
User Preferences VS Minimality in PPDL?

Elisa Bertino1, Alessandra Mileo1 and Alessandro Provetti2

1 Dipartimento d’Informatica e Comunicazione
Università degli studi di Milano. Milan, I-20135 Italy

{bertino, mileo}@dico.unimi.it.
2 Dipartimento di Fisica

Università degli studi di Messina. Messina, I-98166 Italy
ale@unime.it

Abstract In the context of Network management, Chomicki et al. de-
fined the specification language PDL (Policy Description Language) and
later extended it by introducing monitors: constraints on the actions
that the network manager cannot execute simultaneously. We have fur-
therly extended PDL by permitting specifying user preferences on how
to enforce constraints; that extension is called PPDL and it is based
on Brewka’s ordered disjunction connective. In this article we speculate
on how the minimality requirement, stating that constraints on actions
should affect action execution as little as possible, can be specified and
implemented in PPDL theories. Minimal interference and maximal satis-
faction of user preferences are not always achievable and tend to interact
in complex ways.

1 Introduction

Chomicki, Lobo, Naqvi, and others have addressed network services manage-
ment by defining a high-level specification language, called Policy Description
Language (PDL). In that context, a policy is a description of how events re-
ceived over a network (e.g., queries to data, connection requests etc.) are served
by some given network terminal, often identified as data server. PDL also al-
lows the specification of monitors: descriptions of sets of actions that cannot be
executed simultaneously to prevent illegal, hazardous or physically impossible
situations. PDL allows managers to specify policies and monitors independently
from the details of the particular device executing it. We refer the reader to works
by [Chomicki et al., 2000,Chomicki et al., 2003] for a complete introduction and
motivation for PDL in network management.

Our long-term research develop (and deploy) PDL to take advantage of most
recent Knowledge representation concepts and results. We investigate PDL in the
? This work has been supported by i) MIUR COFIN project Aggregate- and number-

reasoning for computing: from decision algorithms to constraint programming with
multisets, sets, and maps. and ii) the Information Society Technologies programme
of the European Commission, Future and Emerging Technologies under the IST-
2001-37004 WASP and IST-2001-33058 PANDA projects.



abstract, i.e., as a specification language and investigates the requirements and
the complexity of evaluating and executing PDL policies that include monitors
(sometimes referred to as consistency monitors). The framework we use for our
investigation of PDL is Answer Set Programming paradigm (ASP). ASP is a
form of Logic Programming based on Gelfond-Lifschitz stable models semantics
[Gelfond and Lifschitz, 1991].

ASP is a suitable language for expressing complicated or under-defined prob-
lems in a very concise form. Nowadays, there are rather efficient solvers [Systems]
that can compute the answer sets of programs defining thousands of atoms within
few seconds. In particular, the solver DLV computes answer sets of programs with
disjunctions; such programs have been used by [Chomicki et al., 2003] for imple-
menting monitors. Also, [Brewka, 2002] introduced logic programs with ordered
disjunctions, which will be described later, that can be executed by an extension
of the Smodels solver (called Psmodels) described in [Brewka et al., 2002].

In [Bertino et al., 2003b] we took a different perspective, i.e., we chose the
output based on degrees of satisfaction of a preference rule, as shown in [Brewka, 2002].
In the past we have worked on PDL in several directions. For example we have
extended it to allow users to express preferences on how to enforce policies, re-
constructing Brewka’s ordered disjunction connective [Brewka, 2002] into PDL.
The resulting language is called PPDL: PDL with Preferences. PPDL monitors
are computed by translating them into Brewka’s LPOD programs, computing the
relative answer sets and then taking the maxima w.r.t. a preference relation over
answer sets themselves. Ordered disjunctions are a relatively recent development
in reasoning about preferences with Logic Programming and are subject of cur-
rent work by [Brewka, 2002,Brewka et al., 2002,Brewka, Benferhat, Le Berre, 2002],
[Buccafurri et al., 1998], [Schaub, Wang, 2001] and others. One important as-
pect of Brewka’s work is that preferred answer sets need not be minimal. This
is a sharp departure from traditional ASP.

Adding preferences to PDL implies an assessment of the trade-off between
user-preferences and minimality of the solutions. The interaction between user-
preference and minimality is illustrated in the following example.

Example 1. Suppose we want to control the operations of a call center, or a
customer service line. An appropriate policy should describe which calls have to
be preferencially accepted according to geographical location, time of the call,
time waiting etc. We build our policy specifying preferences according to that
strategy. Surely we want the control system to respect our preferences, but if two
calls are in conflict, we also want to minimize cancelled calls, in order to serve a
maximal (resp. a maximum) number of calls within a few minutes. Therefore, the
policy application should return a set of accepted calls which is both preferred
w.r.t. the policy and maximal (resp. maximum).

In this article we would like to discuss the more abstract issue of the trade
off between capturing user preferences and a general criterion of minimal inter-
vention. In fact, since each action is intended as satisfying a user’s request, to
maximize user satisfaction we would like monitor to cancel out (prevent from
being executed) only a minimal (preferably minimum) number of actions.



This article is organized as follows. After giving an overview of PDL and of
its implementation in Answer Set Programming in Section 2, in Section 3 an
overview of LPODs is presented , and in section 4 we show how to introduce
preferences in PDL monitors. In Section 5, we present a transformation that
ensures minimality of the computed monitors (actions to be blocked). Finally,
in Section 6 we will briefly describe the lines of development of our research on
PPDL.

2 Introduction to PDL

PDL can be described as an evolution of the typical Event-Condition-Action
(ECA) schema of active databases. In fact, a PDL policy is defined as a set of
rules of the form

e1, . . . em causes a if C. (1)

where C is a Boolean condition and e1, . . . em are events , which can be seen as
input requests1. Finally, a is an action, which is understood to be a configuration
command that can be executed by the network manager.

PDL assumes events and actions to be syntactically disjoint and rules to
be evaluated and applied in parallel. One may notice the lack of any explicit
reference to time. In fact, PDL rules are interpreted in a discrete-time framework
as follows. If at a given time t the condition is evaluated true and all the events
are received from the network, then at time t + 1 action a is executed. As a
result, we can see PDL policies as describing a transducer.

[Chomicki et al., 2003] gives a precise formal semantics of PDL policies by
showing a translation into function-free [disjunctive]logic programs, which have
Gelfond-Lifschitz Answer Set semantics [Gelfond and Lifschitz, 1991]. So the se-
mantics of a policy written in PDL (and its extensions) is given in terms of the
Answer sets of the translated policy. This article adopts the same methodology
and discusses semantics always in terms of Answer Sets.

2.1 Consistency Monitors

Chomicki and his co-authors have extended the syntax of PDL to allow describ-
ing constraints on sets of actions executing together. This is the syntax of the
new rules:

never a1 . . . an if C. (2)

where C is a Boolean condition2 and a1 . . . an are actions, prohibits the si-
multaneous execution of a1 . . . an. A set of such rules is called a consistency
1 Also, non-occurrence of an event may be in the premise of the rule. To allow for

that, for each event e a dual event e is introduced, representing the fact that e has
not been recorded.

2 We will not consider here the boolean condition C as it is not determinant for our
argumentation.



monitor. Consistency monitors are instrumental to specify hazardous, insecure
or physically impossible situations that should be avoided. At this point, clearly,
the question becomes what to do when applying the policy yields a set of actions
that actually violates one of the rules in the monitor. Applying a monitor means
filtering actions that follow from a policy application, canceling some of them.

There is no universally agreed procedure performing cancellation. Chomicki
et al. propose two alternatives, which give to monitors an operational semantics.
The first semantics, called Action-monitor, consists in dropping some of the
actions to be executed so that to respect the monitor.

The second semantics, called Event-monitor, consists in dropping some of the
events from the input, then re-applying the original policy, which, having lesser
conditions violated, this time will yield a set of to-be-executed actions that does
not satisfy any of the constraints in the monitor.

This article deals with Action Cancellation only. In both cases, however, we
notice that choice of which action to drop is non-deterministic.

2.2 Encoding PDL in Answer Set Programming

Let us describe the formal setting used in the rest of the article. First of all,
following Chomicki et al., we slightly simplify the notation by restricting to
policies and monitors with empty condition C. Second, we recall that the event
(E) and action (A) alphabets are assumed to be disjoint. Also, E is implicitly
extended by introducing for each event e its opposite e. The intended meaning
of e: e did not happen, is captured by the next definition. A set E of events
observed on the network is completed by Ec = E ∪ {ei : ei 6∈ E}.

The next set of definitions concerns the encoding of PDL policies as Answer
Set Programs, basically following those of Chomicki et al.. The set of observed
events, E, is represented by a set occ(E) of occurs facts. Policies are encoded as
follows.

Definition 1. A Policy P over E and A (E ∩ A = ∅) is a set of rules as in
equation (1) that can be translated in ASP as follows:

exec(a) :− occ(e1), . . . , occ(el),
not occ(el+1), . . . , not occ(em). (3)

where ei ∈ E , i = 1 . . . n and a ∈ A; for simplicity we will ignore the boolean
condition C mentioned in equation (1).

Clearly, a set of occurs facts together with rules describing exec makes up a very
simple ASP program, for which there is a unique answer set.

Definition 2. Let occ(E) be a set of occurs facts and P a policy. The conse-
quence set of E w.r.t. a policy P , denoted P (E), is the set of all actions implied
by program occ(E) ∪ P such that

a ∈ P (E) ↔ occ(E) ∪ P |=asp exec(a).



and such set is unique3. Let us now introduce consistency monitors as ASP
programs.

2.3 Encoding Action-Cancellation Monitors in ASP

Chomicki et al. define Action-Cancellation monitors in ASP as a set of rules as
follows:
each constraint of the form “never a1,...,an” is captured as a conflict rule

block(a1) ∨ . . . ∨ block(an) :− exec(a1), . . . , exec(an). (4)

and for each action a occurring in a policy rule, there is an accepting rule:

accept(a) :− exec(a), not block(a). (5)

respectively4. Given a PDL policy P and a set of input events E, we define the
ASP program πP (E)as containing:

1. occ(E), i.e., a set of occurs facts representing E;
2. a set of rules encoding the pure policy, for which the encoding schema is

given in formula 1, and
3. a set of rules encoding the consistency monitor, as mentioned above.

The Answer sets of πP (E) can be obtained by feeding it to the ASP solver
DLV. The key point is that the resulting answer sets contains accept atoms
that represent a set of actions compatible w.r.t. monitor application. ¿From the
point of view of consistency monitoring, all answers are equivalent. Hence, we
may reduce to computing just one. Extra preferences/constraints on the solution
can be added by adding constraints to πP (E). This is what we will do in the
next Section.

3 Logic Programs with Ordered Disjunctions

LPODs have been introduced by [Brewka, 2002] in his work on combining Qual-
itative Choice Logic and Answer set programming. A new connective called or-
dered disjunction, denoted with “×,” is introduced. An LPOD consists of rules
of the form

C1 × . . . × Cn :− A1, . . . , Am, not B1 . . . , not Bk. (6)

where the Ci, Aj and Bl are ground literals. The intuitive reading [Brewka, 2002]
of the rule head is:
3 The ASP declarative semantics, with the definition of |=asp, can be found in

[Gelfond and Lifschitz, 1991]
4 Remember that rules defining exec showed in equation (1) are still part of the en-

coding.



if possible C1, but if C1 is not possible, then C2,
...
if all of C1, . . . , Cn−1 are not possible, then Cn.

The × connective is allowed to appear in the head of rules only, and is used
to define a preference relation to select some of the answer sets of a program by
using ranking of literals in the head of rules, on the basis of a given strategy or
a context. The answer sets of a LPODs program are defined by Brewka as sets
of atoms that maximizes a preference relation induced by the “×-rules” of the
program.

LPOD programs can be interpreted using a special version of the solver
Smodels, called Psmodels, which is presented in [Brewka et al., 2002]. Basically,
LPOD programs are translated into equivalent (but longer) ASP programs and
then send to smodels. To do so, we need to send the source LPOD program to (a
recent version of) Lparse, the front-end to Smodels, with the –priorities option.
The code showed in this article is intended for such type of interpretation.

3.1 Overview of LPOD semantics

The semantics of LPOD programs is given in terms of a model preference cri-
terion over answer sets. [Brewka, 2002] shows how Inoue and Sakama’s split
program technique can be used to generate programs whose answer sets char-
acterize the LPOD preference models. In short, a LPOD program is rewritten
into several split programs, where only one head appears in the conclusion. Split
programs are created by iterating the substitution of each LPOD rule 6 with a
rule of the form:

Ci :−A1, . . . , Am,not B1, . . . ,not Bk,not C1, . . . ,not Ci−1 (7)

Consequently, Brewka defines answer sets for the LPOD program Π as the an-
swer sets of any of the split programs generated from Π.

There is one very important difference between Gelfond and Lifschitz’s an-
swer sets and LPOD semantics: in the latter (set theoretic) minimality of models
is not always wanted, and therefore not guaranteed. This can be better explained
by the following example.

Example 2. Consider these two facts:

1. A × B × C.
2. B × D.

To best satisfying both ordered disjunctions, we would expect {A, B} to be the
single preferred answer set of this LPOD, even if this is not even an answer set
of the corresponding disjunctive logic program (where “×” is replaced by “∨”)
according to the semantics of [Gelfond and Lifschitz, 1991] as B is sufficient to
satisfy both disjunctions and is minimal.



The example above shows that the built in minimality precludes preferred
answer sets to be considered. Hence it is necessary to use non-minimal semantics.
In the following, we will discuss the minimality of solution issue in depth. Please
refer to [Brewka, 2002] and the survey in [Schaub, Wang, 2001] for further details
about LPODs semantics and formalizations of preference criteria.

4 PPDL: PDL with Preference monitors

To describe a preference relation on action to be blocked when a constraint
violation occur, we extend PDL allowing a new5 kind of constraint of the form:

never a1 × . . . × an if C. (8)

which means that actions a1, . . . , an cannot be executed together, and in case
of constraint violation, a1 should be preferably blocked; if that is not possible
(i.e. a1 must be performed), then block a2 , then a3, ...; if all of a1, . . . , an−1

must be performed, then block an.
Starting from equation (8), we can now show how to encode PPDL policies

with preference cancellation rules into ASP programs.
Remember that, for pure Action-Cancellation monitor, [Chomicki et al., 2000]

propose an encoding where for each constraint of the form “never a1,...,an” we
put in πP (E) a blocking rule as in equation (4), and for each action ai we put
in πP (E) an accepting rule as in equation (5).

Each new constraint defined in formula (8) is translated in LPOD as an
ordered blocking rule of the form:

block(a1) × . . . × block(an) :− exec(a1), . . . , exec(an), C. (9)

Fact 1 Since the PPDL-to-LPOD translation described above is not provided
with a mechanism for avoiding action block, the resulting program is determinis-
tic: using LPOD semantics we will obtain answer sets where the leftmost action
of each rules of the form (9) that fires is always dropped.

Indeed, ordered disjunctions are worth having when some actions may not
be blocked. This is the subject of next Section.

4.1 Anti-blocking rules

We now extend PPDL further by allowing users to describe actions that cannot
be filtered under certain conditions. To do so, let us introduce the following
anti-blocking rule:

keep a if C. (10)

5 The standard preference-less constraints are still part of the language



where a is an action that cannot be dropped when the boolean condition C is
satisfied. This rule is applied whenever a constraint of the form (8) is violated,
and a is one of the conflicting actions. In ASP, anti-blocking rules are mapped
in a constraint formulated as follows:

:− block(a), C. (11)

which is intended as action a cannot be blocked if condition C holds. Notice
that if if we want to control the execution of action a, postulating that under
condition C action a is executed regardless, then we should write, in PPDL:

∅ causes a if C.
keep a if C.

that will be translated in LPOD as follows:

exec(a) :− C.
:− block(a), C.

Unlike in traditional PDL, where actions are strictly the consequence of events,
by the causes described above we allows self-triggered or internal actions. We
should mention that, even without internal events, a PPDL policy with monitor,
blocking and anti-blocking rules, may be inconsistent. Consider the following
example.

Example 3. Take policy Pdiet:

Pdiet = { hungry causes eat meat.
hungry causes eat cake. }

and a preference monitor Mdiet saying that if we are on diet, we cannot eat both
meat and cake in the same meal, even if he/she is hungry. In particular, it is
preferable to give up meat; if this is not possible (because we are anemyc), then
we will give up cake.

Mdiet = { never eat meat × eat cake.
keep eat meat if anemic.
keep eat cake if greedy. }

where anemic and greedy stand for Boolean conditions. Both Pdiet and Mdiet

are translated the following LPOD, named πdiet:

exec(eat meat) :− occ(hungry).
exec(eat cake) :− occ(hungry).
block(eat meat)× block(eat cake) :− exec(eat meat),

exec(eat cake).
:− block(eat meat), anemic.
:− block(eat cake), greedy.



Now, suppose that event hungry has occurred. If we are from Naples, and anemic
and greedy, πdiet is inconsistent.

The simple example above shows that if we want to use prioritized semantics
in extended PPDL, we have to be careful in introducing anti-blocking rules,
in order to ensure that at least one action can be blocked in any case when a
constraint is violated.

5 Minimal Preferential Monitors

There are contexts where minimality of the solution is strictly required. This
requirement can be described in PPDL by adding anti-blocking rules. To yield
minimality, a monitor should be defined as in the following informal (and rather
ad hoc) example.

never a1 × a2 if c1.
never a2 × a3 if c2.
keep a1 if c1, c2.

(12)

The translation of such monitor into a logic program yields the following unique
answer set:

M ≡ {block(a2), accept(a1), accept(a3)}

as expected. However, specifying all the needed keep axioms in general cases is
cumbersome and inevitably going to slow down computation. More research is
needed to find out the range of applicability of such technique.

We can present here some general consideration about preferences and min-
imality applied on block atoms of a preferential monitors. In formula (12) we
wanted to obtain a minimal model containing only action a2, and we got this by
adding an ad-hoc keep clause. This situation can be generalized.

Definition 3. Whenever we want to obtain a minimal and preferred model,
that is blocking a minimal number of actions by respecting user’s preferences as
much as we can, we follow the procedure defined below:

1. generate all ordered blocking rules from the never constraints of the form as
in the monitor (8);

2. add, for each ordered blocking rule (9), a constraint saying that we can block
just one of the “×− blocked” actions:

:− block(a1), . . . , block(an), exec(a1), . . . , exec(an), C. (13)

3. call the Psmodels solver applied to this new logic program. This will return
models that are minimal and preferred.



As a result, the first and the second rule in (12) will be translated into the
following rules:

block(a1) × block(a2) if c1.
block(a2) × block(a3) if c2.

:− block(a1), block(a2).
:− block(a2), block(a3).

and the models (minimal and preferred) obtained by calling Psmodels are:

M1 ≡ {block(a1), block(a3), accept(a2), . . .}.
M2 ≡ {block(a2), accept(a1), accept(a3), . . .}. (14)

Unfortunately, there are still cases where this procedure does not return any
result as showed in the example below.

Example 4. Consider the monitor containing the following constraints:

never a × b × c.
never c × d.
never d × b × a.

Applying our procedure to get minimal and preferred monitors, we obtain:

block(a) × block(b) × block(c).
block(c) × block(d).
block(d) × block(b) × block(a).

% new constraints
:− block(a), block(b), block(c).
:− block(c), block(d).
:− block(d), block(b), block(a).

The above LPOD program does not have any answer set. To avoid undesirable
results like that in the example above, we can formulate a sufficient condition
for existence of monitors.

Definition 4. A priority graph GM , for a monitor M , is defined as follows:

– vertices corresponds to actions;
– there is an arc 〈a, b〉 ∈ GM iff actions a and b appear together in a rule of

M .

Conjecture 1
Let M be a monitor and let τ(M) be the translation of such monitor as in
definition (3).
τ(M) has an answer set (corresponding to a minimal and preferred model) if
the priority graph GM is free from odd length cycles.



5.1 Hybrid monitors, minimality and preferential blocking

Definition 3 describes how to generate a LPODs that yields Answer Sets rep-
resenting minimal and preferred monitors. However, such transformation from
PPDL to LPOD should be slightly modified when the monitor contains both
prioritized constraints (8), and simple PDL constraints like:

never aj if C. (15)

In this case we have an hybrid monitor and we have to treat both kinds of
constraints separately. To do so, we provide an algorithm where the solver is
called twice and creation of program τ(M) is divided into several steps.
Before describing the two steps of the reduction, let us define the following sets:

Sb(M) = {block(aj) :− Cj , ∀̃ never aj if Cj ∈ M.}

Atrue = {block(aj) s.t. πp ⇒ block(aj)}

R = {block(a1) × . . . × block(aj) where block(ai) ∈ Atrue, for some i = 1..j}

Cnew = {:− block(a1), . . . , block(aj).∀̃ preferential blocking rule /∈ R}

Here follows a formal description of such procedure:

Definition 5. Let M be a monitor, let P be a policy and let τi(M) be the i− th
step in translation of such monitor into a logic program 6.

1. τ0(M) : τ(P ) + Sb

2. Atrue is obtained by calling Psmodels on τ0(M)
3. τ1(M) : τ0(M) − Sb + Atrue.
4. if Atrue is a model of τ1(M), then STOP, else
5. τ2(M) : τ1(M) − R.
6. τ3(M) : τ2(M) + Cnew.

Example 5. Consider the hybrid monitor M as follows:

never a × b × c.
never c × d.
never d × e.
never e × a × b.

never a ifc1.
never c ifc2.
never d ifc3.

6 Notice that a monitor M can contain both simple constraints as in (15) and pref-
erence constraints as in (8). The former type of constraints are translated as in (9),
whereas the latter type of constraints are translated into the following blocking rule:

:− block(aj), C. (16)



Suppose condition c1, c2 are true. With the standard procedure, we should
add constraints that will make the program inconsistent, even though there are
minimal preferred monitors. However, applying the modified procedure described
above, we get the needed answer sets. Indeed the translation gives the following
program:

block(a) × block(b) × block(c).
block(c) × block(d).
block(d) × block(e).
block(e) × block(a) × block(b).

% new constraints
:− block(d), block(e).

We added only an additional constraint, as the other blocking rules contains at
least one among the block atoms already added in the model, i.e. block(a), block(c).
This program has two minimal and preferred model:

M1 ≡ {block(a), block(c), block(d), accept(b), accept(e), . . .}.
M2 ≡ {block(a), block(c), block(e), accept(b), accept(d), . . .}. (17)

6 Final considerations and future work

We believe that flexible policy languages, by which applications can specify
whether and how to enforce constraints, are required. Starting from Chomicki,
Lobo et al. work on PDL, our PPDL language enables the specification of user-
preferences in policy enforcement (cancellation of actions), yet in its first version
it was somewhat limited.

First, PPDL syntax of preference rules required that preference relation over
a set of actions which cannot be executed together needs to be a total order.

Second, as PPDL monitors are executed by translating them to LPOD pro-
grams, minimality of the solution, i.e., minimality of the set of block actions,
cannot be guaranteed. As Brewka point out, and our discussion corroborates,
maximizing preference implies giving up minimality of the model in the set-
theoretic sense.

In this article we have discussed two techniques that allow us to capture user
preferences in a PPDL monitor without giving up set-theoretic minimality of
the answer.

The first solution was given for PPDL monitors where all action constraints
are stated in terms of preferential blocking. In such cases, the minimality require-
ment is captured by a new translation, that introduced several new constraints.
A sufficient condition was given that ensures correctness of ASP interpretation
of the resulting program w.r.t. PPDL semantics.

The second, perhaps less elegant solution was given for PPDL monitors that
mix preferential and traditional (using never) constraints. In such a case, we



showed a two-steps translation from PPDL to ASP that uses the original Lobo’s
PDL to ASP translation as an intermediate step.

The proof of correctness of this translation will appear in the final version
of this article. Another topic for future research is a comparison with existing
work on ordered disjunctions in dlv [Buccafurri et al., 1998].

References

[Buccafurri et al., 1998] Buccafurri F., Leone L. and Rullo P., 1998. Disjunctive Or-
dered Logic: Semantics and Expressiveness. Proc. of KR’98. MIT Press, pp. 418-431.

[Bertino et al., 2003] Bertino E., Mileo A. and Provetti A., 2003. PDL with Maximum
Consistency Monitors. Proc. of ISMIS 2003 Conference. Springer LNAI, to appear.
Available from http://mag.usr.dsi.unimi.it/

[Bertino et al., 2003b] Bertino E., Mileo A. and Provetti A., 2003. Policy Monitoring
with User-Preferences in PDL. Proc. of NRAC 2003 Workshop. To appear. Available
from http://mag.usr.dsi.unimi.it/

[Brewka, 1996] Brewka G., 1996. Well-founded semantics for extended logic programs
with dynamic preferences. Journal of AI Research 4:19-36.

[Brewka, Benferhat, Le Berre, 2002] Brewka G., Benferhat S., and Le Berre D., 2002.
Qualitative choice logic. Proc. of Principles of Knowledge Representation and Rea-
soning, KR-02.

[Brewka, 2002] Brewka, G., 2002. Logic Programming with Ordered Disjunction. Proc.
of AAAI-02. Extended version presented at NMR-02.

[Brewka et al., 2002] Brewka, G., Niemelä I and Syr̈janen T., 2002. Implementing Or-
dered Disjunction Using Answer Set Solvers for Normal Programs. Proc. of JELIA’02.
Springer Verlag LNAI.

[Chomicki et al., 2000] Chomicki J., Lobo J. and Naqvi S., 2000. A logic programming
approach to conflict resolution in policy management. Proc. of KR2000, Morgan
Kaufmann, pp 121–132.

[Chomicki et al., 2001] Chomicki J. and Lobo J., 2001. Monitors for History-Based
Policies. Proc. of Int’l Workshop on Policies for Distributed Systems and Networks.
Springer-Verlag, LNCS 1995, pp. 57–72.

[Chomicki et al., 2003] Chomicki J., Lobo J. and Naqvi S., 2003. Conflict Resolution
using Logic Programming. To appear on IEEE Transactions on Knowledge and Data
Engineering 15:2.

[Gelfond and Lifschitz, 1991] Gelfond, M. and Lifschitz, V., 1991. Classical negation
in logic programs and disjunctive databases. New Generation Computing: 365–387.

[Lobo et al., 1999] Lobo J., Bhatia R. and Naqvi S., 1999. A Policy Description Lan-
guage, in Proc. of AAAI/IAAI, 1999, pp. 291–298.

[Schaub, Wang, 2001] Schaub T., and Wang K., 2001. A comparative study of logic
programs with preference. Proc. of Int’l. Joint Conference on AI, IJCAI-01.

[Systems] Web location of the most known ASP solvers.
Cmodels: http://www.cs.utexas.edu/users/yuliya/
aspps: http://www.cs.uky.edu/ai/aspps/
DLV: http://www.dbai.tuwien.ac.at/proj/dlv/
Smodels: http://www.tcs.hut.fi/Software/smodels/


