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Ah~tract. Data integration consists in providing a uruforrn access to a set of data 
sources, through a unified representationofthe data called global schema; a map­
ping specifics the relationship between the global schema and the sources. Ln this 
paper we introduce a very general framework for data integration based on cate­
gory theory. We give a denotational semantics for the data integration framework 
in the case of the GLAV approach, where the integrity constraints on the global 
schema are tuple-generating dependencies. We revisit the query known rewriting 
algorithms for this kind of systems by giving a denotational coalgebra semantics 
for them. In parttcular, since the known algorithms for query rewriting are based 
on the notion of chase of a database w.r.t. a set of constraints, we introduce a 
chase operator, and we show, by giving a fix point semantics for such an opera­
tor, that only a finjte ponion of the (possibly infinite) chase is needed for query 
answering. 

1 Introduction 

The task of a data integration system [ I 0] is to provide the user with a unified view, 
called global schema, of a set of heterogeneous data sources. Once the user issues a 
query over the global schema, the system carries out the task of suitably accessing the 
different sources and assemble the retrieved data into the final answer to the query. In 
this context, a crucial issue is the specification of the relationship between the global 
schema and the sources. which is called mapping [8. 10] . In this paper we use a more 
complex mapping, called GLAV [7, 6], consists in associating views over the global 
schema to views over the sources. 

Since the global schema is a representation of the domain of interest of the system, 
it needs to be represented by means of a flexible an expressive formalism: to this aim, 
integrity constraints are expressed on it. The data at the sources may not satisfy the 
constraints on the global schema; in this case a common assumption (which is the one 
adopted in this paper) is to consider the sources as sound. i.e., they provide a subset of 
the data that satisfy the global schema. 

This paper is based on the translation of data integration systems [ 10] into the deno­
tational semantics based on category theory [1 1, 13). Such a translation is useful in order 
to obtain fix point semantics for canonical solutions of database integration systems and 
simple commutative diagrams based on coalgebra homomorphisms for complex query 
rewriting algori thms. 
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First, we present a denotational semantics for both database mappings and integrity 
constraints where we introduce two kinds of database equivalences and their corre­
spondent partial orders (Section 2). Second, we consider a specific framewok for data 
integration, where the mapping is GLAV, and the constraints on the global schema are 
tuple-generating dependencies (TGDs) on the global schema (Section 3): TGDs are an 
extension of inclusion dependencies, which are an important class of dependencies in 
database schemata [1, 9]. Note that OLAV assertions are logic formulae that are analo­
gous to TGDs. TI1e semantics of query answering in this kind of systems is formul ated 
in terms of a canonical model, which is a representative of all minimal Herbrand mod­
els for the global schema of an integration system. Algorithms for query answering are 
proposed in [ 4, 2), where query answering is performed by rewriting the user query into 
a new query that can be evaluated over the data sources. Finally (Sections 4 and 5), 
we present a functorial translation of the logical theory expressing a data integration 
system into a denotational semantics, based on the database category, and formalise a 
fixpoint property for query answering. Moreover, we give a coalgebra semantics for 
query rewriting algorithms. paper. 

2 Denotational semantics for Database mappings 

In this section we introduce concepts of denotational semantics, together with behav­
ioral equivalence for databases, which will be used for the functorial translation of 
logical database theory into the database category. 
Let introduce some basic categorial notions [ 11 ]. The category is an abstract struc­
ture composed by collection of objects and arrows (or morphisms) between them. Each 
arrow has a source and a target object and each object has at least itS identity arrow. 
The composition of arrows (by operator 'o') satisfies the associative laws. A functor 
F : K.1 ---> K.2 is a mapping (a pair of functions : F 0 for objects and F 1 for arrows 
) from the category K.1 to lVz that preserves the categorical structure, that is, the com­
position of arrows, and maps identity arrow of any object A into the identity arrow of 
the object F 0 (A). An endofunctor is a functor with the same source and target cate­
gory. There exists the category Cat: take as objects aU categories, as arrows all functors 
(the composition of functors is a composition of paired functions). Given any two cat­
egories le1 and K.2 , we can define the category K.f': each object is some functor from 
K.1 to K.2 ; the arrows between these objects (i.e., functors) are called natural transfor­
mations, and their composition ' .! is called vertical composition of natural transfor­
mations. Let F, G : le1 ---> K.2 be two functors, then a transformation (which is a 
function) c: F---> G represents a fam ily of arrows in K.2, c:(A): F 0 (A ) ---> G0(A) 
for each object A in le1 ; such transfonnation is natural if for each arrow f : A - B 
in K.1, F1(!) oc:(B ) = c:(A) o G1(/). 

The Fixpoint semantics and coalgebra semantics for a query rewriting algorithms 
will be considered in the base database categoty DB [13, 12). Such category for 
database mappings is at instance level: each object of-this category is an extensional 
database which corresponds to a Rerbrand model of some database logical theory; 
arrows in this category are mapping morphisms between extensional databases . The 
connection between logical (schema ) level and this computation category is based on 
interpretation functors. Thus, each rule-based conjunctive query at schema level over 
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database A will be translated into an morphism from some database instance A (some model of the database schema A) into a database instance composed by all views of the instance A. 
The new approach based on the behavioral point of view for databases and the intro­duction of observations, wlrich are computations without side-effects, defines a lso the fundamental (from Universal algebra [14]) monad [ 11, 5] (T, TJ, J.L) of the endofunc­tor T : D B ---+ DB, such that for any object (database) A, the object TA denotes a database composed by the set of all views of A obtained by the set of all possible con­j unctive+uoion queries (the free tean algebra \vtth carrier set A of the "select-project­join + union" query la nguage ( of SPJRU or its s quivalent SPCU algebra, Chapter 4.5, 5.4 in [1 D. or more precisely, T A is "generated" by this algebra). Morphisms of this category are all possible mappings between database instances based on views. We introduce two functions, 80 and 81 , such that for any view-map QA, : A -+ T A , we have that 80 ( QA,) = { r 1, ... , rk} ~ A is a subset of relations of A used as arguments by th is query QA, and a l(QA.) = v E TA (resulting view of a query QA,) and for any morphism (database mapping)from a database A to B , f : A --+ B, defined as a set of queries qA, mapped from A into B in one of the following cases: I. inclusion case: when V = 81 (qA,) ~ b;, 2. inverse-inclusion case: when V = 81 (qA.) 2 bi, 3. equal case: when v = fh (qA.) = b;, where b; E B is some relation (table) in B , we have 

In what follows we omit the parenthesis tor singletons { .. }. When we define a mapping between two databases A and B, implicitly we define the "information flux" T [1 3]. i.e, the set of views of A "transmitted" by this mapping into B. This concept can be intu­itively explained in the following simplified way: each mapping from a database A into a da tabase B defines a part of information in B which is passed by tlris mapping from a database A. Let r., i = l, .. , n, be the set of resulting re.Jations of views ove r A used in the mapping f in order to define a part of information in B, then the set of all possible answers to union of conjw1ctive queries over this set of relations r,, i = l , .. , n (note. that each of these possible answers is also some view of A) defines the " information flux" of the mapping f. Thus, the "information flux" of the composition of two map­pings f 0 g is the set intersection of "information fluxes" of them, that is j;g = J n g. A mapping is a monomorphism ('injective') if T = T A , and an epimorphism (suljec­t ive') if J = TB; it is an isomorphism if it is monomorplric and epimorphic, that is, when T = TA = TB. Any two mappings f,g are equivalent , f ~ g, if they contain the same "information flux" ( T = 9). 
By duality of the category DB . for each mapping f : A --+ B between two (exten­sional) databases there exists also its equivalen t reverse mapping Jinv : B --> A in DB, that is, f inv ~f. 
Each pair (A, h), where h : A --> T A is some database mapping from a database A into a database TA (for ex.arnple, each single query over A with a resulting view in TA) is called T - coalgeb·ra, and h is caUed "structural map". A homomorphism f between T- coalgebr·as (A, h) and B, k) is a mapping f : A --> B such that holds k o T(f) = f o h. 
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2.1 The (strong) behavioral equivalence for databases 

We can characterize [13] each object in DB (a database instance) by its behavior ac­
cording to a given set of observations (views) obtained by conjunctive queries. Indeed, 
if one object A is considered as a black-box, the object T A is just the set of all ob­
servations on A: so given two objects A and 8 we are able to define the relation of 
equivalence between them based on the notion of the bisimulation relation- if the ob­
servations (resulting views of queries) of A and B are always equal, independently of 
their particular internal structure, then they seam equjvalent to the observer. 
In fact, any database can be seen as a system with a number of internal states which 
can be observed by using query operators (i.e, programs without side-effects). Thus 
databases A and Bare equivalent (bisimilar) if they have the same set of its observable 
internal state, i.e. when TA is equal to TB: 

Definition I ([13]). the relation of (strong) behavioral equivalence 1 ~~ between ob­
jects (databas~j in DB is given by A~ B iff T A = T B . and the equivalence 
relation for morphisms is given by f ~ g iff 1 =g. 
This relation of behavior equivalence between objects A ~ B corresponds to the notion 
of isomorphism in the category DB ,i.e., A ::= B. Let us prove that the equivalence 
relations on objects and morphisms are based on the "inclusion" Partial Order (PO) 
relations, which define the DB as a 2-category: 

Proposition 1 ([13)) The subcategory DB1 ~DB, with Oboa1 = Obos and with 
only monomorphic arrows, is a Partial Order category with PO relation of "inclusion " 
A ~ B defined by a monomorphism f : A <-+ B. The "inclusion" PO relations for 
objects and arrows are defined as follows: 
A ~ B iff T A ~ TB f ~ g iff 1 ~ g (i.e.] c;; g) 

they determine observation equivalences, i.e., 
A ~ B (i.e., A ~ B) iff A ~ B and 8 ~ A 

f ~ 9 iff f ~ g and g :=! f 
The power-view endofunctor T : DB -+ DB is a 2-endofunctor and the closure 
operator for this PO relation: any object A such that A = T A will be called "closed 
object". 
DB is a 2-category where 1-cel/s are its ordinary morphisms, while 2-cells are the 
arrows between ordinary morphisms :for any two mo!J'hisms f , g : A __, B , such 
that f ~ g . a 2-cel/ arrow is th!_ "inclusion" .JQ : f -:=9 . 

Example for equivalent morphisms: for any view-map CIA, : A __. T A holds 
QA, = T8Q(qA,) n Tch(qAJ = T81(QA.). Thus, the equivalence with an other view­
mapqs,: 8---. TB is given by: QA1 ~ qa1 iff TA 3 8l(QA,) = ~(qs1) E TB, 
i.e., when they produce the same view. 

2.2 Weak observational equival ence for databases 

Some database instances can also have relations with tuples containing also Sko/em 
constants (minimal Herbrand models for Global schema of some Data integration sys­
tem [ I 0, 3, 6]). ln the following we consider a recursively enumerable set of all Skolem 
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constants as marked (labelled) nulls SK = {w0 ,w1, .. . } , disjoint from the domain set 
dom of all values for databases, and we introduce the unary predicate Val(-), such that 
Val(t) is true ifft E dom (so, Val(wi) is falseforanyw; E SK). 

Definition 2 ([13)). The weak power-view operator Tw: OboB -+ Obos is defined 
as follows: for any database A in DB category holds: 

Tw(A) ~ { VI V E T(A) and'v'l$k$Juj'v'(t E Tak (v ))Val (t ) } 
where I vi is the number of attributes of the view v, and "k is k-th projection operator 
on relations. We define the partial order relation ~w for databases: 

A ~w fl iff T.v(A) ~ T,(B) 
and we define the weak observational equivalence rel7ition :=:-:w for databases: 

A ~~~~ B iff A ::$w Band B ::$,A 

The following properties holds for the weak partial order ::$w. w.r.t. the partial order ~ 
( we denote 1 A -< B' iff A ::$ B and not A ~ B): 

Proposition 2 ([131) Let A and B be any two databases, then: 

1. Tw(Tw(A)) = T (Tw (A )) = Tw(T(A)) = Tw(A) ~ T (A) . thus each object 
D = T 111(A) is a closed object (i.e., D = T (D)) such that D :=:-:w A 

2. Tw is a closure operator w.r.t. the "weak inclusion " relation ::$w 
3. T..,(A ) ~ A , if A is a database withouJ Skolem constants 

Tw(A) -< A , otherwise 
4. A -< B implies A ::$w B and A ~ fl implies A :=:-:w B 

Note that from point 4, the partial order " ::$ " is a more strong discriminator for 
database than the weak partial order " ::$w " , i.e., we can have two non isomorphic 
objects A -< B which are weakly equivalent, A :=:-:w B (for example when A = Tw(B ) 
and B is a database with Skolem constants). Let us extend the notion of the type oper­
ator T into the notion of the endofunctor in DB category: 

Theorem 1 ((13 J) There exists the weak power-view endofunctor 
Tu, = (T~ , T~) :DB~ DB . such that 

1. for any object A, the object component T,?, is equal to the type operator Tw. 
2. for any morphism f : A -> B , the arrow component T,~, is defined by 

Tw(f) ~ TJ,(J) = inc~w o T 1(f) o incA 
where incA : Tw(A) .._. T(A) is a monomorphism (set inclusion) and incif" 
T(B) ..... Tw(B) is an epimorphism (reversed monomorphism incn). 

3. Endofunctor T w preserves properties of arrows. i.e., if a morphism f has a prop­
erty P (monic, epic, isomorphic), then also Tw(J) has the same property: let 
Pmnno1 Pep£ and Piso are monomorphic, epimorphic and isomorphic properties 
respectively. then the following formula is tn1e V(f E M oro a) 
(Pmono(/ ) = Pmono(Twf) /\ Pep;{!) = Pepi(Twj) /\ Pi8o(/) = Puo(T,uf) 

4. There exist the natural transformations, f. : T w -> T (natural monomor­
phism), and {- 1 : T -> Tw (natural epimorphism), such that for any object 
A. ~(A) = incA is a monomorphism and {-1(A) = inc~'' is a11 epimorphism 
such that ~(A) ~ C 1 (A). 
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Like the monad (T , 1], 11,) and comonad (T, rJc , 1P) of the endofunctor T, also for lhe 
weak endofunctor T," we can define such structures: 

Proposition 3 ([131) The weak power-view endofunctor T,JJ = (T~, TJ,) : DB ~ 
DB defines the monad (T ... , 'TJw , /l,w) and the comonad (T,JJ, 7]~, J.L~) in DB, such that 
'TJw = ~-1 • TJ : loa~ Tw is a natural epimorphism and'T]~ = 1}0 · ~: Tw ~loa 
is a natural monomorphism.s ('•' is a vertical composition for natural transformations), 
while fJ·w : TwTw -+ Tw and J.L~ : Tw -----> 1'-wTw are equal to the natlcral identity 
transformation idT.,: Tw ~ Tw (becauseTw = TwT,u). 

3 GLAV Framework for Data Integration Systems 

ln this section we give a specific framework for data Integration, where the mapping 
is GLAV, and integrity conslrainls on lhe global schema are a restricted class oftuple 
generating dependencies [1]. The characteristics of the components of a data integration 
system in our approach [2] are as follows: 

- The global schema, enriched with the new unary predicate Val (_) such that Val ( c) 
is true if c E dum, is expressed in the re lational model with ET equal to a 
set of weakly-full TGDs (WFTGDs. A weakly-fitll tuple-generating dependency 
(WFTGD) is a logic formula ofthe form \:/x (3y ¢c(x , y) ==} 3z (7/Jc(x, z)) 
where the right-hand side has no existentially quantified variables, i.e., each Yi E y 
appears at most once in the left side. 

- The mapping M is defined following the GLAV approach: each de­
pendency in M is a tuple-generating dependency (TGD) of the form 
\:/x (3y qs (x , y ) =} 3z qg (x , z)) , where the formula qs (x , y) is a conjunc­

tion of atomic formulae overS and q0 (x , z) is a conjunction of atomic formulas 
over Q. 
We compute the relation Val for all constants in dom. The various relations ob­
tained by lhe mapping M over the source database V define what we call the re­
trieved global database ret('I, V). 

Example f . Consider a data integration system I = (Q, S , M }, with g = (Qr, Er). 
The schema gT is constituted by the relations Rd 2 and R2/ 2, the source schema by 
relations Sd2, S2/ l. The set ofiGDs Er contains the single TGD fJ : R1(X, Y ) =} 

R1(Y, W) ,Rz(Y, X). The mapping M consists of the assertions S1(X, c) ==} 

R1(X , Y ), R2(Y, Z) and S2(X) =} R2 (X , Y) .• 

In our case, with integrity constraints and with sound mapping, the semantics of 
the data integration system 'L is specified in terms of a set of legal global databases, 
namely, those databases (they exits iff 'L is consistent w.r.t. V , i.e., iff ret('I. V ) does 
not violate any constraint in g ) that are supersets of the retrieved global database 
ret('I, V). In [2], given the retrieved global dalabase r·et('I, V), we may construct 
inductively the canonical dalabase can(I, V) by starting from ret(I , V) by applying 
repeatedly the following chase rule: 
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SCHEMA LEVEL INSTANCE LEVEL 

s 

I 
I 

Functorial interpretation 
.I 

Ql 
I 

~ 
o•(C) 

~ 
Fig. I. Functorial translation 

a• (Q) = can(I, 'D) 

~*(Er) = /E 

a•(Qr) = ret(I, 'D) 

fa· (M ) = fM 

a* (S) = V 

TGD CHASE RULE. Consider a retrived global database r-et(I, 'D) and a TGD 0 

of the form x(x , y ) -t 1/l(x , z). The TGD B is applicable to ret(I , 'D) if there is a 

substitution (T that sends the atoms of x(x, y ) to tuples of ret (I, V), and there is no 

generalisation of q that sends the atoms of '1/J(x , z ) to tuples of ret (I , V ). In this case: 

{i) we define a substitution (T1 such that a' (xi) = a(x,) for each xi in x, and~ (z1) = 

(1 for each z3 in z, where (j is a fresh constant of dom, not already introduced in 

the construction and not appearing in ret(I , 'D); (ii) we add to ret(I, V) the facts of 

a'(t,og(x , z)) that are not already in 1-et(I, V). 

Note that in the case of WFTGDs, the canonical database may be infinite. 

Example 2. Consider Example I , and let 8 be a retrieved global database constituted 

by a single fact R 1(a, b). Let us construct can(I, V): at the first step we add the facts 

R 1 (b, z1), R2(b, a); at the second step the facts R 1 (z1 , z2), R2(z1 , b); note that the con­

struction process is infinite. • 

Based on the results [2), can (I, 'D) is the rig,ht abstraction for answering queries posed 

to the data integration system. Note that terms involving Skolem functions are never 

part of the certain an.nvers, so the lifted queries q use the Val(_) predicate in order to 

exclude from the answers the tuples with a Skolem constants in canCZ:, V ). 

Thus at the logical level, this GLAV data integration system, can be represenled by 

the graph composed by two arrows (Figure 1) , M : S ----+ 9r and Er : 9r ---+ 

g ( Sch(I) denotes Lbe category derived by this graph). 

Let us consider the most general case of GLAV mapping: 

Definition 3 (llJJ). For a general GLAV data integration/exchange system I 

(Q, S, M) , when each TGD maps some view of an database into some view of other 

daJabase . we define the following two schema mappings. h : S --> C , h : 9r ---+ 

C , where Cis a new logical schema composed by a new predicate symbol r;(x) for a 

formulae qg(x , z )Jor every i-th TGD 'Vx (3y qs (x , y) ~ 3z qg(x , z)) in M : 

It £ u v, . q; : s ---+ c 
ao(qt)= Ru &c D.(q, )=ao(v,) &c 81 (v;) = r , 
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u QG, : 9r __, C 

8u(qc• )=R,, k. 8 1 (qc,) = r; 

( R 11, R2, are, respectively, the set of predicate :,ymbols used in the query qs (x, y) and 

the set of predicate letters used in the query Q(;i (x, z )) 

Thus, we can define the functorial translation of this GLAV Data integration system 

into denotational semantics DB category: 

Definition 4. The ju11ctorial i11terpretation of this logical scheme into denotational 

semantic domain DB , a • : Sc;h(I ) __, DB , is defined by two corresponding arrows 

(Fig. I) fM : D ~ 1·et(I, V), !:£ : ret(I, V ) ~ can(I, V ), where a*(S) = V 

is the extension of the source database V, a¥ Wr) = ret(I , V) is the retrieved global 

database, a• (9 ) = a" (9r, Er) = can(I , V) is the universal (canonical) instance of 

the global schema with the integrity constraints, and 

a*(h) = f c ~ U{ a(qc;) I for every i-th TGD 

Vx (3y qs(x , y ) = 3z ~(x, z)) EM , 8l(a(q G1)) = a(r;), Bo(a(qG .)) = 
a• (R2;)} . where a (r,) = 1rx(q8(x , y )) is the projection on .t of the view 

qg (x , y ). obtained from the que1y qg (x, y ) over ret (I, V) , and .for predicate symbols 

in Bo(qc,) = R2i. a •(R2i) is the set of their extensions {relations) in ret(I, V). 

a·Ut) = fv £ U{ a(v;) o a(q;) I for every i-th TGD 

Vx (3y qs (x , y ) = 3z qc (x , z)) E M , 80 (a(q;)) = a *(R u) , 81 (c:r(q;)) = 

7rx (<&(x , z)), and a(v;) : trx(qf(x , z)) -> r.x(q~(x, y)) is an inclusion function 

} , where qf(x , z) is the view obtained from the query qs(x , z) over the source 

extension V . Thus, 

- a~(C) = C = U{a(1·,)} is the extension of the new logical schema C. 

- f M = f fr ofn. 
- h: £ U {vk o qretk I where Qret" : ret(I, V )--+ T (r-et(I , V )) such that 

8o(Qret.o,) = 8l(Qret") E ret(I, V), and Uk : 81(Qrct" ) ~ can(I, V) an inclu­

sion function}. 

4 Least fixpoint for the canonical solution 

Intuitively, the procedure to produce a canonical database for the global schema can 

be described as follows: start with an instance < I , 0 > that consists of I, instance of 

the source schema, and of the empty instance 0 for the target (global schema); then 

chase < I , 0 > by applying all the dependencies in E,,t (a finite set of source-to-target 

dependencies) and Er (a fini te set of target integrity dependencies) for as long as they 

arc applicable. This process may fail (if an attempt to identify two domain constants is 

made in order to define a homomorphism between two consecutive target instances) or 

it may never terminate. Let Ji and Ji+1 denote two consecutive target instances of this 

process {Jo = 0), then we introduce the function ch : e--+ e. where e is the set of 

al l pairs < I , J > where 1 is some source instance and J some of the generated by I 

target instances, such that < I , JH1 >= C11( < I , J; >) 2< I, Ji > . Such function 

is a monotone. Let define the sets S, = Tw(11'2( < I , J, > )) = Tw(Ji) and the operator 

tJF : Bw ~ Bw, where Bw = { Tw(1T2(S )) IS E 8}, such that Yi(Tw(1r2( <I, Ji > 
))) = Tw(tr2(Ch(< I , Ji >))) ,l.e.,YiTw7i2 = Tw1r2Ch: 8 -> B,u and with the least 

fixpoint S, S = Yi (S). 
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Proposition 4 Let < I , 0 > be an initial instance that consists of I, a finite instance 
of the source schema, and of the empty instance 0 for the target (global schema). Then 
there exists the least fzxpoint S) of the function 1Jt : ew ---+ ew. which is equal to 
S = Tw11'2CJ:(< I ,O >)forsomefiniten. 
The closure operator Tw is algebraic, that is, given any infinite canonical database 
can(I, 'D), holds Tw(can(I , 1J) ) = U{Tw(X') I X' ~.., can(I, 1J)} , where 
X'~ can(I, 'D)} means that X' is some finite subset of can(I, 'D). 

Note that each infinite canonical database is weakly equivalent to its finite subset X' 
obtained as the least :fixpoint of the operator IJ!, i.e., can(I, 1J)} :=:::w X', where X' = 
ll/(X') is a finite subset of can(I, 'D). 

5 Query rewriting coalgebra semantics 

In the context of query-rewriting we consider only queries which resulting view be­
longs to the "information flux" of this mapping. Consequently, given any two queries, 
QA, : A ---+ T A and QBj : B ---+ T B , they have to satisfy (w.r.t. query rewrit-

ing constraints) the condition 8l (QA, ) E j (the 8l(QA.) is just a resulting view of this 
query) and 81(qs1 ) E [.So, the well-rewritten query over B, QBJ : B---+ 1'B, such 
that it is equivalent to the original query. i.e., q8 1 ~ QA, , must satisfy the condition 

81(Qs,) = Bt(QA,) E 1. 
The denotational semantics for a query-rewriting in a data integration/exchange envi­
ronment is given by the following result. 

Theorem 2 ([13)) Each database query is a T-coalgebra; instead, each lifted query 
(for certain answers) is also a Tw - coalgebm. Any morphism between two T­
caalgebras f : {A,q..t,) ~ (B,qs1 ) defines the semantics for relevant query-

rewriting. when 81(qAJ E 1 and 8t(fJsi) E J; instead, when fJA1 and f]s1 are lifted 
queries, then f is also a morphism between Tw - coalgebr·as, f : (A, QA..,.) ---+ 

(B , Qs ... ,). with QA.,, :::::: QA1 and qs.,1 :::::: qs, . 

In, fact from the commutative diagram in Fig. 2 (where QA, and QBJ are lifted queries) 
which corresponds to the homomorphism between these two query coalgebras, we ob­
tain that, given a mapping f from a database A into a database B , given any original 
query QA1 E J over A, for the rewritten query qs1 holds that qa1 = T f o QA1 o Jin" ; 
and viceversa, given any original query qs, E 1 over B, for the rewritten query QA, 

holds that QA, = T f"w o QB; of . Also, from commutative diagram which represents 
a homomorphism f ofTw - coalgebras, we obtain that Qs1 = T.uf o QA1 o J inv and 

-,., ! ;,"" f QAI- ~ .u oqa1 ° · 
The naive computation is impractical, because it requires to build the canonical 
database, which is in general infinite. In order to overcome the problem, the query 
rewriting algorithm [2] consists of two separate phases: 
l. The algorithm transforms the original lifted query q into a new query expy(q) over 
the global schema, called the expansion of q 1v.r.t. Q, such that the answer to expg(q) 
over the retrieved global database is equal to the answer to q over the canonical database. 
2. ln order to avoid building the retrieved global database, that algorithm unfolds 
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TJ TB 

A 
B 

Fig. 2. Query equivalence diagram ll1 DB 

exp9 (q) to a new query, called un1 M( expg(q)), over the source relations on the basis 

of M , and than uses the unfolded query un1 M(exp9(q)) to access the sources. 

Figure 3 shows the basic idea ofthis approach (taken from [3]).ln order to obtain the 

certain answers qt;D, the user lifted query q could in principle be evaluated (dashed 

arrow) over the (possibly infinite) canonical database can(I , V ), which is generated 

from the retrieved global database ret(I , V ). In turn, ret(I, V) can be obtained from 

the source database V by evaluating the queries or the mapping. This query answering 

process instead expands the query according to the constraints in Q, unfolds it accord­

ing to M , and then evaluates it on the source database. 

Let show how the symbolic diagram in Fig. 3 can be effectively represented by com­

mutative diagrams in DB, correspondent to the homomorphisms between T-coalgebras 

representing equivalent queries over these three (extensional) databases: in DB cate­

gory each query is represented by an arrow, and can be composed with arrows which 

semantically denote mappings and integrity constraints. 

Theorem 3 Let I = (Q 1 S 1 M ) be a data integration system , V a source database for 

I, ret(I, V ) the retrieved global database for I w.r.t. V. and can(I, 'D) the universal 

(canonical) database for I w.r.t. 'D. 

Then denotational semantics for query rtn'lriting algorithms exp9 (q) and un1 M (q)Jor 

query expansion and query unfolding respectively, are given by two (partial) functions 

on T-coalgebras: 

unf M (-) ~ T f t/" 0 - 0 fM = TIJIJJ.:r 0- 0 f M 

exp!f(-) ~ T fFu o _ o 1 x: = Tw1J:r o _ o fx: and 

unf M (exp!f(- )) & T (JE o /A./)'"'11 o _o (fx; o fM) = T,.,(fx; o 1,,4)'"" o . o (/E o !M ) 

where 1M and f n are given by fUnctorial translation of the mapping M and integrity 

constraints ET. while o is a composition ofmorphisms {13]. 
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'Fig. 3. Query answering process 

TfM T/z; ___ __::..:::.. ___ Tret(Z, "D) T con(Z, "D) 

D 

:/1. Y/. I ~ T,. fr. 

:::'[7~-· ___ ...:::.:-=---r:T ,, 
ret(Z. "0)1-----L/.u!i __ _ can(Z. "D) 

Fig. 4. T-coalgebra homomorphisms for a qucl)' answering process 

Proof Let denote by qs = exp9 (q) and qu = unf .M (exp9(q)) the expanded and 
successively unfolded queries of the original lifted query q. Then by the query-rewriting 
theorem the diagrams, based on the composition ofT-coalgebra homomorphisms f M : 

(V, qu)-+ (ret(I,V) , qe)and/E: (ret(I,V),qs) -+ can(I,V), inFig. 4 
commute. It is easy to verify the first two facts. Then from composition of these two 
functions we obtain unf .M ( exp9 (- )) = unf ,lA (-)ex]Jg(-) = T !Xt o ( expr;(-)) o !M = 
Tf11'J o (Tf~w o _o h) a !M = (TJ~;v oTf¥r) o_o (h) o !M) = T(h; o fM) inv o 
_ o (!I; o f M) because of duality and functorial property ofT. Analogously, for the weak 
power-view endofunctor T,u, is easy to verify that Qu,. ::::: qu, QEw ::::: Qe and Qw ::::: q 
are equivalent queries. 

6 Conclusions 

In this paper we introduced the fixpoint semantics for query answering in data integra­
tion systems wirh (possibly infinite) canonical models for global schemas. The main 
contributions of this paper can be summarized as follows: 
I. A formal definition of the database information framework, given by [ I 0] and spc-
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cialised forGLAV mappings with tuple-generating dependencies [2], and a denotational 

semantics [13] for database mappings, with: the (strong) behavioral equivalence and the 

weak observational equivalence for databases. 

2. A formal definition of the fuute least fix point for (also infinite) canonical database 

models, used to obtain certain answers to the conjunctive queries: it is based on the 

chase and weak power-view operator. 

3. We introduced the denotational semantics of the query rewriting algorithms, based 

on coalgebras of these two fundamental endofunctors of database category. Thus, the 

intuitive meta-database reasonings used in query rewriting algorithms, can be directly 

represented in the same semantic domain of the database category, as databases and 

their mappings, by simple commutative diagrams. 

A further topic of future research is to gener-alize this approach also to other kind of 

data integration frameworks. 
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