered, this query is 
rather complex as it lies at the third level of tile polynomial hierarchy. 

Theorem 1. QO on general propositional default theories is Ef -complete under poly­
nomial time transformations. 

We note that a problem lying at the k-th level of the polynomial hierarchy is charac­
terized by exactly k independent "sources of complexity". Each source of complexity 
consists of a search space composed by an ex-ponential number of candidate solutions. 
In the case of general propositional default theories, two of the three sources underly to 
the associated entailment problem, that arc (i) the exponential number of generating de­
faults De ~ D and. thus, of possible extensions£ of the default theory Ll = (D , Ws ) 
(..1 = (D , Ws,t) resp.). and (ii) the propositional deductive inference needed to check 
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that De generates an extension £ of Ll and that -.5 E £ ( -,5 !{. & resp.). The third one 
is determined by the exponential number of subsets of literals S U {l} of W candidate 
to play the role of an outlier witness set (the setS) and an outlier (the literall) in .1. 

If we restrict query QO to DF theories then the following holds. 

Theorem 2. QO restricted to DF propositional default theories is Ef -complete under 
polynomial time transformations. 

The complexity of QO for DF theories goes down one level in the polynomial hierarchy 
w.r.t. general theories as, in this case, the deductive inference check reduces to simple 
set operations, and, therefore, we are left with only two sources of complexity. 

The complexity associated with QO does not decrease even if we consider such a 
simplified form of DF theories as NMU theories, as stated be1ow. 

Theorem 3. QO restricted to NMU propositional default theories is Ef -complete un­
der polynomial time transformations. 

This result is explained since the complexity of the entailment problem for NMU theo­
rjes is the same for DF theories. 

To obtain a further reduction in complexity, we have to consider simpler theories 
than the NMU ones. 

Theorem 4. QO restricted to propositional NV default theories is NP-complete under 
polynomial time transformations. 

Theorem 5. QO restricted to propositional DNU default theories is NP-complete under 
polynomial time transformations. 

Query QO on these theories lies at the first level of the polynomial hierarchy since the 
entailment problem for NU and DNU default theories is polynomial time decidable. 
Note that, however, this NP-completeness result tells that searching for outliers even in 
these simple form of theories is a very complex task. 

Summarizing, the query QO is complete for the class Ef for general default theo­
ries, is complete for the class Ef for DF and NMU propositional default theories, and 
is complete for the class NP and NU and DNU default theories, hence its comp!exjty 
lies exactly one level of the polynorrual hierarchy over the level of the complexity of 
the entrulment problem for these theories. 

As for query Ql, hold considerations analogous to that of query QO and, thus, the 
complexity results for these two queries are identical. 

intuitively, this can be justified noting that none of the sources of complexity in­
volved in query QO is relieved by the knowledge of the outlier l. In particular, the 
number of possible outlier witness set S ~ W \ { l} for l is still exponential. 

3.2 Queries Q2 and Q3 

Given a default theory and a set of literals S, query Q2 asks whether Sis a witness for 
any outlier in the theory. The complexity of Q2 lies in the polynomial hierarchy one 
level below the complexity of QO. Indeed, one of the sources of complexjty involved 
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with query QO, that is the exponential number of outlier witnesses, fulls off when query 
Q2 is considered. 

In particular, Q2 on general theories is the conjunction of two independent prob­
lems, one from ilf and one from Ef. 

Theorem 6. Q2 on general propositional default theories is Df -complete under poly­
nomial time Transformations. 

For Of and NMU default theories, Q2 is the conj unction of two independent problems 
from co-NP and NP respectively. 

Theorem 7. Q2 restricted to DF propositional default theories is DP -compleTe tmder 
polynomial time transformations. 

Theorem 8. Q2 restricted to NMU propositional default theories is nP -complete WI­

der polynomial time transformations. 

Finally, Q2 on NU and DNU theories is the conjunction of two polynomial time solv­
able problems, and, hence, in these cases, this query is in P. 

T heorem 9. Q2 restricted to NU and D NU propositional default theories is in P . 

Finally, consider query Q3. This query is important as it constitutes the basic opera­
tor to be implemented in a system of outlier detection on propositional default theories. 
Indeed, given a default theory, set of literals Sand a literall, this query asks whether S 
is an outlier witness set for l in the input theory. 

Analogously to what holding between query QO and Ql, both query Q2 and Q3 
have the same complexity. 

4 Some Tractable Cases 

In this section, we look for some classes of default theories for which outl ier detection 
is computationally tractable. 

Restricting our attention to NMU, NU, or DNU theories does not suffice to attain 
tractability of the most general queries QO and Ql. Some further restriction is needed, 
which is considered next. 

Theorem J 0 (18] 1141). Suppose~ is a normal (dual normal) unary default theory. We 
can decide whether a literal belongs to every extension of ..1 in time O(n2), where n is 
the length of the theory. 

Defini tion 2. The atomic dependency graph of an NMU default theory ~ is a directed 
graph whose nodes are all atoms in the language of ~. and such that there is an arc 
directed rrom p to q i IT there is a default in ..1 in whicb p or --.p is a prerequisite and q 
or -.q is a consequence. 

Definition 3. A normal (dual normal) unary default theory is acyclic iff its atomic de­
pendency graph is acyclic. 
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Theorem 11. Queries QO, Ql. Q2 and Q3. restricted to the class of acyclic NU or 
acyclic DNU default theories can be solved in polynomial time in the size of the input 
theory. 

Proof It can be shown that for any acyclic NMU default theory Ll = (D, W) such that 

W is consistent and for any literall in W, any minimal outlier witness set for lin Ll is 

at most I in size. Theorem's statement then follows from Theorem I 0. 

5 Related Work 

The research on logical-based abduction [11, 2, 3] is related to outlier detection. In the 

framework of logic-based abduction, the domain knowledge is described using a logical 

theory T. A subset X of hypotheses is an abduction explanation to a set of manifesta­

tions 1\IJ if T U X is a consistent theory that entails M. Abduction resembles outlier 

detection in that it deals with exceptional situations. 
The work most relevant to our study is perhaps the paper by Eiter, Gottlob, and 

Leone on abduction from default theories [4]. There, the authors have presented a basic 

model of abduction from default logic and analyzed the complexity of the main ab­

ductive reasoning tasks. They presented two modes of abductions: one based on brave 

reasoning and the other on cautious reasoning. According to those authors, a default 

abduction problem (DAP) is a tuple (H, Nl, W, D ) where H is a set of ground literals 

called hypotheses, M is a set of ground literals called observations, and (D, W) is a 

default theory. Their goal, in general, was to explain some observations from M by 

using various hypotheses in the context of the default theory (D, W). They suggest the 

following definition for an explanation: 

Definition 4 ([4)). Let P = (H, M , D , W ) be a DAP and let E ~ H. Then, Eisa 
skeptical explanation for P iff 

1. (D, W U E) I= M. and 
2. (D, W U E) has a consistent extension. 

There is a close relationship between outliers and skeptical explanations, as the follow­

ing theorem states. The theorem also holds for ordered semi-normal default theories 

[5]. 

Theorem 12. Let Ll = (D, W}be a normal default theory. where W is consistent. 

Let l E WandS ~ W . Sis an outlier witness set for l iff {l} is a minimal skeptical 
explanation for ~s in the DAP P = ( { l} , •S, D, W s,1) 

Hence, we can say that S is an outlier witness for l if l E W, l is a skeptical explanation 

for S, but stili•S holds in every extension of the theory. 
Despite the close relationship between outlier detection and abduction demonstrated 

by the above theorem (especially for normal defaults) we believe that there is a signif­

icant difference between the two concepts. In abduction, we have to single out a set of 

manifestations and a set of potential explanations. Outlier detection, on the other hand, 

bas much more to do with knowledge discovery. The task in outlier detection is to learn 
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who the exceptionals (the outliers), or the suspects, if you wish, are, and to justify the 
suspicion (that is, list the outlier witnesses). 

It also turns out that reducing outlier detection queries to abduction and vice versa 
is not straightforward. and therefore. when analyzing the computational complexities 
involved in answering outlier detection queries we have preferred to use the classical 
Boolean fonnula satisfiabiJity problems (see [I]). 

6 Conclusion 

Suppose you are walking down the street and you see a blind person walking in the 
opposite direction. You believe he is blind because he is feel ing his way with a walking 
stick. Suddenly, something falls out of his bag, and to your surprise, he finds it imme­
diately without probing about with his fingers, as you would expect for a blind person. 
This kind of behavior renders the "blind" person suspicious. 

The purpose of this paper has been to formally mimic this type of reasoning using 
default logic. We have formally defined the notion of an outlier and an outlier witness, 
and analyzed the complexities involved, pointing out some non-trivial tractable subsets. 
As explained in the introduction, outlier detection can also be used for maintaining 
database integrity and completeness. 

This work can be extended in several ways. First, we can develop the concept of 
outliers in other frameworks of default databases, like System Z [I 0] and Circumscrip­
tion [9). Second, we can look for intelligent heuristics that will enable us to perfonn 
the involved heavy computational task more efficiently. Third, we can study the prob­
lem from the perspective of default theories as a .. semantic check toolkit" for relational 
databases. 
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